MATH 1551 and MATH 1501, MATH 1503, or MATH 1550.

Overview of differential calculus including applications and the underlying theory of limits for functions and sequences. Credit not awarded for both MATH 1551 and MATH 1502, MATH 1504, MATH 1512 or MATH 1555.

MATH 1553. Introduction to Linear Algebra. 2 Credit Hours.

An introduction to linear algebra including eigenvalues and eigenvectors, applications to linear systems, least squares. Credit not awarded for both MATH 1553 and MATH 1522, MATH 1502, MATH 1504, MATH 1512, MATH 1554 or MATH 1564.

MATH 1554. Linear Algebra. 4 Credit Hours.

Linear algebra eigenvalues, eigenvectors, applications to linear systems, least squares, diagonalization, quadratic forms.

MATH 1555. Calculus for Life Sciences. 4 Credit Hours.

Overview of integral calculus, multivariable calculus, and differential equations for biological sciences. Credit not awarded for both MATH 1555 and MATH 1502, MATH 1504 or MATH 1512.

MATH 1564. Linear Algebra with Abstract Vector Spaces. 4 Credit Hours.

This is an intensive first course in linear algebra including the theories of linear transformations and abstract vector spaces. Credit not awarded for both MATH 1564 and MATH 1553, MATH 1554, MATH 1522, MATH 1502, MATH 1504 or MATH 1512.

MATH 15X1. Transfer Calculus I. 3 Credit Hours.

MATH 15X2. Transfer Calculus II. 3 Credit Hours.

This course includes the treatment of single variable calculus in MATH 1502. This course is not equivalent to MATH 1502. Credit not allowed for both MATH 15X2 and MATH 1512.

MATH 1601. Introduction to Higher Mathematics. 3 Credit Hours.

This course is designed to teach problem solving and proof writing. Mathematical subject matter is drawn from elementary number theory and geometry.

MATH 1711. Finite Mathematics. 5 Credit Hours.

Linear equations, matrices, linear programming, sets and counting, probability and statistics.

MATH 1712. Mathematics for Management II. 5 Credit Hours.

Techniques of differentiation, integration, application of integration to probability and statistics, multidimensional calculus. Credit not allowed for both MATH 1712 and 1501.

MATH 17X1. Transfer Finite Math. 3 Credit Hours.

MATH 17X2. Transfer Survey-Calc. 3 Credit Hours.

MATH 1803. Special Topics. 3 Credit Hours.

Courses on special topics of current interest in Mathematics.

MATH 1X51. Transfer Differential Calc. 2,3 Credit Hours.

MATH 1X52. Transfer Integral Calculus. 3,4 Credit Hours.

MATH 1X53. Transfer Intro Linear Algebra. 2,3 Credit Hours.

MATH 1XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 2106. Foundations of Mathematical Proof. 3 Credit Hours.

An introduction to proofs in advanced mathematics, intended as a transition to upper division courses including Abstract Algebra I and Analysis I.

MATH 2401. Calculus III. 4 Credit Hours.

Multivariable calculus: Linear approximation and Taylor's theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.
MATH 2403. Differential Equations. 4 Credit Hours.
Methods for obtaining numerical and analytic solutions of elementary
differential equations. Applications are also discussed with an emphasis
on modeling.

MATH 2406. Abstract Vector Spaces. 3 Credit Hours.
A proof-based development of linear algebra and vector spaces, with
additional topics such as multilinear algebra and group theory.

MATH 2411. Honors Calculus III. 4 Credit Hours.
The topics covered parallel those of MATH 2401 with a somewhat more
intensive and rigorous treatment. Credit is not allowed for both honors
calculus and the corresponding regular calculus course.

MATH 2413. Honors Differential Equations. 4 Credit Hours.
The course treats the theory of ordinary differential equations from an
advanced perspective, delving into the theory as well as computational
aspects. It is designed for mathematics majors, and others who wish to
take advanced courses in the area.

MATH 24X1. Transfer Calculus III. 3 Credit Hours.
MATH 24X3. Transfer Diff Equations. 3 Credit Hours.

MATH 2550. Introduction to Multivariable Calculus. 2 Credit Hours.
Vectors in three dimensions, curves in space, functions of several
variables, partial derivatives, optimization, integration of functions of
several variables. Vector Calculus not covered. Credit will not be awarded
for both MATH 2550 and MATH 2605 or MATH 2401 or MATH 2551 or
MATH 1555.

MATH 2551. Multivariable Calculus. 4 Credit Hours.
Multivariable calculus: Linear approximation and Taylor's theorems,
Lagrange multiples and constrained optimization, multiple integration
and vector analysis including the theorems of Green, Gauss, and Stokes.
Credit will not be awarded for both MATH 2551 and MATH 2401 or
MATH 2411 or MATH 2561.

MATH 2552. Differential Equations. 4 Credit Hours.
Methods for obtaining numerical and analytic solutions of elementary
differential equations. Applications are also discussed with an emphasis
on modeling. Credit not awarded for both MATH 2552 and MATH 2403 or
MATH 2413 or MATH 2562.

MATH 2561. Honors Multivariable Calculus. 4 Credit Hours.
The topics covered parallel those of MATH 2551 with a somewhat more
intensive and rigorous treatment. Credit not awarded for both MATH 2561
and MATH 2401 or MATH 2411 or MATH 2551.

MATH 2562. Honors Differential Equations. 4 Credit Hours.
The topics covered parallel those of MATH 2552 with a somewhat more
intensive and rigorous treatment.

MATH 2602. Linear and Discrete Mathematics. 4 Credit Hours.
Topics in linear algebra, sequences, differences, finite sums and
difference equations, multivariate optimization with an emphasis in
discrete and recursive methods.

MATH 2603. Introduction to Discrete Mathematics. 4 Credit Hours.
Mathematical logic and proof, mathematical induction, counting
methods, recurrence relations, algorithms and complexity, graph theory
and graph algorithms. Credit not awarded for both MATH 2603 and
MATH 2602.

MATH 2605. Calculus III for Computer Science. 4 Credit Hours.
Topics in linear algebra and multivariate calculus and their applications in
optimization and numerical methods, including curve fitting, interpolation,
and numerical differentiation and integration.

MATH 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

MATH 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

MATH 26X2. Transfer Linear & Disc Math. 3 Credit Hours.

MATH 26X3. Transfer Discrete Math. 3 Credit Hours.

MATH 2801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 2802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2X51. Transfer Multivariable Calc. 3,4 Credit Hours.

MATH 2X52. Transfer Differential Equation. 3,4 Credit Hours.

MATH 2XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 3012. Applied Combinatorics. 3 Credit Hours.
Elementary combinatorial techniques used in discrete problem solving:
counting methods, solving linear recurrences, graph and network models,
related algorithms, and combinatorial designs.

MATH 3022. Honors Applied Combinatorics. 3 Credit Hours.
Topics are parallel to those of MATH 3012 with a more rigorous
and intensive treatment. Credit is not allowed for both MATH 3012 and 3022.

MATH 3215. Introduction to Probability and Statistics. 3 Credit Hours.
This course is a problem-oriented introduction to the basic concepts of
probability and statistics, providing a foundation for applications and
further study.

MATH 3225. Honors Probability and Statistics. 3 Credit Hours.
The topics covered parallel those of MATH 3215, with a more rigorous
and intensive treatment. Credit is not allowed for both MATH 3215 and
3225.

MATH 3235. Probability Theory. 3 Credit Hours.
This course is a mathematical introduction to probability theory, covering
random variables, moments, multivariable distributions, law of large
numbers, central limit theorem, and large deviations. Credit not awarded
for both MATH 3235 and MATH 3215 or 3225 or 3670.

MATH 3236. Statistical Theory. 3 Credit Hours.
An introduction to theoretical statistics for students with a background in
probability. A mathematical formalism for inference on experimental data
will be developed. Credit not awarded for both MATH 3236 and MATH 3215
or 3225 or 3670.

MATH 3406. A Second Course in Linear Algebra. 3 Credit Hours.
This course will cover important topics in linear algebra not usually
discussed in a first-semester course, featuring a mixture of theory and
applications.
MATH 3670. Probability and Statistics with Applications. 3 Credit Hours.
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance. Students cannot receive credit for both MATH 3670 and MATH 3770 or ISYE 3770 or CEE 3770.

MATH 3801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 3802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 4012. Algebraic Structures in Coding Theory. 3 Credit Hours.
Introduction to linear error correcting codes with an emphasis on the algebraic tools required, including matrices vector spaces, groups, polynomial rings, and finite fields.

MATH 4022. Introduction to Graph Theory. 3 Credit Hours.
The fundamentals of graph theory: trees, connectivity, Euler torus, Hamilton cycles, matchings, colorings, and Ramsey theory.

MATH 4032. Combinatorial Analysis. 3 Credit Hours.
Combinatorial problem-solving techniques including the use of generating functions, recurrence relations, Polya theory, combinatorial designs, Ramsey theory, matroids, and asymptotic analysis.

MATH 4080. Senior Project I. 2 Credit Hours.
The first of a two-course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.

MATH 4090. Senior Project II. 2 Credit Hours.
The second course of a two-course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.

MATH 4107. Introduction to Abstract Algebra I. 3 Credit Hours.
This course develops in the theme of "Arithmetic congruence and abstract algebraic structures". Strong emphasis on theory and proofs.

MATH 4108. Introduction to Abstract Algebra II. 3 Credit Hours.
Continuation of Abstract Algebra I, with emphasis on Galois theory, modules, polynomial fields, and the theory of linear associative algebra.

MATH 4150. Introduction to Number Theory. 3 Credit Hours.
Primes and unique factorization, congruences, Chinese remainder theorem, Diophantine equations, Diophantine approximations, quadratic reciprocity. Applications such as fast multiplication, factorization, and encryption.

MATH 4221. Probability with Applications I. 3 Credit Hours.
Simple random walk and the theory of discrete time Markov chains.

MATH 4222. Probability with Applications II. 3 Credit Hours.
Renewal theory, Poisson processes and continuous time Markov processes, including an introduction to Brownian motion and martingales.

MATH 4255. Monte Carlo Methods. 3 Credit Hours.
Probability distributions, limit laws, and applications through the computer.

MATH 4261. Mathematical Statistics I. 3 Credit Hours.
Sampling distributions, Normal, t, chi-square, and f distributions. Moment-generating function methods, Bayesian estimation, and introduction to hypothesis testing.

MATH 4262. Mathematical Statistics I. 3 Credit Hours.
Hypothesis testing, likelihood ratio tests, nonparametric tests, bivariate and multivariate normal distributions.

MATH 4280. Elements of Information Theory. 3 Credit Hours.
The measurement and quantification of information. These ideas are applied to the probabilistic analysis of the transmission of information over a channel along which random distortion of the message occurs.

MATH 4305. Finite-dimensional Vector Spaces. 3 Credit Hours.
Finite dimensional vector spaces, inner product spaces, least squares, linear transformations, the spectral theorem for normal transformations. Applications to convex sets, positive matrices, difference equations.

MATH 4317. Analysis I. 3 Credit Hours.
Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, Fourier series.

MATH 4318. Analysis II. 3 Credit Hours.
Differentiation of functions of one real variable. Riemann-Stieltjes integral, the derivative in Rn, and integration in Rn.

MATH 4320. Complex Analysis. 3 Credit Hours.
Topics from complex function theory, including contour integration and conformal mapping.

MATH 4347. Introduction to Partial Differential Equations I. 3 Credit Hours.
Method of characteristics for first- and second-order partial differential equations, conservation laws and shocks, classification of second-order systems and applications.

MATH 4348. Introduction to Partial Differential Equations II. 3 Credit Hours.
Green's functions and fundamental solutions. Potential, diffusion, and wave equations.

MATH 4411. Differential Geometry. 3 Credit Hours.
The theory of curves, surfaces, and more generally, manifolds. Curvature, parallel transport, covariant differentiation, Gauss-Bonnet theorem.

MATH 4412. Dynamics and Bifurcations I. 3 Credit Hours.
A broad introduction to the local and global behavior of nonlinear dynamical systems arising from maps and ordinary differential equations.

MATH 4413. Dynamics and Bifurcations II. 3 Credit Hours.
A continuation of Dynamics and Bifurcations I.

MATH 4580. Linear Programming. 3 Credit Hours.
A study of linear programming problems, including the simplex method, duality, and sensitivity analysis with applications to matrix games, integer programming, and networks.
MATH 4581. Advanced Engineering Mathematics. 3 Credit Hours.
The Laplace transform and applications, Fourier series, boundary value problems for partial differential equations.

MATH 4640. Scientific Computing I. 3 Credit Hours.
Introduction to numerical algorithms for some basic problems in computational mathematics. Discussion of both implementation issues and error analysis.

MATH 4641. Numerical Analysis II. 3 Credit Hours.
Introduction to the numerical solution of initial and boundary value problems in differential equations.

MATH 4695. Undergraduate Internship. 1-21 Credit Hours.
Undergraduate internship for academic credit.

MATH 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 4755. Mathematical Biology. 3 Credit Hours.
Problems from the life sciences and the mathematical methods for solving them are presented. The underlying biological and mathematical principles and the interrelationships are emphasized. Crosslisted with BIOL 4755.

MATH 4777. Vector and Parallel Scientific Computation. 3 Credit Hours.
Scientific computational algorithms on vector and parallel computers. Speed-up and algorithm complexity, interprocesses communication, synchronization, modern algorithms for linear systems, programming techniques, code optimization. Crosslisted with CS 4777.

MATH 4782. Quantum Information and Quantum Computing. 3 Credit Hours.
Introduction to quantum computing and quantum information theory, formalism of quantum mechanics, quantum gates, algorithms, measurements, coding, and information. Physical realizations and experiments. Crosslisted with PHYS 4782.

MATH 4801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 4802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4999. Reading or Research. 1-21 Credit Hours.
Reading or research in topics of current interest.

MATH 4XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 6001. Introduction to Graduate Studies in Mathematics. 2 Credit Hours.
This course covers practical information helping students start their careers as a professional mathematician. It also satisfies the Georgia Tech RCR requirements for "in-person" training.

MATH 6014. Graph Theory and Combinatorial Structures. 3 Credit Hours.
Fundamentals, connectivity, matchings, colorings, extremal problems, Ramsey theory, planar graphs, perfect graphs. Applications to operations research and the design of efficient algorithms.

MATH 6021. Algebra and Topology in Finite-dimensional Spaces. 3 Credit Hours.
Metric spaces, normed linear spaces, convexity, and separation; polyhedra and simplicial complexes; surfaces; Brouwer fixed point theorem.

MATH 6112. Advanced Linear Algebra. 3 Credit Hours.
An advanced course in Linear Algebra and applications.

MATH 6121. Modern Abstract Algebra I. 3 Credit Hours.
Graduate-level linear and abstract algebra including groups, finite fields, classical matrix groups and bilinear forms, multilinear algebra, and matroids. First of two courses.

MATH 6122. Modern Abstract Algebra II. 3 Credit Hours.
Graduate-level linear and abstract algebra including rings, fields, modules, some algebraic number theory and Galois theory. Second of two courses.

MATH 6221. Advanced Classical Probability Theory. 3 Credit Hours.
Classical introduction to probability theory including expectation, notions of convergence, laws of large numbers, independence, large deviations, conditional expectation, martingales, and Markov chains.

MATH 6235. Stochastic Processes in Finance II. 3 Credit Hours.
Advanced mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from advanced probability and mathematics are introduced as needed.

MATH 6241. Probability I. 3 Credit Hours.
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics of this course include measure and integration foundations of probability, distribution functions, convergence concepts, laws of large numbers, and central limit theory. First of two courses.

MATH 6242. Probability II. 3 Credit Hours.
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics of this course include results for sums of independent random variables, Markov processes, martingales, Poisson processes, Brownian motion, conditional probability and conditional expectation, and topics from ergodic theory. Second of two classes.

MATH 6262. Advanced Statistical Inference I. 3 Credit Hours.
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.

MATH 6263. Advanced Statistical Inference II. 3 Credit Hours.
Basic theories of testing statistical hypotheses, including a thorough treatment of testing in exponential class families. A careful mathematical treatment of the primary techniques of hypothesis testing utilized by statisticians.

MATH 6266. Linear Statistical Models. 3 Credit Hours.
Basic unifying theory underlying techniques of regression, analysis of variance and covariance, from a geometric point of view. Modern computational capabilities are exploited fully. Students apply the theory to real data through canned and coded programs.
MATH 6267. Multivariate Statistical Analysis. 3 Credit Hours.
Multivariate normal distribution theory, correlation and dependence
analysis, regression and prediction, dimension-reduction methods,
sampling distributions and related inference problems, selected
applications in classification theory, multivariate process control, and
pattern recognition.

MATH 6300. Fractal Geometry. 3 Credit Hours.
Hausdorff dimension, box-counting dimension, iterated function systems,
continued fractions, number theory, Julia sets.

MATH 6307. Ordinary Differential Equations I. 3 Credit Hours.
This sequence develops the qualitative theory for systems of ordinary
differential equations. Topics include stability, Lyapunov functions,
Floquet theory, attractors, invariant manifolds, bifurcation theory, normal
forms. First of two courses.

MATH 6308. Ordinary Differential Equations II. 3 Credit Hours.
This sequence develops the qualitative theory for systems of differential
equations. Topics include stability, Lyapunov functions, Floquet theory,
attractors, invariant manifolds, bifurcation theory, and normal forms.
Second of two courses.

MATH 6321. Functions of a Complex Variable I. 3 Credit Hours.
Complex integration, including Goursat's theorem; classification of
singularities, the argument principle, the maximum principle; Riemann
Mapping theorem; analytic continuation and Riemann surfaces; range of
an analytic function, including Picard's theorem.

MATH 6337. Real Analysis I. 3 Credit Hours.
Measure and integration theory. Topics include measures, measurable
functions, integration and differentiation of measures.

MATH 6338. Real Analysis II. 3 Credit Hours.
Topics include Lp spaces, Banach and Hilbert spaces, basic functional
analysis.

MATH 6341. Partial Differential Equations I. 3 Credit Hours.
Introduction to the mathematical theory of partial differential equations
covering the basic linear models of science and exact solution
techniques.

MATH 6342. Partial Differential Equations II. 3 Credit Hours.
This course covers the general mathematical theory of linear stationary
and evolution problems plus selected topics chosen from the instructor's
interests.

MATH 6421. Algebraic Geometry I. 3 Credit Hours.
The study of zero sets of polynomials: algebraic varieties, regular and
rational mappings, the Zariski topology.

MATH 6422. Algebraic Geometry II. 3 Credit Hours.
A continuation of Algebraic Geometry I.

MATH 6441. Algebraic Topology I. 3 Credit Hours.
Simplicial homology. Chain complexes and acyclic carriers. Simplicial
approximation. The exact homology sequence. Maps of spheres. Mayer-
Vietoris sequence.

MATH 6442. Algebraic Topology II. 3 Credit Hours.
Continuation of MATH 6441. Singular homology. Local homology and

MATH 6451. General Topology. 3 Credit Hours.
Introduction to topological and metric spaces. Continuity, compactness,
convergence, completion. Product and quotient spaces. Elementary
homotopy.

MATH 6452. Differential Topology. 3 Credit Hours.
Manifolds. Differentiable structures. Tangent bundles. Embeddings and
Vector bundles.

MATH 6453. Geometric Topology. 3 Credit Hours.
Characteristic classes, Morse theory, three-manifolds, four-manifolds,
symplectic and contact manifolds, knot theory.

MATH 6455. Differential Geometry I. 3 Credit Hours.
Core topics in differential, including: Lie groups, curvature, and relations
with topology.

MATH 6456. Differential Geometry II. 3 Credit Hours.
Introduces students to topics of current interest in geometry.

MATH 6457. Geometry and Topology I. 3 Credit Hours.
The course is an introduction to the fundamental group, covering spaces
and techniques used to describe and study differentiable Manifolds and
smooth functions.

MATH 6458. Introduction to Geometry and Topology II. 3 Credit Hours.
Introduction to differential geometry and (co) homology.

MATH 6514. Industrial Mathematics I. 3 Credit Hours.
Applications of mathematical techniques from MATH 6514 to solve real-
world problems. Group projects to solve industrial problems in topics
chosen by the instructor.

MATH 6515. Industrial Mathematics II. 3 Credit Hours.
Applications of mathematical techniques from MATH 6515 to solve real-
world problems. Group projects to solve industrial problems in topics
chosen by the instructor.

MATH 6580. Introduction to Hilbert Spaces. 3 Credit Hours.
Geometry, convergence, and structure of linear operators in infinite
dimensional spaces. Applications to science and engineering, including
integral equations and ordinary partial differential equations.

MATH 6583. Integral Equations and Transforms. 3 Credit Hours.
Volterra and Fredholm linear integral equations; relation to differential
equations; solution methods; Fourier, Laplace, and Mellin transforms;
applications to boundary value problems and integral equations.

MATH 6584. Special Functions of Higher Mathematics. 3 Credit Hours.
Gamma function; exponential function; orthogonal polynomials; Bessel,
Legendre, and hypergeometric functions; application to singular ordinary
differential equations; and separation of variables for partial differential
equations.

MATH 6635. Numerical Methods in Finance. 3 Credit Hours.
Basic numerical and simulation techniques used in the pricing
of derivative securities and in related problems in finance. Some
programming experience required.

MATH 6640. Applied Computational Methods for Partial Differential
Equations. 3 Credit Hours.
Introduction to the implementation and analysis of numerical algorithms
for the numerical solution of the classic partial differential equations
of science and engineering. Must have knowledge of a computer
programming language, familiarity with partial differential equations and
elements of scientific computing.
MATH 6641. Advanced Numerical Methods for Partial Differential Equations. 3 Credit Hours.
Analysis and implementation of numerical methods for nonlinear partial differential equations including elliptic, hyperbolic, and/or parabolic problems. Must have knowledge of classic linear partial differential equations and exposure to numerical methods for partial differential equations at the level of MATH 6640 or numerical linear algebra at the level of MATH 6643.

MATH 6643. Numerical Linear Algebra. 3 Credit Hours.
Introduction to the numerical solution of the classic problems of linear algebra including linear systems, least squares, Singular value decomposition, eigenvalue problems. Crosslisted with CSE 6643.

MATH 6644. Iterative Methods for Systems of Equations. 3 Credit Hours.

MATH 6645. Numerical Approximation Theory. 3 Credit Hours.
Theoretical and computational aspects of polynomial, rational, trigonometric, spline, and wavelet approximation.

MATH 6646. Numerical Methods for Ordinary Differential Equations. 3 Credit Hours.
Analysis and implementation of numerical methods for initial and two-point boundary value problems for ordinary differential equations.

MATH 6647. Numerical Methods for Dynamical Systems. 3 Credit Hours.
Approximation of the dynamical structure of a differential equation and preservation of dynamical structure under discretization. Must be familiar with dynamical systems and numerical methods for initial and boundary value problems in ordinary differential equations.

MATH 6701. Math Methods of Applied Sciences I. 3 Credit Hours.
Review of linear algebra and ordinary differential equations, brief introduction to functions of a complex variable.

MATH 6702. Math Methods of Applied Sciences II. 3 Credit Hours.
Review of vector calculus and its applications to partial differential equations.

MATH 6705. Modeling and Dynamics. 3 Credit Hours.
Mathematical methods for solving problems in the life sciences. Models-based course on basic facts from the theory of ordinary differential equations and numerical methods of their solution. Introduction to the control theory, diffusion theory, maximization, minimization and curve fitting. Math majors may not use this course toward any degree in the School of Mathematics.

MATH 6710. Numerical Methods in Computational Science and Engineering I. 3 Credit Hours.
Introduction to numerical algorithms widely used in computational science and engineering. Numerical linear algebra, linear programming, and applications. Crosslisted with CSE 6710.

MATH 6711. Numerical Methods in Computational Science and Engineering II. 3 Credit Hours.
Efficient numerical techniques for solving partial differential equations and large-scale systems of equations arising from discretization of partial differential equations or variational problems in applications in science and engineering. Crosslisted with CSE 6711.

MATH 6759. Stochastic Processes in Finance I. 3 Credit Hours.
Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed. Crosslisted with ISYE 6759.

MATH 6761. Stochastic Processes I. 3 Credit Hours.

MATH 6762. Stochastic Processes II. 3 Credit Hours.

MATH 6767. Design and Implementation of Systems to Support. 3 Credit Hours.
Computational Finance Introduction to large scale system design to support computational finance for options, stocks, or other financial instruments. Some programming experience, and previous exposure to stocks, bonds, and options required. Crosslisted with ISYE 6767.

MATH 6769. Fixed Income Securities. 3 Credit Hours.
Description, institutional features, and mathematical modeling of fixed income securities. Use of both deterministic and stochastic models. Crosslisted with ISYE 6769.

MATH 6781. Reliability Theory. 3 Credit Hours.
Reliability systems and related distributions, failure rate functions and nonparametric classes, accelerated life testing, dependent failure analysis, statistical inference of reliability data. Crosslisted with ISYE 6781.

MATH 6783. Statistical Techniques of Financial Data Analysis. 3 Credit Hours.
Fundamentals of statistical inference for models used in the modern analysis of financial data. Crosslisted with ISYE 6783.

MATH 6785. The Practice of Quantitative and Computational Finance. 3 Credit Hours.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance. Crosslisted with ISYE and MGT 6785.

MATH 6793. Advanced Topics in Quantitative and Computational Finance. 3 Credit Hours.
Advanced foundational material and analysis techniques in quantitative and computational finance. Crosslisted with ISYE 6793.

MATH 6XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 7000. Master's Thesis. 1-21 Credit Hours.

MATH 7012. Enumerative Combinatorics. 3 Credit Hours.
Fundamental methods of enumeration and asymptotic analysis, including the use of inclusion/exclusion, generating functions, and recurrence relations. Applications to strings over a finite alphabet and graphs.

MATH 7014. Advanced Graph Theory. 3 Credit Hours.
Advanced topics in graph theory. Selection of arguments varies every year.

MATH 7016. Combinatorics. 3 Credit Hours.
Fundamental combinatorial structures including hypergraphs, transversal sets, colorings, Sperner families, intersecting families, packings and coverings, perfect graphs, and Ramsey theory. Algebraic and topological methods, applications.
MATH 7018. Probabilistic Methods in Combinatorics. 3 Credit Hours.
Applications of probabilistic techniques in discrete mathematics,
including classical ideas using expectation and variance as well as
modern tools, such as martingale and correlation inequalities.

MATH 7244. Stochastic Processes and Stochastic Calculus I. 3 Credit Hours.
An introduction to the Ito stochastic calculus and stochastic differential
equations through a development of continuous-time martingales and
Markov processes. First of two courses.

MATH 7245. Stochastic Processes and Stochastic Calculus II. 3 Credit Hours.
An introduction to the Ito stochastic calculus and stochastic differential
equations through a development of continuous-time martingales and
Markov processes. Continuation of MATH 7244.

MATH 7334. Operator Theory. 3 Credit Hours.
Theory of linear operators on Hilbert space. Spectral theory of bounded
and unbounded operators. Applications.

MATH 7337. Harmonic Analysis. 3 Credit Hours.
Fourier analysis in Euclidean space. Basic topics including L1 and
L2 theory; advanced topics such as distribution theory, uncertainty,
Littlewood-Paley theory.

MATH 7338. Functional Analysis. 3 Credit Hours.
Topics include the Hahn-Banach theorems, the Baire Category theorem
and its consequences, duality in Banach spaces, locally convex spaces,
and additional topics.

MATH 7510. Graph Algorithms. 3 Credit Hours.
Algorithms for graph problems such as maximum flow, covering,
matching, coloring, planarity, minimum cuts, shortest paths, and
connectivity. Crosslisted with ISYE 7510 and CS 7510.

MATH 7581. Calculus of Variations. 3 Credit Hours.
Minimization of functionals, Euler-Lagrange equations, sufficient
conditions for a minimum; geodesic, isoperimetric, and time of transit
problems; variational principles of mechanics; applications to control
theory.

MATH 7586. Tensor Analysis. 3 Credit Hours.
Review of linear algebra, multilinear algebra, algebra of tensors, co-
and contravariant tensors, tensors in Riemann spaces, geometrical
interpretation of skew tensors.

MATH 7999. Preparation for Doctoral Comprehensive Examination. 1-21
Credit Hours.

MATH 8005. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests
for courses in selected topics.

MATH 8004. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests
for courses in selected topics.

MATH 8003. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests
for courses in selected topics.

MATH 8002. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests
for courses in selected topics.

MATH 8001. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests
for courses in selected topics.
MATH 8834. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8835. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8841. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8842. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8843. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8844. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8845. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8851. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8852. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8853. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8854. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8855. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8863. Advanced Topics in Graph Theory. 3 Credit Hours.
Selection of topics vary with each offering.

MATH 8900. Special Problems. 1-21 Credit Hours.

MATH 8901. Special Problems. 1-21 Credit Hours.

MATH 8902. Special Problems. 1-21 Credit Hours.

MATH 8903. Special Problems. 1-21 Credit Hours.

MATH 8997. Teaching Assistantship. 1-9 Credit Hours.
For students holding graduate teaching assistantships.

MATH 8998. Research Assistantship. 1-9 Credit Hours.
For students holding graduate research assistantships.

MATH 9000. Doctoral Thesis. 1-21 Credit Hours.