TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>12</td>
</tr>
<tr>
<td>Governance</td>
<td>13</td>
</tr>
<tr>
<td>University System of Georgia (USG) Member Institutions</td>
<td>13</td>
</tr>
<tr>
<td>Office of the President</td>
<td>13</td>
</tr>
<tr>
<td>Deans</td>
<td>13</td>
</tr>
<tr>
<td>Accreditation</td>
<td>13</td>
</tr>
<tr>
<td>Colleges and Schools</td>
<td>16</td>
</tr>
<tr>
<td>College of Computing</td>
<td>16</td>
</tr>
<tr>
<td>Research Centers</td>
<td>16</td>
</tr>
<tr>
<td>School of Computational Science and Engineering</td>
<td>17</td>
</tr>
<tr>
<td>Graduate Study in Computational Science and Engineering</td>
<td>18</td>
</tr>
<tr>
<td>School of Computer Science</td>
<td>18</td>
</tr>
<tr>
<td>Graduate Study in Computer Science</td>
<td>19</td>
</tr>
<tr>
<td>School of Interactive Computing</td>
<td>19</td>
</tr>
<tr>
<td>Graduate Study in Interactive Computing</td>
<td>20</td>
</tr>
<tr>
<td>Undergraduate Study in Interactive Computing</td>
<td>20</td>
</tr>
<tr>
<td>College of Design</td>
<td>21</td>
</tr>
<tr>
<td>School of Architecture</td>
<td>21</td>
</tr>
<tr>
<td>Graduate Study in Architecture</td>
<td>22</td>
</tr>
<tr>
<td>Undergraduate Study in Architecture</td>
<td>22</td>
</tr>
<tr>
<td>School of Building Construction</td>
<td>23</td>
</tr>
<tr>
<td>Graduate Study in Building Construction</td>
<td>24</td>
</tr>
<tr>
<td>Undergraduate Study in Building Construction</td>
<td>24</td>
</tr>
<tr>
<td>School of City and Regional Planning</td>
<td>24</td>
</tr>
<tr>
<td>Graduate Study in City and Regional Planning</td>
<td>25</td>
</tr>
<tr>
<td>Undergraduate Study in City and Regional Planning</td>
<td>26</td>
</tr>
<tr>
<td>School of Industrial Design</td>
<td>26</td>
</tr>
<tr>
<td>Graduate Study in Industrial Design</td>
<td>26</td>
</tr>
<tr>
<td>Undergraduate Study in Industrial Design</td>
<td>27</td>
</tr>
<tr>
<td>School of Music</td>
<td>27</td>
</tr>
<tr>
<td>Undergraduate Study in Music Technology</td>
<td>27</td>
</tr>
<tr>
<td>Graduate Study in Music Technology</td>
<td>27</td>
</tr>
<tr>
<td>School of Music Humanities Credit Information</td>
<td>27</td>
</tr>
<tr>
<td>Vocal and Instrumental Ensembles</td>
<td>28</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>29</td>
</tr>
<tr>
<td>Guggenheim School of Aerospace Engineering</td>
<td>29</td>
</tr>
<tr>
<td>Graduate Study in Aerospace Engineering</td>
<td>30</td>
</tr>
<tr>
<td>Undergraduate Study in Aerospace Engineering</td>
<td>30</td>
</tr>
<tr>
<td>H. Milton Stewart School of Industrial and Systems Engineering</td>
<td>30</td>
</tr>
<tr>
<td>Graduate Study in Industrial & Systems Engineering</td>
<td>31</td>
</tr>
<tr>
<td>Undergraduate Study in Industrial & Systems Engineering</td>
<td>31</td>
</tr>
<tr>
<td>Multidisciplinary Activities and Programs</td>
<td>32</td>
</tr>
<tr>
<td>School of Chemical and Biomolecular Engineering</td>
<td>33</td>
</tr>
<tr>
<td>Graduate Study in Chemical and Biomolecular Engineering</td>
<td>33</td>
</tr>
<tr>
<td>Undergraduate Study in Chemical and Biomolecular Engineering</td>
<td>34</td>
</tr>
<tr>
<td>School of Civil and Environmental Engineering</td>
<td>35</td>
</tr>
<tr>
<td>Graduate Study in Civil and Environmental Engineering</td>
<td>36</td>
</tr>
<tr>
<td>Undergraduate Study in Civil and Environmental Engineering</td>
<td>36</td>
</tr>
<tr>
<td>School of Electrical and Computer Engineering</td>
<td>36</td>
</tr>
<tr>
<td>Graduate Study in Electrical and Computer Engineering</td>
<td>37</td>
</tr>
<tr>
<td>Undergraduate Study in Electrical and Computer Engineering</td>
<td>38</td>
</tr>
<tr>
<td>School of Materials Science and Engineering</td>
<td>38</td>
</tr>
<tr>
<td>Graduate Study in Materials Science and Engineering</td>
<td>39</td>
</tr>
<tr>
<td>Undergraduate Study in Materials Science and Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Transfer Programs in the College of Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University</td>
<td>40</td>
</tr>
<tr>
<td>Graduate Study in Biomedical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Undergraduate Study in Biomedical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Woodruff School of Mechanical Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Graduate Study in Mechanical Engineering</td>
<td>42</td>
</tr>
<tr>
<td>Distance Learning Programs</td>
<td>44</td>
</tr>
<tr>
<td>Georgia Tech-Lorraine</td>
<td>44</td>
</tr>
<tr>
<td>Multidisciplinary Programs</td>
<td>44</td>
</tr>
<tr>
<td>Undergraduate Study in Mechanical Engineering</td>
<td>44</td>
</tr>
<tr>
<td>College of Sciences</td>
<td>44</td>
</tr>
<tr>
<td>School of Biological Sciences</td>
<td>45</td>
</tr>
<tr>
<td>Graduate Study in Biological Sciences</td>
<td>46</td>
</tr>
<tr>
<td>Undergraduate Study in Biological Sciences</td>
<td>46</td>
</tr>
<tr>
<td>School of Chemistry and Biochemistry</td>
<td>49</td>
</tr>
<tr>
<td>Graduate Study in Chemistry and Biochemistry</td>
<td>49</td>
</tr>
<tr>
<td>Undergraduate Study in Chemistry and Biochemistry</td>
<td>49</td>
</tr>
<tr>
<td>School of Earth and Atmospheric Sciences</td>
<td>49</td>
</tr>
<tr>
<td>Graduate Study in Earth and Atmospheric Sciences</td>
<td>50</td>
</tr>
</tbody>
</table>
Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Systems and Architecture .. 301
Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Theory .. 304
Bachelor of Science in Computer Science - Thread: Modeling and Simulation & Media ... 306
Bachelor of Science in Computer Science - Thread: Modeling-Simulation & Information Internetworks ... 308
Bachelor of Science in Computer Science - Thread: People & Systems and Architecture ... 310
Bachelor of Science in Computer Science - Thread: Theory & Information Internetworks ... 312
Bachelor of Science in Computer Science - Thread: Theory & Intelligence .. 314
Bachelor of Science in Computer Science - Thread: Theory & Media .. 316
Bachelor of Science in Computer Science - Thread: Theory & People .. 318
Bachelor of Science in Computer Science - Thread: Theory & Systems and Architecture ... 321
Bachelor of Science in Computer Science ... 323
Bachelor of Science in Discrete Mathematics - Business Option .. 325
Bachelor of Science in Discrete Mathematics - General .. 325
Bachelor of Science in Discrete Mathematics .. 325
Bachelor of Science in Earth and Atmospheric Sciences - Business Option .. 325
Bachelor of Science in Earth and Atmospheric Sciences - General ... 327
Bachelor of Science in Earth and Atmospheric Sciences .. 328
Bachelor of Science in Economics and International Affairs ... 328
Bachelor of Science in Economics .. 330
Bachelor of Science in Electrical Engineering ... 331
Bachelor of Science in Environmental Engineering .. 333
Bachelor of Science in Global Economics and Modern Languages - Chinese ... 336
Bachelor of Science in Global Economics and Modern Languages - French .. 338
Bachelor of Science in Global Economics and Modern Languages - German ... 339
Bachelor of Science in Global Economics and Modern Languages - Japanese ... 341
Bachelor of Science in Global Economics and Modern Languages - Korean .. 342
Bachelor of Science in Global Economics and Modern Languages - Russian ... 344
Bachelor of Science in Global Economics and Modern Languages - Spanish ... 345
Bachelor of Science in Global Economics and Modern Languages .. 347
Bachelor of Science in History, Technology, and Society ... 347
Bachelor of Science in Industrial Design ... 350
Bachelor of Science in Industrial Engineering - Analytics and Data Science .. 352
Bachelor of Science in Industrial Engineering - Quality and Statistics .. 355
Bachelor of Science in Industrial Engineering - Advanced Studies in Operations Research and Statistics .. 358
Bachelor of Science in Industrial Engineering - Economic and Financial Systems .. 361
Bachelor of Science in Industrial Engineering - General ... 363
Bachelor of Science in Industrial Engineering - Operations Research ... 366
Bachelor of Science in Industrial Engineering - Supply Chain Engineering .. 369
Bachelor of Science in Industrial Engineering .. 371
Bachelor of Science in International Affairs and Modern Language - Chinese ... 372
Bachelor of Science in International Affairs and Modern Language - French ... 375
Bachelor of Science in International Affairs and Modern Language - German ... 377
Bachelor of Science in International Affairs and Modern Language - Japanese .. 379
Bachelor of Science in International Affairs and Modern Language - Korean .. 381
Bachelor of Science in International Affairs and Modern Language - Russian .. 383
Bachelor of Science in International Affairs and Modern Language - Spanish .. 385
Bachelor of Science in International Affairs and Modern Language ... 387
Bachelor of Science in International Affairs ... 388
Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Design .. 390
Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Science, Technology, and Culture 392
Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Social Justice .. 395
Bachelor of Science in Literature, Media, and Communication - Thread: Design & Science, Technology, Culture ... 397
Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Communication .. 402
Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Design .. 404
Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Media .. 407
Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Social Justice .. 411
Bachelor of Science in Literature, Media, and Communication - Thread: Media & Communication ... 414
Bachelor of Science in Literature, Media, and Communication - Thread: Media & Design ... 416
Bachelor of Science in Literature, Media, and Communication - Thread: Social Justice and Science, Technology, and Culture 423
Bachelor of Science in Mathematics .. 438
Bachelor of Science in Mathematics - General 438
Bachelor of Science in Mathematics - Pure Mathematics 440
Bachelor of Science in Mathematics - Applied Mathematics 435
Bachelor of Science in Mathematics - Business Option 436
Bachelor of Science in Mathematics - Discrete Mathematics 437
Bachelor of Science in Mathematics - General 438
Bachelor of Science in Mathematics - Probability and Statistics 439
Bachelor of Science in Mathematics - Structural and Functional Materials ... 431
Bachelor of Science in Materials Science and Engineering 426
Bachelor of Science in Materials Science and Engineering - Polymer and Fiber Materials .. 429
Bachelor of Science in Materials Science and Engineering - Structural and Functional Materials .. 431
Bachelor of Science in Nuclear and Radiological Engineering - Nuclear Engineering .. 472
Bachelor of Science in Nuclear and Radiological Engineering - Radiological Science and Engineering .. 474
Bachelor of Science in Nuclear and Radiological Engineering 472
Bachelor of Science in Nuclear and Radiological Engineering - Nuclear Engineering .. 472
Bachelor of Science in Nuclear and Radiological Engineering - Radiological Science and Engineering .. 474
Bachelor of Science in Nuclear and Radiological Engineering 472
Bachelor of Science in Physics ... 477
Bachelor of Science in Physics - Astrophysics 477
Bachelor of Science in Physics - Business Option 478
Bachelor of Science in Physics - General 480
Bachelor of Science in Physics ... 481
Bachelor of Science in Psychology - Business Option 482
Bachelor of Science in Psychology - General 484
Bachelor of Science in Psychology .. 485
Bachelor of Science in Public Policy ... 485
Doctor of Philosophy with a Major in Aerospace Engineering 487
Doctor of Philosophy with a Major in Algorithms, Combinatorics, and Optimization .. 488
Doctor of Philosophy with a Major in Applied Physiology 488
Doctor of Philosophy with a Major in Architecture 488
Doctor of Philosophy with a Major in Bioengineering 490
Doctor of Philosophy with a Major in Bioinformatics 490
Doctor of Philosophy with a Major in Biology 490
Doctor of Philosophy with a Major in Biomedical Engineering 491
Doctor of Philosophy with a Major in Building Construction 491
Doctor of Philosophy with a Major in Chemical Engineering 492
Doctor of Philosophy with a Major in Chemistry 492
Doctor of Philosophy with a Major in Computer Science 494
Doctor of Philosophy with a Major in Digital Media 494
Doctor of Philosophy with a Major in Earth and Atmospheric Sciences ... 495
Doctor of Philosophy with a Major in Economics .. 495
Doctor of Philosophy with a Major in Electrical and Computer Engineering .. 496
Doctor of Philosophy with a Major in Engineering Science and Mechanics .. 496
Doctor of Philosophy with a Major in Environmental Engineering .. 496
Doctor of Philosophy with a Major in History and Sociology of Technology and Science .. 496
Doctor of Philosophy with a Major in Human-Centered Computing .. 497
Doctor of Philosophy with a Major in Industrial Engineering - System Informatics & Control Track ... 497
Doctor of Philosophy with a Major in International Affairs, Science and Technology .. 499
Doctor of Philosophy with a Major in Machine Learning .. 500
Doctor of Philosophy with a Major in Management .. 503
Doctor of Philosophy with a Major in Materials Science and Engineering .. 503
Doctor of Philosophy with a Major in Mathematics .. 503
Doctor of Philosophy with a Major in Mechanical Engineering .. 503
Doctor of Philosophy with a Major in Music Technology .. 504
Doctor of Philosophy with a Major in Nuclear Engineering - Medical Physics Option .. 504
Doctor of Philosophy with a Major in Nuclear Engineering - Nuclear Enterprise Management Option ... 504
Doctor of Philosophy with a Major in Nuclear Engineering .. 505
Doctor of Philosophy with a Major in Ocean Science and Engineering .. 505
Doctor of Philosophy with a Major in Operations Research .. 506
Doctor of Philosophy with a Major in Paper Science and Engineering .. 506
Doctor of Philosophy with a Major in Physics .. 506
Doctor of Philosophy with a Major in Psychology .. 506
Doctor of Philosophy with a Major in Public Policy (Joint Degree with Georgia State University) .. 507
Doctor of Philosophy with a Major in Public Policy .. 508
Doctor of Philosophy with a Major in Quantitative BioSciences .. 509
Doctor of Philosophy with a Major in Robotics .. 509
Dual Degree MCRP/JD in Planning Law (Cooperative Program with Georgia State University) .. 509
Dual Degree MCRP/Master of Science in Public Policy .. 509
Dual Degree MCRP/MSCE .. 510

Dual MS Program in ECE Georgia Tech & Korea Advanced Institute of Science and Technology .. 510
Dual MS Program in ECE GT Lorraine and European Partner Universities .. 510
Dual MS Program in ECE with the Politecnico di Milano .. 510
Graduate Embedded Certificate in Astrobiology .. 511
Graduate Embedded Certificate in BioRobotics .. 511
Graduate Embedded Certificate in Geographic Information Systems .. 512
Graduate Embedded Certificate in Industrial Design Fundamentals .. 512
Graduate Embedded Certificate in Mechanical Properties of Materials .. 512
Graduate Embedded Certificate in Micro Electro Mechanical Systems .. 513
Graduate Embedded Certificate in Modeling and Computer Simulation .. 513
Graduate Embedded Certificate in Public Policy .. 513
Graduate Embedded Certificate in Remote Sensing .. 514
Graduate Embedded Certificate in Science, Technology, and Society .. 514
Graduate Stand-Alone Certificate in Sustainable Energy and Environmental Management .. 515
Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politecnico Di Milano .. 516
Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politecnico di Torino (Italy) .. 516
M.Arch/MCRP Dual Degree .. 516
M.D./Ph.D. Program .. 516
Master of Architecture (M.Arch.) .. 516
Master of Biomedical Innovation and Development .. 517
Master of Business Administration - Global Business .. 517
Master of Business Administration (MBA) .. 518
Master of Business Administration in Management of Technology .. 519
Master of City and Regional Planning .. 520
Master of Industrial Design (MID) .. 521
Master of Real Estate Development .. 522
Master of Science (Undesignated) .. 522
Master of Science in Aerospace Engineering .. 522
Master of Science in Analytics .. 523
Master of Science in Applied Languages and Intercultural Studies - Spanish .. 524
Master of Science in Applied Languages and Intercultural Studies .. 524
Master of Science in Architecture .. 525
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship (INTN)</td>
<td>.. 743</td>
<td></td>
</tr>
<tr>
<td>Int'l Plan Co-op Abroad (IPCO)</td>
<td>... 744</td>
<td></td>
</tr>
<tr>
<td>Int'l Plan-Exchange Prgm (IPFS)</td>
<td>.. 744</td>
<td></td>
</tr>
<tr>
<td>Int'l Plan Intern Abroad (IPIN)</td>
<td>.. 744</td>
<td></td>
</tr>
<tr>
<td>Int'l Plan-Study Abroad (IPSA)</td>
<td>.. 744</td>
<td></td>
</tr>
<tr>
<td>Industrial & Systems Engr (ISYE)</td>
<td>.. 744</td>
<td></td>
</tr>
<tr>
<td>Japanese (JAPN)</td>
<td>.. 750</td>
<td></td>
</tr>
<tr>
<td>Korean (KOR)</td>
<td>.. 752</td>
<td></td>
</tr>
<tr>
<td>Latin (LATN)</td>
<td>.. 753</td>
<td></td>
</tr>
<tr>
<td>Linguistics (LING)</td>
<td>.. 753</td>
<td></td>
</tr>
<tr>
<td>Literature, Media & Comm (LMC)</td>
<td>.. 753</td>
<td></td>
</tr>
<tr>
<td>Learning Support (LS)</td>
<td>.. 759</td>
<td></td>
</tr>
<tr>
<td>Mathematics (MATH)</td>
<td>.. 759</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering (ME)</td>
<td>.. 767</td>
<td></td>
</tr>
<tr>
<td>Management (MGT)</td>
<td>.. 778</td>
<td></td>
</tr>
<tr>
<td>Modern Languages (ML)</td>
<td>.. 788</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Leadership (MLDR)</td>
<td>.. 788</td>
<td></td>
</tr>
<tr>
<td>Management of Technology (MOT)</td>
<td>.. 789</td>
<td></td>
</tr>
<tr>
<td>Medical Physics (MP)</td>
<td>.. 789</td>
<td></td>
</tr>
<tr>
<td>Materials Science & Engr (MSE)</td>
<td>.. 791</td>
<td></td>
</tr>
<tr>
<td>Military Science & Leadership (MSL)</td>
<td>.. 796</td>
<td></td>
</tr>
<tr>
<td>Music (MUSI)</td>
<td>.. 797</td>
<td></td>
</tr>
<tr>
<td>Neuroscience (NEUR)</td>
<td>.. 800</td>
<td></td>
</tr>
<tr>
<td>Nuclear & Radiological Engr (NRE)</td>
<td>.. 800</td>
<td></td>
</tr>
<tr>
<td>Naval Science (NS)</td>
<td>.. 803</td>
<td></td>
</tr>
<tr>
<td>Persian (PERS)</td>
<td>.. 803</td>
<td></td>
</tr>
<tr>
<td>Philosophy (PHIL)</td>
<td>.. 804</td>
<td></td>
</tr>
<tr>
<td>Physics (PHYS)</td>
<td>.. 805</td>
<td></td>
</tr>
<tr>
<td>Political Science (POL)</td>
<td>.. 809</td>
<td></td>
</tr>
<tr>
<td>Psychology (PSYC)</td>
<td>.. 809</td>
<td></td>
</tr>
<tr>
<td>Polymer, Textile and Fiber Eng (PTFE)</td>
<td>.. 814</td>
<td></td>
</tr>
<tr>
<td>Public Policy/Joint GSU PhD (PUBJ)</td>
<td>.. 814</td>
<td></td>
</tr>
<tr>
<td>Public Policy (PUBP)</td>
<td>.. 815</td>
<td></td>
</tr>
<tr>
<td>Russian (RUSS)</td>
<td>.. 821</td>
<td></td>
</tr>
<tr>
<td>Science (SCI)</td>
<td>.. 823</td>
<td></td>
</tr>
<tr>
<td>Serve Learn Sustain (SLS)</td>
<td>.. 823</td>
<td></td>
</tr>
<tr>
<td>Sociology (SOC)</td>
<td>.. 823</td>
<td></td>
</tr>
<tr>
<td>Spanish (SPAN)</td>
<td>.. 823</td>
<td></td>
</tr>
<tr>
<td>Social Science Elective (SS)</td>
<td>.. 827</td>
<td></td>
</tr>
<tr>
<td>Cross Enrollment (UCGA)</td>
<td>.. 827</td>
<td></td>
</tr>
<tr>
<td>Student Services</td>
<td>.. 830</td>
<td></td>
</tr>
<tr>
<td>Archived Catalogs</td>
<td>.. 831</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>.. 832</td>
<td></td>
</tr>
</tbody>
</table>
The statements set forth in the Catalog are for informational purposes only and should not be construed as the basis of a contract between a student and the Institute.

While the provisions of the Catalog will ordinarily be applied as stated, Georgia Tech reserves the right to change any provision listed in the Catalog, including but not limited to academic requirements for graduation, without actual notice to individual students. Every effort will be made to keep students advised of any such changes. Information regarding any changes will be available through the Office of the Registrar, the Office of the Vice President for Student Life and Dean of Students, and the Schools and Colleges. It is especially important for each student to note that it is her or his own responsibility to be aware of current requirements for a chosen degree program.

This edition of the Catalog takes effect in Summer Session 2019 and shall remain in effect through Spring Semester 2020.
GOVERNANCE

• University System of Georgia (USG) Member Institutions (p. 13)
• Office of the President (p. 13)
• Deans (p. 13)
• Accreditation (p. 13)

Member Institutions

Research Universities
• Augusta University
• Georgia Institute of Technology
• Georgia State University
• University of Georgia

Comprehensive Universities
• Georgia Southern University
• Kennesaw State University
• University of West Georgia
• Valdosta State University

State Universities
• Albany State University
• Armstrong State University
• Clayton State University
• Columbus State University
• Fort Valley State University
• Georgia College and State University
• Georgia Southwestern State University
• Middle Georgia State University
• Savannah State University
• University of North Georgia

State Colleges
• Abraham Baldwin Agricultural College
• Atlanta Metropolitan State College
• Bainbridge State College
• College of Coastal Georgia
• Dalton State College
• Darton State College
• East Georgia State College
• Georgia Gwinnett College
• Georgia Highlands College
• Gordon State College
• South Georgia State College

Office of the President
G. P. "Bud" Peterson
President

Executive Vice Presidents
Rafael L. Bras

Provost and Executive Vice President for Academic Affairs
Stephen E. Cross
Executive Vice President for Research

Cabinet
Barrett H. Carson
Executive Vice President for Academic Affairs

Rafael L. Bras
Provost and Executive Vice President for Academic Affairs

Stephen E. Cross
Executive Vice President for Research

Cabinet
Barrett H. Carson
Executive Vice President for Academic Affairs

Lynn M. Durham
Associate Vice President and Chief of Staff

Archie W. Ervin
Vice President for Institute Diversity

Bonnie Ferri
Vice Provost for Graduate Education and Faculty Development

Patrick J. McKenna
Vice President, Legal Affairs and Risk Management

Colin Potts
Vice Provost for Undergraduate Education

Dene H. Sheheane
Vice President for Government and Community Relations

John M. Stein
Vice President of Student Life, Dean of Students

Deans
Maryam Alavi
Scheller College of Business

Nelson C. Baker
Georgia Tech Professional Education

Steven P. French
College of Design

Zvi Galil
College of Computing

Paul Goldbart
College of Sciences

Steven W. McLaughlin
College of Engineering

Catherine Murray-Rust
Libraries

Jacqueline Royster
Ivan Allen College of Liberal Arts

Accreditation
The Georgia Institute of Technology is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award bachelor’s, master’s, and doctoral degrees. Contact the Southern Association of Colleges and Schools Commission on Colleges for answers to questions about Georgia Tech’s accreditation.

Southern Association of Colleges and Schools, Commission on Colleges (http://www.sacscoc.org)
American Council for Construction Education

The Bachelor of Science in Building Construction is accredited by the Association to Advance Collegiate Schools of Business (AACSB International). The Master of Science in Building Construction and Facility Management is accredited by the International Facility Management Association (IFMA). The School of Building Construction has also received international recognition by the Royal Institute of Chartered Surveyors (RICS) (http://www.rics.org/us) (RICS).

The Language Institute’s Intensive English Program is accredited by the Commission on English Language Program Accreditation (CEA) and thus meets the CEA Standards for English Programs and Institutions.

Accreditation Board for Engineering and Technology (ABET) (http://www.abet.org) (ABET).

The Bachelor of Science in Medical Physics and the PhD with a major in Nuclear Engineering - Medical Physics Option programs are accredited by the Commission on Accreditation of Medical Physics Educational Programs (http://www.campep.org/campeplstgrad.asp) (CAMPEP).

1866 Southern Lane
Decatur, GA 30033-4097
404.679.4500

Additionally, many Colleges, units, and programs are individually accredited by the appropriate agencies specific to them.

College of Architecture

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the Bachelor of Architecture, the Master of Architecture, and the Doctor of Architecture.

A program may be granted a 6-year, 3-year, or 2-year term of accreditation, depending on the extent of its conformance with established educational standards.

The Doctor of Architecture and Master of Architecture degree programs may consist of a pre-professional undergraduate degree and a professional graduate degree that, when earned sequentially, constitute an accredited professional education. However, the pre-professional degree is not, by itself, recognized as an accredited degree.

The School of Architecture at Georgia Tech offers the following NAAB-accredited degree programs:

- Master of Architecture, 2-year track (pre-professional degree in Architecture + 60 credits required)
- Master of Architecture, 3-year track (non-pre-professional degree + 108 credits required)

The Bachelor of Science in Building Construction is accredited by the American Council for Construction Education (ACCE). The Master of Science in Building Construction and Facility Management is accredited by the International Facility Management Association (ifma.org) (IFMA). The School of Building Construction has also received international recognition by the Royal Institute of Chartered Surveyors (www.rics.org/us) (RICS).

The Master of City and Regional Planning program is fully accredited by the Planning Accreditation Board (http://www.planningaccreditationboard.org) (PAB).

The Bachelor of Science in Industrial Design and the Master of Industrial Design degree programs have been accredited by the National Association of Schools in Art and Design (http://nasad.arts-accredit.org) (NASAD) and are recognized by the Industrial Designers Society of America.

College of Computing

The following undergraduate computing programs are accredited by the Computing Accreditation Commission of the Accreditation Board for Engineering and Technology (http://www.abet.org) (ABET).

- Bachelor of Science in Computer Science
- Bachelor of Science in Computational Media

College of Engineering

The following undergraduate engineering programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (http://www.abet.org) (ABET).

- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Chemical and Biomolecular Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Environmental Engineering
- Bachelor of Science in Industrial Engineering
- Bachelor of Science in Materials Science and Engineering
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Nuclear and Radiological Engineering

The Master of Science in Medical Physics and the PhD with a major in Nuclear Engineering - Medical Physics Option programs are accredited by the Commission on Accreditation of Medical Physics Educational Programs (http://www.campep.org/campeplstgrad.asp) (CAMPEP).

College of Sciences

The American Chemical Society (http://www.acs.org/content/acs/en.html) has certified the curriculum leading to the Bachelor of Science in Chemistry.

The Human Factors and Ergonomics Society (https://hfes.org/web/Default.aspx) has accredited the curriculum leading to the Doctor of Philosophy with a major in Psychology, concentration in Engineering Psychology.

Scheller College of Business

The Scheller College of Business and all of its degrees are accredited by the Association to Advance Collegiate Schools of Business (http://www.aacsb.edu) (AACSB International).

Division of Student Affairs

The Counseling Center is accredited by the International Association of Counseling Services (http://www.iacsinc.org) (IACS), which is the accrediting body for counseling services provided by college and university counseling centers. The Counseling Center sponsors a pre-doctoral internship training program in psychology for doctoral students in counseling and clinical psychology programs. The internship training program is accredited by the American Psychological Association (http://www.apa.org) (APA).

Georgia Tech Language Institute

The Language Institute’s Intensive English Program is accredited by the Commission on English Language Program Accreditation (http://www.cea-accredit.org) (CEA) and thus meets the CEA Standards for English Programs and Institutions.

Accreditation Board for Engineering and Technology (ABET) (http://www.abet.org)

- Bachelor of Science in Computer Science
- Bachelor of Science in Computational Media
- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Chemical and Biomolecular Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Environmental Engineering
- Bachelor of Science in Industrial Engineering
- Bachelor of Science in Materials Science and Engineering
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Nuclear and Radiological Engineering

American Psychological Association (APA) (http://www.apa.org/ed/accreditation)
 - Internship training program in the Counseling Center

Association to Advance Collegiate Schools of Business (AACSB International) (http://www.aacsb.edu)
 - The Scheller College of Business and all of its degree programs

American Council for Construction Education (ACCE) (http://www.acce-hq.org)
 - Bachelor of Science in Building Construction

Commission on Accreditation of Allied Health Education Programs (CAAHEP) (http://www.caahep.org)
 - Master of Science in Prosthetics and Orthotics

Commission on Accreditation of Medical Physics Educational Programs (CAMPEP) (http://www.campep.org/campeplstgrad.asp)
 - Master of Science in Medical Physics
 - Doctor of Philosophy with a Major in Nuclear Engineering – Medical Physics Option

Commission on English Language Program Accreditation (CEA) (http://www.cea-accredit.org/accredited-sites/accredited-site-search)
 - Intensive English Program, Georgia Tech Language Institute

 - Doctor of Philosophy with a major in Psychology, concentration in Engineering Psychology.

International Association of Counseling Services (IACS) (http://www.iacsinc.org/home.html)
 - Counseling Center

International Facility Management Association (IFMA) (https://www.ifma.org)
 - Master of Science in Building Construction and Facility Management

National Architectural Accrediting Board (NAAB) (http://www.naab.org/home)
 - Master of Architecture

National Association of Schools in Art and Design (NASAD) (http://nasad.arts-accredit.org)
 - Bachelor of Science in Industrial Design
 - Master of Science in Industrial Design

Planning Accreditation Board (PAB) (http://www.planningaccreditationboard.org)
 - Master of City and Regional Planning

Southern Association of Colleges and Schools, Commission on Colleges (http://www.sacscoc.org)
 - Georgia Tech, as an institution
COLLEGES AND SCHOOLS

- College of Computing (p. 16)
- College of Design (p. 21)
- College of Engineering (p. 29)
- College of Sciences (p. 44)
- Ivan Allen College of Liberal Arts (p. 53)
- Scheller College of Business (p. 71)

College of Computing

The founding of the College of Computing in 1990 as a focal point for the interdisciplinary advancement of computing caps a history that began in 1963 with the establishment of the School of Information Science. In 1972, this school was succeeded by the School of Information and Computer Science, the immediate predecessor of the current College of Computing. The College of Computing at Georgia Tech is one of the first college-level units devoted to the study of computing in the country.

Computer science is an important basis for many activities and is a natural and powerful partner with a variety of other disciplines. The College offers instructional and research programs in many areas, including algorithms and data structures, intelligent systems and robotics, computer architecture, cognitive science, databases, distributed and parallel systems, educational technology, graphics and visualization, human-computer interaction, information security, information systems, networking and telecommunications, operating systems, parallel architectures, programming languages, software engineering, and theories of automata and computation.

Beginning in fall 2006, the undergraduate program was organized around the Threads™ program developed by College of Computing faculty. A Thread™ is an intuitive, flexible, and mutually strengthening set of courses that allows students to craft a distinctive future in any computing-related field. Based on their particular interests, students will choose two Threads™ consisting of computing combined with modeling and simulation, devices, theory, information internetworks, intelligence, media, people, or platforms in order to weave a technical degree with a broad collection of skills and learning experiences they need to thrive in a globally competitive world. This approach allows the computing program to retain its strong computer science foundations yet encourages partnerships with the multitude of disciplines affected by computing and technology.

The College conducts an increasing number of interdisciplinary research and instructional programs jointly with other campus units and operates three centers of interdisciplinary research for the campus:

- The Center for Experimental Research in Computer Systems (CERCS);
- The Graphics, Visualization, and Usability (GVU) Center; and
- The Georgia Tech Information Security Center (GTISC).

The College’s operations are housed in parts of five separate buildings on campus, including the College of Computing building.

The College awards:

- bachelor’s degrees in computer science (CS),
- bachelor’s degrees in computational media (jointly with the School of Literature, Media, and Communication),
- master’s degrees in computer science,
- master’s degrees in information security, and
- doctoral degrees in computer science and human-centered computing.

The College offers an undergraduate CS minor. The College also offers the Master’s degree in human-computer interaction in collaboration with the School of Literature, Media, and Communication and the School of Psychology. The College is a sponsor of a multidisciplinary program in Algorithms, Combinatorics, and Optimization, an approved doctoral degree program at Georgia Tech. Master’s and doctoral degrees in bioengineering can be pursued through the College as one of the units participating in the Institute-wide interdisciplinary Bioengineering Program. A doctoral degree in bioinformatics can also be pursued through the College in conjunction with the School of Biology.

The following undergraduate computing programs are accredited by the Computing Accreditation Commission of ABET, www.abet.org (http://www.abet.org):

- Bachelor of Science in Computer Science (p. 323)
- Bachelor of Science in Computational Media (p. 259)
- Algorithms, Combinatorics, and Optimization. PhD (p. 488)
- Analytics. MS (p. 523)
- Bioengineering. MS (p. 525), PhD (p. 490)
- Bioinformatics. MS (p. 526), PhD (p. 490)
- Computational Media. BS (p. 259)
- Computational Science and Engineering, MS (p. 529), PhD (p. 493)
- Computer Science. BS (p. 323), MS (p. 530), PhD (p. 494)
- Computing and Business. Minor (p. 560)
- Computing and Devices. Minor (p. 561)
- Computing and Information Internetworks. Minor (p. 565)
- Computing and Intelligence. Minor (p. 562)
- Computing and People. Minor (p. 563)
- Computing & Systems and Architecture. Minor (p. 563)
- Computing and Theory. Minor (p. 564)
- Cybersecurity. MS (p. 534)
- Human-Computer Interaction. MS (p. 541)
- Human-Centered Computing. PhD (p. 497)
- Machine Learning. PhD (p. 500)
- Robotics. PhD (p. 509)

Research Centers

Georgia Tech Information Security Center (GTISC)

The Georgia Tech Information Security Center, a National Center of Academic Excellence in Information Assurance Education, is an interdisciplinary center involving faculty from the College of Computing, School of Electrical and Computer Engineering, Georgia Tech Research Institute (GTRI), the Sam Nunn School of International Affairs, and the School of Public Policy. www.gtisc.gatech.edu (http://www.gtisc.gatech.edu)
Robotics and Intelligent Machines at Georgia Tech (RIM@GT)
The Center for Robotics and Intelligent Machines (RIM@Georgia Tech) leverages the strengths and resources of Georgia Tech in robotics education, research, and leadership by reaching across traditional boundaries to embrace a multidisciplinary approach. The College of Computing, College of Engineering and the Georgia Tech Research Institute play key, complementary roles through Tech's traditional expertise in interactive and intelligent computing, control, and mechanical engineering. Emphasizing personal and everyday robotics as well as the future of automation, faculty involved with RIM@Georgia Tech help students understand and define the future role of robotics in society. www.robots.gatech.edu (http://www.robots.gatech.edu)

Algorithms and Randomness Center and ThinkTank (ARC ThinkTank)
The ARC ThinkTank brings together faculty from the College of Computing, the School of Mathematics and the School of Industrial Systems Engineering at Georgia Tech to find algorithms and algorithmic models for real-world problems across the sciences and, in the process, seeking new directions and techniques for the emerging theory of algorithms. www.arc.gatech.edu/ (http://www.arc.gatech.edu)

GVU Center at Georgia Tech
The GVU Center at Georgia Tech is an interdisciplinary research center encompassing a number of individual colleges at Georgia Tech as well as external collaborators. GVU focuses on unlocking and amplifying human potential through technical innovation in computing technologies. The faculty and students associated with GVU bring expertise ranging from computer science and engineering to the humanities and design. It is through deep collaboration between these diverse domains that the GVU Center is able to engage in research that would otherwise be difficult to tackle in traditional academic and industrial settings. www.gvu.gatech.edu (http://www.gvu.gatech.edu)

Center for Experimental Research in Computer Systems (CERCS)
CERCS is one of the largest experimental systems programs in the U.S. focusing on complex hardware, communications and system-level software, and applications that lead the innovation of new information and computing technologies. www.cercs.gatech.edu/ (http://www.cercs.gatech.edu)

School of Computational Science and Engineering
The School of Computational Science and Engineering (CSE) was established in 2005 to strengthen and better reflect the critical role that computation plays in the science and engineering disciplines at Georgia Tech and the broader technology community. At Georgia Tech, CSE is the academic discipline devoted to the systematic study and application of computer-based models of natural and engineered systems. This definition contains two significant elements. First, it acknowledges the essential role that computing and data play in scientific discovery and design and innovation in engineering. Secondly, by referring to CSE as a discipline, it recognizes that CSE has its own distinct body of knowledge.

As a school in the College of Computing, CSE supports interdisciplinary research and education in computer science, data science, and applied mathematics. CSE is designed to innovate and create new expertise, technologies, and practitioners.

CSE bridges the gap between traditional computer science (CS) and computational research. The division is currently developing programs that immerse students in computing with real-world computational problems and applications. Developing solutions to difficult computation problems that allow all the richness, subtleties, and requirements of the domain to be adequately considered or addressed is crucial.

CSE is concerned with those technologies that lie at the boundary between computer science, data science, and science and engineering. Some of these areas include:

- combinatorial optimization
- cybersecurity
- data analysis
- high performance computing
- large-scale analytics
- machine learning
- modeling and simulation
- numeric and geometric methods
- visualization

CSE involves deep collaboration with scientists and engineers, as well as traditional computer scientists. Therefore, school faculty team up with researchers and educators working in high impact areas both at Georgia Tech and at peer research organizations, such as national laboratories and industry research labs. Current projects span the following areas:

- aerospace engineering
- chemistry
- computational biology and genomics
- civil and environmental engineering
- data science
- healthcare informatics
- industrial and systems engineering
- materials science
- mechanical engineering
- national security and homeland defense

Master's Degrees
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Computer Science (p. 530)
- Master of Science in Analytics (p. 523)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Bioinformatics (p. 526)

Doctoral Degrees
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Computer Science (p. 494)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
Graduate Study in Computational Science and Engineering

Master’s Degrees
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Computer Science (p. 530)
- Master of Science in Analytics (p. 523)
- Master of Science in Bioengineering (p. 525)

Doctoral Degrees
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Computer Science (p. 494)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Bioinformatics (p. 490)

Bioengineering Programs
In response to the increased need for engineers and medical scientists with advanced training in bioengineering, Georgia Tech now offers master’s and PhD degrees in bioengineering. The purpose of bioengineering as a research discipline is:

- to develop new and better physical and mathematical concepts and techniques that may be applied to problems in medicine and biology,
- to the development of new medical technologies, and
- to the organization and delivery of cost-effective healthcare.

Interdisciplinary graduate programs in Bioengineering are offered by the College of Computing in conjunction with the Bioengineering Center in the Office of Interdisciplinary Programs, the College of Engineering, and the College of Sciences. The student’s home unit will be the College of Computing, which, upon completion of the student’s requirements, will recommend the degree. This interdisciplinary approach has been approved by the faculty in the Schools of Aerospace Engineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Materials Science and Engineering, Mechanical Engineering, and Polymer, Textile and Fiber Engineering, and by the deans of the Colleges of Computing, Engineering, and Sciences.

The program is for computer science or engineering graduates who wish to pursue a degree in bioengineering rather than in a traditional field of computing or engineering, or who have done bioengineering research in other disciplines. In addition, those interested students with non-engineering backgrounds (with degrees in such fields as physics, chemistry, biology, or mathematics) who meet the admission requirements will be admitted to the program. Applications from physicians with undergraduate degrees in engineering or the physical sciences will also be considered. All applications will be processed through the Bioengineering Center.

Additional information is available at www.bme.gatech.edu (http://www.bme.gatech.edu).

Master of Science in Bioengineering (p. 525)

Doctor of Philosophy with a Major in Bioengineering (p. 490)

Graduate Cooperative Programs
The Graduate Cooperative Education Program provides master’s and doctoral degree students majoring in any discipline at Georgia Tech the opportunity to supplement their graduate studies with specialized work experience. Graduate co-op students gain experience with top employers, earn competitive salaries to help defray educational expenses, and expand post-graduation career options while on semester-long work assignments.

The Graduate Co-op Program is available to enrolled Georgia Tech students and is based upon academic achievement. Internships related to a student’s field of study can receive academic approval as a graduate cooperative work assignment allowing students to work summer, fall, or spring semesters, full-time or part-time.

There are no fees associated with the Graduate Co-op Program and students are provided full-time enrollment status through their registration in a Graduate Co-op course. This permits students to retain all privileges of full-time enrolled students while on work assignments.

To participate in the Graduate Co-op Program, a student must:

- have a 3.0 or better GPA,
- complete an online orientation session, and
- obtain a program participation letter from his or her major school.

Students normally identify their own job opportunities, but the Graduate Co-op Office provides access to a job posting database and can assist with career guidance, job searches, resumes, and cover letters. Graduate students accepting a graduate co-op/internship opportunity should see a Graduate Co-op Program advisor regarding offer letters, required academic approvals, registration permits, and any necessary work authorizations. Enrollment in a 6000-level co-op course, a noncredit/no-cost audit course with no student or Institute fees attached, is also required.

International students are eligible to participate, but F-1 visa holders must be enrolled for a minimum of nine months before being able to work off campus. All international students on F-1, J-1, and other appropriate visas must work with the Office of International Education (http://www.oie.gatech.edu) to secure work authorization documentation.

For more information on the Georgia Tech Graduate Co-op and Internship Program, visit: www.gradcoop.gatech.edu (http://www.gradcoop.gatech.edu).

School of Computer Science
Georgia Tech’s School of Computer Science is home to a group of faculty and researchers with breadth and strength in all aspects of the computational process—from the algorithms to the architecture, from security to networking, from system design to the programming environments to databases.

Mission
The SCS mission is produce the people, tools, and ideas to power computation into the future. "We turn imagination into reality."
Bachelor's Degrees
• Bachelor of Science in Computer Science (p. 323)

Master's Degrees
• Master of Science in Computer Science (p. 530)
• Master of Science in Cybersecurity (p. 534)
• Master of Science in BioInformatics (p. 526)

Doctoral Degrees
• Doctor of Philosophy with a Major in Computer Science (p. 494)
• Doctor of Philosophy with a Major in Algorithms, Combinatorics & Optimization (p. 488)
• Doctor of Philosophy with a Major in Bioengineering (p. 490)
• Doctor of Philosophy with a Major in BioInformatics (p. 490)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)

Graduate Study in Computer Science
Master's Degrees
• Master of Science in Computer Science (p. 530)
• Master of Science in Cybersecurity (p. 534)
• Master of Science in BioInformatics (p. 526)

Doctoral Degrees
• Doctor of Philosophy with a Major in Computer Science (p. 494)
• Doctor of Philosophy with a Major in Algorithms, Combinatorics & Optimization (p. 488)
• Doctor of Philosophy with a Major in Bioengineering (p. 490)
• Doctor of Philosophy with a Major in BioInformatics (p. 490)

Bioengineering Programs
In response to the increased need for engineers and medical scientists with advanced training in bioengineering, Georgia Tech now offers master's and PhD degrees in bioengineering. The purpose of bioengineering as a research discipline is

- to develop new and better physical and mathematical concepts and techniques that may be applied to problems in medicine and biology,
- to the development of new medical technologies, and
- to the organization and delivery of cost-effective healthcare.

Interdisciplinary graduate programs in Bioengineering are offered by the College of Computing in conjunction with the Bioengineering Center in the Office of Interdisciplinary Programs, the College of Engineering, and the College of Sciences. The student's home unit will be the College of Computing, which, upon completion of the student's requirements, will recommend the degree. This interdisciplinary approach has been approved by the faculty in the Schools of Aerospace Engineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Materials Science and Engineering, Mechanical Engineering, and Polymer, Textile and Fiber Engineering, and by the deans of the Colleges of Computing, Engineering, and Sciences.

The program is for computer science or engineering graduates who wish to pursue a degree in bioengineering rather than in a traditional field of computing or engineering, or who have done bioengineering research in other disciplines. In addition, those interested students with non-engineering backgrounds (with degrees in such fields as physics, chemistry, biology, or mathematics) who meet the admission requirements will be admitted to the program. Applications from physicians with undergraduate degrees in engineering or the physical sciences will also be considered. All applications will be processed through the Bioengineering Center.

Additional information is available at www.bme.gatech.edu (http://www.bme.gatech.edu).

Master of Science in Bioengineering (p. 525)
Doctor of Philosophy with a Major in Bioengineering (p. 490)

Graduate Cooperative Programs
The Graduate Cooperative Education Program provides master's and doctoral degree students majoring in any discipline at Georgia Tech the opportunity to supplement their graduate studies with specialized work experience. Graduate co-op students gain experience with top employers, earn competitive salaries to help defray educational expenses, and expand post-graduation career options while on semester-long work assignments.

The Graduate Co-op Program is available to enrolled Georgia Tech students and is based upon academic achievement. Internships related to a student's field of study can receive academic approval as a graduate cooperative work assignment allowing students to work summer, fall, or spring semesters, full-time or part-time.

There are no fees associated with the Graduate Co-op Program and students are provided full-time enrollment status through their registration in a Graduate Co-op course. This permits students to retain all privileges of full-time enrolled students while on work assignments.

To participate in the Graduate Co-op Program, a student must

- have a 3.0 or better GPA,
- complete an online orientation session, and
- obtain a program participation letter from his or her major school.

Students normally identify their own job opportunities, but the Graduate Co-op Office provides access to a job posting database and can assist with career guidance, job searches, resumes, and cover letters. Graduate students accepting a graduate co-op/internship opportunity should see a Graduate Co-op Program advisor regarding offer letters, required academic approvals, registration permits, and any necessary work authorizations. Enrollment in a 6000-level co-op course, a noncredit/no-cost audit course with no student or Institute fees attached, is also required.

International students are eligible to participate, but F-1 visa holders must be enrolled for a minimum of nine months before being able to work off campus. All international students on F-1, J-1, and other appropriate visas must work with the Office of International Education (http://www.oie.gatech.edu) to secure work authorization documentation.

For more information on the Georgia Tech Graduate Co-op and Internship Program, visit: www.gradcoop.gatech.edu (http://www.gradcoop.gatech.edu).

School of Interactive Computing
Interactive and intelligent computing is an emerging discipline on the frontier of ways computation impacts the external world. The School of
Interactive Computing advances computing-mediated interactions by encompassing fields ranging from artificial intelligence and machine learning to graphics and computer vision to interface design and empirical methods. We don’t just evaluate technology, we create technology that makes interactions better. Much of the research within the School of Interactive Computing produces new artifacts that embody new capabilities or methods. Examples include:

- Individuals working with traditional computers
- Groups of people using ubiquitous computing capabilities throughout various environments
- Researchers visualizing scientific data
- Students developing and altering middle school physics simulations
- Automated intelligent surveillance systems monitoring airport tarmacs
- Robots delivering pharmaceuticals to patients in hospitals

Whether an advance is in robotics, augmented reality, or ubiquitous computing, it is developed in the context of a prototype. School of Interactive Computing students become proficient in many areas such as mechanical or electrical engineering, and industrial design. The School of Interactive Computing develops practitioners, future innovators and researchers by offering numerous degree programs.

At the undergraduate-level, the School of Interactive Computing is an integral part of the College’s BS in Computer Science, and oversees aspects of Computational Media’s Bachelor’s degree-offered jointly with the School of Literature, Communication and Culture (LMC). The School of Interactive Computing also administers the interdisciplinary Master’s in Human Computer Interaction (HCI) program in which students from the School of Interactive Computing, LMC, and Psychology participate. At the graduate-level the School of Interactive Computing students can pursue Master’s and PhD degrees in Computer Science, or a PhD in Human-Centric Computing-the first of its kind in the nation. The School of Interactive Computing is also developing a Robotics PhD to be offered in conjunction with schools from the College of Engineering.

Bachelor’s Degrees
- Bachelor of Science in Computational Media (p. 259)

Master’s Degrees
- Master of Science in Computer Science (p. 530)
- Master of Science in Human-Computer Interaction (p. 541)

Doctoral Degrees
- Doctor of Philosophy with a Major in Computer Science (p. 494)
- Doctor of Philosophy with a Major in Human-Computer Interaction (p. 497)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Robotics (p. 509)

Graduate Study in Interactive Computing

Master’s Degrees
- Master of Science in Computer Science (p. 530)
- Master of Science in Human-Computer Interaction (p. 541)

Doctoral Degrees
- Doctor of Philosophy with a Major in Computer Science (p. 494)
- Doctor of Philosophy with a Major in Human-Computer Interaction (p. 497)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Robotics (p. 509)

Graduate Cooperative Programs

The Graduate Cooperative Education Program provides master’s and doctoral degree students majoring in any discipline at Georgia Tech the opportunity to supplement their graduate studies with specialized work experience. Graduate co-op students gain experience with top employers, earn competitive salaries to help defray educational expenses, and expand post-graduation career options while on semester-long work assignments.

The Graduate Co-op Program is available to enrolled Georgia Tech students and is based upon academic achievement. Internships related to a student’s field of study can receive academic approval as a graduate cooperative work assignment allowing students to work summer, fall, or spring semesters, full-time or part-time.

There are no fees associated with the Graduate Co-op Program and students are provided full-time enrollment status through their registration in a Graduate Co-op course. This permits students to retain all privileges of full-time enrolled students while on work assignments.

To participate in the Graduate Co-op Program, a student must

- have a 3.0 or better GPA,
- complete an online orientation session, and
- obtain a program participation letter from his or her major school.

Students normally identify their own job opportunities, but the Graduate Co-op Office provides access to a job posting database and can assist with career guidance, job searches, resumes, and cover letters. Graduate students accepting a graduate co-op/internship opportunity should see a Graduate Co-op Program advisor regarding offer letters, required academic approvals, registration permits, and any necessary work authorizations. Enrollment in a 6000-level co-op course, a noncredit/no-cost audit course with no student or Institute fees attached, is also required.

International students are eligible to participate, but F-1 visa holders must be enrolled for a minimum of nine months before being able to work off campus. All international students on F-1, J-1, and other appropriate visas must work with the Office of International Education (http://www.oie.gatech.edu) to secure work authorization documentation.

For more information on the Georgia Tech Graduate Co-op and Internship Program, visit: www.gradcoop.gatech.edu (http://www.gradcoop.gatech.edu).
College of Design

Location:
East Architecture Building
245 Fourth Street NW
Atlanta, Georgia 30332-0155

Phone: 404.894.3880
Fax: 404.894.2678

Website: www.coa.gatech.edu
Faculty: www.coa.gatech.edu/people/faculty

General Information

The College of Design is comprised of five schools – Architecture, Building Construction, City and Regional Planning, Industrial Design, and Music. As a multidisciplinary venue for teaching, research, and service, the College brings together a distinct array of undergraduate and graduate degree offerings that address the designed, built, and lived environments. Through its seven research centers, the College drives innovation in education and professional practice by solving critical problems in building and cities, and improving the quality of life for diverse populations.

The College of Design offers three undergraduate degrees, nine master’s degrees, and four doctoral degrees. Detailed descriptions of these programs can be found under the appropriate school headings.

- Architecture. Minor (p. 556), BS (p. 197), M.Arch. (p. 516), MS (p. 525), PhD (p. 488)
- Building Construction. PhD (http://catalog.gatech.edu/programs/building-construction-phd)
- Building Construction and Facility Management. MS (p. 527)
- City and Regional Planning. MCRP (http://catalog.gatech.edu/programs/mcrp), PhD (http://catalog.gatech.edu/programs/city-regional-planning-phd)
- City and Regional Planning & Architecture. M.Arch/MCRP (http://catalog.gatech.edu/programs/march-mcrp-dual-degree)
- City and Regional Planning & Civil Engineering. MCRP/MSCE (http://catalog.gatech.edu/programs/mcrp-msce-dual-degree)
- City and Regional Planning & Public Policy. MCRP/MSPP (http://catalog.gatech.edu/programs/mcrp-public-policy-ms)
- Geographic Information Science and Technology. MS (p. 538)
- Human-Computer Interaction. MS (p. 541)
- Industrial Design. Minor, (p. 585) BS (p. 350), M.ID (p. 521)
- Occupational Safety and Health. PMOSH (p. 613)
- Real Estate Development. MRED (p. 522)
- Music Technology. Minor, (p. 596) BS (p. 470), MS (p. 548), PhD (p. 504)
- Sustainable Cities. Minor (p. 609)
- Urban Design. MS (p. 553)

School of Architecture

Location:
East Architecture Building
245 Fourth Street NW
Atlanta, Georgia 30332-0155

Phone: 404.894.4885
Fax: 404.894.2678

Website: www.arch.gatech.edu
Faculty: www.arch.gatech.edu/people

Architecture was established as a discipline at Georgia Tech in 1908, and the graduates of the program have helped shape the growth and physical climate of Atlanta, the region and the world. As the largest of the five units in the College of Design, the School of Architecture has several distinct degree programs, a reflection of its multiple missions. The undergraduate program, the Bachelor of Science in Architecture, advances Georgia Tech’s general education mission through a studio-based design curriculum providing a thorough grounding in liberal and technological knowledge.

At the core of the School is the professional program in architecture, the Master of Architecture, one requirement leading to licensure as a practicing architect. In addition, advanced study and research programs, including the Master of Science with a major in Architecture, the Master of Science in Urban Design, and the Doctor of Philosophy with a major in Architecture, build linkages with practice and industry and exploit the creative tensions between research and design that drives innovation in the field.

Resources such as the Digital Building Laboratory, the Digital Fabrication Laboratory, and the SimTigrate Lab for health and design, support a culture of research focused on building performance and innovation in the field.

All work produced in the College of Design as part of a degree program becomes the property of the College; it may be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse for credit any project executed outside the precincts of the College or otherwise produced without proper coordination with the faculty.

In the United States, most registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit professional degree programs in architecture offered by institutions with U.S. regional accreditation, recognizes three types of degrees: the Bachelor of Architecture, the Master of Architecture, and the Doctor of Philosophy. A program may be granted an eight-year, three-year, or two-year term of accreditation, depending on the extent of its conformance with established educational standards.

Doctor of Architecture and Master of Architecture degree programs may require a preprofessional undergraduate degree in architecture for admission. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Georgia Institute of Technology, School of Architecture, offers the following NAAB-accredited degree programs:

- M.Arch. (preprofessional degree in Architecture + 60 graduate credits)
- M.Arch. (non-preprofessional degree + 102 credits)

Next accreditation visit for all programs: 2022
Graduate Study in Architecture

Minors

• Minor in Architecture (p. 556)

Bachelor's Degrees

• Bachelor of Science in Architecture (p. 197)

Master's Degrees

• Master of Architecture (p. 516)
• Master of Science in Architecture (p. 525)

Concentrations:

• Digital Design and Fabrication
• High Performance Buildings
• Health and Design

• Master of Science in Urban Design (p. 553)
• Dual Degree Program in Architecture & City and Regional Planning (p. 516)

Doctoral Degrees

• Doctor of Philosophy with a Major in Architecture (p. 488)

Graduate Study in Architecture

Graduate studies in architecture at Georgia Tech are comprised of four distinct degree-granting programs:

• Master of Architecture (p. 516) (M.Arch.) STEM Degree Program
• Master of Science in Urban Design (p. 553) (MSUD)
• Master of Science in Architectur (p. 525)e (MS Arch) with several possible research emphases. STEM Degree Program
• Doctor of Philosophy with a major in Architecture (p. 488) (PhD).

The M.Arch. Program is the professional program in architecture leading to the NAAB-accredited Master of Architecture degree. This program accommodates both a two-year curriculum for those students with a four-year, pre-professional degree in architecture and a three-and-a-half-year curriculum for those students without a pre-professional degree in architecture.

The MSUD Program is oriented to those who wish to expand upon their previous professional education and professional experience, as architects, landscape architects, city planners, or civil engineers, and to enter urban design practices either in private firms or public agencies. The program is interdisciplinary in nature, offering an interdisciplinary experience, with required courses in urban design, architecture, and city planning, with additional opportunities in civil and environmental engineering, real estate development, heritage preservation, and other fields. Students in the MSUD Program are in daily contact with architecture and planning students and faculty throughout the College of Architecture. The MSUD program requires a minimum of 39 credit hours of coursework.

The MS Program is a nonprofessional, research-oriented degree program that requires a minimum of 30 credit hours of coursework. Current research areas are available in Digital Design & Fabrication, High Performance Buildings, and Health & Design. These MS programs are linked with the M.Arch. program through a rich array of studios and courses that engage particular aspects of architectural knowledge and practice.

Within the School of Architecture, the PhD with a major in Architecture develops knowledge and technologies:

• enhances design imagination, design evaluation, and the design process;
• articulates design choices and predicts the consequences of design decisions;
• helps to learn from precedents;
• supports better building performance; and
• situates the practice of architecture within a critical understanding of culture, history, and the profession.

Our program includes research emphases in:

• Design Computation
• Architecture Culture and Behavior/Evidence-based Design
• Building Technology and Performance
• History and Culture
• Urban Design.

In each of these research areas, we intersect the perspectives of architectural design, science, technology, and the humanities even as we expect individual research projects to rigorously pursue specific disciplinary agendas.

For more information about graduate programs in the School of Architecture, please contact Robin Tucker, Academic Advising Manager - robin.tucker@design.gatech.edu
School of Architecture, 245 Fourth Street
Georgia Institute of Technology
Atlanta, Georgia 30332-0155
website: www.arch.gatech.edu (http://www.arch.gatech.edu)

The School of Architecture encourages foreign study for all students to prepare them professionally and personally for successful lives in the global environment of the twenty-first century. Students may participate in an immersive experience at another institution or participate in a Georgia Tech faculty-led program.

The School of Architecture sponsors several international programs organized and led by its own faculty:

• Modern Architecture and the Modern City - Graduate Students
• Greece-Italy Study Abroad Program - Undergraduate/Graduate Students
• Tongji University-Georgia Tech Exchange Program- Master of Architecture Students
• Design Develop Build Program in Africa - Undergraduate/Graduate Students

For current offerings, visit https://arch.gatech.edu/international-education

Undergraduate Study in Architecture

Minors

• Minor in Architecture (p. 556)
Bachelor’s Degrees

- Bachelor of Science in Architecture (p. 197)

The School of Architecture offers three certificate programs for which undergraduate students may apply:

1. Architecture and Society – provides an opportunity to explore the technological and formal innovations of architecture and infrastructure within their socio-political and cultural contexts. Students will learn not only about buildings’ technical systems – and their material, structural and climatic performance – but also about their formal order, siting, use, funding/patronage, relation to nature or the city, decoration, and multiple interpretive contexts.

2. Sustainable Architecture – provides undergraduate students the opportunity to specialize in design and technical innovations that will increase building energy performance, reduce emissions, use eco-friendly materials, and thereby increase the durable societal value of the built environment.

3. Computational Design – prepares students to develop a skill set in computer-aided design and fabrication built upon an integrated application of design research, architectural geometry, digital theory and digital design technologies in contemporary architectural practice and research.

Certificates will be granted only to students who, in addition to the certificate program requirements, have satisfied requirements for a Georgia Tech degree. Each certificate requires a minimum of twelve credit hours, at least nine of which are at the 3000 level or higher in the designated area. Courses required by a student’s program of study may not be credited by that student toward a certificate. Courses counting toward a certificate must be taken on a letter-grade basis, and a “C” or better must be received in each course.

Interested students should consult http://www.arch.gatech.edu/architecture-minor-certificates and consult with an academic advisor for more details.

The School of Architecture encourages foreign study for all students to prepare them professionally and personally for successful lives in the global environment of the twenty-first century. Students may participate in an immersive experience at another institution or participate in a Georgia Tech faculty-led program.

The School of Architecture currently runs the following faculty-led programs:

- Summer Study in Greece and Italy (open to students of all majors)
- Undergraduate International Studio (restricted to students in the B.S in Architecture program)
- Design Develop Build Program in Africa (restricted to students majoring in Architecture)
- International Urban Design Studio (restricted to students majoring in Architecture)
- Barcelona Study Abroad Program in Spain (open to students of all majors)

School of Building Construction

The construction industry is among the largest in the United States, employing nearly seven million people and contributing 5 percent of the United States gross national product. The School of Building Construction (BC) at Georgia Tech offers one of the nation’s leading academic programs in building construction and is at the forefront of research in the built environment. The School’s mission is to be the hub of excellence for construction teaching, research, and service by promoting the development of an adaptive knowledge-based, sustainability-conscious industry framework. Supported by the pillars of project delivery, construction management, and facility management, the aim is to advance emerging construction practices, technology innovation, and integrated delivery systems. The School’s vision is to be a global leader in innovation and delivery of technological and methodological sustainability-focused advances for the construction and facility management industry through relevant, applied, and fundamental research. With a problem-focused approach to global outreach, the School will lead an expansion of our global footprint and influence to ensure that we are graduating good global citizens, and to ensure that our fundamental and applied construction research remains relevant at the local, regional, national, and international levels.

Employment prospects for BC students are excellent. Students are recruited by general contractors, residential home builders, project management firms, cost value and consulting firms, real estate and property development companies, building material suppliers, and local, state, and federal government agencies. The School offers a certificate in Construction Management for undergraduate students. The average starting salary for the BC graduate is among the highest for Georgia Tech alumni and ranks at the top of the industry. The School offers master’s degrees in Building Construction and Facility Management, Occupational Safety and Health, and Real Estate Development.

Students in the School of Building Construction learn the basic principles and practices of construction management, real estate development, science, and technology. BC students are educated on how to manage the functions and processes of every aspect of the construction industry. The business climate in Atlanta is vibrant and provides an excellent laboratory opportunity for students to observe various construction sites and activities. The construction companies in the Atlanta area also provide many internships and part-time jobs for students during their study in the BC program.

The Master of Science in Building Construction and Facility Management is accredited by the International Facility Management Association (IFMA) Foundation. The accreditation ensures the School continues to meet the standards set by the IFMA Foundation for quality facility management education.

Master’s Degree

- Master of Science in Building Construction and Facility Management (p. 527)
- Master of Real Estate Development (p. 522)
- Professional Master’s in Occupational Safety and Health (p. 613)

Doctoral Degree

- Doctor of Philosophy with a Major in Building Construction (p. 491)

Certificate Programs

The School of Building Construction offers a certificate in Construction Management, which is available to students in all majors at Georgia Tech. The certificate is designed to provide a specialized education in evolving integrated management approaches to the delivery of built environment, from concept to implementation. The certificate exposes students to the multi-disciplinary nature of construction project development and management and introduces them to the latest technologies and
processes developed to enhance interdisciplinary collaboration and integration.

Certificates will be granted only to students who, in addition to the certificate program requirements, have satisfied requirements for a Georgia Tech degree. Each certificate requires a minimum of twelve credit hours, at least nine of which are at the 3000 level or higher in the designated area. Courses required by a student's program of study may not be credited by that student toward a certificate. Courses counting toward a certificate must be taken on a letter-grade basis, and a C or better must be received in each course.

Interested students should consult http://www.bc.gatech.edu/content/undergraduate-certificate and consult with an academic advisor for more details.

Graduate Study in Building Construction

Graduate Programs

- Master of Science in Building Construction and Facility Management (p. 527)
- Master of Real Estate Development (p. 522)
- Professional Master's in Occupational Safety and Health (p. 613)
- Doctor of Philosophy with a Major in Building Construction (p. 491)

Contact Information

School of Building Construction
College of Design
Georgia Institute of Technology
280 Ferst Dr.
Atlanta, GA 30332-0680

Phone: 404.894.4875
Fax: 404.894.1641

Departmental Resources

- Building Construction web site (http://www.bc.gatech.edu)
- Information for master's degree students (http://www.bc.gatech.edu/content/master-science-building-construction-and-facility-management)
- Information for doctoral degree students (http://www.bc.gatech.edu/phd)

Office of Graduate Studies

- Building Construction and Facility Management (http://www.gradadmiss.gatech.edu/bcfm)

Rules and Regulations

The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

Approved Electives

Students have several options to customize their graduate study through professional electives. Graduate students may select their approved electives from the core of the other Building Construction concentrations, from a rotating list of BC electives, and from other academic areas including: City Planning, Public Policy, Management, Architecture, and Engineering.

Undergraduate Study in Building Construction

Bachelor's Degree

• Bachelor of Science in Building Construction (p. 214)

School of City and Regional Planning

Founded in 1952, Georgia Tech's planning school is one of the oldest professional planning programs in the United States, with more than 1,500 alumni. Graduates are employed in public, private, and third sectors, including all levels of government, real estate development firms, planning consultancies, banks, public utilities, community development corporations, universities, research organizations, and public interest groups. The School's Master of City and Regional Planning program is fully accredited by the Planning Accreditation Board.

Our institutional setting within the College of Design and one of the world's premiere technology universities enables students to acquire expertise in every area of the urban development process, including planning, design, construction/engineering, and management. The School of City and Regional Planning is home to four research centers:

- Georgia Center for Quality Growth and Regional Development (https://cqgrd.gatech.edu)
- Center for Spatial Planning Analytics and Visualization (http://cspav.gatech.edu)
- Sino-U.S. Eco-urban Lab (https://planning.gatech.edu/eco-urban-lab)
- Urban Climate Lab (http://www.urbanclimate.gatech.edu)

These centers plus Georgia Tech's Economic Innovation Institute, Georgia Transportation Institute, Brook Byers Institute for Sustainable Systems, and renowned co-op program, provide hands-on practice and research experience for many of our graduate students.

The Master of City and Regional Planning (MCRP) program offered by the School of City and Regional Planning is fully accredited by the Planning Accreditation Board, a joint accrediting body of the American Institute of Certified Planners, the American Planning Association, and the Association of Collegiate Schools of Planning.

The MCRP degree is the recognized basis for a career as a professional planner.

Minors

• Minor in Sustainable Cities (p. 609)

Master's Degrees

• Master of City and Regional Planning (p. 520)
• Master of Science in Geographic Information Science and Technology (p. 538)

Doctoral Degree

• Doctor of Philosophy with a Major in City and Regional Planning (p. 493)
Dual Degrees

- Master of City and Regional Planning & Master of Architecture (p. 516)
- Master of City and Regional Planning & Master of Science in Civil Engineering (p. 510)
- Master of City and Regional Planning & Master of Science in Public Policy (p. 509)
- Master of City and Regional Planning & Juris Doctor (p. 509)

Certificate in Real Estate Development

Georgia Tech undergraduates in good standing may complete a Certificate in Real Estate Development offered by the School of City and Regional Planning in collaboration with the School of Building Construction and the Scheller College of Business. The certificate is designed to provide specialized education in land real estate development making our students more competitive in securing employment and in advancing to graduate education. Students must complete twelve credit hours in required and restricted elective courses, and maintain a minimum grade point average of 2.7. The certificate is awarded upon graduation or the next semester after graduation.

Certificate in Geographic Information Systems

The Certificate in Geographic Information Systems is open to both MCRP students and students from other programs. The certificate is structured around three sets of courses, including a foundational course in GIS, two skills related courses, and one policy context course. For City and Regional Planning graduate students, coursework for this certificate can be counted toward the MCRP or PhD degree. Students must complete twelve credit hours in required and restricted elective courses taken on letter-grade basis, and completed with a minimum grade point average of 3.0 or higher. The certificate is awarded upon graduation or the next semester after graduation.

Graduate Study in City and Regional Planning

Graduate Programs

- Master of City and Regional Planning (MCRP) (p. 520)
- Master of Science in Geographic Information Science and Technology (p. 538)
- Doctor of Philosophy with a Major in City and Regional Planning (p. 493)

Dual Degree Programs

- Master of City and Regional Planning & Master of Architecture (p. 516)
- Master of City and Regional Planning & Master of Science in Civil Engineering (p. 510)
- Master of City and Regional Planning & Master of Science in Public Policy (p. 509)
- Master of City and Regional Planning & Juris Doctor (p. 509)
- Master of City and Regional Planning & Master of Science in Geographic Information Science and Technology

Contact Information

School of City and Regional Planning
Georgia Institute of Technology
245 Fourth St. NW, Suite 204
Atlanta, GA 30332-0155

Phone: 404.894.2350
Fax: 404.894.1628
Email: crp@design.gatech.edu

Departmental Resources

- City and Regional Planning: http://www.planning.gatech.edu
- Information for MCRP students: http://www.planning.gatech.edu/masters-programs
- Information for MS in Geographic Information Science and Technology students: http://www.planning.gatech.edu/master-science-geographic-information-science-and-technology
- Information for PhD in City and Regional Planning students: http://www.planning.gatech.edu/phd

Office of Graduate Studies

- City and Regional Planning: http://www.gradadmiss.gatech.edu/crp
- City and Regional Planning program spotlight: http://www.gradadmiss.gatech.edu/crp-spotlight
- Geographic Information Science and Technology: http://www.gradadmiss.gatech.edu/ms-gist
- Geographic Information Science and Technology program spotlight: http://www.gradadmiss.gatech.edu/gist-spotlight

Rules and Regulations

The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

Dual Degrees

The School of City and Regional Planning offers several dual degree programs pairing the Master of City and Regional Planning with allied professional studies. By enrolling in a dual degree program, students are able to obtain two degrees in less time than it would take if the degrees were being pursued separately. Both degrees are awarded simultaneously upon completion of the program of study. Dual degrees position graduates to tackle urban and regional policy problems that would benefit from a multidisciplinary perspective. Dual degrees also position graduates to be competitive for work settings that traditionally involve professionals from multiple fields.
Candidates seeking dual degree program admission should apply to each of the two degree programs separately, indicating in their statements that they are seeking dual degree admission. The two schools involved will each make their decisions independently so that the applicant will have the option to pursue only one degree if not admitted to both degree programs. Please refer to the catalog listings of both degree programs involved, as admissions requirements and deadlines may differ.

- Dual Degree Information (http://www.planning.gatech.edu/academics/dualdegrees/overview)

Graduate Certificate Program in Historic Preservation

MCRP students in good standing may cross-enroll at Georgia State University to earn a certificate in heritage preservation with an emphasis on historic preservation. Coursework may be counted toward the MCRP degree.

- Graduate Certificate in Historic Preservation (http://www.planning.gatech.edu/undergraduate-certificate-and-courses)

Graduate Certificate in Geographic Information Systems

The certificate in Geographic Information Systems is open to both MCRP students and students from other graduate programs on campus. The certificate is structured around three sets of courses, including a foundation course in GIS, two skills related courses, and one policy context course. For City and Regional Planning graduate students, coursework for this certificate can be counted toward the MCRP or PhD degree.

- Graduate Certificate in Geographic Information Systems (http://www.planning.gatech.edu/graduate-certificates)

Undergraduate Study in City and Regional Planning

Minors

- Minor in Sustainable Cities (p. 609)

Certificate in Real Estate Development

- Certificate in Real Estate Development (http://www.planning.gatech.edu/undergraduate-certificate-and-courses)

School of Industrial Design

Industrial design is the professional service of creating and developing concepts and specifications that optimize the function, value, and appearance of products and systems for the mutual benefit of both user and manufacturer. An industrial designer’s work touches all of our lives in the form of home products and furnishings, communication devices, healthcare equipment, rehabilitation technologies, and a myriad of other consumer and industrial products and services. While giving form to the efforts of industry, an industrial designer is at the same time a consumer advocate, providing the humanizing link between technology and people. As such, an industrial designer’s central responsibilities include fitting the artifact, system, or service to the person through considering appropriate aesthetics and ergonomics, technical processes, requirements for manufacture, marketing opportunities, and economic constraints.

The Georgia Tech School of Industrial Design offers a well-rounded course of study with early emphasis on basic design and design skills. Design projects stress realistic design situations. The program encourages students to develop a diverse background in order to expand individual talents and to respond to changing opportunities in the field. Most faculty members are practicing designers with extensive experience in the field.

Resources such as the Interactive Product Design Lab, the Body Scan Lab, the Human Machine Interaction Transportation Lab and the Digital Fabrication Lab support a culture of research-focused teaching and learning.

All work executed in the College of Design becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse credit for any project executed outside the precincts of the College or otherwise executed without proper coordination with the instructor.

The Bachelor of Science in Industrial Design and the Master of Industrial Design degree programs offered by the School of Industrial Design are accredited by the National Association of Schools in Art and Design (NASAD). Georgia Tech is recognized by the Industrial Designers Society of America (IDSA) as a NASAD-accredited institution.

Minors

- Minor in Industrial Design (p. 585)

Bachelor’s Degrees

- Bachelor of Science in Industrial Design (p. 350)

Master’s Degrees

- Master of Industrial Design (p. 521)
- Master of Science in Human-Computer Interaction (p. 541)

Graduate Study in Industrial Design

Master’s Degrees

The School of Industrial Design at Georgia Tech offers two graduate degree programs.

- Master of Industrial Design (p. 521)
- Master of Science in Human-Computer Interaction (p. 541)

Georgia Tech’s Master’s of Industrial Design (MID) focuses on an inclusive design approach that is dedicated to the creation and development of products, systems, services and environments that are usable by all segments of the population. With the growing diversity of the population, inclusive design is becoming increasingly important to designers of tomorrow to ensure that design is responsive to the individual and collective needs of all people.

Capitalizing on Georgia Tech’s rich traditions in technology and research, the MID program stresses a user-centered design process and evidence-based design practice that offers students unique opportunities to explore the design of new and existing technologies. Faculty members, who are practicing designers and experts in their fields, maintain active research programs in tangible products within communication technologies, enabling environments, supportive product systems, rehabilitation technologies, and healthcare systems technologies.
The interdisciplinary Master of Science in Human-Computer Interaction (HCI) degree program is a cooperative effort of the School of Interactive Computing, the School of Literature, Media and Communication, the School of Industrial Design, and the School of Psychology. The program provides students with the practical and interdisciplinary skills and theoretical understanding they will need to become leaders in the design, implementation, and evaluation of the computer interfaces of the future.

For more information about graduate programs in the School of Industrial Design, please contact

Academic Advisor
School of Industrial Design
Georgia Institute of Technology
Atlanta, Georgia 30332-0155
phone: 404.894.4874
website: http://www.id.gatech.edu/

Undergraduate Study in Industrial Design

Minors
• Minor in Industrial Design (p. 585)

Bachelor's Degrees
• Bachelor of Science in Industrial Design (p. 350)

School of Music

The School of Music offers degree programs in music technology at the bachelors, masters, and doctoral levels; a wide range of performance ensembles serving students from all majors on campus; and a series of general education courses about music and music technology, most of which carry the humanities attribute.

The School’s bachelors, masters, and doctoral degrees in music technology approach this emerging, interdisciplinary field from scientific, engineering, and creative perspectives. In these programs, students develop their fundamental skills in the analysis, creation, and performance of music; their knowledge of the theory and application behind areas such as acoustics, cognition, signal processing, and interaction design; their ability to use state-of-the-art technologies to create and perform music; their experience in designing and implementing next-generation music technology tools; and their capacity to conduct research studies that expand our knowledge of how humans and machines engage with music. The School also offers a general minor and music technology minor program.

Students across campus participate in the School of Music’s vocal and instrumental ensemble courses, including marching, concert, and symphonic bands, jazz ensembles and combos, symphony and chamber orchestras, multiple choirs, and a rock / pop ensemble. Some ensembles require an audition while others are open to all who wish to enroll.

The School also offers general education courses, many of which fulfill the humanities requirement for undergraduates. These courses do not generally have prerequisites or require any prior experience in music.

Much of the research in the School of Music is focused in the Center for Music Technology, which aims to transform the ways we create and experience music through next generation technology for composition, performance, consumption, and education. Research areas in the Center include robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

Minors
• Minor in Music (General) (http://catalog.gatech.edu/programs/minor-music)
• Minor in Music Technology (p. 596)

Bachelor's Degree
• Bachelor of Science in Music Technology (p. 470)

Master's Degree
• Master of Science in Music Technology (p. 548)

Doctoral Degree
• Doctor of Philosophy with a Major in Music Technology (p. 504)

Undergraduate Study in Music Technology

Bachelor's Degree
• Bachelor of Science in Music Technology (http://catalog.gatech.edu/programs/music-technology-bs)

Minors
• Minor in Music (General) (http://catalog.gatech.edu/programs/minor-music)
• Minor in Music Technology (p. 596)
• Minor in Music Performance (http://catalog.gatech.edu/programs/minor-music-performance)

Graduate Study in Music Technology

Master's Degree
• Master of Science in Music Technology (p. 548)

Doctoral Degree
• Doctor of Philosophy with a Major in Music Technology (p. 504)

School of Music Humanities Credit Information

Core Area C
For more information, see “Core Curriculum, Core C, General Education” (p. 93) in this Catalog.

Humanities Credit for Ensemble Participation
Students can earn Humanities credit for participation in one or more specified School of Music ensembles. Each ensemble course is repeatable for credit and the following ensembles carry the humanities attribute:
Vocal and Instrumental Ensembles

The Chamber Choir
The Chamber Choir is an elite vocal ensemble chosen by audition and performs on campus and community concerts throughout the academic year. The choir rehearses and performs challenging choral music literature written especially for smaller choirs.

The Chorale
A mixed ensemble focused upon the rehearsal, study and performance of choral music. Repertoire may include accompanied and unaccompanied works from all style eras and genres, modern music, world music, and performances of multiple mediums. Choral music experience is recommended. No audition is required.

Glee Club
The Glee Club was organized in 1906 and is the oldest student organization on campus. The Glee Club performs frequently on and off campus. Repertoire includes traditional chorus music, contemporary vocal percussion, and original compositions.

Treble Choir
The Treble Choir performs a variety of accompanied and a cappella music across classical and popular music styles.

Jazz Program
The Georgia Tech Jazz Program provides a great opportunity to study one of America’s greatest and most unique art forms. The Jazz Ensembles explore music from the late 1920’s through the present day, including works by composers such as Duke Ellington, Bill Holman, Sammy Nestico, Charles Mingus and Pat Metheny. Emphasis in these groups is focused on ensemble playing and the art of improvisation, an essential element in jazz tradition. Typically, two large jazz ensembles are offered each semester, as well as the opportunity to perform in small jazz combos. Each ensemble presents several concerts during an academic semester, in addition to numerous on and off-campus events throughout the year. The Jazz Program also strives to bring professional artists to campus on a regular basis, and students will often have the opportunity to perform with these musicians and clinicians in concert during the year.

Percussion Ensemble
The percussion ensembles meet in the Fall and Spring and focus on traditional and contemporary ensemble literature as well as transcriptions of popular music. These ensembles are offered to students with prior percussion background. Interested students should contact Chris Moore (chris.moore@music.gatech.edu) for permission.

Athletic Bands
The Yellow Jacket Marching Band and Basketball Pep Bands are elements of the Georgia Tech Band Program. The Marching Band and Pep Bands perform at all home games and travel to several out-of-state events, including the ACC Tournament, NCAA Tournament, football games, and bowl appearances. These trips are financed by the Georgia Tech Athletic Association. Tryouts for the auxiliary units are held each spring. Wind and percussion auditions occur at the mandatory band camp held the week before the start of fall classes.

Symphonic Band and Concert Band
The Symphonic Band and Concert Band perform masterworks as well as contemporary wind literature designed for the rich sonorities of an expanded instrumentation. The Concert Band provides ensemble performance experiences in a wide range of musical styles and periods for all students at GT. Symphonic Band performs the latest contemporary music as well as standards of the repertoire. Symphonic Band has been involved in commissions of new music from many composers, including Andy Akiho, James David, Steven Bryant, and Julie Giroux. The music performed in these organizations varies from semester to semester and is selected to provide a challenging opportunity for musical growth. By rehearsing and performing at the highest possible level of artistry, each student will be challenged to improve his/her individual musicianship and ensemble skills. The highest quality repertoire for wind instruments will be the core of the curriculum, allowing for a wide variety in the musical, educational, and philosophical foundations of the course. Auditions are required and take place on the first Tuesday of each semester.

More information:

- Georgia Tech Bands and Orchestra (http://gtband.net)

Orchestra
The School of Music currently offers two orchestral ensembles: the Georgia Tech Symphony Orchestra (GTSO, advanced), and Chamber Orchestra (intermediate). The orchestra program also provides access to master classes, professional engagements, and recording opportunities. Students are encouraged to pre-register for orchestra and then audition during the first week of each semester.

Rock / Pop Ensemble
The Georgia Tech Rock/Pop ensemble performs repertoire drawn from all styles of American vernacular music from roughly 1950 onwards, as well as derivative genres from overseas. Each semester, the group divides into multiple bands, each exploring one style or era of Rock/Pop music. Each band also performs their own original songs. Guitarists, bassists, drummers/percussionists, keyboardists, brass players, and singers are all invited to audition.

Laptop Orchestra
The Georgia Tech Laptop Orchestra consists primarily of music technology majors. Students in the ensemble learn about audio synthesis, sound design, approaches to notation and improvisation in experimental music, and interactive music programming and instrument design. They present concerts which include music arranged for laptop technology.
orchestra, music composed for laptop orchestra, and music created by the students in the ensemble.

College of Engineering

The College of Engineering comprises eight academic units of instruction and research. These units offer programs of study and research leading to bachelor’s, master’s, and doctoral degrees. Some also offer programs in one or more subdisciplines or subspecialties.

The programs in engineering are designed to provide a fundamental understanding of the engineering sciences (which are based on mathematics and the natural sciences), of the basic concepts of the humanities and social sciences, and an understanding of the manner in which these elements are interwoven in engineering practice. Each curriculum provides enough flexibility through elective course opportunities to permit a certain amount of program individualism while meeting basic requirements.

The following undergraduate engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Chemical and Biomolecular Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Environmental Engineering
- Bachelor of Science in Industrial Engineering
- Bachelor of Science in Materials Science and Engineering
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Nuclear and Radiological Engineering

The Master of Science in Medical Physics and the PhD with a major in Nuclear Engineering - Medical Physics Option programs are accredited by the Commission on Accreditation of Medical Physics Educational Programs, CAMPEP, www.campep.org/campeplstgrad.asp (http://www.campep.org/campeplstgrad.asp).

- Aerospace Engineering. Minor (p. 555), BS (p. 177), MS (p. 522), PhD (p. 487)
- Algorithms, Combinatorics, and Optimization. PhD (http://catalog.gatech.edu/programs/algorithms-combinatorics-optimization-phd)
- Analytics. MS (p. 523)
- Bioengineering. MS (p. 525), PhD (p. 490)
- Bioinformatics. PhD (p. 490)
- Biomedical Engineering. Minor (p. 557), BS (p. 212)
- Biomedical Innovation and Development. MS (http://catalog.gatech.edu/programs/master-biomedical-innovation-development)
- Chemical and Biomolecular Engineering. BS (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs)
- Civil Engineering. BS (p. 241), MS, (p. 529) PhD (p. 493)
- Computational Science and Engineering. MS (p. 529), PhD (p. 493)
- Computer Engineering. BS (p. 260), BS/MS (p.)
- Electrical Engineering. BS (p. 331), BS/MS (p.)
- Electrical and Computer Engineering. MS (p. 537), PhD (p. 496)
- Energy Systems. Minor (p. 569)
- Engineering and Business. Minor (p. 578)
- Engineering Science and Mechanics. MS (p. 537), PhD (p. 496)
- Environmental Engineering. BS (p. 333), MS (p. 538), PhD (p. 496)
- Global Development. Minor (p. 583)
- Health Systems. MS (p. 539)
- Industrial Engineering. BS (p. 371), MS (p. 544)
- Industrial Engineering. PhD (p. 498)
- International Logistics. MS (p. 545)
- Leadership Studies. Minor (p. 591)
- Machine Learning. PhD (p. 500)
- Materials Science and Engineering. Minor (p. 593), BS (p. 434), BS/MS (http://www.catalog.gatech.edu/programs/materials-science-engineering-bs-ms), MS (p. 546), PhD (p. 503)
- Mechanical Engineering. BS (p. 464), MS (p. 547), PhD (p. 503)
- Medical Physics. MS (p. 548)
- Nuclear Engineering. BS (p. 549), PhD (p. 505)
- Nuclear and Radiological Engineering. Minor (p. 598), BS (p. 476)
- Ocean Science and Engineering. PhD (http://catalog.gatech.edu/programs/ocean-science-engineering-phd)
- Operations Research. MS (p. 549), PhD (p. 506)
- Quantitative and Computational Finance. MS (p. 552)
- Robotics. PhD (p. 509)
- Statistics. MS (p. 552)
- Supply Chain Engineering. MS (p. 553)
- Sustainable Electrical Energy. PMSEE (p. 613)

Guggenheim School of Aerospace Engineering

The Guggenheim School of Aerospace Engineering prepares students at the bachelor’s, master’s, and doctoral levels for a career in vehicle engineering with primary emphasis on flight vehicles. A combined BS/MS honors program is also offered, preparing students for graduate studies and research (www.ae.gatech.edu). In addition, the School offers a minor in aerospace engineering, and interdisciplinary minors in the fields of energy systems and scientific and engineering computing. The School is housed in five buildings with a total of approximately 122,000 square feet, most of which is devoted to instructional and research laboratories. Additional information may be found at https://aerospace.gatech.edu/undergraduate-curriculum.

Minor

- Minor in Aerospace Engineering (p. 555)

In partnership with other units on campus, the School also offers interdisciplinary minors in the areas of energy systems, and scientific and engineering computing.
Bachelor's Degree
• Bachelor of Science in Aerospace Engineering (p. 177)

Master's Degrees
• Master of Science in Aerospace Engineering (p. 522)
• Master of Science in Computational Science and Engineering (p. 529)

Doctoral Degrees
• Doctor of Philosophy with a Major in Aerospace Engineering (p. 487)
• Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
• Doctor of Philosophy with a Major in Robotics (p. 509)

Graduate Study in Aerospace Engineering

Undergraduate Study in Aerospace Engineering

Undergraduate Programs
• Minor in Aerospace Engineering (p. 555)
• Bachelor of Science in Aerospace Engineering (p. 177)

Accreditation
The BS in Aerospace Engineering program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (http://www.abet.com) (ABET).

Admission
• Undergraduate Admission (http://admission.gatech.edu)

Advising
• Undergraduate Advising (https://advising.gatech.edu)

Departmental Resources
• Information for Currently Enrolled Undergraduate Aerospace Engineering Students (http://www.ae.gatech.edu/academics/undergraduate)
• Aerospace Engineering Combined BS/MS Honors Program (http://www.ae.gatech.edu/academics/undergraduate/semester/honors/index)

Rules and Regulations
The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

H. Milton Stewart School of Industrial and Systems Engineering

Industrial engineering is a branch of engineering that designs and improves systems and processes to enhance efficiency and productivity. The field uses technology to properly manage resources of all kinds, including human beings, around the world. Industrial engineering involves designing and analyzing complex systems that integrate technical, economic, and social factors for all types of organizations. The methodologies involved in industrial engineering are probability, optimization, capital investment analysis, statistics, and computer science. The important application domains are supply-chain systems, manufacturing, planning, quality control, economics, and financial systems, among others. Graduates can be found in a host of settings including transportation, telecommunications, hospitals, banking, environmental systems, retailing, government, and consulting.

Bachelor's Degree
• Bachelor of Science in Industrial Engineering (p. 371)

Master's Degrees
• Master of Science in Analytics (p. 523)
• Master of Science in Computational Science and Engineering (p. 529)
• Master of Science in Health Systems (p. 539)
• Master of Science in Industrial Engineering (p. 544)
• Master of Science in International Logistics (p. 545)
• Master of Science in Operations Research (p. 549)
• Master of Science in Quantitative and Computational Finance (p. 552)
• Master of Science in Statistics (p. 552)
• Master of Science in Supply Chain Engineering (p. 553)

Doctoral Degrees
• Doctor of Philosophy with a Major in Algorithms, Combinatorics, and Optimization (p. 488)
• Doctor of Philosophy with a Major in Bioinformatics (p. 490)
• Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
• Doctor of Philosophy with a Major in Industrial Engineering (p. 498)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)
• Doctor of Philosophy with a Major in Operations Research (p. 506)

Graduate Study in Industrial & Systems Engineering

Master's Degrees
• Master of Science in Analytics (p. 523)
• Master of Science in Computational Science and Engineering (p. 529)
• Master of Science in Health Systems (p. 539)
• Master of Science in Industrial Engineering (p. 544)
• Master of Science in International Logistics (p. 545)
• Master of Science in Operations Research (p. 549)
• Master of Science in Quantitative and Computational Finance (p. 552)
• Master of Science in Statistics (p. 552)
• Master of Science in Supply Chain Engineering (p. 553)

Doctoral Degrees
• Doctor of Philosophy with a Major in Algorithms, Combinatorics, and Optimization (p. 488)
• Doctor of Philosophy with a Major in Bioinformatics (p. 490)
• Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
• Doctor of Philosophy with a Major in Industrial Engineering (p. 498)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)
• Doctor of Philosophy with a Major in Operations Research (p. 506)

Doctoral Study in Industrial Engineering

The PhD Program in Industrial Engineering is intended for qualified individuals for whom past accomplishments and evaluation indicate a high potential for successful completion of the program requirements and a subsequent creative intellectual contribution to the field. Admitted students may pursue their work in various concentrations related to common themes associated with industrial engineering:

• supply chain logistics and manufacturing,
• economic decision analysis,
• applied statistics, and
• human-integrated systems.

Admission is dependent upon student qualification rather than educational background in any specified discipline. Consideration for admission is based largely upon performance in prior academic work, the Graduate Record Examination (GRE), and credible letters of reference.

Distance Learning

The School of Industrial and Systems Engineering offers off-campus working professionals the opportunity to enroll in many of its graduate courses through video technologies. Qualified individuals can complete the requirements for the MS IE or MS OR utilizing the video-based delivery system. Admission as a degree-seeking student in the video program is based upon the same criteria as for regular students. See Distance Learning and Professional Education (https://pe.gatech.edu/programs) for more information.

Financial Aid

Financial aid for PhD study is available in the form of traineeships, fellowships, sponsored externships, and research and teaching assistantships.

Undergraduate Study in Industrial & Systems Engineering

Bachelor's Degree
• Bachelor of Science in Industrial Engineering (p. 371)

Exceptional Students Options

Program activities and options are available to encourage and reward students with superior records and abilities. Participation in these programs requires demonstrated scholastic excellence and prior arrangement with the student's advisor and/or the Associate Chair for Undergraduate Studies.

Graduate-Level Courses

With approval, students with a cumulative grade-point average of 3.0 or above may take up to 9 credit hours of graduate-level courses. Students who would get both BS and MS in ISYE may use up to 6 credit hours of graduate-level course for both degrees. To take a graduate-level course for both degrees, the grade-point average must be 3.5 or higher.

Honors Courses

When faculty resources permit, the School offers honors versions of some of the required courses for the BS IE Students with a cumulative grade-point average of at least 3.3 are allowed to enroll in these courses and use them as replacements for the analogous course requirements in the curriculum.

Visiting Scholar/Practitioner Offerings

Occasionally, the School brings to campus selected individuals of unique accomplishment for course offerings built around their special areas of activity, thus making available a broader range of course materials than regularly provided. Prominent in this regard is the James C. Edenfield Executive-in-Residence program, which brings highly successful executives to the School. Participating much like visiting faculty, these executives bring to a classroom setting, both graduate and
undergraduate, the benefit of their work experiences as they support the ISYE curriculum.

The Bachelor of Science in Industrial Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

Multidisciplinary Activities and Programs

The College of Engineering encourages cross-unit collaboration within the College and supports the interdisciplinary culture of Georgia Tech and the merging of disciplines that is the trait of modern technology development. Engineering faculty provide leadership for such activities through their involvement in more than thirty research centers and institutes on campus.

The College also provides opportunities for engineering students to participate in interdisciplinary activities by working with faculty in the centers as research assistants, by taking part in interdisciplinary design projects and competitions, and by completing one or more of the College’s multidisciplinary certificate programs.

Any student in good academic standing who is pursuing a degree in one of the participating schools of the College of Engineering or a participating school in any of the other colleges may select elective courses and the subjects of special problems to satisfy simultaneously both the requirements of his or her major degree program and those of a specialized multidisciplinary program. Upon graduation, the student receives both the degree in the major field of study and a certificate attesting to successful completion of the particular related multidisciplinary program.

The following table shows available program offerings and the degree levels of the programs:

<table>
<thead>
<tr>
<th>Program</th>
<th>Degree Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomaterials</td>
<td>BS</td>
</tr>
<tr>
<td>Composites Engineering</td>
<td>BS, MS, PhD</td>
</tr>
<tr>
<td>Geohydrology</td>
<td>MS, PhD</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>MS, PhD</td>
</tr>
<tr>
<td>Mechanical Properties of Materials</td>
<td>MS, PhD</td>
</tr>
<tr>
<td>Nanomaterials</td>
<td>BS</td>
</tr>
<tr>
<td>Pulp and Paper Engineering</td>
<td>BS</td>
</tr>
<tr>
<td>Technology & Management</td>
<td>BS</td>
</tr>
</tbody>
</table>

General Requirements of Undergraduate Multidisciplinary Programs

The specific design of the multidisciplinary program of any participating undergraduate student, while individualized, must meet certain general requirements as well as requirements that are specific to that multidisciplinary area. The general (minimum) undergraduate multidisciplinary requirements are as follows:

1. The program must relate the student’s major area to the given multidisciplinary area.
2. Courses must be taken under more than one academic unit.
3. At least twelve credit hours (not required by name and number in the student’s major) must be taken in a coherent program.

4. At least nine credit hours must be at the 3000 level or higher.
5. At least three credit hours must be outside the major field. (Cross-listed courses may be counted outside the student’s major)
6. Courses must be taken on a letter-grade basis, and a C or better must be earned in each course counting toward a multidisciplinary certificate.

General Requirements of Graduate Multidisciplinary Programs

The specific design of the multidisciplinary program of any participating graduate student, while individualized, must meet certain general requirements as well as requirements that are specific to that multidisciplinary area. The general (minimum) graduate multidisciplinary requirements are the same as those listed previously for the undergraduate programs, with the following exceptions:

1. At least three of the coherent multidisciplinary program courses as well as nine credit hours must be at the 6000 level or higher
2. Students at the doctoral level must, on an individual basis, meet additional requirements specified by the student’s doctoral committee, consistent with a program beyond the master’s level that has as it’s objective the development of a doctoral-level multidisciplinary program.

Interested students may obtain detailed information on the various undergraduate-level and graduate-level multidisciplinary programs from the main office of their academic advisors and from the links below.

Certificate Procedures

Petitions for multidisciplinary program certificates are processed as follows:

1. During the semester in which the student expects to graduate, the student completes a Petition for Multidisciplinary Certificate form and obtains the signature the chair of the certificate program.
2. When complete, the petition is forwarded to the Office of the Dean of Engineering.
3. At the end of the semester in which all graduation requirements have been met, the certificate will be signed by the dean of the College of Engineering and mailed to the student.

Biomaterials Certificate (http://www.mse.gatech.edu/undergraduate-program/bio-cert)
Composites Engineering Certificate (http://www.mse.gatech.edu/undergraduate-program/comp-cert)
Geohydrology Certificate Program (http://mesl.ce.gatech.edu/EDUCATION/GEO)
Mechanical Properties of Materials Certificate (http://mpcf.gatech.edu/education/certificate)
Nanomaterials Certificate (http://www.mse.gatech.edu/undergraduate-program/nano-cert)
Technology & Management Program (http://mgt.gatech.edu/programs/under/tm)
School of Chemical and Biomolecular Engineering

Chemical and Biomolecular Engineering is a branch of engineering that prepares students for an enormously varied set of career paths. Graduates have become corporate executives, plant engineers, professors, inventors, lawyers, researchers, physicians, consultants, and financial officers. They have found employment with oil, chemical, biomedical, pharmaceutical, microelectronics, environmental, pulp and paper, food, textile, fertilizer, fragrance, and automobile companies, and with academia, government, banks, and brokerages. Chemical and biomolecular engineers have led the development of biomedicine and biotechnology, and they have been crucial to the materials revolution, especially in computer chip manufacturing, nanotechnology, and plastics and fibers. Additionally, they are essential in addressing the energy needs of the nation. Chemical and biomolecular engineering emphasizes environmentally benign manufacturing and sustainable development. (www.chemicalengineering.org (http://www.chemicalengineering.org))

The Chemical Engineers in Action (http://www.chemicalengineering.org) site celebrates the many significant advancements that chemical engineers have made to our world. Explore the site to learn more about chemical engineering’s great achievements, bold innovators, and new frontiers in the fields of energy (http://www.chemicalengineering.org/energy), the environment (http://www.chemicalengineering.org/enviro), biomedicine (http://www.chemicalengineering.org/biomed), electronics (http://www.chemicalengineering.org/electronics), food production (http://www.chemicalengineering.org/food), and materials (http://www.chemicalengineering.org/materials).

The undergraduate curriculum leads to a Bachelor of Science in Chemical and Biomolecular Engineering. Chemical and biomolecular engineering principles are taught as the foundation of that degree, but students are also expected to develop an ability to solve all kinds of problems, to view systems in their entirety, and to formulate and test solutions irrespective of the framework of the problem. Completion of the BS degree prepares students for entry into the workforce, for advanced study in chemical and biomolecular engineering, and for countless other graduate programs.

The curriculum has two options.

1. The Standard Option provides the basics of chemical and biomolecular engineering but allows flexibility for the student to complete additional study in a variety of areas, including microelectronics, materials, and the environment.

2. The Biotechnology Option is for students who wish to focus their education on the biomolecular aspects of chemical and biomolecular engineering. This option includes the core chemical engineering courses, specialized biomolecular engineering courses, biochemistry, and technical electives focused in the biotechnology area.

Both curriculum tracks offer special opportunities for students wishing to pursue minors or certificates in fields of particular interest, and students are encouraged to explore the frontiers of knowledge through involvement in faculty-directed research.

In addition to the BS, the School of Chemical and Biomolecular Engineering offers programs leading to the MS and the PhD. Students should check the School website for detailed curriculum information and recent updates.

The Georgia Institute of Technology is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award baccalaureate, masters, and doctoral degrees.

Southern Association of Colleges and Schools Commission on Colleges
1866 Southern Lane
Decatur, Georgia 30033-4097
telephone 404.679.4500

Contact http://www.sacscoc.org for questions about the accreditation of the Georgia Institute of Technology.

Georgia Tech’s Cooperative Program is accredited by the Accreditation Council for Cooperative Education.

Minors

Special opportunities exist for students wishing to pursue minors or certificates in fields of particular interest, and students are encouraged to explore the frontiers of knowledge through involvement in faculty-directed research.

Visit our website at www.chbe.gatech.edu (http://www.chbe.gatech.edu) for more information.

Minor Program of Study & Guidelines (p. 107)

Bachelor’s Degrees

- Bachelor of Science in Chemical and Biomolecular Engineering (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs)

Master’s Degrees

- Bachelor of Science/Master of Science in Chemical and Biomolecular Engineering (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs-ms)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Chemical Engineering (p. 528)
- Master of Science in Paper Engineering (p. 550)

Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Chemical Engineering (p. 492)
- Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)

Graduate Study in Chemical and Biomolecular Engineering

Graduate Programs

- Bachelor of Science/Master of Science in Chemical and Biomolecular Engineering (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs-ms)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Chemical Engineering (p. 528)
- Master of Science in Paper Engineering (p. 550)
- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Chemical Engineering (p. 492)
• Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)

Contact Information
Graduate Coordinator
School of Chemical and Biomolecular Engineering
Georgia Institute of Technology
311 Ferst Dr. NW
Atlanta, GA 30332-0100

Phone: 404.894.2877
Fax: 404.894.2866

Departmental Resources
• Chemical and Biomolecular Engineering web site (http://www.chbe.gatech.edu)
• Information for graduate students (http://www.chbe.gatech.edu/programs/graduate)

Office of Graduate Studies
• Chemical and Biomolecular Engineering (http://www.gradadmss.gatech.edu/che)
• Chemical and Biomolecular Engineering program spotlight (http://www.gradadmss.gatech.edu/che-spotlight)

Rules and Regulations
The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

Undergraduate Study in Chemical and Biomolecular Engineering
Chemical engineering is a discipline that traditionally has been based in the application of chemistry as an enabling science. The strength of that foundation has resulted in enormous advances in the chemical, petroleum, and related industries that have relied on chemical engineering to provide much of the intellectual capital on which they depend. Over time, and with increasing speed, the discipline has expanded so that biological sciences and chemistry now fill the position once uniquely held by chemistry. Georgia Tech’s School of Chemical & Biomolecular Engineering is a national leader in restructuring its curriculum and research initiatives to reflect that evolution.

The chemical and biomolecular engineering undergraduate curriculum leads to a Bachelor of Science in Chemical and Biomolecular Engineering. Chemical and biomolecular engineering principles are taught as the foundation of that degree but students also are expected to develop an ability to solve all kinds of problems, to view systems in their entirety, and to formulate and test solutions irrespective of the framework of the problem. Completion of the BS degree prepares students for entry into the workforce, for advanced study in chemical and biomolecular engineering, or for countless other graduate programs.

Mission
The mission of the School of Chemical & Biomolecular Engineering is to provide students with the intellectual basis to be educated citizens, to prepare them for successful professional careers, and to advance the science and technology that form the basis of chemical and biomolecular engineering. In pursuit of this mission, the School has adopted the following:

Program Educational Objectives
• Graduates will demonstrate proficiency in the principles and methods essential to modern chemical and biomolecular engineering.
• Graduates will demonstrate broadened perspectives regarding social issues and responsibilities, ethics, and professionalism.
• Graduates will be recognized for excellence and leadership and selected for high-quality industrial, academic, government, and other professional positions.
• Graduates will demonstrate an understanding of the global nature of engineering practice and business activities.
• Graduates will understand the importance of further professional growth through continuing education and research.

Program Outcomes
In pursuit of its educational objectives, the School has adopted the following program outcomes:

• Students will demonstrate the ability to apply knowledge of mathematics, science, and engineering.
• Students will demonstrate the ability to design and conduct experiments, as well as to analyze and interpret data.
• Students will demonstrate the ability to design a system, component, product, and/or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
• Students will demonstrate an ability to lead and function on multidisciplinary teams.
• Students will demonstrate an ability to identify, formulate, and solve engineering problems.
• Students will demonstrate an understanding of professional and ethical responsibility.
• Students will demonstrate the ability to communicate effectively.
• Students will demonstrate a breadth in education that facilitates understanding the impact of engineering solutions in a global, economic, environmental, and societal context.
• Students will demonstrate recognition of the need for and an ability to engage in lifelong learning.
• Students will demonstrate knowledge of contemporary issues, especially as related to chemical engineering practice.
• Students will demonstrate the ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
• Students will have an understanding of the chemical engineering profession as obtained through professional organizations, cooperative education, internships, undergraduate research, and/or required laboratory courses.
• Students will have a thorough grounding in the basic sciences including chemistry, physics, and biology appropriate to the program objectives.
• Students will demonstrate knowledge in the applications of these basic sciences to enable graduates to design, analyze, and control physical, chemical, and biological processes consistent with the program’s educational objectives.

In pursuit of these objectives, the following curriculum is designed to provide coverage of core areas of chemical and biomolecular engineering, and to allow students opportunities to explore the breadth of the
discipline. The curriculum requires a total of 132 credit hours for the BS degree. The biotechnology option allows the student to focus intensely in this rapidly emerging area of chemical engineering. The standard option provides the flexibility to explore other areas of chemical engineering practice while providing an understanding of the biomolecular aspects of modern chemical engineering. The standard program will also allow chemical and biomolecular engineering students to tailor their educations to their particular interests and plans for their professional careers. Students are encouraged to use the required elective hours to earn a minor or certificate, or at least to focus their electives in an area of particular interest.

Many graduates have found international experience obtained as a student to be valuable later in their careers. The School is developing special initiatives to facilitate such experiences, and it has a longstanding six-week summer program at University College London in which students receive six credit hours of elective credit and credit for CHBE 4200.

Finally, although the focus of the curriculum is development of technical skills, it has elements geared to enhance communication, teamwork, and business skills.

Minors
Special opportunities exist for students wishing to pursue minors or certificates in fields of particular interest, and students are encouraged to explore the frontiers of knowledge through involvement in faculty-directed research.

Visit our website at www.chbe.gatech.edu (http://www.chbe.gatech.edu) for more information.

Minor Program of Study & Guidelines (p. 107)

Bachelor's Degrees
- Bachelor of Science in Chemical and Biomolecular Engineering (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs)

Transfer Students
Due to the sequence of courses and the order in which they must be taken, students who transfer into the school of Chemical and Biomolecular Engineering (ChBE) from another university should expect to be enrolled for a minimum of six terms (a term is a semester or a summer session). If, for financial aid purposes, insurance, etc., students are required to be full-time, they should transfer to Georgia Tech having sufficient non-chemical and biomolecular engineering courses remaining to enroll full-time for six terms. All prerequisites and co-requisites must be followed.

The BS in Chemical and Biomolecular Engineering program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

School of Civil and Environmental Engineering
The School of Civil and Environmental Engineering offers courses in civil engineering, environmental engineering, and engineering science and mechanics, as well as programs leading to the following degrees:

- Bachelor of Science in Civil Engineering
- Bachelor of Science in Environmental Engineering
- Master of Science in Civil Engineering
- Master of Science in Engineering Science and Mechanics
- Master of Science in Environmental Engineering
- Doctor of Philosophy

The School participates in the interdisciplinary graduate programs in Bioengineering, Computational Science & Engineering, and Ocean Science and Engineering. The School also offers a dual program leading to the following degrees:

- Master of Science in Civil Engineering, with a concentration in transportation systems engineering, and
- Master of City Planning.

Minor
- Minor in Leadership Studies (p. 591)

Bachelor's Degrees
- Bachelor of Science in Civil Engineering (p. 241)
- Bachelor of Science in Environmental Engineering (p. 333)

Master's Degrees
- Master of Science in Bioengineering (p. 525)
- Master of Science in Civil Engineering (p. 529)
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Engineering Science and Mechanics (p. 537)
- Master of Science in Environmental Engineering (p. 538)
- Dual Degree - Master of City and Regional Planning/Master of Science in Civil Engineering (p. 510)

Doctoral Degrees
- Master of Science in Bioengineering (p. 525)
- Master of Science in Civil Engineering (p. 529)
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Engineering Science and Mechanics (p. 537)
- Master of Science in Environmental Engineering (p. 538)
- Dual Degree - Master of City and Regional Planning/Master of Science in Civil Engineering (p. 510)
- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Civil Engineering (p. 493)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Engineering Science and Mechanics (p. 496)
- Doctor of Philosophy with a Major in Environmental Engineering (p. 496)
- Doctor of Philosophy with a Major in Ocean Science & Engineering (http://www.catalog.gatech.edu/programs/ocean-science-engineering-phd)
Graduate Study in Civil and Environmental Engineering

Graduate Programs

- Master of Science in Bioengineering (p. 525)
- Master of Science in Civil Engineering (p. 529)
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Engineering Science and Mechanics (p. 537)
- Master of Science in Environmental Engineering (p. 538)
- Master of Science in Electrical and Environmental Engineering (p. 546)
- Master of Science in Civil Engineering (p. 549)
- Master of Philosophy with a Major in Bioengineering (p. 490)
- Master of Philosophy with a Major in Civil Engineering (p. 493)
- Master of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Master of Philosophy with a Major in Environmental Engineering (p. 496)
- Master of Philosophy with a Major in Ocean Science & Engineering (p. 496)
- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Civil Engineering (p. 493)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Environmental Engineering (p. 496)
- Doctor of Philosophy with a Major in Ocean Science & Engineering (p. 496)
- Doctor of Philosophy with a Major in Electrical and Computer Engineering (p. 500)
- Doctor of Philosophy with a Major in Robotics (p. 509)

Graduate Certificate in Remote Sensing

Students completing the master's or doctoral degree requirements of the School may earn a Graduate Certificate in Remote Sensing.

- Graduate Certificate in Remote Sensing (http://www.gatech.edu)

Undergraduate Study in Civil and Environmental Engineering

Minor

- Minor in Leadership Studies (p. 591)

Bachelor's Degrees

- Bachelor of Science in Computer Engineering (p. 260)
- Bachelor of Science in Electrical Engineering (p. 331)

Master's Degrees

- Bachelor of Science/Master of Science in Electrical and Computer Engineering (http://www.catalog.gatech.edu/programs/electrical-computer-engineering-bs-ms)
- Dual MS Program in ECE GT Lorraine and European Partner Universities (p. 510)
- Dual MS Program in ECE GT and Korean Advanced Institute of Science and Technology (p. 510)
- Dual MS Program in ECE with the Politecnico di Torino (Italy) (p. 510)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Electrical and Computer Engineering (p. 537)
- Professional Master’s in Sustainable Electrical Energy (PMSEE) (p. 613)

Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Electrical and Computer Engineering (p. 496)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Robotics (p. 509)

The School of Electrical and Computer Engineering (ECE) provides undergraduate and graduate programs that prepare students to participate in a broad range of career opportunities. Modern facilities and laboratories support experimental and theoretical programs of instruction and research. Additional information about the School is available at www.ece.gatech.edu (http://www.ece.gatech.edu) or upon request by calling 404.894.2901.

Graduate Study in Civil and Environmental Engineering

The following undergraduate engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.ece.gatech.edu).

- Bachelor of Science in Civil Engineering
- Bachelor of Science in Environmental Engineering

School of Electrical and Computer Engineering

Electrical engineers have defined, shaped, and driven the information technology revolution that we are experiencing today. Building on the fundamental cornerstones of electrical engineering—the control of information and electric power—electrical engineers have been responsible for innovations and technological breakthroughs that have altered the fabric and face of modern life. Cell phones, tablets, modern hearing aids, the Internet, digital cameras, global positioning systems, and hybrid cars all are based on electrical engineering. Georgia Tech’s School of Electrical and Computer Engineering (ECE) is consistently ranked nationally among the top ten of all electrical engineering programs, and its graduates are pioneering such life-altering innovations as biomedical devices that save lives, and improve everyday living for disabled people, as well as environmentally friendly technologies such as solar energy and wind power. The electrical engineering program encompasses all major areas of this dynamic field, including analog electronics, bioengineering, digital signal processing, electric power, electromagnetics, microelectronics and microsystems, nanosystems, optics and photonics, systems and controls, and telecommunications.

Combining the study of computer systems with traditional aspects of electrical engineering, computer engineering is one of the fastest growing fields in the country, with projected demand over the next decade expected to grow by as much as 150 percent. The computer engineering program in ECE is at the forefront of this new and dynamic field, with national rankings consistently in the top ten. Rapid advances in underlying technologies have resulted in ever smaller, less costly, and higher-performance computer systems, making computers omnipresent in our everyday lives and fueling exciting developments in areas like robotics, wired and wireless networking, embedded processing, network security, and data storage. It is this ever-expanding capacity of computers that empowers us to communicate, learn, transact business, receive medical treatment, and explore space in new ways.

The School of Electrical and Computer Engineering (ECE) provides undergraduate and graduate programs that prepare students to participate in a broad range of career opportunities. Modern facilities and laboratories support experimental and theoretical programs of instruction and research. Additional information about the School is available at www.ece.gatech.edu (http://www.ece.gatech.edu) or upon request by calling 404.894.2901.

Bachelor's Degrees

- Bachelor of Science in Computer Engineering (p. 260)
- Bachelor of Science in Electrical Engineering (p. 331)

Master's Degrees

- Bachelor of Science/Master of Science in Electrical and Computer Engineering (http://www.catalog.gatech.edu/programs/electrical-computer-engineering-bs-ms)
- Dual MS Program in ECE GT Lorraine and European Partner Universities (p. 510)
- Dual MS Program in ECE GT and Korean Advanced Institute of Science and Technology (p. 510)
- Dual MS Program in ECE with the Politecnico di Torino (Italy) (p. 510)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Electrical and Computer Engineering (p. 537)
- Professional Master’s in Sustainable Electrical Energy (PMSEE) (p. 613)

Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Electrical and Computer Engineering (p. 496)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Robotics (p. 509)
• Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politecnico di Milano (p. 516)
• Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politecnico di Torino (Italy) (p. 516)

Graduate Study in Electrical and Computer Engineering

Master’s Degrees
• Bachelor of Science/Master of Science in Electrical and Computer Engineering (http://www.catalog.gatech.edu/programs/electrical-computer-engineering-bs-ms)
• Dual MS Program in ECE GT Lorraine and European Partner Universities (p. 510)
• Dual MS Program in ECE GT and Korean Advanced Institute of Science and Technology (p. 510)
• Dual MS Program in ECE with the Politecnico di Torino (Italy) (p. 510)
• Master of Science in Bioengineering (p. 525)
• Master of Science in Electrical and Computer Engineering (p. 537)
• Professional Master’s in Sustainable Electrical Energy (PMSEE) (p. 613)

Doctoral Degrees
• Doctor of Philosophy with a Major in Bioengineering (p. 490)
• Doctor of Philosophy with a Major in Electrical and Computer Engineering (p. 496)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)
• Doctor of Philosophy with a Major in Robotics (p. 509)

Certificate Program in Remote Sensing
Remote sensing refers to a means of investigating the properties of a target using measurements made at some distance from the target. Applications range from astronomy and environmental applications to medical radiography and automotive collision avoidance radars, as well as security-enhancing sensors. In the last three decades, sensing of the Earth and its atmosphere has increased very substantially because of climate change and global pollution concerns and because of the need for measurements to support the increasingly sophisticated weather and earthquake forecasting and oil and gas surveying capabilities.

Students completing the master’s or doctoral degree requirements of the Schools listed below may be awarded a Remote Sensing Certificate. The primary administration of the certificate is through Dr. Irina Sokolik of the School of Earth and Atmospheric Sciences. Departmental contacts are listed below:

Aerospace Engineering: Dr. Robert Braun
Electrical and Computer Engineering: Dr. Manos Tentzeris
Earth and Atmospheric Sciences: Dr. Irina Sokolik
Civil and Environmental Engineering: Dr. Michael Bergin
Chemistry and Biochemistry: Dr. Thomas Orlando
City Planning: Dr. Steven French

The courses that would be used to satisfy the requirements of this certificate have been divided into two areas:

1. First, a group of core courses that cover both fundamentals and applications of remote sensing;
2. Second, elective courses that cover a range of courses that cover fundamental physics, data analysis methods, and application areas.

A total of twelve credit hours are required to obtain the certificate, including at least two core courses. Nine of the credit hours must be at the 6000 level or above.

Area 1: Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 6531</td>
<td>Introduction to Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4430</td>
<td>Remote Sensing and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4460</td>
<td>Satellite and Radar Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6145</td>
<td>Remote Sensing of the Atmosphere and Oceans</td>
<td>3</td>
</tr>
</tbody>
</table>

Area 2: Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 6353</td>
<td>Orbital Mechanics (AE 6353 is a pre-requisite for AE 6354)</td>
<td>3</td>
</tr>
<tr>
<td>AE 6354</td>
<td>Advanced Orbital Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6222</td>
<td>Hydrometeorology</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6462</td>
<td>Signals and Inverse Problems in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6483</td>
<td>Geotechnical Image and Spatial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CP 6521</td>
<td>Advanced Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4510</td>
<td>Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4520</td>
<td>Seismic Methods in Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6134</td>
<td>Inverse Methods and Time Series Analysis in Earth and Atmospheric Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (may be taught as Atmospheric Radiative Transfer)</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (may be taught as Optical Techniques in Atmospheric Sensing)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 6272</td>
<td>Fundamentals of Radar Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 6780</td>
<td>Medical Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 7370</td>
<td>Antennas and Wave Propagation in Matter</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in Development
AE/EAS 4XXX: Designing a UAV for Remote Sensing Applications - This course is currently being planned and EAS recently received a NASA grant to provide education in this subject area.

EAS 6XXX: Earth Science/Geological Applications of Remote Sensing - A new faculty member in EAS geodetic remote sensing will be creating this course. It probably will include Global Positioning System (GPS) applications

Other new courses on remote sensing may qualify as electives for this certificate with approval by the Remote Sensing Certificate, Dr. Irina Sokolik.

GT-Lorraine
Students may choose to pursue graduate degrees in Electrical and Computer Engineering at Georgia Tech-Lorraine, the European campus
of the Georgia Institute of Technology, located in Metz, France. Undergraduate programs are also offered in the fall, spring, and summer terms at Georgia Tech-Lorraine. In addition to courses taught in English by regular Georgia Tech faculty, students also may participate in courses and academic programs offered by partner French universities.

Georgia Tech-Lorraine (http://www.georgiatech-metz.fr)

ECE Website (http://www.ece.gatech.edu)

GT-Shenzhen

Students may choose to pursue a Master's degree in Electrical and Computer Engineering at Georgia Tech-Shenzhen, an instructional site of the Georgia Institute of Technology, located in Shenzhen, China. Courses are taught in English by regular Georgia Tech faculty during the fall, spring, and summer terms at Georgia Tech-Shenzhen.

gtshenzhen@ece.gatech.edu

Georgia Tech-Shenzhen: www.shenzhen.gatech.edu (http://www.shenzhen.gatech.edu)

ECE Website: www.ece.gatech.edu (http://www.ece.gatech.edu)

Undergraduate Study in Electrical and Computer Engineering

Bachelor's Degrees

• Bachelor of Science in Computer Engineering (p. 260)
• Bachelor of Science in Electrical Engineering (p. 331)

The following undergraduate engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

• Bachelor of Science in Computer Engineering
• Bachelor of Science in Electrical Engineering

School of Materials Science and Engineering

Established in 1985
(School of Ceramic Engineering established in 1897)
(School of Ceramic Engineering established in 1924)

General Information

The School of Materials Science and Engineering provides high-quality academic programs focused on developing a fundamental understanding of all forms of materials and the creation of new materials for the next generation of engineering applications. A discipline on the forefront of innovations in both science and engineering, the BSMSE degree offers students three separate concentrations:

• Polymer and Fiber materials;
• Structural and Functional materials, and
• Biomaterials.

These concentrations view engineering materials, such as metals, ceramics, polymers, fibers, textiles, composites, biomaterials, nanomaterials and electronic materials, from a fundamental point of view, emphasizing the relationships between the atomic- and micro-scale structure, with the processing, properties, and performance of the materials.

Completion of the BS degree prepares students for entry into the workforce, or for advanced study in materials science and engineering, or for other graduate programs. Materials scientists and engineers have many career options available, such as aerospace, automotive, biomedical, chemical, defense, electronics, materials processing, textiles, consumer products, and recreational equipment industries, as well as in universities, government, and industrial laboratories, and even legal, business, and medical disciplines.

Research and instruction in the School of Materials Science and Engineering at Georgia Tech spans the following areas:

1. Synthesis and processing focusing on development of advanced and traditional materials with novel compositions and tailored microstructures;
2. Characterization and evaluation of structure and properties using advanced techniques and state-of-the-art instrumentation; and
3. Computational modeling of processing-structure-property-performance relationships emphasizing correlation of properties with the structure across nano-, micro-, meso-, and macro-length scales.
4. Design of materials through fundamental theoretical and experimental understanding of materials behavior.

MSE faculty participate in collaborative research projects with faculty from other schools in the Colleges of Engineering and Sciences, and the Georgia Tech Research Institute. Several interdisciplinary centers are led by MSE faculty. The external sponsored research funding brought in by the FTE faculty in the School of Materials Science and Engineering exceeds $11 million per year and comes from a wide variety of sources including industry, private foundations, and federal agencies including AFOSR, ARO, DARPA, DoE, DTRA, NSF, NIH, and ONR. A significant number of materials specialists are required to meet the present and future opportunities and challenges of this field, which makes MSE graduates sought after in practically every aspect of technological advancement.

The school offers a Bachelor of Science in Materials Science and Engineering degree. An undergraduate minor in materials science and engineering is available for non-MSE majors. Graduate degrees (MS and PhD) are offered in materials science and engineering, paper science and engineering, and in the interdisciplinary bioengineering program.

Minor

• Minor in Material Science and Engineering (p. 593)

Bachelor's Degree

• Bachelor of Science in Materials Science and Engineering (p. 434)

Master's Degrees

• Bachelor of Science/Master of Science in Materials Science and Engineering (http://www.catalog.gatech.edu/programs/materials-science-engineering-bs-ms)
• Master of Science in Bioengineering (p. 525)
• Master of Science in Materials Science and Engineering (p. 546)
• Master of Science in Paper Science and Engineering (p. 550)
Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Materials Science and Engineering (p. 503)
- Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)

Graduate Study in Materials Science and Engineering

Materials graduates are essential to the economic growth of the country. They contribute to the development, selection, and use of materials in all engineering and scientific applications. Master’s and doctoral degrees in materials science and engineering are offered. An excellent selection of undergraduate courses is also offered in preparation and support of graduate studies. Course offerings and research activities cover a diversity of subjects in the broad field of materials. Subjects include biomaterials, nanotechnology, computational materials science, physical metallurgy, mechanical properties, fracture mechanics, corrosion phenomena, processing, thermodynamics and phase equilibria, non-destructive testing. X-ray analysis, phase transformations, glass science, electronic/technical ceramics, thin-film semiconductors, electronic and optical microscopy, dispersions and rheology, refractories, surface analysis, fiber science, polymerization reaction engineering, polymer process simulation, mechanical properties of polymers, and process-structure-property characterization of polymers. State-of-the-art research facilities in the School of Materials Science and Engineering contribute to the strength of both the academic and research programs.

MSE graduates find employment with manufacturing firms in light and heavy industry, in research laboratories of private firms and federal agencies, and in academic institutions. Several recent graduates have filled positions of high responsibility in these areas and have been instrumental in advancing the level of materials engineering practice in the United States. The MSE faculty participate in numerous multidisciplinary programs including manufacturing engineering, surface science technology, microelectronics, electronic packaging, and composites.

The Master’s Degree

MSE offers graduate work leading to the degrees of Master of Science in Materials Science and Engineering, Master of Science in Paper Science and Engineering, and Master of Science with a major in Materials Science and Engineering. The student admitted for graduate work will normally have completed an undergraduate program in materials, ceramics, metallurgy, or polymers. However, students with undergraduate degrees or backgrounds in other fields (e.g., physics, chemistry, geology, and chemical, mechanical, nuclear, or geological engineering) may qualify by taking certain minimum prerequisites during the early part of their graduate studies. To assure a smooth transition into the graduate program, the student should select appropriate electives during his or her undergraduate studies.

Students in the MS program must complete a core of graduate materials courses and prepare an individualized program of study for this degree in consultation with their graduate advisors. The proposed program must receive the approval of the graduate coordinator and the School chair. Thesis, non-thesis, and industrial internship options are available. The minimum credit hour requirements for the MS degree with include eighteen credit hours of courses and a minimum of twelve credit hours of thesis research, with a total minimum of 30 credit hours, or 30 credit hours of courses, or twenty-five hours of courses and six hours of project work conducted as part of an industrial internship. A total of twelve course hours must be in the major, and twelve course hours must be at the 6000 level or higher. A minimum GPA of 2.7 is required for graduation.

The Doctoral Degree

The Doctor of Philosophy degree is directed to attain proficiency in the pursuit of independent scholarly work. The degree comprises coursework in the general principles of materials, with emphasis on metallurgy, polymers, ceramics, paper science and engineering, or electronic materials. Additional requirements include specialized core courses and elective courses both in the area of the doctoral thesis and in one or two other areas, passing comprehensive examinations, and an independent research investigation.

Candidates for the doctoral degree are required to complete at least sixteen credit hours of graduate-level coursework beyond the MS degree, with a minimum GPA of 3.0, and pass the PhD qualification examination. Each student must also earn 9 credit hours in a coherent minor field, chosen in consultation with the advisor, to satisfy the School of Material Science and Engineering’s core course requirements. Students should commence participation in the School’s research programs early in their graduate careers.

Financial Aid

A number of fellowships and research assistantships from outside sources and industry are available to provide financial assistance for qualified graduate students. In addition, a limited number of presidential fellowships, as well as research assistantships, are available from the Institute. Further information can be obtained by contacting the director of graduate programs in the School of Materials Science and Engineering.

Mechanical Properties Research Laboratory

The Mechanical Properties Research Laboratory (MPRL) is an interdisciplinary College of Engineering laboratory that supports education and research with emphasis on structural materials. Its principal activities are directed toward the measurement and modeling of the mechanical properties of engineering materials, primarily related to deformation, fatigue, and fracture. The MPRL has an international reputation for excellence in areas of:

- fatigue and fracture studies of structural materials, structures and joints
- development of constitutive equations for deformation and damage, incorporating these advances into life prediction methodologies
- characterization and quantitative analysis of microstructure and damage in engineering materials such as structural alloys, composites, metal foams, biomaterials and nanostructured materials and alloys
- development of improved constitutive models for material deformation, fatigue and fracture behaviors
- multiscale simulation of materials and microstructure-sensitive fatigue and fracture approaches
- durability and degradation of aging materials and structures
Master's Degrees
- Bachelor of Science/Master of Science in Materials Science and Engineering (http://www.catalog.gatech.edu/programs/materials-science-engineering-bs-ms)
- Master of Science in Bioengineering (p. 525)
- Master of Science in Materials Science and Engineering (p. 546)
- Master of Science in Paper Science and Engineering (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Materials Science and Engineering (p. 503)
- Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)

Undergraduate Study in Materials Science and Engineering

Minor
- Minor in Material Science and Engineering (p. 593)

Bachelor's Degree
- Bachelor of Science in Materials Science and Engineering (p. 434)

The BS in Materials Science and Engineering program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

Certificate in Biomaterials
The School of Materials Science and Engineering offers certificates in biomaterials (jointly with BME), polymers, composites, and nanomaterials. Students may fulfill the certificate requirements by taking twelve credit hours\(^1\) of approved courses. By appropriate choice of technical and free electives, only one course outside of those required for the BS MSE degree is required for any certificate and up to 3 hours of related undergraduate research credit may be applied towards a certificate. Contact the Associate Chair for Undergraduate Programs or visit http://www.mse.gatech.edu/undergraduate/certificates for eligibility requirements and a updated list of approved courses.

\(^1\) BIOL 1510 is required for the Biomaterials certificate. Since this is a four-credit hour course, thirteen hours are often taken by MSE students who obtain this certificate.

Transfer Programs in the College of Engineering
To encourage and accommodate students who desire to study engineering but may prefer to attend a community college, a Historically Black College and University (HBCU), or a gender specific college, the College of Engineering offers the opportunity to transfer to Georgia Tech via the Dual Degree Engineering Program (DDEP) or the Regents' Engineering Pathway Program (REPP).

For further information concerning these programs, please access the following sections of the College of Engineering website:

Dual Degree Engineering Program (http://ceed.gatech.edu/ddep) (DDEP)
Regents' Engineering Pathway Program (http://ceed.gatech.edu/REPP) (REPP)

Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University
Established in 1997

Biomedical engineering is a highly interdisciplinary field integrating engineering and the life sciences to support the prevention, diagnosis, and treatment of disease. The role of the biomedical engineer is to provide answers to problems arising from the study of living systems by employing the methodology and principles of engineering. Biomedical engineers often serve as integrators in multidisciplinary teams of engineers, scientists, and healthcare professionals in the medical device and biotechnology industries as well as government regulatory agencies. Our program challenges students with practical, hands-on problem-solving and design experiences throughout the curriculum. Graduates of our program have obtained the strong foundation necessary to address the complex healthcare challenges of the twenty-first century.

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University (the Coulter Department) is a unique partnership between a public institution and a private university—Georgia Tech's College of Engineering and Emory's School of Medicine. The formation of the Department in 1997 was the culmination of collaborative efforts in the field of biomedical engineering that dates back to the 1980s. In 2000, the Department assumed the name of Wallace H. Coulter, who was recognized as one of the most influential engineers in the twentieth century through his entrepreneurial efforts in shaping the fields of automated cell analysis and hematology.

Research in the Coulter Department encompasses long-range fundamental research and direct clinical applications through translational research. The department has identified six thrust areas in which to focus research and educational programs:

- biomaterials and regenerative medicine,
- cardiovascular biology and biomechanics,
- cellular and biomolecular engineering,
- integrative biosystems,
- medical imaging, and
- neuroengineering.

Research initiatives in these areas are resulting in major breakthroughs in medicine, basic science, and applied technology.

The Coulter Department offers both undergraduate and graduate degree programs that attract outstanding students who wish to have an education that prepares them to be the leaders in this field in the twenty-first century. Additionally, to meet the needs of a rapidly changing society and global economy, the Coulter Department has forged a new partnership with Peking University to offer a joint doctoral degree in biomedical engineering. The program offers a unique means for U.S. and Chinese students who want to learn and work in a global economy and in global health settings.
Minor
• Minor in Biomedical Engineering (p. 557)

Bachelor's Degree
• Bachelor of Science in Biomedical Engineering (p. 212)

Master's Degree
• Master of Biomedical Innovation and Development (p. 517)

Doctoral Degree
• Doctor of Philosophy with a Major in Bioengineering (p. 490)
• Doctor of Philosophy with a Major in Bioinformatics (p. 490)
• Doctor of Philosophy with a Major in Biomedical Engineering (p. 491)
• Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)
• Doctor of Philosophy with a Major in Robotics (p. 509)
• M.D./Ph.D. Program (p. 516)

Graduate Study in Biomedical Engineering

Graduate Programs
• Master of Science in Biomedical Engineering (https://www.bme.gatech.edu/bme/master-biomedical-engineering-program)
• Master of Science in Biomedical Innovation and Development (p. 517)
• Doctor of Philosophy with a Major in Bioengineering (p. 490)
• Doctor of Philosophy with a Major in Bioinformatics (p. 490)
• Doctor of Philosophy with a Major in Biomedical Engineering (p. 491)
• Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
• Doctor of Philosophy with a Major in Machine Learning (p. 500)
• Doctor of Philosophy with a Major in Robotics (p. 509)
• M.D./Ph.D. Program (p. 516)

Contact Information
Department of Biomedical Engineering
Graduate Admissions Committee
Georgia Institute of Technology
313 Ferst Dr.
Atlanta, GA 30332-0535

Phone: 404.385.2557
Fax: 404.894.4243

Departmental Resources
• Biomedical Engineering web site (http://www.bme.gatech.edu)

Office of Graduate Studies
• Biomedical Innovation and Development (http://www.gradadmiss.gatech.edu/mbid)
• Bioengineering (http://www.gradadmiss.gatech.edu/bioe)
• Bioinformatics (http://www.gradadmiss.gatech.edu/bioinformatics)
• Biomedical Engineering (http://www.gradadmiss.gatech.edu/bmed)
• Computational Science and Engineering (http://www.gradadmiss.gatech.edu/cse)
• Robotics (http://www.gradadmiss.gatech.edu/robo)

Rules and Regulations
The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

Undergraduate Study in Biomedical Engineering

The BS in Biomedical Engineering program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

The Department of Biomedical Engineering participates in an undergraduate Multidisciplinary Certificate in "Biomaterials".

See http://www.mse.gatech.edu/undergraduate-program/bio-cert for more details.

Woodruff School of Mechanical Engineering

Established in 1885

Mechanical Engineering (ME) was the first academic program established at Georgia Tech. On September 20, 1985, the School of Mechanical Engineering celebrated its centennial by assuming the name of one of its most distinguished alumni, Atlanta businessman and philanthropist George W. Woodruff (Class of 1917).

Today, the Woodruff School offers undergraduate degrees in mechanical engineering and nuclear and radiological engineering, and graduate degrees in mechanical engineering, nuclear and radiological engineering, medical physics, bioengineering, robotics, paper science and engineering.

Mechanical engineering embraces the generation, conversion, transmission, and utilization of thermal and mechanical energy; the design and production of tools and machines and their products; the consideration of fundamental characteristics of materials as applied to design; and the synthesis and analysis of mechanical, thermal, and fluid systems, including the automation of such systems.

Design, production, manufacture, operation, administration, economics, and research are functional aspects of mechanical engineering.

The undergraduate program in ME allows 15 credit hours of free electives, thereby allowing students to elect one of six concentration areas within in ME or any of the Institute's approved minors.

ME concentrations include:
• Automation and Robotics
• Thermal, Fluid, and Energy Systems
• Micro and Nano Engineering
• Mechanics of Materials
The Nuclear & Radiological Engineering (NRE) and Medical Physics (MP) programs are within the George W. Woodruff School of Mechanical Engineering. NRE and MP are based on a symbiotic group of related areas of knowledge of a common set of science, engineering, and mathematical disciplines and their applications to the development of nuclear power and the utilization of radiation in industry and medicine.

Nuclear engineering field is broad with a unique nuclear core that includes physics of neutron chain (fission) and fusion reactors, radiation production, transport, and interaction with matter; radiation damage of materials; nuclear fuel and structural materials, large-scale numerical modeling, and simulation of nuclear systems. Radiological engineering is the application of the radiation related disciplines to radiation safety (protection), medical application (medical physics), security and detection of nuclear material. The multidisciplinary aspects of nuclear engineering includes topics in

- ChBE (separation/processing),
- ECE (electronics, instrumentation, electromagnetics),
- ME (heat transfer, fluids, thermodynamics),
- MSE (mechanics and properties of material), and
- physics (nuclear, atomic, and radiation).

Medical physics encompasses the therapeutic and diagnostic applications of radiation in medicine. It involves the application of physical principles to medicine, particularly in the diagnosis and treatment of human diseases. Medical physics includes diagnostic radiology, the diagnosis of disease with X-rays, ultrasound, and magnetic resonance imaging; health physics, the study of radiation hazards and radiation protection; nuclear medicine, the diagnosis and treatment of diseases with injected radio-pharmaceuticals; and radiation oncology, the treatment of cancer by ionizing radiation.

School Facilities

The Woodruff School is housed in a multi-building classroom/research complex. Included in this complex are modern classrooms and seminar conference rooms that serve the entire Institute.

The School has many types of specialized instruments and other equipment associated with its laboratories in mechanical engineering for the study of acoustics and dynamics; automation and mechatronics; bioengineering; computer-aided engineering and design; fluid mechanics; heat transfer, combustion, and energy systems; manufacturing; mechanics of materials; micro and nano engineering; and tribology. The Nuclear and Radiological Engineering Program has special facilities for the study of computational reactor physics; fast reactors; fusion; medical physics; and radiation detection.

Modern facilities and laboratories support experimental and theoretical programs of instruction and research. Special facilities in the Woodruff School include:

- Automation and Robotics
- Thermal, Fluid, and Energy Systems
- Micro and Nano Engineering
- Mechanics of Materials
- Manufacturing
- Nuclear Energy

The Georgia Tech Invention Studio is also housed in the Woodruff School. It is a design-build-play space open to all Georgia Tech students, faculty, and staff, regardless of year, major, or prior experience. It is staffed by the University Lab Instructors, student volunteers who are always on hand to provide machine training and help with projects.

The facilities available for the nuclear and radiological engineering and medical physics programs include the

- Radiological Science and Engineering Laboratory (RSEL),
- AREVAL Radiation Detection Laboratory,
- Varian Computational Treatment Planning Laboratory,
- Microchannel Test Facility, and
- Plasma-facing Components Thermal-hydraulic Test Facility.

The RSEL houses the Variant Clinical Accelerator (VCLA) Laboratory, Southern Nuclear Radiation Physics Laboratory which houses a graphite subcritical assembly, a neutron reference field laboratory, a thermoluminescent detector laboratory, a radiation sources laboratory housing various radioisotopes generating neutrons and photons, a nuclear materials laboratory, and a vault which houses a neutron generator.

Minors

- Minor in Energy Systems (p. 569)
- Minor in Engineering and Business (p. 578)
- Minor in Global Development (p. 583)
- Minor in Nuclear and Radiological Engineering (p. 598)

Bachelor's Degrees

- Bachelor of Science in Mechanical Engineering (p. 464)
- Bachelor of Science in Nuclear and Radiological Engineering (p. 476)

Master's Degrees

- Master of Science in Bioengineering (p. 525)
- Master of Science in Mechanical Engineering (p. 547)
- Master of Science in Medical Physics (p. 548)
- Master of Science in Nuclear Engineering (p. 549)
- Master of Science in Paper Science and Engineering (p. 550)
- Master of Science - Undesignated (p. 522)

Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Mechanical Engineering (p. 503)
- Doctor of Philosophy with a Major in Nuclear Engineering (p. 505)
- Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)
- Doctor of Philosophy with a Major in Robotics (p. 509)

Graduate Study in Mechanical Engineering

The graduate program in mechanical engineering offers advanced study and research in the areas of acoustics and dynamics; automation and mechatronics; bioengineering; computer-aided engineering and
design; fluid mechanics; heat transfer, combustion, and energy systems; manufacturing; mechanics of materials; microelectromechanical systems; and tribology. The graduate programs lead to the degrees of

- Master of Science in Mechanical Engineering,
- Master of Science,
- Master of Science in Bioengineering,
- Master of Science in Paper Science and Engineering, and
- Doctor of Philosophy for qualified graduates having backgrounds in engineering, mechanics, mathematics, the physical sciences, or the biological sciences.

The master’s degree requires a minimum of thirty approved credit hours. Students may elect to earn nine of these hours by writing a thesis, or they may earn all credit toward the degree through coursework. Six hours of credit for graduate courses taken as an undergraduate at Georgia Tech and used for credit toward the BS ME may be included in the MS program of study if the student graduated with an undergraduate grade-point average of at least 3.5. Students must earn a graduate grade-point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree.

Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3. Students may obtain additional information about the programs by viewing the Woodruff School Handbook for Graduate Students. Every student enrolled must consult this source of information with respect to special rules and degree requirements.

The graduate program in nuclear and radiological engineering/medical physics leads to the degrees of

- Master of Science in Nuclear Engineering,
- Master of Science in Medical Physics,
- Master of Science, and
- Doctor of Philosophy.

In nuclear and radiological engineering, students with a bachelor’s degree in engineering pursue the Master of Science in Nuclear Engineering degree, while students with a Bachelor of Science degree in other fields enroll for the Master of Science degree. Depending on the career objectives of the student, the Woodruff School may encourage a thesis as part of the Master of Science program. Nuclear and radiological engineering students must earn a graduate grade-point average of at least 3.0 and satisfy all remaining requirements to be certified for the master’s degree.

The doctoral program is designed with great latitude to capitalize on variations in experience and interests of individual students. Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3.

Master's Degrees

- Master of Science in Bioengineering (p. 525)
- Master of Science in Mechanical Engineering (p. 547)
- Master of Science in Medical Physics (p. 548)
- Master of Science in Nuclear Engineering (p. 549)
- Master of Science in Paper Science and Engineering (p. 550)
- Master of Science - Undesignated (p. 522)

Doctoral Degrees

- Doctor of Philosophy with a Major in Bioengineering (p. 490)
- Doctor of Philosophy with a Major in Mechanical Engineering (p. 503)
- Doctor of Philosophy with a Major in Nuclear Engineering (p. 505)
- Doctor of Philosophy with a Major in Nuclear Engineering - Medical Physics Option (p. 504)
- Doctor of Philosophy with a Major in Nuclear Engineering - Nuclear Enterprise Management Option (p. 504)
- Doctor of Philosophy with a Major in Paper Science and Engineering (p. 506)
- Doctor of Philosophy with a Major in Robotics (p. 509)

Educational Objectives

The educational objectives of the doctoral programs in the Woodruff School are:

- to prepare students for successful careers in industry and/or academia and to promote and instill an ethic for lifelong learning;
- to educate students in methods of advanced analysis, including the mathematical, computational, and experimental skills appropriate for professionals to use when solving problems;
- to provide a substantial depth of knowledge in a particular field or subfield of study that allows the student to be recognized as an expert;
- to provide a breadth of knowledge in a minor field of study that fosters an awareness of and skill in interdisciplinary approaches to problem solving;
- to develop the skills pertinent to the research process, including the students’ ability to formulate problems, to synthesize and integrate information, to work collaboratively, to communicate effectively, and to publish the results of their research; and
- to promote a sense of scholarship, leadership, and service among our graduates.

The educational objectives of the master’s degree programs in the Woodruff School are:

- to prepare students for successful careers in industry and to promote and instill an ethic for lifelong learning;
- to educate students in methods of advanced analysis appropriate for professionals to use when solving problems;
- to provide a depth of knowledge in a particular field of study that allows the student to apply innovative techniques to solve problems;
- to provide a breadth of knowledge that fosters an awareness of and skill in interdisciplinary approaches to problem solving; and
- to develop the skills pertinent to the research process, including the students’ ability to formulate problems, to synthesize and integrate information, to work collaboratively, to communicate effectively, and to publish the results of their research (MS thesis students).

The M.S. in Medical Physics and the Ph.D. in Nuclear and Radiological Engineering-Medical Physics Option programs are accredited by the Commission on Accreditation of Medical Physics Educational Programs, CAMPEP, www.campep.org/campeplstgrad.asp (http://www.campep.org/campeplstgrad.asp).
Distance Learning Programs

The Woodruff School offers working professionals the opportunity to enroll in many of its graduate courses through video, CD-ROM, or Internet technologies. The distance-learning program has the same admission, course, and degree requirements as those for graduate students attending classes at the Atlanta campus or at Georgia Tech-Lorraine. Qualified individuals may complete the requirements for the master's degrees in mechanical engineering (MS ME) and medical physics (MS MP) by utilizing the distance-learning mode.

Distance Learning & Professional Education (https://pe.gatech.edu/degrees/online-masters-degrees/mechanical-engineering)

Georgia Tech-Lorraine

The Woodruff School's program at Georgia Tech-Lorraine in Metz, France has a number of components. In addition to the master's of science degree in mechanical engineering (MS ME) there is also a doctoral program, which has grown as a result of major funding from CNRS and Georgia Tech; a new fall/spring semester undergraduate program; and the undergraduate summer program. Most graduate students focus on the MS ME French students from partner institutions, such as ENSAM and the Ecole des Mines, take courses at Georgia Tech-Lorraine, typically for two semesters, before coming to the Atlanta campus to finish their master's degree. U.S. students take classes at GTL as well as at ENSAM for three semesters and receive both the MS ME and the Master Professionel of ENSAM. Students must also complete an internship in France during the summer. The mechanical engineering programs offered at GTL have the same admission, course, and degree requirements as those for graduate students in mechanical engineering attending classes on the Atlanta campus or through the distance-learning program. ENSAM is a leading institution for the study of mechanical and industrial engineering with eight campuses across France, including one in Metz. For more information on the Georgia Tech-Lorraine program, view www.georgiatech-metz.fr.

Multidisciplinary Programs

Mechanical engineering students may plan electives that satisfy simultaneously the requirements of the degree program and a designated multidisciplinary field within the College of Engineering, thus earning both a graduate degree and a certificate indicating expertise in a related specialty. For a complete description of these and other multidisciplinary programs, contact the School.

Undergraduate Study in Mechanical Engineering

Minors

• Minor in Energy Systems (p. 569)
• Minor in Engineering and Business (p. 578)
• Minor in Global Development (p. 583)
• Minor in Nuclear and Radiological Engineering (p. 598)

Bachelor's Degrees

• Bachelor of Science in Mechanical Engineering (p. 464)
• Bachelor of Science in Nuclear and Radiological Engineering (p. 476)

Undergraduate Research

Georgia Tech encourages undergraduate students to participate in quality and substantive research. There are several options in the Woodruff School for both mechanical engineering and nuclear and radiological engineering majors to do special problem courses or undergraduate research courses. Students can do a non-research special problem course. This is usually a design course and it might be combined with the capstone design class for a two-semester design problem. There are two types of undergraduate research courses; an ME or NRE class; and research internships, where students are paid for working on a project either part time or full time. For both options, the course appears on the transcript. In all cases, the student must find a faculty member to work with. Each special problem and research course requires a written final report, which is to be submitted to the faculty advisor for grading. All special problems courses taken for credit receive a letter grade and appear on the transcript. Funding opportunities are available through the President's Undergraduate Research Awards.

For more information on undergraduate research at Georgia Tech, visit www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu) and for specific ME/NRE program information, visit www.me.gatech.edu (http://www.me.gatech.edu).

The following undergraduate engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

• Bachelor of Science in Mechanical Engineering
• Bachelor of Science in Nuclear and Radiological Engineering

College of Sciences

College established in 1990
First Science Program in 1888

The College of Sciences comprises six schools

• Biological Sciences,
• Chemistry and Biochemistry,
• Earth and Atmospheric Sciences,
• Mathematics,
• Physics, and
• Psychology.

All schools offer BS, MS, and PhD degree programs.

In addition, the College of Sciences offers a BS program in Neuroscience.

The Center for Education Integrating Science, Mathematics, and Computing (CEISMC), which works with K-12 schools and teachers in the state of Georgia to improve science and mathematics education, is also a unit of the College of Sciences.

The College of Sciences provides the courses in mathematics and the natural sciences that are necessary for all Tech undergraduates to acquire skills and basic principles for their majors. A detailed description of each degree program in the College of Sciences is located under the appropriate school heading, as are descriptions of the courses offered. The College of Sciences' courses required or recommended by degree programs in the other five colleges at Georgia Tech are listed under the curricula for those degrees.
The American Chemical Society has certified the curriculum leading to the Bachelor of Science in Chemistry.

The Human Factors and Ergonomics Society has accredited the curriculum leading to the PhD in Engineering Psychology.

The Master of Science in Prosthetics and Orthotics (MSPO) program is accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP) upon the recommendation of the National Commission on Orthotic and Prosthetic Education (NCOPE). Accreditation for the MSPO program is effective 2010 to 2015.

- Algorithms, Combinatorics, and Optimization. PhD (p. 488)
- Applied Physics. BS (p. 196)
- Applied Physiology. PhD (p. 488)
- Biochemistry. Minor (p. 557), BS (p. 208)
- Bioinformatics. MS (p. 526), PhD (p. 490)
- Biology. Minor (p. 557), BS (p. 212), MS (p. 526), PhD (p. 490)
- Chemistry. Minor (p. 559), BS (p. 240), MS (p. 528), PhD (p. 492)
- Computational Science and Engineering. MS (p. 529), PhD (p. 493)
- Earth and Atmospheric Sciences. Minor (p. 565), BS (p. 328), MS (p. 536), PhD (p. 495)
- Health and Medical Sciences. Minor (p. 583)
- Human-Computer Interaction. MS (p. 541)
- Machine Learning. PhD (p. 500)
- Mathematics. Minor (p. 594), BS (p. 441), MS (p. 546), PhD (p. 503)
- Neuroscience. BS (p. 471)
- Ocean Science and Engineering. PhD (p. 505)
- Paper Science and Engineering. MS (p. 550), PhD (p. 506)
- Physics. Minor (p. 599), BS (p. 481), MS (p. 550), PhD (p. 506)
- Physiology. Minor (p. 599)
- Psychology. Minor (p. 601), BS (p. 485), MS, (p. 550) PhD (p. 506)
- Quantitative Biosciences. PhD (p. 509)
- Quantitative and Computational Finance. MS (p. 552)
- Statistics. MS (p. 552)

The College of Sciences currently offers minors in biology, earth and atmospheric sciences, and mathematics, along with a number of certificate programs that provide similar opportunities for students to develop their expertise or acquire skills or information in specific areas in addition to their major area. Students who satisfactorily complete a certificate program will receive a certificate of recognition from the department that offers the program. Certificate programs available in the College of Sciences are as follows: (Certificate programs offered by the other colleges at Georgia Tech are also available to students in the College of Sciences.)

Certificate Programs in the College of Sciences

Biological Science
- Applied Physiology
- Biologically Inspired Design
- Biomedical Science

School of Biological Sciences

Programs of study offered by the School of Biological Sciences allow students to gain competence in several different areas of modern biological sciences. The curricula in all degree programs in the School encourage breadth by incorporating course selections from other schools and departments. The Institute, with its strengths in science, computing, mathematics, and engineering, provides unique opportunities for careers in the biological sciences and related areas.

The Bachelor of Science degree program consists of a combination of requirements and electives that ensure a balanced background in the fundamental areas of biology, while providing an opportunity to emphasize an area of interest in the junior and senior years. The School also offers graduate programs leading to MS and PhD degrees. The degree programs include coursework, faculty and student seminars, and independent research. Faculty members are actively engaged in research fields such as bioinformatics, biophysics, ecology, evolutionary biology, genetics, mathematical biology, marine science, microbiology, and molecular cell biology.

The Master of Science Degree Program in Prosthetics and Orthotics is accredited by the Commission on Accreditation of Allied Health Education Programs (www.caahep.org) upon the recommendation of the National Commission of Orthotic and Prosthetic Education (NCOPE).

Commission on Accreditation of Allied Health Education Programs
35 East Wicker Drive, Suite 1970
Chicago, IL 60601-2208
312.553.9355

Minor
- Minor in Biology (p. 557)
- Minor in Physiology (p. 599)

Bachelor’s Degrees
- Bachelor of Science in Biology (p. 212)
- Bachelor of Science in Neuroscience (p. 471)
Master's Degrees
- Master of Science in Biology (p. 526)
- Master of Science in Bioinformatics (p. 526)
- Master of Science in Computational Science and Engineering (p. 529)

Doctoral Degrees
- Doctor of Philosophy with a Major in Applied Physiology (p. 488)
- Doctor of Philosophy with a Major in Biology (p. 490)
- Doctor of Philosophy with a Major in Bioinformatics (p. 490)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Ocean Science and Engineering (p. 505)
- Doctor of Philosophy with a Major in Quantitative BioSciences (p. 509)

Graduate Study in Biological Sciences
The School of Biological Sciences provides advanced training and research opportunities in various aspects of systems biology, ranging from molecular biology to ecology. Some current research areas include genomic sequence analysis, mechanisms of gene expression and DNA replication, evolutionary mechanisms, sphingolipids and metabolomics, signal transduction in plant and animal cells, environmental microbiology, bioremediation, sensory mechanisms in small animals, biological oceanography, ecosystem toxicology, and theoretical ecology.

Master's Degrees
- Master of Science in Biology (p. 526)
- Master of Science in Bioinformatics (p. 526)
- Master of Science in Computational Science and Engineering (p. 529)

Doctoral Degrees
- Doctor of Philosophy with a Major in Applied Physiology (p. 488)
- Doctor of Philosophy with a Major in Biology (p. 490)
- Doctor of Philosophy with a Major in Bioinformatics (p. 490)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Ocean Science and Engineering (p. 505)
- Doctor of Philosophy with a Major in Quantitative BioSciences (p. 509)

Undergraduate Study in Biological Sciences
Admission
- Undergraduate Admission (https://advising.gatech.edu)

Advising
- Undergraduate Advising (https://advising.gatech.edu)

Rules and Regulations
The Catalog is the authoritative source of Rules and Regulations (p. 150) and other Policies (p. 136) for Georgia Tech students.

Health Sciences Requirement
All Georgia Tech students must satisfactorily complete the health and wellness requirement for graduation.

The requirement can be satisfied by completing one of two course options in Applied Physiology: APPH 1040 or APPH 1050. APPH 1040 is a two-credit-hour lecture-based course. APPH 1050 is a lecture and physical activity course that meets once per week for 1.5 credit hours of lecture and once per week at the Campus Recreations Center for 1.5 credit hours of structured physical activity. A $35 course fee is required to take APPH 1050. The School may grant credit to transfer students for comparable courses completed at other institutions. For more information, contact Applied Physiology's administrative office.

Students who have completed their health and wellness requirement are also encouraged to consider additional elective courses in Applied Physiology's Health Sciences Certificate program. In addition, other Applied Physiology (APPH) courses may be used as free electives or technical electives, if approved by the major school. Individual schools may allow up to 3 credit hours of courses to be counted toward the degree requirements. Students should check the curricula of their individual schools to determine the number of hours they may apply toward the degree.

Requesting an Overload for HPS 1040
Overload requests for APPH 1040 or APPH 1050 should be made via the online registration system. Students should contact the Office of the Registrar (http://www.registrar.gatech.edu/registration) for information about how to request a permit/overload. Please note, no overloads are given during early registration. Overload requests will be reviewed the week before classes begin. Permits will be given at that time based upon classroom space and class status, with juniors and seniors having priority.

Certificates
Each certificate requires twelve credit hours of coursework, including at least nine credit hours at the 3000+ level. Courses required by name and number for a student's major program of study may not count towards a certificate. Students may not double-count courses towards more than one certificate or minor. Non-Biology majors will be required to include at least nine credit hours of BIOL coursework within their certificate. Students should choose twelve credit hours from the lists below for each of the six new certificates:

Biomedical Science
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH/BIOL</td>
<td>Human Anatomy and Physiology</td>
<td>12</td>
</tr>
</tbody>
</table>

Select 12 credit hours from the following:
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4015</td>
<td>Cancer Biology and Biotechnology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4150</td>
<td>Genomics and Applied Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4340</td>
<td>Medical Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4401</td>
<td>Experimental Design and Statistical Methods in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4464</td>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4570</td>
<td>Immunology and Immunochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOL 4650</td>
<td>Bioethics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4668</td>
<td>Eukaryotic Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4752</td>
<td>Introductory Neuroscience</td>
<td></td>
</tr>
<tr>
<td>BIOL 4802</td>
<td>Special Topics (Current Trends in Biomedical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sciences)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4802</td>
<td>Special Topics (Evolutionary Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4802</td>
<td>Special Topics (Drug Discovery)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Human Genetics)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Virology)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Endocrinology)</td>
<td></td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>BMED 4400</td>
<td>Neuroengineering Fundamentals</td>
<td></td>
</tr>
<tr>
<td>BMED 4500</td>
<td>Cell and Tissue Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>BMED/</td>
<td>Drug Design, Development and Delivery</td>
<td></td>
</tr>
<tr>
<td>CHEM/CHBE</td>
<td>4765</td>
<td></td>
</tr>
<tr>
<td>PSYC 3020</td>
<td>Biopsychology</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours: 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biomolecular Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3380</td>
<td>Introductory Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 3381</td>
<td>Introductory Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOL 4105</td>
<td>Macromolecular Modeling</td>
<td></td>
</tr>
<tr>
<td>BIOL 4150</td>
<td>Genomics and Applied Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4225</td>
<td>Molecular Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 4440</td>
<td>Plant Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4746</td>
<td>Signaling Molecules</td>
<td></td>
</tr>
<tr>
<td>BIOL 4748</td>
<td>Biophysics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4608</td>
<td>Prokaryotic Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4668</td>
<td>Eukaryotic Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4802</td>
<td>Special Topics (Drug Discovery)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Protein Biology)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Regulatory RNAs)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Environmental Microbial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genomics)</td>
<td></td>
</tr>
<tr>
<td>BMED/</td>
<td>Drug Design, Development and Delivery</td>
<td></td>
</tr>
<tr>
<td>CHEM/CHBE</td>
<td>4765</td>
<td></td>
</tr>
<tr>
<td>CHEM 4511</td>
<td>Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 4512</td>
<td>Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 4521</td>
<td>Biophysical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 4803</td>
<td>Special Topics (Computational Systems Biology)</td>
<td></td>
</tr>
<tr>
<td>CHBE 4760</td>
<td>Biocatalysis and Metabolic Engineering</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours: 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computational & Quantitative Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2400</td>
<td>Mathematical Models in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4105</td>
<td>Macromolecular Modeling</td>
<td></td>
</tr>
<tr>
<td>BIOL 4150</td>
<td>Genomics and Applied Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>BIOL 4225</td>
<td>Molecular Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 4401</td>
<td>Experimental Design and Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>BIOL 4422</td>
<td>Theoretical Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL/ MATH</td>
<td>4755</td>
<td></td>
</tr>
<tr>
<td>BMED 4477</td>
<td>Biological Networks and Genomics</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4710</td>
<td>Introduction to Computing Concepts for Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td></td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 4022</td>
<td>Introduction to Graph Theory</td>
<td></td>
</tr>
<tr>
<td>CEE/ISYE</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>3770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours: 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2100</td>
<td>Island Biogeography of New Zealand</td>
<td></td>
</tr>
<tr>
<td>BIOL 3100</td>
<td>Ecology and Evolution: An Australian Perspective</td>
<td></td>
</tr>
<tr>
<td>BIOL 3300</td>
<td>Tropical Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 3380</td>
<td>Introductory Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 3381</td>
<td>Introductory Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOL 4101</td>
<td>Sensory Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4221</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td>BIOL 4410</td>
<td>Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4417</td>
<td>Marine Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4418</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4422</td>
<td>Theoretical Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4440</td>
<td>Plant Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4446</td>
<td>General Animal Physiology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 4471</td>
<td>Behavioral Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4620</td>
<td>Aquatic Chemical Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4802</td>
<td>Special Topics (Community Ecology)</td>
<td></td>
</tr>
<tr>
<td>BIOL 4803</td>
<td>Special Topics (Population Biology)</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours: 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Marine Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4221</td>
<td>Biological Oceanography</td>
<td>12</td>
</tr>
<tr>
<td>BIOL 4410</td>
<td>Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4417</td>
<td>Marine Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4446</td>
<td>General Animal Physiology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 4620</td>
<td>Aquatic Chemical Ecology</td>
<td></td>
</tr>
<tr>
<td>CEE 3040</td>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>CEE 4225</td>
<td>Introduction to Coastal Engineering</td>
<td></td>
</tr>
<tr>
<td>EAS 3620</td>
<td>Geochemistry</td>
<td></td>
</tr>
<tr>
<td>EAS 4300</td>
<td>Introduction to Physical and Chemical Oceanography</td>
<td></td>
</tr>
<tr>
<td>EAS 4350</td>
<td>Paleoclimatology and Paleoceanography</td>
<td></td>
</tr>
<tr>
<td>EAS 4410</td>
<td>Climate and Global Change</td>
<td></td>
</tr>
<tr>
<td>EAS 4602</td>
<td>Biogeochemical Cycles</td>
<td></td>
</tr>
<tr>
<td>NS 2323</td>
<td>Navigation</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 12

Integrative Biology

Select twelve credit hours from courses represented in four of the other certificates listed above (e.g., three credit hours from each of four other certificates = 12 credit hours total).

For Non-Biology Majors

Additional courses that can count towards any of the above certificates are 1:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1510 & BIOL 1511</td>
<td>Biological Principles and Honors Biological Principles</td>
<td>8</td>
</tr>
<tr>
<td>BIOL 1520 & BIOL 1521</td>
<td>Introduction to Organismal Biology and Honors Introduction to Organismal Biology</td>
<td>8</td>
</tr>
<tr>
<td>BIOL 2335 & BIOL 2337</td>
<td>General Ecology and Honors Ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL 2344 & BIOL 2345</td>
<td>Genetics and Genetics Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

1 As long as these courses are not required for the major program of study, and only up to three credit hours of courses at the 1xxx-2xxx level can count.

At least nine credits of BIOL coursework are required for each certificate.
School of Chemistry and Biochemistry

Established in 1906

The School offers courses in chemistry and biochemistry required for various engineering and science curricula, as well as for students interested in medical, dental, and pharmacy school, for the Bachelor of Science in Biochemistry and Bachelor of Science in Chemistry degrees, and for graduate work leading to the degrees:

Master of Science
- Chemistry
- Computational Science and Engineering
- Paper Science and Engineering

Doctor of Philosophy
- Chemistry
- Computational Science and Engineering
- Bioinformatics
- Paper Science and Engineering

Minors
- Minor in Chemistry (p. 559)
- Minor in Biochemistry (p. 557)

Bachelor's Degrees
- Bachelor of Science in Chemistry (p. 240)
- Bachelor of Science in Biochemistry (p. 208)

Master's Degrees
- Master of Science in Chemistry (p. 528)
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Paper Science and Engineering (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Bioinformatics (p. 490)
- Doctor of Philosophy with a Major in Chemistry (p. 492)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Paper Science and Engineering (http://catalog.gatech.edu/programs/paper-science-phd)
- Doctor of Philosophy with a Major in Quantitative Biosciences (p. 509)

Financial Aid

Financial support is available for graduate study in the School of Chemistry and Biochemistry. The usual form of financial aid for first-year students is the teaching assistantship. Most students beyond the first year are appointed as research assistants. Both teaching and research assistants receive full tuition waivers. Additional information on the graduate program is available by writing:

Graduate Coordinator
School of Chemistry and Biochemistry
Georgia Institute of Technology
Atlanta, Georgia 30332-0400
or by visiting www.chemistry.gatech.edu (http://www.chemistry.gatech.edu).

Undergraduate Study in Chemistry and Biochemistry

Minors
- Minor in Chemistry (p. 559)
- Minor in Biochemistry (p. 557)

Bachelor's Degrees
- Bachelor of Science in Chemistry (p. 240)
- Bachelor of Science in Biochemistry (p. 208)

School of Earth and Atmospheric Sciences

Established in 1970

The School of Earth and Atmospheric Sciences (EAS) is an interdisciplinary program that studies Earth's physical and chemical environment. EAS takes an integrated Earth system science approach in which all components of Earth's system are studied and analyzed as parts of the larger coupled system. The curriculum is designed to provide its graduates with the intellectual insights needed to understand the evolution of Earth's environment and its possible future changes. This integrated approach provides the context for professional training in environmental science and meteorology, as well as specialization for research careers in atmospheric chemistry, aerosols, and clouds; dynamics of weather and climate; geochemistry, geophysics; oceanography; paleoclimate; planetary science; and remote sensing.
Graduate Study in Earth and Atmospheric Sciences

Minor
• Minor in Earth and Atmospheric Sciences (http://catalog.gatech.edu/programs/minor-earth-atmospheric)

Bachelor's Degrees
• Bachelor of Science in Earth and Atmospheric Sciences (p. 328)

Master's Degree
• Master of Science in Earth and Atmospheric Sciences (p. 536)

Doctoral Degrees
• Doctor of Philosophy with a Major in Earth and Atmospheric Sciences (p. 495)
• Doctor of Philosophy with a Major in Ocean Science and Engineering (p. 505)
• Doctor of Philosophy with a Major in Quantitative Biosciences (p. 509)

Graduate Study in Earth and Atmospheric Sciences

Master's Degree
• Master of Science in Earth and Atmospheric Sciences (p. 536)

Doctoral Degrees
• Doctor of Philosophy with a Major in Earth and Atmospheric Sciences (p. 495)
• Doctor of Philosophy with a Major in Ocean Science and Engineering (p. 505)
• Doctor of Philosophy with a Major in Quantitative Biosciences (p. 509)

Graduate Certificate in Geohydrology
Students completing the master’s or doctoral degree requirements of the School may be awarded a Multidisciplinary Geohydrology Certificate if their program of study satisfies the requirements of the Multidisciplinary Geohydrology program. Additional details can be found in this catalog under Multidisciplinary Certificate Programs in Engineering (p. 32).

Graduate Certificate in Remote Sensing
Remote sensing refers to a means of investigating the properties of a target using measurements made at some distance from the target. Applications range from astronomy and environmental applications to medical radiography and automotive collision avoidance radars, as well as security-enhancing sensors. In the last three decades, sensing of the Earth and its atmosphere has increased very substantially because of climate change and global pollution concerns and because of the need for measurements to support the increasingly sophisticated weather and earthquake forecasting and oil and gas surveying capabilities.

Students completing the master’s or doctoral degree requirements of the Schools listed below may be awarded a Remote Sensing Certificate. The primary administration of the certificate is through Dr. Irina Sokolik of the School of Earth and Atmospheric Sciences. Departmental contacts are listed below:

Aerospace Engineering: Dr. Robert Braun

Electrical and Computer Engineering: Dr. Manos Tentzeris
Earth and Atmospheric Sciences: Dr. Irina Sokolik
Civil and Environmental Engineering: Dr. Michael Bergin
Chemistry and Biochemistry: Dr. Thomas Orlando
City Planning: Dr. Steven French

The courses that would be used to satisfy the requirements of this certificate have been divided into two areas:

1. First, a group of core courses that cover both fundamentals and applications of remote sensing;
2. Second, elective courses that cover a range of courses that cover fundamental physics, data analysis methods, and application areas.

A total of twelve credit hours are required to obtain the certificate, including at least two core courses. Nine of the credit hours must be at the 6000 level or above.

Area 1: Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 6531</td>
<td>Introduction to Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4430</td>
<td>Remote Sensing and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4460</td>
<td>Satellite and Radar Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6145</td>
<td>Remote Sensing of the Atmosphere and Oceans</td>
<td>3</td>
</tr>
</tbody>
</table>

Area 2: Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 6353</td>
<td>Orbital Mechanics (AE 6353 is a pre-requisite for AE 6354)</td>
<td>3</td>
</tr>
<tr>
<td>AE 6354</td>
<td>Advanced Orbital Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6222</td>
<td>Hydrometeorology</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6462</td>
<td>Signals and Inverse Problems in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6483</td>
<td>Geotechnical Image and Spatial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CP 6521</td>
<td>Advanced Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4510</td>
<td>Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4520</td>
<td>Seismic Methods in Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6134</td>
<td>Inverse Methods and Time Series Analysis in Earth and Atmospheric Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (may be taught as Atmospheric Radiative Transfer)</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (may be taught as Optical Techniques in Atmospheric Sensing)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 6272</td>
<td>Fundamentals of Radar Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 6780</td>
<td>Medical Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 7370</td>
<td>Antennas and Wave Propagation in Matter</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in Development

AE/EAS 4XXX: Designing a UAV for Remote Sensing Applications - This course is currently being planned and EAS recently received a NASA grant to provide education in this subject area.

EAS 6XXX: Earth Science/Geological Applications of Remote Sensing - A new faculty member in EAS geodetic remote sensing will be creating
Undergraduate Study in Earth and Atmospheric Sciences

Minor
- Minor in Earth and Atmospheric Sciences (http://catalog.gatech.edu/programs/minor-earth-atmospheric)

Bachelor's Degrees
- Bachelor of Science in Earth and Atmospheric Sciences (p. 328)

Certificates
The School of Earth and Atmospheric Sciences offers programs of study for non-School majors leading to certificates in two areas of emphasis: geochemistry and solid earth geophysics. Each course must be completed with a C or better.

Additional information regarding undergraduate programs, the minor, and the certificate programs is available by contacting the EAS Undergraduate Coordinator

Contact the EAS undergraduate coordinator

EAS: Certificate Information (https://www.eas.gatech.edu/undergrad/resources-current-undergraduate-students)

School of Mathematics

Established in 1952

Mathematics forms an integral part of the curricula of most students at Georgia Tech. Consequently, the School of Mathematics offers a wide range of courses serving students in the various engineering, science, and management disciplines. The School offers programs of study leading to bachelor's, master's, and doctoral degrees in mathematics. Such programs of study serve as preparation for mathematics careers, professional schools, and graduate studies.

In addition to basic courses in mathematics, the School offers a variety of specialized courses at the undergraduate and graduate levels, emphasizing areas related to the research activities of the faculty. These include mathematical analysis, applied mathematics, differential equations and partial differential equations, geometry, scientific computing, probability, statistics, combinatorics, mathematical physics, topology, and algebra.

The School of Mathematics has excellent computer facilities that are used in conjunction with an increasing number of courses and programs of study. A cooperative plan for students who wish to combine practical experience with academic work is available for mathematics majors.

Minor
- Minor in Mathematics (p. 594)

Bachelor's Degrees
- Bachelor of Science in Mathematics (p. 441)

Master's Degrees
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Mathematics (p. 546)
- Master of Science in Quantitative and Computational Finance (p. 552)
- Master of Science in Statistics (p. 552)

Doctoral Degrees
- Doctor of Philosophy with a Major in Algorithms, Combinatorics, and Optimization (p. 488)
- Doctor of Philosophy with a Major in Bioinformatics (p. 490)
- Doctor of Philosophy with a Major in Computational Science and Engineering (p. 493)
- Doctor of Philosophy with a Major in Machine Learning (p. 500)
- Doctor of Philosophy with a Major in Mathematics (p. 503)
- Doctor of Philosophy with a Major in Quantitative Biosciences (p. 509)

Graduate Study in Mathematics

Master's Degrees
- Master of Science in Computational Science and Engineering (p. 529)
- Master of Science in Mathematics (p. 546)
- Master of Science in Quantitative and Computational Finance (p. 552)
- Master of Science in Statistics (p. 552)

Doctoral Degrees
- Doctor of Philosophy in Algorithms, Combinatorics, and Optimization (p. 488)
- Doctor of Philosophy in Bioinformatics (p. 490)
- Doctor of Philosophy in Computational Science and Engineering (p. 493)
- Doctor of Philosophy in Machine Learning (p. 500)
- Doctor of Philosophy in Mathematics (p. 503)
- Doctor of Philosophy in Quantitative Biosciences (p. 509)

Undergraduate Study in Mathematics

The School of Mathematics offers a Bachelor of Science degree in Mathematics. Students have the option of completing the BS in Mathematics or completing the BS in Mathematics with a concentration in one of four areas:
- Applied Mathematics
- Discrete Mathematics
- Probability and Statistics
- Pure Mathematics.

The BS in Mathematics program emphasizes the study of core mathematics, as well as its application. It provides and excellent
preparation for employment, as well as for graduate study in mathematics and related fields.

School of Physics

Established in 1939

Physics involves the study of matter and radiation from the subatomic to the cosmological scale. Revolutionary 20th century advances in quantum physics led to technological breakthroughs including the transistor and laser. Physics has become increasingly important as a fundamental basis for interdisciplinary research in engineering, biophysics, materials science and information. In an increasingly technically oriented society, a physics degree provides an important foundation for a range of careers.

The School of Physics offers basic service courses to freshmen and sophomores, some advanced service courses for students in other units of the Institute, and advanced studies leading to the bachelor’s, master’s, and PhD degrees in physics. The School seeks to provide elective freedom in its degree programs in order to enable students with a wide variety of goals to construct programs of study suitable for them.

In addition to offering courses in the fundamentals of physics, the School provides numerous specialized courses at all levels, particularly in those areas related to the research interests of the faculty. These areas of research currently include:

- astrophysics (including cosmology, and particle and gravitational astrophysics);
- atomic, molecular, and optical physics;
- condensed matter physics (experimental, theoretical, and computational);
- nonlinear physics and chaos;
- soft matter physics;
- physics education;
- and physics of living systems.

Opportunities exist in all these areas and in other areas through collaboration with faculty of other schools and colleges for Special Problems courses, master’s theses, and doctoral dissertations.

Supplementary program planning is available from the School of Physics. Opportunities for graduate study and research are also available at www.physics.gatech.edu (http://www.physics.gatech.edu).

Graduate Study in Physics

Master's Degree

- Master of Science in Physics (p. 550)

Doctoral Degrees

- Doctor of Philosophy with a Major in Physics (p. 506)
- Doctor of Philosophy with a Major in Quantitative Biosciences (p. 509)

Undergraduate Study in Physics

Minor

- Minor in Physics (p. 599)

Bachelor's Degrees

- Bachelor of Science in Applied Physics (p. 196)
- Bachelor of Science in Physics (p. 481)

Certificate in Astrophysics

For the Astrophysics Certificate, the following lists the required and optional courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2021</td>
<td>Introduction to Astronomy I</td>
<td>3</td>
</tr>
<tr>
<td>or PHYS 2022</td>
<td>Introduction to Astronomy II</td>
<td></td>
</tr>
<tr>
<td>PHYS 3021</td>
<td>Nuclear Astrophysics and Stellar Evolution</td>
<td>3</td>
</tr>
</tbody>
</table>

Optional Courses

Select at least two of the following:

- PHYS 4261 Atomic Physics
- PHYS 4801 Special Topics (if approved by the Chair)
- PHYS 4699 Undergraduate Research (if approved by the Chair)

Total Credit Hours

12

Courses Offered at Georgia State

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 4000</td>
<td>Fundamentals of Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 3500</td>
<td>Fundamentals of Astronomy and Astrophysics</td>
<td>4</td>
</tr>
</tbody>
</table>

School of Psychology

Established in 1959

The School of Psychology offers programs of study leading to the Bachelor of Science in Psychology, Master of Science in Psychology, and Doctor of Philosophy with a major in Psychology. It also offers training in the basic and applied aspects of the science of behavior for the student majoring in architecture, engineering, management, and natural sciences. The undergraduate curriculum provides a broad-based natural science approach to the study of psychology. Courses in mathematics, biology, and chemistry, for instance, complement the psychology courses. The
curriculum also stresses methodological issues so that students learn the fundamentals for carrying out solid research.

Minor
- Minor in Psychology (p. 601)

Bachelor's Degree
- Bachelor of Science in Psychology (p. 485)
- Bachelor of Science in Neuroscience (p. 471)

Master's Degrees
- Master of Science in Human-Computer Interaction (p. 541)
- Master of Science in Psychology (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Psychology (p. 506)

Graduate Study in Psychology
Doctoral candidates take a core curriculum in general psychology and quantitative methods. Doctoral candidates will complete all requirements for the master's degree, which includes writing a research thesis.

The doctoral program provides the student with an opportunity for advanced study in cognitive aging, cognition and brain science, engineering, industrial-organizational, or quantitative psychology. Each of these curricula consists of additional courses and programs of individual study and research beyond the core curriculum, which contribute to a strong background in general experimental psychology and the student's area of specialization. The doctoral program will ordinarily require at least four years for students who enter immediately after obtaining a bachelor's degree.

Admission to graduate study in psychology with full graduate standing in the School of Psychology requires the equivalent of an undergraduate major in psychology or a related field with courses in general and experimental psychology, as well as psychological statistics. All applicants should submit scores from the Graduate Record Examination.

The psychology faculty will consider admissions applications from competent students who have majored in subjects other than psychology.

PSYC: Graduate Information (http://psychology.gatech.edu/graduate/graduate-programs)

Master’s Degrees
- Master of Science in Human-Computer Interaction (p. 541)
- Master of Science in Psychology (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Psychology (p. 506)

Undergraduate Study in Psychology
Minor
- Minor in Psychology (p. 601)

Bachelor's Degree
- Bachelor of Science in Psychology (p. 485)

The School of Psychology offers a number of certificate programs that provide similar opportunities for students to develop their expertise or acquire skills or information in specific areas in addition to their major area.

Certificates in Psychology
- Certificate in Biopsychology
- Certificate in Cognitive Psychology
- Certificate in Engineering Psychology
- Certificate in Experimental Psychology
- Certificate in Industrial/Organizational Psychology
- Certificate in Social/Personality Psychology

Certificate Information (http://www.psychology.gatech.edu/undergraduate/certificates)

Ivan Allen College of Liberal Arts

Established in 1990

The Ivan Allen College (IAC), named after a visionary leader who served as mayor of Atlanta during a time associated with the creation of the "New South," is a unique configuration of six schools as well as Georgia Tech's three ROTC departments. The College was established in 1990 in order to broaden the range of majors available to Tech students. The degree programs are unique in the ways they link the study of the social sciences and humanities to the world of technology and science. IAC majors prepare students for a wide range of professional careers, including leadership in government, business, and technology.

Study in these fields also prepares students for advanced study in professional programs in law, medicine, international affairs, public policy, and new media as well as graduate study in the humanities and social sciences. The success of these new programs has resulted in a realization of the close connections between service and progress expressed in Georgia Tech's motto.

The Ivan Allen College offers nine undergraduate degrees, six master's degrees, and four doctoral degrees. Detailed descriptions of these programs can be found under the appropriate school headings. In addition to its degree programs, the Ivan Allen College provides all Tech students with instruction in the humanities and social sciences. The College's course offerings and its certificate and minor programs enable students, regardless of their major, to broaden their educational experience and to better understand the cultural underpinnings of their professional and personal lives and the international context in which they live and work.

- Applied Language & Intercultural Studies. BS (p. 179)
- Chinese. Minor (p. 559)
- City and Regional Planning & Public Policy. MCRP-MS (p. 509)
- Computational Media. BS (p. 259)
- Cybersecurity. MS (http://catalog.gatech.edu/programs/cybersecurity-ms)
- Digital Media. MS (p. 535), PhD (p. 494)
- East Asian Studies. Minor (p. 567)

Minor
- Minor in Psychology (p. 601)
tuition and required fees. Scholarship winners also receive a stipend of
up to $500 for each academic month, in addition to a $900 allowance
for books and other educational items. Non-scholarship students also
receive the stipend and book allowance as Professional Officer Course
cadets in the program.

The curriculum is divided into two courses:

- a General Military Course open to all freshmen and sophomores, and
- a Professional Officer Course for qualified juniors, seniors, and
 graduate students.

Students undecided about pursuing a commission can participate in the
General Military Course without incurring a military obligation.

Successful completion of the General Military Course, a minimum
2.0 GPA, and the appropriate physical and medical qualifications
are prerequisites for enrollment in the Professional Officer Course.
Successful completion of both courses with the award of a bachelor’s
degree allows students to become commissioned second lieutenants in
the United States Air Force.

Air Force ROTC Cross Registration

Cross Registration is available to students from ARCHE participating
schools. As a cross-town cadets students will participate in Air Force
ROTC activities at Georgia Tech every Tuesday and Thursday. Scholarship
opportunities are available to students from schools with Air Force
Education Service Agreements. Stipends and other incentives are
available to all students. Students graduating with a degree from their
home institution will receive a commission in the United States Air Force.
Contact the Detachment 165 Unit Admissions Officer at 404.894.4175 for
more information. For more information on the cross registration process
and ARCHE participating schools, visit www.atlantahighered.org (http://
www.atlantahighered.org).

Air Force ROTC Website (http://www.afrotc.gatech.edu)

Air Force ROTC Program Overview

Students entering the program enroll in Air Force ROTC courses in the
same manner in which they register for other undergraduate courses.
A formal application is not required. Students enrolled in the General
Military Course (GMC) incur no military obligation unless they are on
an Air Force ROTC scholarship. Those students desiring to become
commissioned officers in the Air Force must compete for entry into the
Professional Officer course (POC), which is normally the last two years of
college. In the summer between the sophomore and junior years, cadets
attend a four- or six-week field training session conducted at an Air Force
base.

Air Force ROTC Website (http://www.afrotc.gatech.edu)

Field Training

Field Training is, in most cases, a cadet’s first exposure to a working
Air Force environment. The program is designed to develop military
leadership and discipline, and to provide Air Force officer orientation
and motivation. At the same time, the Air Force evaluates each cadet’s
potential as an officer. Field training includes Air Force professional
development orientation, marksmanship training, junior officer training,
physical fitness, and survival training.

ROTC Credit (p. 105)
Air Force ROTC Website (http://www.afrotc.gatech.edu)

General Military Course (GMC)
Courses are offered during fall and spring semesters with two credit hours awarded for each freshman and sophomore course, and 3 credit hours for each junior and senior course. Four hours of basic ROTC courses may be applied as elective credits toward degree requirements at the school. Classes normally meet two hours a week. A one-hour leadership laboratory and participation in physical conditioning training are also required.

Students in the GMC do not incur military obligation unless they have received an ROTC scholarship.

AS 1000 Level Class Schedule for Freshman Year
A survey course designed to introduce students to United States Air Force and Air Force Reserve Officer Training Corps.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>AS 1110</td>
<td>Foundations of the Air Force I</td>
<td>1</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>AS 1120</td>
<td>Foundations of the Air Force II</td>
<td>1</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

AS 2000 Level Class Schedule for Sophomore Year
This course provides the students with a level of understanding for the general element and employment of air and space power.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>AS 2210</td>
<td>Evolution of U.S. Air and Space Power I</td>
<td>1</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>AS 2220</td>
<td>Evolution of U.S. Air and Space Power II</td>
<td>1</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

AS 3000 Level Class Schedule for Junior Year
A study of leadership, management fundamentals, professional knowledge, and communication skills required of an Air Force junior officer.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>AS 3310</td>
<td>Leadership Studies I</td>
<td>3</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>AS 3320</td>
<td>Air Force Ethics and Core Values</td>
<td>3</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

AS 4000 Level Class Schedule for Senior Year
Examines the national security process, Air Force structure, and doctrine with emphasis on developing top-level management skills required of an Air Force junior officer.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>AS 4410</td>
<td>National Security Affairs</td>
<td>3</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>AS 4420</td>
<td>Preparation for Active Duty</td>
<td>3</td>
</tr>
<tr>
<td>AS 1000</td>
<td>Air Force Leadership-Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Air Force ROTC Scholarship Program
Air Force ROTC can help students with the high cost of getting a degree. As an Air Force ROTC cadet, students are entitled to many benefits.

- Up to $15,000 per academic year to cover tuition, lab, and incidental fees;
- $750 for textbooks; and $250-$400 a month tax-free allowance
- Free Air Force uniforms and textbooks
- Management training and opportunities to apply leadership principles
- At most schools, academic credit for Air Force ROTC classes
- Travel on military aircraft on a space-available basis for students on Air Force ROTC scholarships or in the Professional Officer course

In-College Scholarship Program (ICSP)
The Air Force ROTC In-College Scholarship Program (ICSP) is a highly competitive scholarship program aimed primarily at college freshmen and sophomores in ANY MAJOR. Detachment commanders nominate and rank/order cadets in their program using the 'whole-person' concept. All ICSP scholarships activate the following fall term.

Historically Black Colleges and Universities (HBCU)
Scholarships are available for any Clark Atlanta, Morehouse, or Spelman student. The objective of the HBCU scholarship program is to encourage
outstanding HBCU students to enroll in the Air Force ROTC program. To compete for the scholarship, students must:

- be full-time,
- be physically and medically qualified,
- have at least a 2.5 GPA, and
- meet all other eligibility criteria.

Depending on the situation, HBCU scholarships can be activated in the same term.

Foreign Language Express Scholarship

Foreign Language Express scholarships provide preapproved scholarships to individuals in certain areas of study for which the United States Air Force projects a critical need in a few years. Scholarships in these areas are guaranteed if students meet all minimum requirements. Air Force ROTC provides an outstanding opportunity for students to receive a three- or two-year scholarship. Depending on the situation, Foreign Language scholarships can be activated in the same term. In order to receive an Express Scholarship students must be in one of the areas of study: Arabic, Chinese, Persian-Iranian/Persian-Afghan, Hindi, Indonesian, Japanese, Pashtu, Russian, Turkish, Urdu/Punjabi, Azerbaijani, Bengali, Cambodian, Hausa, Kazakh, Kurdish, Malay, Serbo-Croatian, Swahili, Thai, Uighur, Uzbek, or Vietnamese.

Nursing Scholarships

Air Force ROTC offers a variety of scholarships for nursing students that cover most tuition, books, and lab fees. The goal of the Nursing scholarships is to allow nursing students to complete their degree debt-free, while acquiring valuable resource knowledge about the Air Force and become part of the Air Force’s medical staff. Air Force nurses may enter in any number of different nursing fields including clinical nurse, operating room nurse, flight nurse, or nurse anesthetist. Depending on the situation, Nursing scholarships can be activated in the same term.

Pre-Health Professions and Armed Forces Health Professions Program

A Pre-Health Professions Program designation is offered to encourage students to earn commissions through Air Force ROTC and continue their education in medical or osteopathic school. You must apply before the end of the sophomore year. The Armed Forces Health Professions Scholarship Program provides up to four years of medical school and it covers tuition and fees, textbooks. It also pays the student a taxable monthly allowance of $938. Students accepted to the graduate-level health professions school, will be granted the scholarship and taxable monthly allowance of $938. Students accepted to the graduate-

Scholarship Program provides up to four years of medical school and it covers tuition and fees, textbooks. It also pays the student a taxable monthly allowance of $938. Students accepted to the graduate-

and become part of the Air Force's medical staff. Air Force nurses may operate in any number of different nursing fields including clinical nurse, operating room nurse, flight nurse, or nurse anesthetist. Depending on the situation, Nursing scholarships can be activated in the same term.

Army ROTC - Additional Training

Leadership Training Course (LTC)

Those academically qualified students who are unable to fulfill the requirements of the Basic Course during their freshman and sophomore years may qualify for admission to the Advanced Course by successfully completing the Leadership Training Course (LTC). This option is primarily designed to meet the needs of transfer students, those completing the sophomore year, and others, including graduate students, who have four semesters remaining at the Institute. This option provides a two-year program in lieu of the standard four-year curriculum. The LTC option consists of a four-week training period conducted at Fort Knox, Kentucky, during the summer months. During each summer, various cycles will be available to meet student needs. Students choosing this option are required to submit a formal application and pass a physical examination.

Students selected to attend the LTC training program will receive approximately $800 in addition to travel expenses to and from the LTC. Uniforms, housing, medical care, and meals are furnished by the government during the training. Interested students should contact the Military Science Department.

Cadet Professional Development Training (CPDT) Program

The CPDT program supplements campus training with practical leader development experiences and some additional skill identifier awarding courses. Cadets train in Army schools and with Active and Reserve units. CPDT consists of two subprograms, Cadet Troop Leader Training (CTLT) and Cadet Practical Field Training (CPFT).

Basic Airborne School (BAC)

The Basic Airborne Course is a three-week training program conducted by the Airborne Department, USAIC, Fort Benning, Georgia that trains
students in the use of the parachute as a means of combat deployment. Successful completion qualifies cadets to wear the Parachutist Badge.

Air Assault School (AAS)

Located at Ft. Campbell, Kentucky, the AAS is a 10 day course of instruction that trains cadets on Combat Assault Operations involving associated equipment and U.S. Army rotary-wing aircraft. Successful completion qualifies cadets to wear the Air Assault Badge. This eleven day course is very demanding both physically and mentally, involving obstacle courses and several long ruck marches. You will learn the basics of aircraft familiarization and recognition, slingload operations, and rappelling.

Mountain Warfare School (MWS)

This is a two-week program conducted at the Ethan Allen Firing Range in Jericho, Vermont. The course teaches cadets the skills needed to operate in a mountainous environment during the summer and fall. Mountain Warfare introduces you to the techniques and tactics required to operate in a mountainous environment under hostile conditions. The emphasis is on field exercises where you learn mountain-related skills.

Cadet Troop Leadership Training (CTLT)

Cadet Troop Leadership Training (CTLT) offers the MS III cadet the opportunity to perform the duties of a Second Lieutenant for up to one month with an active duty unit. MS III graduates of the ROTC Advanced Camp may attend CTLT for 3 to 4 weeks immediately following attendance at the Leadership Development and Assessment Course (LDAC) in the summer following their MS III year. Actual duties performed will vary by branch and unit but will generally be those duties expected of a Second Lieutenant in that unit. Many cadets will serve as either platoon leaders or assistant platoon leaders.

ROTC Credit (p. 105)

Army ROTC Website (http://www.armyrotc.gatech.edu)

Army ROTC - Program Overview

The Basic Course Curriculum

The Basic Course consists of a four-semester block of instruction taken during the freshman and sophomore years. Successful completion of all four semesters satisfies the military science requirements for progression to the Advanced Course. These courses provide a foundation in basic military subjects such as customs and traditions, history, leadership, and map reading. They round out a student’s academic life, provide a challenge, foster confidence, and facilitate personal growth and development.

Courses are offered during fall and spring semesters with 3 credit hours awarded for each freshman and sophomore course and four credit hours for each junior and senior course. Four hours of basic ROTC courses may be applied as elective credits toward degree requirements at the school. Courses normally meet two hours a week. A one-hour leadership laboratory and participation in physical conditioning training are also required for contracted cadets.

Students in the Basic Course do not incur military obligation unless they have received an ROTC scholarship. Scholarship cadets are required to participate in a field training exercise twice per school year. They are issued uniforms and may participate in other ROTC-related events and training, such as Airborne School, Air Assault School, and Northern Warfare Training.

The Basic Course consists of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL 1001</td>
<td>Leadership and Personal Development</td>
<td>3</td>
</tr>
<tr>
<td>MSL 1002</td>
<td>Introduction to Tactical Leadership</td>
<td>3</td>
</tr>
<tr>
<td>MSL 2001</td>
<td>Innovative Team Leadership</td>
<td>3</td>
</tr>
<tr>
<td>MSL 2002</td>
<td>Foundations of Tactical Leadership</td>
<td>3</td>
</tr>
</tbody>
</table>

ROTC Credit (p. 105)

Army ROTC Website (http://www.armyrotc.gatech.edu)

The Advanced Course Curriculum

The Advanced Course is designed to fully develop a cadet’s leadership and management potential, physical stamina, and self-confidence, as well as those Army values required of an Army officer. The objective is to produce the highest caliber junior officers fully capable of discharging a wide spectrum of command and management responsibilities in the modern Army and in the business world.

The Advanced Course consists of four semesters of instruction normally taken during the junior and senior years. Successful completion of the four courses fulfills the military science academic requirements for award of an officer’s commission. Each student must also participate in a regular physical conditioning program and successfully pass the Army Physical Fitness Test. All Advanced Course students must participate in field training exercises twice a school year. Twelve credit hours are earned, six of which may be applied as elective credits toward any degree at the Institute. Advanced Course students receive a subsistence allowance up to $500 a month. Service veterans and service academy cadets may qualify for direct entry into the Advanced Course. Certain Advanced Course students are eligible to participate in the Simultaneous Membership Program with the Army Reserve or Army National Guard. Students in this program affiliate with an Army unit as officer trainees.

Students enrolled in the Advanced Course are also required to complete a five-week Advanced Camp at Fort Lewis, Washington, to become eligible for commissioning. Attendance at Advanced Camp normally occurs during the summer between the junior and senior years. Students may also participate in additional voluntary training, such as Airborne School or Cadet Troop Leader Training. In addition to completing the military science academic requirements of both the Basic and Advanced Courses, the student must complete at least one undergraduate course from each of five designated fields of study:

- Written Communications: Select any course offered by the Institute in English composition or creative writing.
- Human Behavior: Select any course offered by the Institute in psychology, sociology, anthropology, or ethics.
- Military History/National Security Studies: Select course approved by the Professor of Military Science.
- Computer Literacy: Select any course offered by the College of Computing except CS 1000 (Information and Society).
- Mathematics Reasoning: Select any course offered by the School of Mathematics.

ROTC Credit (p. 105)

Army ROTC Website (http://www.armyrotc.gatech.edu)
Students who successfully complete the Army ROTC curriculum and earn a bachelor's degree can be commissioned as second lieutenants. Subsequent military service may be on active duty or with the Army Reserve or Army National Guard. The following courses constitute the Advanced Course:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL 3001</td>
<td>Adaptive Tactical Leadership</td>
<td>4</td>
</tr>
<tr>
<td>MSL 3002</td>
<td>Leadership in Changing Environments</td>
<td>4</td>
</tr>
<tr>
<td>MSL 4001</td>
<td>Developing Adaptive Leaders</td>
<td>4</td>
</tr>
<tr>
<td>MSL 4002</td>
<td>Leadership in a Complex World</td>
<td>4</td>
</tr>
<tr>
<td>MSL 4901</td>
<td>Special Problems (restricted)</td>
<td>4</td>
</tr>
</tbody>
</table>

Academic Mentorship Program

The Academic Mentorship program aims to sustain an atmosphere where all cadets recognize the importance of academic success for commissioning, obtaining their degrees, and other future endeavors. Every cadet should have the resources and encouragement to succeed in the classroom through an established mentorship support system. An aggressive attitude toward meeting the academic standard is highly encouraged. Academic Mentorship also offers a Study Hall program which offers additional mentorship opportunities by offering students hands on academic instruction and tutelage.

[ROTC Credit (p. 105)](http://www.armyrotc.gatech.edu)

[Army ROTC Website (http://www.armyrotc.gatech.edu)](http://www.armyrotc.gatech.edu)

Department of Naval Science / NROTC

Established in 1926

The NROTC program offers students the opportunity to qualify for service as commissioned officers in the United States Navy or Marine Corps. The program's objectives are to provide students with an understanding of the basic concepts and principles of naval science, associated professional knowledge, and the requirements for national security. NROTC students receive an educational background that allows them to later undertake advanced education in the naval service.

[Army ROTC Website (http://www.armyrotc.gatech.edu)](http://www.armyrotc.gatech.edu)

The NROTC program is an officer accession program for the unrestricted line communities (Surface Warfare, Submarines, Aviation, Marine Corps). Upon graduation, the student is commissioned as an officer in the Navy or Marine Corps. Naval officers are ordered to active duty in submarines, surface combatants, or the aviation community. Marines undergo training leading to a variety of specialties. NROTC students are enrolled in one of the following three categories: three-year or four-year scholarship students, college programmers, or two-year scholarship students.

The NROTC Program was established to develop midshipmen mentally, morally and physically and to imbue them with the highest ideals of duty, loyalty, and with the core values of honor, courage and commitment in order to commission college graduates as naval officers who possess a basic professional background, are motivated toward careers in the naval service, and have a potential for future development in mind and character so as to assume the highest responsibilities of command, citizenship and government.

[Army ROTC Website (http://www.armyrotc.gatech.edu)](http://www.armyrotc.gatech.edu)

NROTC - College Program Students

Non-scholarship students may seek a naval commission through the NROTC College Program. Interested students may apply at the NROTC unit in the O'Keefe building on campus. The process includes a review of previous academic performance and interviews with staff personnel. Students accepted into the College Program must complete the naval science curriculum and take a summer assignment between the junior and senior years.

The Navy provides naval science texts. Students who enter advanced standing in the junior year receive a subsistence allowance of $350-$400 per month. College program students are eligible to compete for scholarships ranging from one to three years. Selection criteria are based on academic performance at Georgia Tech and military performance as
a College Program student. For information, contact the Naval Science Department at 404.894.4771.

ROTC Credit (p. 105)
Navy ROTC Website (http://nrotc.gatech.edu)

NROTC - Program Overview

Naval Science Classes

All Navy Option Scholarship students must take:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS 1321</td>
<td>Introduction to Naval Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NS 1323</td>
<td>Naval Maritime History</td>
<td>3</td>
</tr>
<tr>
<td>NS 2321</td>
<td>Naval Leadership and Management</td>
<td>3</td>
</tr>
<tr>
<td>NS 2323</td>
<td>Navigation (Naval only)</td>
<td>3</td>
</tr>
<tr>
<td>NS 3323</td>
<td>Evolution of Warfare (Marine only)</td>
<td>3</td>
</tr>
<tr>
<td>NS 3324</td>
<td>Marine Weapons and Tactics</td>
<td>3</td>
</tr>
<tr>
<td>NS 3325</td>
<td>Naval Weapons Systems (Naval only)</td>
<td>3</td>
</tr>
<tr>
<td>NS 3326</td>
<td>Naval Engineering Systems (Naval only)</td>
<td>3</td>
</tr>
<tr>
<td>NS 4320</td>
<td>Naval Operations and Seamanship (Naval only)</td>
<td>3</td>
</tr>
<tr>
<td>NS 4322</td>
<td>Naval Leadership and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>NS 4333</td>
<td>Fundamentals of Maneuver Warfare</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Courses

Select one of the following: 8-10

- MATH 1501 Calculus I
- & MATH 1502 Calculus II
- MATH 1511 Honors Calculus I
- & MATH 15 and Honors Calculus II

Select one of the following:

- PHYS 2211 Introductory Physics I
- & PHYS 2212 Introductory Physics II
- PHYS 2231 Honors Physics I
- & PHYS 2232 Honors Physics II

One term of INTA (contact NROTC unit for required class)

One term of a cultures studies course (contact NROTC unit for required class)

All students must attend weekly Drill Periods in addition to above courses.

Marine Option

Marine Option students must only take the previously listed international affairs and cultural studies courses or their equivalent as approved by the professor of naval science.

Any additional requirements are based on whether or not the student is in a technical or nontechnical major, a Navy Option or Marine Option student, and a scholarship or nonscholarship recipient. Each student must obtain from the NROTC Department a complete description of program requirements since the above statement is only a general outline. Students may apply a maximum of 4 credit hours in basic ROTC courses and six credit hours in advanced ROTC courses toward meeting the free elective requirements for any degree.

ROTC Credit (p. 105)

Navy ROTC Website (http://nrotc.gatech.edu)

NROTC - Scholarship Students

Four-year and three-year scholarship students are selected through nationwide competition. Selection criteria include SAT or ACT scores, high school academic performance, and extracurricular activities. The selection process is administered by the chief of Naval Education and Training; however, the NROTC unit will provide guidance and information to applicants. An online application is available at http://www.nrotc.navy.mil.

The NROTC scholarship pays for tuition (and applicable fees) and textbooks. The Navy also provides uniforms and a $250-$400 per month subsistence allowance. The Naval Science Department conducts an orientation program (INFORM) for all new NROTC scholarship students during the week prior to the start of the fall semester. Scholarship students must complete the naval science curriculum and also participate in summer assignments from four to six weeks during the summers between academic years.

ROTC Credit (p. 105)
Navy ROTC Website (http://nrotc.gatech.edu)

NROTC - Two-Year Scholarship Program

Sophomores may apply and compete nationally for two-year NROTC scholarships. Those selected attend six weeks of training in Newport, Rhode Island, during the summer between the sophomore and junior years. Upon successful completion, the student joins the NROTC program on an equal footing with other students in the junior year naval science classes. Interested students should contact the Naval Science Department.

ROTC Credit (p. 105)
Navy ROTC Website (http://nrotc.gatech.edu)

School of Economics

Established in 1990

The School of Economics provides high-quality programs of study leading to a Bachelor of Science in economics or a minor or certificate in economics for students in other disciplines. The school also participates in the International Plan (http://www.internationalplan.gatech.edu) and the Research Option (http://www.undergradresearch.gatech.edu/research-option) for undergraduate students. The program focuses on skills and knowledge critical for a life of learning and leads to careers in academics, management, banking, the public sector, and other professional fields. A degree in economics is especially appropriate for students intending to pursue advanced degrees in the social sciences and in professional schools of management, law, and public administration.

Modern economics is analytically rigorous, requiring a background in mathematics and statistics. At the same time, it is critically linked with the other social sciences and humanities, as well as to applied management and policy studies. The undergraduate curriculum provides a strong, in-depth understanding of economic thought and policy and is intended to prepare students for productive careers, for useful roles in
society, and for satisfying personal lives in a technologically complex, culturally diverse world.

The School of Economics offers

- a Bachelor of Science in Global Economics and Modern Languages in cooperation with the School of Modern Languages and
- a Bachelor of Science in Economics and International Affairs in cooperation with the Sam Nunn School of International Affairs.
- a Bachelor of Science in Global Economics and Modern Languages in cooperation with the School of Modern Languages.

These programs provide students an opportunity to broaden their educational experience and to enhance their marketability in these areas.

The School of Economics also offers graduate courses leading to a Master of Science in Economics degree and in support of PhD programs in management, public policy, industrial and systems engineering, and city and regional planning.

Minors

- Minor in Economics (p. 569)
- Minor in Health, Medicine, and Society (p. 584)

Bachelor’s Degrees

- Bachelor of Science in Economics (p. 330)
- Bachelor of Science in Economics and International Affairs (p. 328)
- Bachelor of Science in Global Economics and Modern Languages (p. 347)

Master’s Degree

- Master of Science in Economics (p. 536)

Doctoral Degree

- Doctor of Philosophy with a Major in Economics (p. 495)

Undergraduate Study in Economics

Minors

- Minor in Economics (p. 569)
- Minor in Health, Medicine, and Society (p. 584)

Bachelor’s Degrees

- Bachelor of Science in Economics (p. 330)
- Bachelor of Science in Economics and International Affairs (p. 328)
- Bachelor of Science in Global Economics and Modern Languages (p. 347)

School of History and Sociology

Established in 1990

The School of History and Sociology, dedicated to the ideal of a well-rounded education at a technological university, provides instruction in the social sciences to every student at Georgia Tech. The School offers courses in history and sociology leading to three degrees:

Program of Study

4 Courses Total

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS/ PUBP/LMC 6743</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6121/ INTA 8803</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>HTS 6123/ LMC 8803</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC 6748</td>
<td>Social Justice, Critical Theory, and Philosophy</td>
<td></td>
</tr>
<tr>
<td>LMC/PUBP 6749</td>
<td>Feminist theory and STS</td>
<td></td>
</tr>
</tbody>
</table>

Elective

<table>
<thead>
<tr>
<th>Elective</th>
<th>3</th>
</tr>
</thead>
</table>

Total Credit Hours: 6

1. Select up to one other Elective, subject to student interest and STS Coordinator approval. Many appropriate courses are offered across the Ivan Allen College and the Institute, for example: CS 8893.
• Bachelor of Science in History, Technology, and Society (BS-HTS);
• Master of Science in History and Sociology of Technology and Science (MS-HSTS); and
• Doctor of Philosophy in History and Sociology of Technology and Science (PHD-HSTS).

The School of History and Sociology also offers minors or participates in interdisciplinary minors in:
• History;
• Sociology;
• Health, Medicine, and Society;
• Science, Technology, and Society;
• Social Justice;
• Sports, Society, and Technology; and
• Women, Science, and Technology.

The School of History and Sociology also offers several certificate programs for students in other undergraduate majors. In addition, the School of History and Sociology participates in the International Plan (http://www.hts.gatech.edu/undergraduate/opportunities/global) and Research Option (https://hts.gatech.edu/undergraduate/opportunities/research).

Minors
• Minor in History (p. 585)
• Minor in Sociology (p. 607)
• Minor in Health, Medicine, and Society (p. 584)
• Minor in Science, Technology and Society (http://catalog.gatech.edu/programs/minor-science-technology-society)
• Minor in Social Justice (p. 606)
• Minor in Sports, Society, and Technology (p. 608)
• Minor in Women, Science, and Technology (p. 610)

Bachelor's Degree
• Bachelor of Science in History, Technology, and Society (p. 347)

Master's Degree
• Master of Science in History and Sociology of Technology and Science (p. 540)

Doctoral Degree
• Doctor of Philosophy with a Major in History and Sociology of Technology and Science (p. 496)

Graduate Certificate in Science, Technology, and Society
The Graduate Certificate in Science, Technology, and Society is designed for students already enrolled in a graduate degree program at Georgia Tech. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The 12-credit certificate program helps students to:
• Understand the social, cultural, and epistemic dynamics of science and technology
• Explore these dynamics across world societies and cultures
• Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
• Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

Program of Study
4 courses total

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HTS/PUBP/LMC</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>6743</td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6121/INTA</td>
<td>Science, Technology and Security</td>
<td>8803</td>
</tr>
<tr>
<td>HTS 6123/LMC</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td>8803</td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC</td>
<td>Social Justice, Critical Theory, and Philosophy of Design</td>
<td>6748</td>
</tr>
<tr>
<td>LMC/PUBP</td>
<td>Feminist theory and STS</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

1 Select up to one other elective, subject to student interest and STS Coordinator approval. Many appropriate courses are offered across the Ivan Allen College and the Institute, for example: CS 8893.

Undergraduate Study in History and Sociology

Master's Degree
• Master of Science in History and Sociology of Technology and Science (p. 540)
Minors
- Minor in History (p. 585)
- Minor in Sociology (p. 607)
- Minor in Health, Medicine, and Society (p. 584)
- Minor in Science, Technology and Society (http://catalog.gatech.edu/programs/minor-science-technology-society)
- Minor in Sports, Society, and Technology (p. 608)
- Minor in Social Justice (p. 606)
- Minor in Women, Science, and Technology (p. 610)

Bachelor's Degree
- Bachelor of Science in History, Technology, and Society (p. 347)

Certificate Programs
Alone or in conjunction with other units of the Ivan Allen College, the School of History and Sociology offers certificates in five fields:
- African American Studies
- Asian Affairs
- European Affairs
- History
- Sociology

For more information on the certificate programs, go to https://hsoc.gatech.edu/undergraduate/certificates.

School of Literature, Media, and Communication
Established in 1990

The School of Literature, Media, and Communication (LMC) is engaged in rethinking the role of humanities education in an increasingly technological and global environment. The faculty is committed to generating humanistic perspectives on a technological world through interdisciplinary research in cultural studies and new media studies at both theoretical and applied levels. In providing humanities and communication courses for all Georgia Tech undergraduates, LMC's curriculum focuses on the scientific and technologically oriented aspects of the humanities, as well as on the incorporation of new electronic media (visual, aural, and textual) into humanities and communication education.

LMC offers a BS in Literature, Media, and Communication (LMC), a BS in Computational Media (CM) jointly administered with the College of Computing; and an MS and a PhD in Digital Media (DM). The School also participates in the interdisciplinary MS in Human-Computing Interaction (HCI), in conjunction with the Schools of Interactive Computing, Industrial Design, and Psychology. Graduates from LMC’s undergraduate and graduate programs are positioned to assume important roles in the exciting new fields developing in the interface between technology and culture.

The BS in LMC (formerly the BS Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

CM is one of Georgia Tech’s fastest-growing programs, going from three students in 2004 to 230 today. The BSCM curriculum gives students a grasp of the computer as a medium: the technical, the historical-critical, and the applied. Students gain significant hands-on and theoretical knowledge of computing, as well as an understanding of visual design and the history of media. CM graduates are uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business.

The DM program provides students with a foundational, theoretical background in digital media and the opportunity to practice what is learned in the classroom through active participation in labs and research. MS DM students follow a studio-based curriculum with three core themes (Creativity & Knowledge, Arts & Entertainment, and Civic Media) that prepare students for professional careers in digital media, including: interaction and information design, game design and production, and interactive media design. The PhD program educates research-oriented theorists/practitioners who bring the traditions of the humanities and arts to the design of digital media. Graduates of the program are prepared to work in industry, public service, and universities, shaping the emerging digital genres and expanding our understanding and mastery of the representational power of the computer.

The MS HCI degree program is a cooperative effort of the School of Interactive Computing; the School of Literature, Media, and Communication; the School of Industrial Design, and the School of Psychology. The program provides students with the practical and interdisciplinary skills and theoretical understanding they will need to become leaders in the design, implementation, and evaluation of the computer interfaces of the future.

Minors
- Minor in Film and Media Studies (p. 581)
- Minor in Science Fiction Studies (p. 603)
- Minor in East Asian Studies (p. 567)
- Minor in Health, Medicine, and Society (p. 584)
- Minor in Science, Technology, and Society (p. 604)
- Minor in Women, Science, and Technology (p. 610)

Bachelor's Degrees
- Bachelor of Science in Computational Media (p. 259)
- Bachelor of Science in Literature, Media, and Communication (p. 426)

Master's Degrees
- Master of Science in Digital Media (p. 535)
- Master of Science in Human-Computer Interaction (p. 541)

Doctoral Degree
- Doctor of Philosophy with a Major in Digital Media (p. 494)

Graduate Study in Literature, Media, and Communication
Master's Degrees

• Master of Science in Digital Media (p. 535)
• Master of Science in Human-Computer Interaction (p. 541)

Doctoral Degree

• Doctor of Philosophy with a Major in Digital Media (p. 494)

Science, Technology and Society Graduate Certificate

The Science, Technology and Society Graduate Certificate is designed for students already enrolled in a graduate degree program at Georgia Tech. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The 12-credit hour certificate program helps students to:

• Understand the social, cultural, and epistemic dynamics of science and technology
• Explore these dynamics across world societies and cultures
• Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
• Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

Program of Study

4 Courses Total

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HTS/</td>
<td>Science, Technology & Society, Core Seminar</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC</td>
<td>6743</td>
<td></td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6121/</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>INTA 8803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTS 6123/</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
<tr>
<td>LMC 8803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC</td>
<td>Social Justice, Critical Theory, and Philosophy of</td>
<td></td>
</tr>
<tr>
<td>6748</td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>LMC/PUBP</td>
<td>Feminist theory and STS</td>
<td></td>
</tr>
<tr>
<td>6749</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective

| Elective | 3 |

Total Credit Hours 6

1 Select up to one other elective, subject to student interest and STS Coordinator approval. Many appropriate courses are offered across the Ivan Allen College and the Institute, for example: CS 8893.

Undergraduate Study in Literature, Media, and Communication

Minors

• Minor in Film and Media Studies (p. 581)
• Minor in Performance Studies (p. 598)
• Minor in Science Fiction Studies (p. 603)
• Minor in Technical Communication (p. 610)
• Minor in East Asian Studies (p. 567)
• Minor in Health, Medicine, and Society (p. 584)
• Minor in Science, Technology, and Society (p. 604)
• Minor in Women, Science, and Technology (p. 610)

Bachelor's Degrees

• Bachelor of Science in Computational Media (p. 259)
• Bachelor of Science in Literature, Media, and Communication (p. 426)

Writing and Communication Intensive Courses

A number of majors require students to complete writing intensive and communication intensive courses. Several LMC classes may be counted toward this requirement. Consult course offerings each semester to determine which courses may be counted toward this requirement.

Advanced Placement

• Students with a score of 4 or 5 on the College Board Advanced Placement Exam (taken in conjunction with high school classes) in Composition and Literature or Language and Composition receive credit for ENGL 1101.
• Students with a score of 750 or higher on the SAT II Subject Test in English receive credit for ENGL 1101.
• Students with a score of four or higher on the International Baccalaureate Exam receive credit for ENGL 1101.
• Advanced placement credit is not ordinarily given for ENGL 1102.

More Adv Placement Information (p. 102)

Certificate Programs

LMC sponsors a series of certificate programs in

• American Literature and Culture,
• Film Studies, and
• Literary and Cultural Studies.

Students should consult the LMC director of undergraduate studies for detailed information on requirements. The courses for these certificates are among those listed in "Courses of Instruction," and all fulfill humanities requirements.

LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either school for detailed information concerning requirements. Courses for this certificate are selected from among those listed in "Courses of Instruction" and from the list offered by.
School of Modern Languages

Established in 1904

The School of Modern Languages collaborates as an interdisciplinary partner with other units in the Ivan Allen College and across campus to prepare future participants in the global workforce through applied studies in foreign languages that are designed to develop advanced communication skills, creative thinking, and professional competency in the language. The School is building bridges between the languages it teaches and the engineering and technology units at Georgia Tech by integrating into its programs the kind of professional and social language students expect to use after entering the workforce. At the same time, the School offers an opportunity to develop a broad understanding of culture, media and the arts, and daily life in the countries whose languages are taught.

Minors

- Minor in Chinese (p. 559)
- Minor in East Asian Studies (p. 567)
- Minor in European Studies (p. 578)
- Minor in French (p. 582)
- Minor in German (p. 582)
- Minor in Japanese (p. 590)
- Minor in Linguistics (p. 593)
- Minor in Korean (p. 590)
- Minor in Russian (p. 603)
- Minor in Spanish (p. 608)

Bachelor's Degrees

- Bachelor of Science in Applied Language & Intercultural Studies (p. 179)
- Bachelor of Science in Global Economics and Modern Languages (p. 347)
- Bachelor of Science in International Affairs and Modern Language (p. 387)

College Credit for High School Study

Modern Languages will grant 6 to 8 hours of credit in any language taught by the School for high school study in that language, provided the student has two or more years of high school credit in the language in question and has completed six credit hours at the 2000, 3000, or 4000 level with an average grade of C or higher. To have the credit entered on their records, students must submit the Modern Languages Proficiency Credit (Advanced Standing) form http://www.registrar.gatech.edu/docs/pdf/advstanding-ml.pdf to the School of Modern Languages for its approval, and pay $90 for each 3 or 4 hours of credit. No grade is attached to this credit, but the credit can fulfill the humanities requirement for graduation.

- Students submitting a score of four or five on the Advanced Placement (AP) Examination in French, German, or Spanish "Language Level III" or "Literature Level III" may receive six hours of credit for courses numbered 2001-2 in the respective language.
- For the Japanese AP exam, students who receive
 - a score of three can earn three hours of credit for JAPN 2002;
 - a score of four can earn six hours of credit for JAPN 2002 and JAPN 3001;
 - a score of five can earn six hours of credit for JAPN 3001 and JAPN 3002.
- For the Chinese exam, students who receive
 - a score of three can earn three hours of credit for CHIN 2002;
 - a score of four can earn six hours of credit for CHIN 2002 and CHIN 3003;
 - a score of five can earn six hours of credit for CHIN 3003 and CHIN 3004.
- Students who submit language scores of five or above for courses taken at the higher level from a certified high school International Baccalaureate program may also receive credit for courses numbered 2001-2 in French, German, or Spanish, for 3001-2 in Japanese, and for 3003-4 in Chinese.

Students with credit for the DSD German language exam may receive the following credit: DSD I: GRMN 3XXX (3 hours); DSD II: GRMN 3XXX (6 hours). Students may not receive credit for both the DSD I and DSD II.

Official scores should be sent to the Registrar's office for processing.

The School will not grant credit for high school study in a foreign language to students who have taken 1000 level courses in that language or the equivalent at Georgia Tech, or at other college-level institutions for which they have received transfer credit.

Graduate Course Option

Under the Graduate Course Option, undergraduate students with a final grade-point average of 3.5 or higher may count six credit hours of their undergraduate credits toward a master's degree at Georgia Tech in the same field. This means that qualified IAML students could complete the
Master of Science in International Affairs with thirty additional credit hours rather than 36 credit hours if they chose to further their study in International Affairs; likewise, qualified GEML students could complete the MS in Economics with thirty additional credit hours in ECON courses.

Graduate Course Option Information (p. 107)

Humanities Credits

Each course is essentially a unit in itself, but beginning students are encouraged to pursue at least the elementary two-semester sequence (1001 and 1002) in order to achieve a minimum level of proficiency and to receive humanities credit for both courses. Humanities credit is awarded for Modern Languages 1001 classes upon successful completion of the corresponding 1002 classes. Humanities credit is awarded for SPAN 1101 only upon the successful completion of SPAN 1102. In some instances, students may complete a Modern Languages course at 1001 and then be placed at the second-semester level and complete the 2001 level course. Therefore, the sequence that will warrant HUM credit for Modern Languages courses may be either the 1001-1002 or the 1001-2001 sequence. Students may not enroll in or receive advanced standing for 1000 level courses after the successful completion of any 2000, 3000 or 4000 level course; nor can credit be earned for 2000 level courses after successful completion of any 3000 or 4000 level course. Courses at the 3000 and 4000 level do not have to be taken in chronological order, provided prerequisites are fulfilled.

With minor exceptions, students can fulfill their humanities requirement for graduation by taking courses in the School of Modern Languages, including linguistics courses and courses taught as ML courses (courses in a language not yet included in the General Catalog). Students should consult the Catalog course descriptions and the section of this catalog titled "Humanities and Social Sciences Requirements (p. 93)," in order to determine which courses are classified as humanities in their respective colleges. With the approval of their major schools, students may take any course offered by the School of Modern Languages on a pass/fail basis.

Humanities Information (p. 93)

Minor Programs

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

1. Students must earn 15 credit hours of language electives in a single language beyond the 2002 course.
 a. Students may include the 2002 course for CHIN/JAPN/KOR/RUSS (or the 2011 course in CHIN)
 b. All 15 hours of 3/4000-level courses for FREN/GRMN/SPAN
 c. Students pursuing a minor in Russian Studies should take their electives in at least two different departments/schools (Modern Languages, International Affairs, and/or Literature, Media, and Communication)

2. A maximum of 9 semester hours of transfer credit is allowed in each minor. All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certiﬁcates)

Study Abroad

The School of Modern Languages offers special summer immersion programs in China, France, Senegal, Germany, Japan, Korea, Russia, Ecuador, Mexico, Peru, and Spain. These intensive programs in Languages for Business and Technology (LBAT) consist of six to eight weeks of study abroad in which classroom lessons in business, culture, and technology are combined with field work, cultural events, excursions, and visits to area businesses — all conducted in the target language. The LBAT experience offers a unique opportunity for rapid growth in proficiency, to build a deeper appreciation for the cultures and lifestyle patterns of other peoples, and to make lifelong social and professional contacts. Students will earn nine to fifteen credit hours (depending on the language program and the options available) at the 3000 level; in some programs, lower-division language courses are offered. These credits count toward a certificate, a minor, or the joint majors with International Affairs and Economics or ALIS degree. Program costs vary according to the country visited and the length of the program.

Study Abroad Information (http://www.modlangs.gatech.edu/study-abroad)

Study Abroad and Internships

In collaboration with the Colleges of Engineering and Computing, the School of Modern Languages has initiated a Study Abroad and International Internship program that incorporates intensive applied language acquisition and cultural study. Students who participate in this program can expect to become versed in a foreign culture, fluent in a second language on professional and social levels, and gain advanced practical experience in their field. This program will prepare students for leadership positions in the global workforce in business, industry, and government.

Modern Languages works with international companies and with the Georgia Tech Center for Career Discovery and Development to establish internships and jobs abroad. Programs generally include one semester of study followed by a six month internship with a global company (some limitations as to language and field of study exist). The LBAT summer immersion course or equivalent is recommended, since students will need to take classes in the language spoken. HOPE scholarships and other financial aid apply. Additional language classes are available abroad. Students retain regular status at Georgia Tech by enrolling in FS 4000 during the semester of study and in INTN 3011, INTN 3015, INTN 3018, and in the Modern Language or Co-op International Internship (INTN 3011 or COOP 3011) during the internship. Students participating in this program are encouraged to contact their academic advisors, the International Division in the Center for Career Discovery and Development, the Office of International Education, and Modern Languages advisors. See www.modlangs.gatech.edu (http://www.modlangs.gatech.edu) for more information.

Study Abroad Information (http://www.modlangs.gatech.edu/study-abroad)
Suggested Placement

Students who have never completed any course for high school or college credit in the language should begin in a 1001 course. Students with previous study in Chinese, French, German, Japanese, Russian, and Spanish should take the placement test found at www.modlangs.gatech.edu in order to determine their optimal beginning placement. Students interested in any of the other languages should consult with a language advisor for beginning placement. See www.modlangs.gatech.edu for more information.

Linguistics Certificate

The Linguistics Certificate consists of 12 credit hours.

Track A: General Linguistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LING 2100</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>Additional Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select nine credit hours from the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LING 3813/4813</td>
<td>Special Topics 1</td>
<td></td>
</tr>
<tr>
<td>SPAN 4170</td>
<td>Spanish Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>FREN 3030</td>
<td>French Phonetics</td>
<td></td>
</tr>
<tr>
<td>JAPN 4750</td>
<td>Japanese Discourse and Grammar</td>
<td></td>
</tr>
<tr>
<td>JAPN 4780</td>
<td>Japanese Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td>SPAN 4165</td>
<td>Bilingualism in the Spanish Speaking World</td>
<td></td>
</tr>
<tr>
<td>SPAN 4170</td>
<td>Spanish Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1. Three credit hours maximum; focus on the linguistic system(s) of selected languages; must be approved by Linguistics advisor

Track B: Language Processing

Track B: Language Processing is a joint collaboration between the School of Modern Languages and the College of Computing. This certificate is designed with computer science majors in mind who have an interest in linguistics and natural language processing.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LING 2100</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>Additional Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select nine credit hours from the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
<td></td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS/PSYC 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 3803</td>
<td>Special Topics 1</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1. Three credit hours maximum; must be approved by Linguistics advisor

For Track B students, other courses listed under the AI thread or in Linguistics may also count with prior approval from the linguistics advisor.

All courses counting towards a LING certificate must be taken on a letter grade basis and a grade of C or better must be received in each course.

Other information:

1. The School of Modern Languages may also accept one linguistics course on the 3000- or 4000-level taken at other accredited universities for either Track A or Track B. Students wanting to take such a course need to clear its acceptability with the LING advisor at Georgia Tech.

2. A 2000-level course may be accepted by the LING advisor if its contents are based upon examples from another language, given the possible difficulty involved in having enough command of the language to deal with more complex materials.

3. Students who wish to use a course taken abroad to obtain credit towards the LING certificate must submit a copy of the syllabus of the course and petition to obtain approved form the LING advisor prior to travelling abroad.

4. Some CS and ML courses may have language prerequisites.

Certificate Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

School of Public Policy

Established in 1990

The School of Public Policy is a research intensive, globally engaged school offering BS, MS, and PhD degrees to those intrigued by complex problem-solving in the public interest.

The School houses one of the world’s top programs in the field of science and technology (S&T) policy. We host a major international conference on S&T policy that brings participants from every continent. Because nearly every policy area is intertwined with S&T issues (such as the environment, communications, transportation, biotechnology and health, regional development, workforce and education) the School is at the center of a wide range of important international, national, and state policy questions. Governance of the internet, STEM education and careers, climate change policy, national and international innovation policy, economic development, risk analysis and management, renewable energy, smart growth, conflict resolution, and business-government relationships – these are a few of the topics addressed in our courses and research projects.

Our faculty members are research oriented, with more than $6 million in externally-funded research underway. Our degrees are analytically
oriented, developing skills increasingly in demand in the policy world as data and powerful software become more readily available and policy challenges grow more complex. The School conducts rigorous analyses of policy problems, bringing sophisticated methodologies to bear on research questions. At the same time, we are unusual among policy schools in having an active research program at the intersection of philosophy, ethics, and policy. Our location at Georgia Tech allows for a wide array of collaborative opportunities with faculty and students in science, engineering, business, computing, and city planning.

Students at all levels routinely become involved in research, from undergraduate students helping on faculty research projects or pursuing their own questions, to the opportunities our MS and PhD students have to present or publish their work in scholarly settings. Internships in Atlanta, Washington, and other locales allow students to explore their interests in the public, nonprofit, and business sectors.

Public Policy students are taught by award-winning teachers. They experience policy development in internships, research projects, and capstone projects that use our location in Atlanta as a source of real-world policy problems and contacts. There are numerous opportunities for national and international engagement, with research conducted jointly with partners around the world, by internationally oriented faculty and students, and with opportunities for international exchange in undergraduate and graduate programs. We offer a unique and forward-looking environment.

Minors
- Minor in Public Policy (p. 601)
- Minor in Health, Medicine, and Society (p. 584)
- Minor in Law, Science, and Technology (p. 590)
- Minor in Leadership Studies (p. 591)
- Minor in Philosophy (p. 598)
- Minor in Political Science (p. 600)
- Minor in Women, Science, and Technology (p. 610)

Bachelor's Degree
- Bachelor of Science in Public Policy (p. 485)

Master's Degree
- Dual Degree - MCRP/Master of Science in Public Policy (p. 509)
- Master of Science in Public Policy (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Public Policy (p. 508)
- Doctor of Philosophy with a Major in Public Policy (Joint Degree with Georgia State University) (p. 507)

Pre-law Certificate
The School of Public Policy is home to Georgia Tech's Law, Science, and Technology/Pre-Law Program. This program offers a wide range of curricular opportunities as well as pre-law advising and support services for students considering law school and careers in law.

The program introduces students to selected areas of law that they are likely to study in law school. Students will begin to develop the skills that they will need to succeed in law school and in law practice. Some of the courses are taught by full-time faculty, while others are taught by attorneys from the Atlanta area, thereby exposing students to academic and practical perspectives on the practice of law.

The program welcomes students from every college and major. Students majoring in the sciences and engineering may be surprised to learn that their undergraduate background gives them a strong start toward specializations such as intellectual property law, products liability law, and construction law. The pre-law program can supplement a student’s scientific or engineering background by developing the reading and writing skills that are fundamental to a successful legal career.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3016</td>
<td>Judicial Process</td>
<td></td>
</tr>
<tr>
<td>PUBP 3610</td>
<td>Pre-Law Seminar</td>
<td></td>
</tr>
<tr>
<td>PUBP 4609</td>
<td>Legal Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Select elective PUBP courses to fulfill 12 credit hour requirement.</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 12

1 See Pre-Law website for list of approved electives options.

For additional curricular requirements or any other information, see the pre-law section of the website www.prelaw.gatech.edu (http://www.prelaw.gatech.edu), or contact the pre-law program director (contact information listed at website).

Intellectual Property Certificate
The School of Public Policy is home to Georgia Tech’s Intellectual Property Program. This program offers a wide range of curricular opportunities as well as networking opportunities for students considering a career in intellectual property or in other areas where knowledge of intellectual property would be helpful.

While earning the certificate, students will have the opportunity to learn about the protections and the limits on those protections of intellectual property, including patents, copyrights, trademarks and other forms of intellectual property. Taking an interdisciplinary approach, the certificate in IP will teach students about law, business strategies, and public policies affecting intellectual property. Some of the courses are taught by full-time faculty, while others are taught by attorneys from the Atlanta area, thereby exposing students to academic and practical perspectives on the practice of law.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>PUBP 4640</td>
<td>Technology Law, Policy, and Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Select elective courses to fulfill 12 hour requirement.</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 12
For additional curricular requirements or any other information, see the Intellectual Property section of the School of Public Policy website at https://spp.gatech.edu/undergraduate/certificates/intellectual-property; or contact the Intellectual Property program director (contact information listed at website).

Graduate Study in Public Policy

Master’s Degree
- Dual Degree - MCRP/Master of Science in Public Policy (p. 509)
- Master of Science in Public Policy (p. 550)

Doctoral Degrees
- Doctor of Philosophy with a Major in Public Policy (p. 508)
- Doctor of Philosophy with a Major in Public Policy (Joint Degree with Georgia State University) (p. 507)

Graduate Certificate in Public Policy

The School of Public Policy offers a certificate in public policy to PhD students from other Schools around campus. The goal of the certificate program is to provide a basic but well-rounded introduction to public policy thinking to Georgia Tech graduate students. The program is designed to address the needs of scientists, engineers, management scholars and others who seek to be more aware of policy, regulatory, ethical, and societal implications of science, technology and innovation. The program will provide breadth and context for those entering employment in any sector. The courses in the program explore the processes through which policy is made.

Although this certificate is not available to policy students, the courses are open to all graduate students, creating an opportunity for students to gain value from divergent perspectives. Students who complete this certificate are eligible to participate in the School’s PRIME international graduate student exchange program.

Eligibility

Graduate students from all programs may take the courses offered as part of this certificate. The certificate will be awarded by the School of Public Policy to any non-public policy graduate student who successfully complete the program requirements and earns a graduate degree from one of Georgia Tech’s degree granting academic units. The requirements for the Graduate Certificate in Public Policy will typically satisfy the minor requirements for the Georgia Tech PhD degree.

Please contact Diana Hicks at dhicks@gatech.edu with any questions.

Certificate Requirements

Students are required to earn at least a B in every course that counts toward the certificate. The credit requirements for the Certificate in Public Policy are 12 credit hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required course</td>
<td></td>
</tr>
<tr>
<td>PUBP 6012</td>
<td>Fundamentals of Policy Processes</td>
<td>3</td>
</tr>
<tr>
<td>or 621</td>
<td>Public Policy Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

1 Three electives are required for the certificate. These electives can be chosen from the list below or from graduate-level special topics offered by the public policy faculty with the agreement of the certificate advisor. The electives are organized by broad area of interest to guide students in choosing electives that best suits their interests. Students are not required to choose all electives from the same grouping.

Analytical Methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Economic Development

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6602</td>
<td>Economic Development Analysis and Practice</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6606</td>
<td>Urban Development Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6415</td>
<td>Technology, Regions, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6600</td>
<td>Foundations of Local Economic Development Planning and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6740</td>
<td>Innovation, the State and Industrial Development in International Perspective</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6741</td>
<td>Geography of Innovation</td>
<td>3</td>
</tr>
</tbody>
</table>

Economics for Public Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Ethics and Values

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental & Energy Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6310</td>
<td>Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6312</td>
<td>Economics of Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6314</td>
<td>Policy Tools for Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6327</td>
<td>Sustainability and Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6701</td>
<td>Energy Technology Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Information Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6111</td>
<td>Internet and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6501</td>
<td>Information Policy and Management</td>
<td>3</td>
</tr>
</tbody>
</table>
PUBP 6502 Information and Communications Technology Policy

Public Administration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6014</td>
<td>Organization Theory</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6017</td>
<td>Public Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6018</td>
<td>Policy Implementation and Administration</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6226</td>
<td>Business and Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Science and Technology Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6401</td>
<td>Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6402</td>
<td>Research Policy and Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6403</td>
<td>Scientific Careers and Workplaces</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6417</td>
<td>Critical Perspectives on Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6440</td>
<td>Science, Technology, and Regulation</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6753</td>
<td>Comparative Science and Technology Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

1. PUBP 8803 is a public policy course. See Oscar catalog for offerings in upcoming semesters. Selection of other courses requires approval of the instructor and the certificate advisor.

Public Policy Graduate Certificate http://www.spp.gatech.edu/graduate/certificates/pubp

Graduate Certificate in Science, Technology and Society

The Science, Technology and Society Graduate Certificate is designed for students already enrolled in a graduate degree program at Georgia Tech. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The 12-credit hour certificate program helps students to:

- Understand the social, cultural, and epistemic dynamics of science and technology
- Explore these dynamics across world societies and cultures
- Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
- Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

Program of Study

4 Courses Total

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS/PUBP/ LMC 6743</td>
<td>Science, Technology & Society Core Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- HTS 6118 Sci Tech and the Economy
- HTS 6121/ Science, Technology and Security
- INTA 8803
- HTS 6123/ Social and Cultural Studies of Biomedicine
- LMC 8803
- HTS 6124 Science and Technology Beyond Borders
- PUBP/LMC Social Justice, Critical Theory, and Philosophy 6748
- LMC/PUBP Feminist theory and STS 6749

Elective

Elective 1

Total Credit Hours 9

1. Select up to one other elective, subject to student interest and STS Coordinator approval. Many appropriate courses are offered across the Ivan Allen College and the Institute, for example: CS 8893.

Undergraduate Study in Public Policy

Minors

- Minor in Public Policy (p. 601)
- Minor in Health, Medicine, and Society (p. 584)
- Minor in Law, Science, and Technology/Pre-Law (p. 590)
- Minor in Leadership Studies (p. 591)
- Minor in Philosophy (p. 598)
- Minor in Political Science (p. 600)
- Minor in Women, Science, and Technology (p. 610)

Bachelor's Degree

- Bachelor of Science in Public Policy (p. 485)

The School of Public Policy offers undergraduate certificates and minors in five areas:

- **Public Policy**: featuring courses on government and business decision processes, especially those involving science, technology, environment, or regional development.
- **Law, Science, and Technology/Pre-Law**: preparing students to make informed decisions about law school and careers in law through selected courses in public policy, business administration, international affairs, history, and other fields.
- **Leadership studies**: providing students with an in-depth knowledge of leadership theory, skills, experience, and application through a rigorous program of study that is multi-disciplinary in nature
- **Philosophy**: providing broad perspectives and critical thinking about science and technology, emphasizing values and ethics.
- **Political Science**: focusing on how government works, from the local to the national level.
- **Women, Science, and Technology**: Links science and technology issues with those issues associated with the study of women and gender in society.

The certificates enrich any Georgia Tech degree and particularly serve students who are planning graduate studies in law, medicine, business,
or the social sciences. All the certificates require a minimum of twelve semester hours of concentration.

Minors are for students wishing a concentration outside their major that provides greater depth than the certificate programs. Each minor requires a minimum of fifteen hours of credit (twelve semester hours at the 3000 level or higher with a C or better in each). Completion of a minor will be recognized on the student’s final university transcript.

Students interested in planning a certificate or minor program in one of the five areas should contact the School of Public Policy for further information. A faculty advisor assists each student in planning a program of study to meet his or her needs and interests.

Minor Program of Study & Guidelines (p. 107)

The Sam Nunn School of International Affairs
Established in 1990

The Sam Nunn School of International Affairs offers educational programs that provide an enhanced understanding of the factors that shape the world in which we live and work in the twenty-first century. The programs of study equip students with the quantitative and qualitative skills needed to engage in strategic planning and analysis in an international context. A unique interdisciplinary curriculum provides students with an understanding of the increasing importance of technology in a borderless world. Many graduates assume professional positions within business, government, and international organizations. Other graduates pursue postgraduate or professional education in a range of disciplines that includes law, business, international affairs, public administration, and economics.

The Sam Nunn School of International Affairs is the only one of its kind at a leading technological institute. The educational programs administered by the Sam Nunn School at Georgia Tech are designed to equip students with the skills, values, and experience to build bridges between the world of science and technology and the world of international relations.

Minors
- Minor in International Affairs (p. 586)
- Minor in Global Development (p. 583)

Bachelor's Degrees
- Bachelor of Science in Economics and International Affairs (p. 328)
- Bachelor of Science in International Affairs (p. 388)
- Bachelor of Science in International Affairs and Modern Language (p. 387)

Master's Degree
- Master of Science in International Affairs (p. 545)

Doctoral Degree
- Doctor of Philosophy with a Major in International Affairs, Science, and Technology (p. 499)

Graduate Study in International Affairs

Master's Degree
- Master of Science in International Affairs (p. 545)

Doctoral Degree
- Doctor of Philosophy with a Major in International Affairs, Science, and Technology (p. 499)

Graduate Certificate in Science, Technology, and Society
The Science, Technology and Society Graduate Certificate is designed for students already enrolled in a graduate degree program at Georgia Tech. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The 12-credit certificate program helps students to:
- Understand the social, cultural, and epistemic dynamics of science and technology
- Explore these dynamics across world societies and cultures
- Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
- Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

Program of Study
4 Courses Total

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>HTS/PUBP/LMC 6743</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6121/INTA 8803</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>HTS 6123/LMC 8803</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC 6748</td>
<td>Social Justice, Critical Theory, and Philosophy of Design</td>
<td></td>
</tr>
<tr>
<td>LMC/PUBP 6749</td>
<td>Feminist theory and STS</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Undergraduate Study in International Affairs

Minors
- Minor in International Affairs (p. 586)
- Minor in Global Development (p. 583)

Bachelor's Degrees
- Bachelor of Science in Economics and International Affairs (p. 328)
- Bachelor of Science in International Affairs (p. 388)
- Bachelor of Science in International Affairs and Modern Language (p. 387)

Graduate Course Option
Under the Graduate Course Option, undergraduate students with a final grade-point average of 3.5 or higher may count six hours of their graduate credits completed at the undergraduate level toward a master's degree at Georgia Tech in the same field. This applies to EIA, IAML, and INTA majors. This means that qualified students could complete the Master of Science in International Affairs with thirty-six additional credit hours rather than forty-two credit hours if completed within two years of earning a bachelor's degree.

The Sam Nunn School, often in conjunction with other units of the Ivan Allen College, administers five certificate programs. These programs enable students to pursue a focused program of study in a specific area of regional/international specialization. The School awards the following certificates:

- Asian Affairs Certificate (available to majors and non-majors)
- Latin American Affairs Certificate (available to majors and non-majors)
- European Affairs Certificate (available to majors and non-majors)
- International Affairs Certificate (available only to non-majors)
- Scenarios, Modeling and Military Games (available to majors and non-majors)

A certificate is awarded upon successful completion of a predetermined 12 credit hour cluster of courses approved by the academic advisor or a specific faculty member. All courses must be taken on a letter-grade basis, and a C or better must be received in each course. Certificates will be granted only to students who, in addition to the Certificate program requirements, have satisfied requirements for an undergraduate degree. Detailed information concerning these programs and their requirements is available through the School.

Scheller College of Business
Established in 1913 as the School of Commerce, the school now known as the Scheller College of Business has a distinguished history as a part of a world-renowned technical research university. Scheller College of Business offers a full range of undergraduate and graduate programs. The undergraduate program in business administration leads to the Bachelor of Science in Business Administration degree. The College also offers several Master's degree programs:

- the Master of Business Administration (MBA), which can be completed in two years as a full-time program or in two to three years as a part-time evening program;
- the Master of Business Administration in Management of Technology, which is offered in a weekend format and can be completed in less than two years;
- the Master of Business Administration in Global Business, which is offered in a weekend format and can be completed in less than two years;
- the Master of Science in Analytics;
- the Master of Science in Quantitative and Computational Finance; and
- an undesignated Master of Science degree.

The College also offers a doctoral program that leads to a PhD in Management.

Students admitted to the graduate programs are admitted only on a degree-seeking basis. The College is accredited by the Association to Advance Collegiate Schools of Business (AACSB) International.

Scheller College is a recognized leader in developing business leaders to succeed in today's high-tech business world. Programs combine excellence in the functional areas of business education with the multidisciplinary focus on management of technology, international business, and entrepreneurial and innovative processes for a global economy. Students learn to create value that will make a social and economic difference in the lives of individuals, groups, communities, and societies. With a curriculum that emphasizes collaborative learning based on real-world experience, the College offers the resources of centers focusing on business analytics, sustainability, leadership, and entrepreneurship to foster research, teaching excellence, and discussion across the major functional areas of business.

The College of Business and all of its degrees are accredited by the Association to Advance Collegiate Schools of Business (AACSB) International.

Minors
- Minor in Computing and Business (p. 560)
- Minor in Engineering and Business (p. 578)
- Minor in Technology and Business (p. 610)
- Minor in Leadership Studies (p. 591)

Bachelor's Degree
- Bachelor of Science in Business Administration (p. 225)

Master's Degree
- Master of Business Administration (p. 518)
- Master of Science in Analytics (p. 523)
- Master of Science in Quantitative and Computational Finance (p. 552)
Graduate Study in Business

Master's Degree

- Master of Business Administration in Global Business - Executive (p. 517)
- Master of Business Administration in Management of Technology - Executive (p. 519)
- Master of Science with a Major in Management (p. 554)

Doctoral Degrees

- Doctor of Philosophy with a Major in Management (p. 503)

Graduate Study in Business

Master's Degree

- Master of Business Administration (p. 518)
- Master of Science in Analytics (p. 523)
- Master of Science in Quantitative and Computational Finance (p. 552)
- Master of Business Administration in Global Business - Executive (p. 517)
- Master of Business Administration in Management of Technology - Executive (p. 519)
- Master of Science with a Major in Management - Executive (p. 554)

Doctoral Degrees

- Doctor of Philosophy with a Major in Management (p. 503)

Undergraduate Study in Business

Minors

- Minor in Computing and Business (p. 560)
- Minor in Engineering and Business (p. 578)
- Minor in Leadership Studies (p. 591)
- Technology and Business (p. 610)

Bachelor's Degree

- Bachelor of Science in Business Administration (p. 225)

Transfer Credit Policy for Undergraduate Students

Students may transfer business and management courses taken at another accredited institution if the courses are passed with a "C" or better and are deemed by the College of Business to be equivalent to a Georgia Tech course. Such courses will be transferred for the same number of credits as the corresponding College of Business courses, provided they are equal to three or more semester hours of credit. Transfer credits will be accepted from newly-formed institutions of the University System of Georgia prior to accreditation.

Junior- or senior-level courses with three or more semester hours of credit that have no corresponding College of Business course may transfer as electives in management if they are approved by the College of Business.

Because of the difference in the intellectual level of various courses, freshman- or sophomore-level courses taken at other institutions may only be transferred for equivalent freshman- or sophomore-level courses offered at Georgia Tech. Before taking courses at other institutions, students should refer to the Georgia Tech transfer credit policies at www.registrar.gatech.edu/students/transfercredit.php (http://www.registrar.gatech.edu/students/transfercredit.php). Business students considering taking courses at other institutions should keep in mind Georgia Tech's 36-hour Residency Rule, which states that "no student may be considered a candidate for a degree unless the final 36 credit hours required for the degree are earned in residence at Georgia Tech and approved by the major school."

In addition to its degree programs, the College of Business offers students in good standing an opportunity to broaden their areas of expertise or acquire skills or information beyond their major degree requirements. Students who satisfactorily complete this special program will receive a certificate of recognition. Certificates are only available to degree-seeking Georgia Tech undergraduates. Certificates are awarded upon graduation from a Georgia Tech undergraduate program. For certificate requirements, please see the College of Business Website: www.scheller.gatech.edu (http://www.scheller.gatech.edu)

The following certificate programs are available for undergraduate students:

- Accounting
- Business Analytics
- Business Law and Ethics
- Entrepreneurship
- Finance
- Information Technology Management
- International Business
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation
- Sustainable Business
ACADEMICS

• Academic Resources (p. 73)
• Colleges and Schools (p. 73)
• Courses (p. 73)
• Distance Learning and International Sites (p. 73)
• Graduate Academics (p. 73)
• Professional Education (p. 78)
• Programs (p. 169)
• Research Support Facilities (p. 79)
• Special Academic Programs (p. 81)
• Undergraduate Academics (p. 91)
• Undergraduate Minors (p. 107)

Academic Resources

Programs & Services
• Academic Advising (http://www.advising.gatech.edu)
• Academic Resources (http://www.undergradstudies.gatech.edu)
• Career Services (http://www.career.gatech.edu)
• Counseling (http://www.counseling.gatech.edu)
• Dean of Students (http://www.deanofstudents.gatech.edu)
• Dining Services (http://www.gatechdining.com)
• Diversity Programs (http://www.diversityprograms.gatech.edu)
• Fellowships (http://fellowships.gatech.edu)
• Freshman Experience Program (http://www.housing.gatech.edu/freshmanexperience)
• Health Services (http://www.health.gatech.edu)
• International Student Services (http://www.oie.gatech.edu)
• LGBTQIA Resource Center (http://lgbtqia.gatech.edu)
• Office of Minority Educational Development (http://omed.gatech.edu)
• Orientation (new students) (https://transitionprograms.gatech.edu/content/faset-orientation)
• Tutoring & Workshops (http://www.success.gatech.edu/?id=6)
• Women’s Resource Center (http://www.womenscenter.gatech.edu)
• Veteran’s Resource Center (http://veterans.gatech.edu)

Departments
• Admissions (undergraduate) (http://www.admission.gatech.edu)
• Admissions (graduate) (http://www.grad.gatech.edu)
• Alumni Association (http://gtalumni.org)
• Athletic Association (http://www.ramblinwreck.com)
• Bursar’s Office (http://www.bursar.gatech.edu)
• Office of the Vice President for Student Life and Dean of Students (http://studentlife.gatech.edu/content/about-division-student-life)
• Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu)
• Financial Aid (http://www.finaid.gatech.edu)
• Housing (http://www.housing.gatech.edu)
• Parking and Transportation (http://www.parking.gatech.edu)
• Police (campus) (http://www.police.gatech.edu)
• Registrar’s Office (http://www.registrar.gatech.edu)

Student Life
• Leadership & Civic Engagement (http://engage.gatech.edu)
• Greek Affairs (http://greek.gatech.edu)
• Student Government (http://www.sga.gatech.edu)
• DramaTech (http://dramatech.org)

Facilities
• Campus Recreation Center (http://www.crc.gatech.edu)
• Information Technology (http://www.oit.gatech.edu)
• Library & Information Center (http://www.gatech.edu/libraries)
• Interdisciplinary Research Centers (http://www.gtri.gatech.edu)
• Ferst Center (http://www.ferstcenter.gatech.edu)
• Student Center (http://www.studentcenter.gatech.edu/Pages/default.aspx)

Colleges and Schools
• College of Computing (p. 16)
• College of Design (p. 21)
• College of Engineering (p. 29)
• College of Sciences (p. 44)
• Ivan Allen College of Liberal Arts (p. 53)
• Scheller College of Business (p. 71)

Courses
• All Courses (p. 615)
• Graduate-Level Courses (http://www.catalog.gatech.edu/courses-grad)
• Undergraduate-Level Courses (p. 107)

Distance Learning and International Sites

Academic content delivered through distance learning is in accordance with the course descriptions as approved by the Institute Curriculum Committee. All courses require approval by the Institute Curriculum Committee and the Academic Senate. All offerings for academic credit delivered through the Division of Professional Education have been approved in this manner.

Academic content delivered at our international sites, such as GT-Lorraine and GT-Shenzhen, is in accordance with the course descriptions as approved by the Institute Curriculum Committee. All courses require approval by the Institute Curriculum Committee and the Academic Senate regardless of where they are delivered. All Study Abroad Programs are approved on a yearly basis by the Institute Undergraduate Curriculum Committee as recommended by the Study Abroad Subcommittee.

Graduate Academics

The faculty of Georgia Tech grants advanced degrees in engineering, science, business, computing, architecture, city and regional planning, public policy, and other technology-related areas. The goals for graduate studies and research are to establish an educational environment that
will strengthen students’ personal and professional development, to encourage students and faculty to pursue the discovery and generation of new knowledge through research, to investigate ways of applying such knowledge for the benefit of society and humanity, and to foster the development of new tools, objects, and ideas.

Students whose interests and aptitudes lead them beyond the limits of the traditional undergraduate curriculum may broaden their knowledge of a given field and pursue independent inquiry through graduate study. A graduate education is of particular benefit to students interested in careers in research, management, development, design, or consulting; to those who aspire to formulate and administer policy; and to those who desire careers in higher education.

- Graduate Policies and Regulations (p. 74)
- Graduate Student Work Loads (p. 75)
- Doctoral Degree Programs (p. 172)
- Requirements for the Doctoral Degree (p. 75)
- Master’s Degree Programs (p. 171)
- Requirements for the Master’s Degree (p. 77)

Graduate Policies and Regulations

The Institute Graduate Curriculum Committee, with the approval of the Academic Faculty Senate, is responsible for establishing academic policy for the graduate programs; however, final authority rests with the Senate. This committee reserves the right to change requirements for degrees as may be appropriate. Students enrolled at the time such changes appear in the Catalog have the privilege of following either the requirements stated in the Catalog effective the semester in which they enrolled or the requirements in the Catalog that records the change.

This catalog records the institute-wide policies and regulations that govern the graduate programs. Schools may make additional rules concerning their programs and the pursuit of their degrees, but such rules may not contradict Institute policies and regulations.

Transfer Credit

A student may not apply for transfer credit until after matriculation at Georgia Tech. The courses to be transferred would typically be those appearing on the approved program of study form for the masters degree. A doctoral student normally does not request transfer credit. The rules relative to and the process for obtaining transfer of credit for graduate-level courses are as follows:

1. A student’s in a master’s degree program requiring fewer than 33 semester credit hours may receive up to six hours of transfer credit for graduate-level courses taken at an institution accredited by a Canadian or U.S. regional accrediting board, or at a foreign school or university that has a signed partnership agreement with Georgia Tech, and not used for credit toward another degree. This ensures completion of at least one-third of the hours required for the degree at Georgia Tech (applies to programs that are face-to-face and online format). The student must supply a current transcript for this evaluation.

2. To obtain transfer of credit, the student must complete the following procedure:
 a. The student will confer with the graduate advisor to ascertain whether the courses to be transferred are a logical part of the student’s graduate program;
 b. If the courses are appropriate, the student will deliver to the school that teaches such courses a copy of the current transcript, necessary descriptive materials including catalog descriptions, and textbooks used for evaluation. The faculty of the appropriate school will determine the equivalent Georgia Tech course and the number of credit hours accepted. The faculty member who prepares the transfer credit form (i.e., the Non-Resident Credit Report) should have the school chair cosign it. The school should then send the form directly to the registrar with a copy of the student’s Approved Program of Study attached;
 c. If the student wishes to transfer more than the number of hours permitted in item one listed above, a petition must be submitted to the Institute Graduate Curriculum Committee that includes statements of possible justification for the granting of such a petition, transfer credit forms, and the recommendation of the student’s school chair.

3. A joint enrollment student may receive graduate credit for up to one-third of the hours required for the degree for graduate courses taken at Emory University or Georgia State University provided that the following is true:
 a. Georgia Tech does not offer such courses;
 b. The student’s advisor and school chair approve the courses in advance and in writing;
 c. The student passes the courses with a C or better. Advance approval is satisfied when the courses appear on the student’s proposed Program of Study.

4. A student may not receive transfer credit from universities outside the United States and Canada unless the courses were taken at a foreign institution or university that is accredited by a Canadian or U.S. regional accrediting board or has a signed partnership agreement with Georgia Tech. In any other case, an international student can obtain credit for courses previously taken but not applied toward another degree by filling out an Examination for Advanced Standing Authorization Request Form, paying the appropriate fee at the Bursar’s Office, and passing the examination for advanced standing. The school or college that normally teaches the equivalent course will administer any necessary examinations.

Double Counting Credit between Master’s Degrees

Students who are pursuing two Master’s degrees at Georgia Tech may double count a maximum of 6 hours of credit for both degrees. This ensures that each degree involves a minimum of 24 hours of coursework completed at Tech that is not double counted.

The six-hour limit may be exceeded when specifically allowed as a component of an approved degree program.

Staff Members

No staff member beyond the rank of instructor in a school may work for a master’s degree in that school. No new staff member with the rank of
assistant professor in a school may work for a doctoral degree in that school.

General

A student who wishes to withdraw her/his name from the rolls of degree candidates must formally withdraw the Online Application for Graduation before the end of the seventh week of the semester (or fourth week of the summer term). This privilege will be extended to a degree candidate only once.

Graduate Student Work Loads

Full-time students must be enrolled for at least 12 credit hours on a letter grade or pass/fail basis. As an exception, the advisor and school chair may allow up to three hours out of the minimum 12 to be taken on an audit basis in fall and spring semesters; in summer semesters, the advisor and school chair may allow up to six hours out of the 12 minimum to be taken on an audit basis. (This exception is not applicable for students on immigrant visas or certain fellowships requiring them to enroll in at least 12 credit hours on a letter grade or Pass/Fail basis each academic term.) Hours in excess of the required 12 may be taken on any basis. Full-time students working exclusively on thesis research should be registered for 18 or more hours of 7000 or 9000 level courses (master’s or doctoral thesis courses) in fall and spring semesters, and for up to 16 hours during summer semesters.

The maximum load for graduate students in good standing is 21 hours in fall/spring and 16 hours in summer. The minimum load is three hours, except for the semester of graduation. During the semester of graduation, a student is permitted to register for only one hour of master’s or doctoral thesis courses (7000 or 9000). This exception may be used only once for each degree.

Students with fellowships, graduate research or teaching assistantships, traineeships, tuition waivers, or student visas, and those assigned to the Institute by the armed forces for the purpose of pursuing a degree are required to enroll full time. Part-time doctoral students engaged in research for their Ph.D.s should meet the minimum enrollment requirement and register for the number of 9000 level hours consistent with the time they and their faculty advisors spend on the dissertation research.

Requirements for the Doctoral Degree

The Doctoral Degree (p. 75)
Admission to Candidacy (p. 75)
Comprehensive Exams (p. 75)
Thesis Topic (p. 75)
Time Limit for Degree Completion (p. 75)
Dissertation (p. 75)
Doctoral Examination (p. 76)
Minor Field of Study (p. 76)
Other Requirements (p. 76)
Enrollment Requirements (p. 76)
Additional Graduation Requirements (p. 76)
Language Requirements (p. 76)
Responsible Conduct for Research (RCR) (p. 76)

The Doctoral Degree

The degree of Doctor of Philosophy recognizes demonstrated proficiency and high achievement in research. After adequate preparation, the candidate must successfully complete both comprehensive examinations in his or her academic field and a searching and authoritative investigation of a special area in the chosen field, culminating in a written dissertation.

Admission to Candidacy

Doctoral students customarily apply for degree candidacy after completing at least three semesters of coursework beyond the bachelor’s degree.

To qualify for candidacy, students must do the following:
1. Complete the requirements for training in Responsible Conduct for Research (RCR) (http://rcr.gatech.edu).
2. Complete all course requirements (except the minor).
3. Achieve a satisfactory scholastic record.
4. Pass the comprehensive examination.
5. Submit a formal statement naming the dissertation reading committee and delineating the research topic for approval to the school chair and Graduate Students (on behalf of the Vice Provost for Graduate Education and Faculty Affairs).

Upon satisfactory completion of these requirements, the Office of Graduate Studies will formally admit the applicant to candidacy for the degree on behalf of the Vice Provost for Graduate Education and Faculty Development.

Comprehensive Exams

The comprehensive examination assesses both general knowledge of the degree area and specialized knowledge of the student’s chosen research field. Each program is responsible for scheduling comprehensive examinations at least once a year and for providing students information regarding exam formats, rules, and scope. Exam retakes are to occur no later than the end of the student’s second full term (Fall, Spring, or Summer) in residence following the failed attempt.

Thesis Topic

Before a student becomes a candidate, he or she should present a formal statement for the approval of the school chair or college dean and Graduate Studies that outlines the student’s dissertation advisor, the topic selected for investigation, the objectives, and the steps by which the student proposes to achieve them. (Note that individual programs may have additional requirements for approving the dissertation prospectus or proposal before approval by the chair/dean and Graduate Studies.) The dissertation topic must give promise of being either a genuine addition to the fundamental knowledge of the field or a new and better interpretation of facts already known.

Time Limit for Degree Completion

Students must complete all degree requirements within seven years from the end of the term in which they pass the comprehensive examination.

Dissertation

The dissertation must demonstrate that the candidate possesses powers of original thought, talent for research, and ability to organize and present findings. Dissertations must be submitted electronically via the Electronic Thesis and Dissertation website.
The format of the dissertation (in general appearance) must meet the criteria published in the Manual for Graduate Theses. For other format or style questions, students should refer to style manuals appropriate to their disciplines.

Doctoral Examination

If the dissertation advisory committee finds the dissertation satisfactory, it schedules the candidate for an oral examination on the subject matter of the dissertation and the field in which it lies. An examining committee approved by Graduate Studies on behalf of the Vice Provost for Graduate Education and Faculty Development will conduct the examination. The candidate’s academic unit should forward the announcement of the oral examination, including the names of the examining committee members, to Graduate Studies at least 10 working days prior to the exam.

If a candidate should fail to pass the final oral examination, the examining committee may recommend permission for one additional examination. In the case of failure, the Registrar does not receive a report of the examination results.

Minor Field of Study

In addition to an adequate knowledge of the major field of intended research, the student must demonstrate mastery of another smaller body of knowledge—the minor field—preferably outside the student’s school. The purpose of the minor is to encourage a wider interest on the part of the student and to provide a broader basis for the evaluation of the student’s capabilities.

The minor will normally consist of at least nine semester hours of work in related courses, selected by the student in consultation with a guidance committee and approved by the Graduate Studies (on behalf of the Vice Provost for Graduate Education and Faculty Development). These courses should be at the 6000 level or above, but the use of certain 4000 level courses may also be approved. The student must receive a letter grade within the minor comprising an overall GPA of a 3.0 (B) or higher. (Courses that are taken as pass/fail are not eligible to count toward the minor). Courses taken at other institutions may be included in the minor. Once the student has satisfactorily completed the minor, the school chair will send a confirmation, accompanied by course grades, to Graduate Studies for final approval and recording.

Although the student need not complete the minor as a prerequisite to become a candidate, the minor must be completed and approved in order to be cleared for graduation.

Other Requirements

Enrollment Requirements

The matriculation requirements for doctoral students are similar to those outlined for the master’s degree with the addition of the residency requirement: doctoral students should spend at least two full-time semesters in residence at Georgia Tech and should complete research for their dissertation while in residence. Under special circumstances, candidates who have met the residency requirement may receive permission to pursue their research in absentia, provided the chair of the appropriate school approves and a faculty member directs the project. Although doctoral students working full-time on thesis research should normally be registered for a full course load of 9000-level dissertation hours each semester, this requirement is at the discretion of the advisor and the department. No minimum number of 9000-level dissertation hours is required for the doctoral degree. Doctoral students must be registered in the semester of graduation.

While no fixed-course requirements apply for the doctoral degree, the student’s thesis advisory committee may recommend graduate coursework in both a major and a minor field of study. Doctoral students must be registered in the semester of graduation.

If a student has completed all degree requirements and will no longer require any of the Institute’s facilities or faculty time, the student may request an enrollment waiver (http://www.grad.gatech.edu/theses-dissertations-forms).

Additional Graduation Requirements

In addition to the requirements listed elsewhere, the candidate is required to complete the following:

1. Complete an Online Application for Graduation (http://www.registrar.gatech.edu/students/deginfo/oag.php) to petition for the degree to the Registrar’s Office (http://www.registrar.gatech.edu/students/deginfo/degcandfaq.php) during the term preceding the anticipated final term of work.

2. Have an overall GPA of at least 3.0.

3. Register for a minimum of one hour of dissertation in the term of graduation. This reduction from the normal minimum course load of three hours may be used only once. If all requirements for graduation, including submission of the final approved dissertation, have been completed prior to the last day of registration and the student was registered for the preceding term, the student may apply for a waiver of the dissertation (http://www.grad.gatech.edu/theses-dissertations-forms) requirement.

5. Complete any language requirements.

If both the dissertation and the examination are satisfactory, and the candidate has completed the requirements of residence, minor field, and any additional school requirements, Graduate Studies will certify the candidate as qualified to receive the degree of Doctor of Philosophy.

Language Requirements

The student’s school may require a reading knowledge of one or more foreign languages.

Responsible Conduct for Research (RCR)

The RCR Academic Policy for Doctoral Students applies to all doctoral students.

Doctoral students who have a catalog year prior to 2011-12 are not required by this Policy to complete RCR training but they should refer to the applicability criteria listed in the Georgia Tech RCR Compliance Policy to determine if their source of funding requires the training.

If this Policy imposes a hardship on a doctoral student who was originally admitted prior to Fall 2011 but has since been readmitted, the student may petition the RCR Program to review the case (for more information on this process, refer to this Policy’s FAQs).

This Academic Policy does not affect undergraduate students or postdoctoral researchers. However, they are still subject to grant and fellowship compliance requirements.
Requirements for the Master’s Degree

Graduate Course Option (p. 77)

Enrollment Requirements (p. 77)

Program of Study (p. 77)

Master’s Thesis (p. 77)

Requirements for the Award of the Master’s Degree (p. 77)

Graduate Course Option

Students completing both a bachelor’s and master’s in the same discipline at Georgia Tech may use up to six credit hours of graduate-level coursework in the major discipline for both degrees. Recognizing that some master’s degree programs do not have a unique undergraduate counterpart program and that some master’s programs are offered by several schools, the term “discipline” in the prior sentence will be broadly interpreted in such cases. To qualify for this option, students must complete the undergraduate degree with a cumulative GPA of 3.5 or higher and complete the master’s degree within a two-year period from the award date of the bachelor’s degree.

Enrollment Requirements

While students may enroll in a master’s degree program upon admission with either full or conditional standing, all conditions must be met and the student’s status changed to “full” in order to graduate with a master’s degree. Students enrolled in a master’s degree program must register for at least one semester per year in order for the original requirements for their degree to remain unchanged. In other cases, the school may reevaluate the student’s credentials and impose additional degree requirements.

Students who have completed all coursework and are planning to submit a thesis in partial fulfillment of the requirements for a master’s degree should register for research hours (MAJR 7000) consistent with a realistic appraisal of the amount of remaining thesis work and required faculty involvement. Students are not eligible to receive thesis guidance during any term for which they are not registered.

Students must normally enroll for a minimum of three hours each semester. Thesis students may enroll for one hour of thesis only in the semester of graduation; this option may be used only once. The Institute has no residency requirements for the master’s degree.

If a student has completed all degree requirements and will no longer require any of the Institute’s facilities or faculty time, the student may request an enrollment waiver (http://grad.gatech.edu/theses-dissertations-forms).

Program of Study

The student, in consultation with the faculty advisor, should prepare a program of study for the master’s degree as a guide for planning an academic schedule. In some cases, the student’s school may require that the proposed program be submitted to the chair of that school for approval.

The program of study must be completed satisfactorily within six consecutive calendar years and must include, at a minimum, 30 approved credit hours distributed as follows:

With thesis:
1. Minimum course credit hours in major field (a basic field of knowledge, not a department of specialization): 12
2. Minimum course credit hours at 6000 to 9000 level: 12
3. Minimum course credit hours for degree: 18
4. Minimum Thesis hours (7000): 6
5. Total credit hours: 30

Without thesis: (must have approval of school chair)
1. Minimum course credit hours in major field (a basic field of knowledge, not a department of specialization): 18
2. Minimum course credit hours at 6000 to 9000 level: 21
3. Total credit hours: 30

Some schools require more than the minimum credit hours. Refer to specific academic program descriptions for more detailed information.

Other than thesis hours, the student may use only three hours under the pass/fail designation (p. 159) in the approved program of study.

Students who are pursuing two Master’s degrees at Georgia Tech may double count a maximum of 6 hours of credit for both degrees. This ensures that each degree involves a minimum of 24 hours of coursework completed at Tech that is not double counted. Students should consult with their advisors on sharing coursework among Master’s degrees.

Students may be eligible to utilize the Graduate Course Option or participate in an approved BS/MS program. Students should refer to the Catalog for requirements for the Graduate Course Option and for BS/MS program requirements (http://catalog.gatech.edu/academics/special-academic-programs/bs-ms-programs).

Master’s Thesis

To complete the requirements for the master’s degree, the student must submit a master’s thesis unless the school chair determines that additional coursework is of more importance in meeting approved objectives.

Students who meet the requirements for the master’s degree by completing a combination of coursework and thesis must register for a minimum of six hours of thesis credit.

A candidate whose program includes a thesis must present a treatise in which the results of an investigation directed by a member of the faculty of the Institute are set forth in a clear, articulate form. The purpose of the thesis is to further educational development by requiring the student to plan, conduct, and report an organized and systematic study of importance.

The Manual for Graduate Theses specifies the formatting requirements for the thesis. Information regarding electronic thesis/dissertation submission can also be found on the Graduate Studies (http://grad.gatech.edu/theses-dissertations) website.

Requirements for the Award of the Master’s Degree

For a student to receive a master’s degree from Georgia Tech, the following requirements should be met:

1. During the semester prior to the anticipated final semester of work, students should petition to graduate. This can be done
by completing the Online Application for Graduation (http://www.registrar.gatech.edu/students/deginfo/oag.php).

2. The Approved Program of Study (which is listed on the petition for degree application) should show that course requirements for the master’s degree will be satisfied before or during the final semester. The Approved Program of Study (http://catalog.gatech.edu/academics/graduate/masters-degree-info/#program-of-study) should be completed within a period of no more than six consecutive calendar years.

3. Students should have an overall GPA of at least 2.70 and satisfy all school academic requirements. (Some schools may require a higher overall GPA, and some programs may have different GPA requirements for certain segments of the program requirements, such as for core classes. If so, this must be reported to the Institute Graduate Curriculum Committee through the initial proposal or as a curriculum change and will be considered an informational item on the agenda. These requirements will be enforced at graduation.)

4. Students should earn a grade of at least D on coursework for it to be considered completed. (Some individual programs may require a grade of C or higher. These requirements must be reported to the Institute Graduate Curriculum Committee either as part of the initial proposal or as part of a curriculum change and will be considered an informational item on the agenda. These requirements will be enforced at graduation.)

5. Students may take three hours on a pass/fail basis, per Institute policy. (However, individual programs may not allow pass/fail grades at all or may restrict them to only specific portions of the degree such as electives. These restrictions must be reported to the Institute Graduate Curriculum Committee as part of the initial proposal or as part of a curriculum change and will be considered an informational item on the agenda. These requirements will be enforced at graduation.)

6. Students should be registered for a minimum of three credit hours at all times. However, thesis students are permitted to enroll for one hour of MAJR 7000 in the semester of graduation. This reduction may be used only once. Students who have met all requirements for graduation before the last day of registration for the graduation term and who were registered the preceding semester may be eligible for a waiver of enrollment.

7. Coursework at the 1000 or 2000 level may not be used for a master's degree. In most cases, coursework at the 3000 level may not be used for a master’s degree. But individual programs may allow a reasonable number of 3000-level courses in special circumstances, such as in a program that requires language proficiency. Individual programs may include 4000-level coursework, but this must be reported to the Institute Graduate Curriculum Committee as either part of the initial proposal or clearly stated when revising a program. These rules will be enforced at graduation.

8. Students should have completed satisfactorily any language requirement imposed by the major school.

9. Thesis students must complete the requirements for training in Responsible Conduct for Research (RCR) (http://rcr.gatech.edu).

10. Students should have passed any qualifying or comprehensive examinations required by their school.

11. Students should have completed any required coursework outlined at the time of matriculation.

12. Students should ensure that all requirements for the degree are completed and certified by the Office of the Registrar no later than 48 hours after final grades for the term are due. If a candidate for a degree is not certified by the appropriate deadline, the degree will not be awarded. It is the responsibility of the student to reactivate the degree petition for the following semester.

13. The diploma of a candidate for a degree shall bear the date of the latest commencement ceremony for the term in which the degree is awarded with the exception of summer graduation diplomas, which will bear the date of the official end of term.

Additional Requirements for Master's Thesis Students
1. Students should submit the thesis topic and committee form to Graduate Studies for approval and make satisfactory progress on the thesis.

2. Students should complete the requirements for training in Responsible Conduct for Research (RCR) (http://rcr.gatech.edu).

3. Students should submit the thesis electronically to the Electronic Thesis and Dissertation (http://thesis.gatech.edu) website and receive final acceptance from Graduate Studies.

Language Requirement
The student’s school may require a reading knowledge of one appropriate language other than English.

Professional Education
Georgia Tech Professional Education is an academic division of Georgia Tech providing innovative, comprehensive education and training. Professional Education gives participants a world-class learning experience promoting professional and personal success. It comprises the following:

• Degree Programs
• Short Programs
• English as a Second Language
• Community Outreach
• Learning and Meeting Facilities

This year, Professional Education and its programs reached more than 13,000 individuals and 3,100 companies in various locations.

Atlanta: The Georgia Tech Global Learning Center is designed, staffed, and equipped with the technology and service to foster the relationship between people and ideas and learning and working. Many courses and programs are hosted at the Center in addition to its being a corporate and professional meeting venue.

Georgia Tech-Savannah: The Savannah campus is currently transitioning from a campus offering four undergraduate and graduate degrees to a destination for professional education, including professional master’s degrees and specialized training programs targeting industry and the military.

Around the World: Courses are held in multiple cities throughout the Southeast and around the globe including nearly thirty different course locations from Alabama to Singapore.

Any Location: Various courses and programs are offered online, via videoconference, or customized and delivered directly to a company.

Learn more about Georgia Tech Professional Education at www.gtpe.gatech.edu (http://www.gtpe.gatech.edu).

Community Outreach
As a flagship institution within the University System of Georgia, the Georgia Institute of Technology is acclaimed, not only in its home state and nation, but, increasingly, around the globe. An important aspect of...
Georgia Tech’s culture of service includes the work of the Center for Education Integrating Science, Mathematics, and Computing (CEISMC).

From educational partnerships and research to fun programs for students, CEISMC advocates and participates in efforts for systemic changes that lead to improved appreciation and performance in STEM for all students at the level of K-12, especially those under represented in science, technology, engineering and mathematics. With a presence at Georgia Tech-Savannah, CEISMC brings its expertise to the people and schools of southeast Georgia.

More information about CEISMC’s programs:
- K-12 (https://pe.gatech.edu/savannah-campusoutreach)
- NASA ePDN (https://pe.gatech.edu)
- Distance Calculus (https://pe.gatech.edu/subjects/k-12-programs/high-school-math)

English as a Second Language
The Georgia Tech Language Institute has delivered high-quality, practical English language training for more than fifty years. It serves a spectrum of learners: students preparing for academic work in the United States; professionals looking for career improvement through better language skills; and people who want to increase their English proficiency for social reasons.

Through full- and part-time programs, in daytime and evening classes, our excellent instructors and support staff aim to make learning a productive and enjoyable experience. Students also have access to numerous extracurricular activities, including a conversation partner program, day trips, and volunteer work.

Course options include:
- Intensive English Program (IEP)
- Summer Short Courses
- Summer Graduate Prep Workshops
- Summer Pre-MBA Program

Learn more at www.esl.gatech.edu (http://www.esl.gatech.edu).

Professional Education Degree Programs
Rise to the next level of competitive expertise with graduate programs available through distance learning. A valuable service of Georgia Tech Professional Education for more than thirty-four years, these programs are open to the public and also to corporate sponsors.

In annual rankings from U.S. News & World Report, Georgia Tech graduate programs consistently rank in the top ten. The proven excellence of Georgia Tech graduate degrees and the convenience of online delivery make them a compelling choice for working professionals.

The following Master of Science degrees are available online:
- Engineering - Aerospace Engineering, Electrical and Computer Engineering, Industrial Engineering, Mechanical Engineering, Medical Physics (with Emory University), and Operations Research
- Computing – Computer Science, Computational Science and Engineering, and Information Security

Click here (https://pe.gatech.edu/programs) for more information about an online Master of Science degree.

- Professional Master’s in Applied Systems Engineering

Click here (http://www.pmase.gatech.edu) for more information about the Professional Master’s in Applied Systems Engineering (PMASE). This hybrid-format degree offers the convenience that a practicing engineer will appreciate and the skills and knowledge that an employer values.

Professional Education Short Programs
Georgia Tech Professional Education provides education and training for working professionals and industry partners. These short courses and programs vary in length from one to eight days and help professionals keep pace with the latest development in their fields – defense technology, economic development, engineering, executive education, information technology, OSHA, power systems, and supply chain and logistics.

Taught by Georgia Tech faculty and industry-experienced instructors, our short programs are available in flexible formats whether that is in the classroom, online, or a combination of both.

Professional Education offers thirty-eight programs through which participants can earn a professional certificate by taking several short courses within a sequence. In addition, participants may earn Continuing Education Units (CEUs).

Learn more at www.pe.gatech.edu (http://www.pe.gatech.edu).

Research Support Facilities
- Advanced Technology Development Center (ATDC) (p. 79)
- Georgia Tech Research Corporation (p. 80)
- Georgia Tech Research Institute (p. 80)
- Joint CNRS Research Laboratory (p. 80)
- Logistics Innovation Centers (p. 80)
- Oak Ridge Associated Universities (p. 81)
- Skidaway Institute of Oceanography (p. 81)
- VentureLab (p. 81)

Advanced Technology Development Center (ATDC)
The Advanced Technology Development Center (ATDC) is the oldest and most experienced university-affiliated technology incubator in the country. It was formed in 1980 by the Governor and General Assembly to increase the technology business base in Georgia. ATDC fulfills this mission by assisting in the formation and growth of advanced technology start-up companies, supporting technology commercialization, and attracting technology companies to the state. In 2004, ATDC received the "Excellence in Technology-led Economic Development" award from the United States Department of Commerce.

ATDC is headquartered in Technology Square and also operates the ATDC Biosciences Center in the Ford Environmental Science and Technology Building. ATDC also has facilities in Columbus, Georgia; Savannah,
Georgia; and, Warner Robins, Georgia. At these locations, early-stage companies benefit from a strong entrepreneurial working environment, access to professional business consulting, contact with university research faculty, and modern office and laboratory facilities. The ATDC also provides companies with access to facilities, personnel, and students in the University System of Georgia.

- The Advanced Technology Development Center (ATDC) (http://atdc.org)

Georgia Tech Research Corporation

Founded in 1937, the Georgia Tech Research Corporation (GTRC) is a state-chartered, not-for-profit corporation serving Georgia Tech as a University System of Georgia-approved cooperative organization. By charter, GTRC "...shall be operated exclusively for scientific, literary, and educational purposes...conduct laboratories, engage in scientific research, and distribute and disseminate information resulting from research." GTRC is an IRS section 501(c)(3) not-for-profit organization and serves as the contracting agency for all of the sponsored research activities at Georgia Tech. It also licenses all intellectual property (patents, software, trade secrets, etc.) created at Georgia Tech. Additionally, GTRC assists Georgia Tech in obtaining quality research space, enters into long-term leases for specialized research equipment, and conducts other research support programs as requested by the Institute. All funds collected by GTRC are used to support various Georgia Tech research programs requested by the Institute and as approved by the twelve-member board of trustees. GTRC is located on campus at 505 Tenth Street.

- GTRC Website (http://www.gtrc.gatech.edu)
- Office of Sponsored Programs (http://www.osp.gatech.edu)

Georgia Tech Research Institute

The Georgia Tech Research Institute (GTRI) is one of the world’s leading applied research and development organizations. GTRI’s world-class engineers and scientists solve some of the toughest problems facing government and industry across the nation and around the globe. For more than seventy-seven years GTRI has been uniquely positioned within the Georgia Institute of Technology, one of America’s top research universities.

GTRI is over 1,600 people strong, including some of the world’s top scientists and engineers who conduct more than $248 million in sponsored research each year. Many of GTRI’s experts are recognized worldwide as leaders in a vast array of research domains. GTRI’s core research areas include complex and agile systems engineering, sensor design and integration, information management and cybersecurity, and defense technology development.

Chartered by the Georgia legislature in 1919 and activated in 1934, the GTRI mission is to serve the university, the state, the nation, and the world by maturing selected technologies and developing innovative engineering solutions to important and challenging problems of society.

GTRI’s employees work in eight research laboratories and support units, that are housed on campus, at the Cobb County Research Facility, and in Huntsville, Alabama. GTRI also has field offices located at:

- Huntsville, Alabama;
- Tucson, Arizona;
- San Diego, California;
- Panama City, Florida;
- Orlando, Florida;
- Warner Robins, Georgia;
- Pearl City, Hawaii;
- Aberdeen, Maryland;
- Dayton, Ohio;
- San Antonio, Texas;
- Hampton Roads, Virginia;
- Washington, D.C.; and
- Quantico, Virginia.

One of GTRI’s goals is to support economic and technological development in Georgia. GTRI promotes economic growth in the state and the southeast through mutual programs with the Georgia Tech Enterprise Innovation Institute. GTRI operates strong technology transfer programs and GTRI researchers teach more than half of all courses offered through Georgia Tech’s Distance Learning and Professional Education program. The newest offering is a Professional Master’s Degree in Applied Systems Engineering, which was developed jointly by GTRI and the Georgia Tech College of Engineering. GTRI is also home to the state’s Agricultural Research Technology Program, which conducts research and technology transfer for the poultry industry, one of Georgia’s leading industries and employers.

For additional information, contact the

Office of the Vice President and Director
GTRI
250 14th Street
Atlanta, Georgia 30332-0801
or call 404.407.7400, or visit www.gtri.gatech.edu (http://www.gtri.gatech.edu).

Joint CNRS Research Laboratory

As the result of a strategic alliance between the Georgia Institute of Technology and the French Centre National de la Recherche Scientifique (CNRS), a joint research laboratory, GT-CNRS UMI 2958 was established at Georgia Tech-Lorraine in March of 2006. The laboratory conducts a unique transatlantic collaborative program of research in secure networks and smart materials. Research faculty and graduate students from Georgia Tech, French universities, and other CNRS laboratories work on joint research projects sponsored by industry and by local and national governments.

More information is available by visiting the CNRS web site (http://lorraine.gatech.edu/researchmain) or by contacting Dr. Abdallah Ougazzaden, Director UMI 2958, at +33 387.20.3939.

- Georgia Tech-Lorraine (http://lorraine.gatech.edu)

Logistics Innovation Centers

Due to an increasing need for the comprehensive examination of trade-chains and in light of the success of the Supply Chain and Logistics Institute (https://www.scl.gatech.edu) in partnering with the National University of Singapore and various agencies of the government of Singapore, a global network of Trade-chain Innovation & Production (TIP) Centers has developed. This network of centers enables a comprehensive program focused on (1) developing insights, strategies,
and methodologies to improve the productivity of existing trade-chains, (2) promoting innovation for identifying and enabling new trade-chain opportunities, and (3) providing education related to trade-chain infrastructure, innovation, and productivity.

- Georgia Tech Panama Logistics Innovation and Research Center (http://www.panama.gatech.edu/en)
- Georgia Tech Costa Rica Center for Productivity (http://www.tip.gatech.edu/en)
- Trade and Logistics Innovation Center of Mexico (http://www.ciltec.com.mx/en)
- The Logistics Institute - Asia Pacific (http://www.tliap.nus.edu.sg)

Oak Ridge Associated Universities

Since 1946, students and faculty of the Georgia Institute of Technology have benefited from its membership in Oak Ridge Associated Universities (ORAU). ORAU is a consortium of ninety-one colleges and universities and a contractor for the United States Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country, to keep its members informed about opportunities for fellowship, scholarship, and research appointments; and to organize research alliances among its members.

Through the Oak Ridge Institute for Science and Education (ORISE), the DOE facility that ORAU operates, undergraduates, graduates, postgraduates, and faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines, including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry, and mathematics. Appointment and program length range from one month to four years. Many of these programs are especially designed to increase the numbers of underrepresented minority students pursuing degrees in science- and engineering-related disciplines. A comprehensive listing of these programs and other opportunities, their disciplines, and details on locations and benefits can be found in the ORISE Catalog of Education and Training Programs, which is available at www.orau.gov/orise/educ.htm, or by calling either of the contacts below.

ORAU’s Office of Partnership Development seeks opportunities for partnerships and alliances among ORAU’s members, private industry, and major federal facilities. Activities include faculty development programs, such as the Ralph E. Powe Junior Faculty Enhancement Awards, the Visiting Industrial Scholars Program, consortium funding initiatives, faculty research and support programs, as well as services to chief research officers. For more information about ORAU and its programs, contact:

Charles L. Liotta
Vice Provost for Research and Dean of Graduate Studies
ORAU Councilor for Georgia Institute of Technology

Monnie E. Champion
ORAU Corporate Secretary
865.576.3306

- Oak Ridge Associated Universities (http://www.orau.org)

Skidaway Institute of Oceanography

Located on Skidaway Island near Savannah, Georgia, the Skidaway Institute of Oceanography (SkIO) provides a complex of coastal- and ocean-related educational and research opportunities. School of Biology faculty have laboratory facilities at the Institute. Many SkIO faculty hold adjunct appointments with Georgia Tech schools, including Civil and Environmental Engineering, Earth and Atmospheric Sciences, and Biology, and actively participate in graduate research and education. SkIO maintains small boats for local studies and the 92-foot R/V Savannah for conducting ocean research. Other unique coastal research facilities include the Bioremediation and Environmental Research Mesocosms (BERM) facility, the Saltmarsh Ecosystem Research Facility (SERF), a large recirculating flume, and the SkIO library, which is the largest in the state devoted almost exclusively to marine sciences. Areas of faculty expertise at SkIO include chemical, physical, and biological oceanography, marine ecology, and marine geology. Visitor and graduate student housing is available on site, providing convenient access to these facilities.

- Skidaway Institute of Oceanography (SkIO) (http://www.skio.uga.edu)
- School of Biology (http://www.biology.gatech.edu)

VentureLab

The Georgia Tech VentureLab program helps faculty members and students to commercialize technology developed as part of the Institute’s research programs. VentureLab evaluates the commercial potential of innovations and matches faculty with experienced entrepreneurs who can help form new ventures.

More details are available on the VentureLab web site (http://venturelab.gatech.edu).

- Blog (http://venturelab.gatech.edu/our-blog)
- Programs (http://venturelab.gatech.edu/educate)
- Portfolio (http://venturelab.gatech.edu/our-portfolio)
- People (http://venturelab.gatech.edu/our-people)

Special Academic Programs

- Academic Common Market (p. 82)
- BS/MS Degree Programs (p. 82)
- Center for Teaching and Learning (CTL) (p. 82)
- Experiential Education (p. 83)
- Georgia Tech-Lorraine (p. 84)
- Joint Enrollment Program for High School Students (p. 84)
- Learning Support Policies (p. 84)
- Living Learning Communities (p. 85)
- Preprofessional Programs (p. 85)
- President’s Scholarship Program (p. 85)
- ROTC (p. 85)
- Summer Language Programs (p. 86)
- The International Plan (p. 86)
- Transfer Programs (p. 89)
- Undergraduate Research Opportunities Program (p. 90)
Academic Common Market

Undergraduate Programs
At the undergraduate level, Georgia Tech has withdrawn its programs from the Academic Common Market (ACM). This policy went into effect in the Summer 2011 semester.

Graduate Programs
At the graduate level only, Georgia Tech participates in the Academic Common Market (ACM), which is a program managed by the Southern Regional Education Board. ACM is an interstate agreement for sharing educational programs and facilities. It allows students to participate in selected programs not offered in their home states without having to pay out-of-state tuition charges.

The main purpose of the Academic Common Market is to assist states in offering together what they cannot offer alone. Residents of the participating states who qualify for admission and gain the approval of their state coordinators may enroll on an in-state tuition basis. Programs are added to and removed from the Market on an annual basis in order to reflect the changing needs of participating states. The State of Georgia currently makes program changes once annually during the spring.

These states currently participate: Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.

- Southern Regional Education Board (http://www.sreb.org/page/1304/academic_common_market.html)

Bachelor of Science and Master of Science Degree Options (BS/MS Option)
Many schools at Georgia Tech offer BS/MS degree options that, like the Graduate Course Option, allow eligible students to use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees. The BS/MS options typically include research and mentoring components and have their own GPA requirements.

- Aerospace Engineering (http://catalog.gatech.edu/programs/aerospace-engineering-bs/#designatorsandoptionstext)
- Biology (p.)
- Biology and Bioinformatics (BSBIO/MSBINF) (p.)
- Computer Science (p.)
- Chemical & Biomolecular Engineering (http://catalog.gatech.edu/programs/chemical-biomolecular-bs/#designatorsandoptionstext)
- Civil Engineering (http://catalog.gatech.edu/programs/civil-engineering-bs/#designatorsandoptionstext)
- Computational Media & Digital Media (BSCM/MSDM) (http://catalog.gatech.edu/programs/computational-media-bs/#designatorsandoptionstext)
- Earth and Atmospheric Sciences (http://catalog.gatech.edu/programs/earth-atmospheric-science-bs/#designatorsandoptionstext)
- Economics (http://catalog.gatech.edu/programs/economics-bs/#designatorsandoptionstext)
- Electrical Engineering (http://catalog.gatech.edu/programs/electrical-engineering-bs/#designatorsandoptionstext)
- Computer Engineering (http://catalog.gatech.edu/programs/computer-engineering-bs/#designatorsandoptionstext)
- Environmental Engineering (http://catalog.gatech.edu/programs/environmental-engineering-bs/#designatorsandoptionstext)
- Industrial Engineering and Supply Chain Engineering (BSIE and MSSCE) (http://catalog.gatech.edu/programs/industrial-engineering-bs/#designatorsandoptionstext)
- International Affairs (http://catalog.gatech.edu/programs/international-affairs-bs/#designatorsandoptionstext)
- International Affairs and Modern Languages (BSIAML/MSINTA) (p.)
- Literature, Media, and Communication/Digital Media (BSLMC/MSDM) (http://catalog.gatech.edu/programs/literature-media-communication-bs/#designatorsandoptionstext)
- Materials Science Engineering (http://catalog.gatech.edu/programs/materials-science-engineering-bs-ms)
- Mechanical Engineering (http://catalog.gatech.edu/programs/mechanical-engineering-ms/#designatorsandoptionstext)
- Modern Languages (http://www.catalog.gatech.edu/shared/bsms-applied-languages-intercultural-studies)
- Nuclear and Radiological Engineering (http://catalog.gatech.edu/programs/nuclear-radiological-bs/#designatorsandoptionstext)
- Public Policy (http://catalog.gatech.edu/programs/public-policy-bs/#designatorsandoptionstext)
- Residence Life Seminar.

Center for Teaching and Learning (CTL)
The Center for Teaching and Learning (CTL) was founded in 1986 with a mission to lead Georgia Tech to a teaching and learning standard of excellence.

CTL’s undergraduate course offerings include:

- Undergraduate Teaching Assistant Preparation,
- Fundamentals of Peer Tutoring, and
- Residence Life Seminar.

CTL offers a graduate-level course in Graduate Teaching Assistant preparation and courses to prepare graduate students for faculty positions.

- Graduate Teaching Assistant Preparation,
- Fundamentals of Teaching and Learning in Higher Education,
- Course Design for Higher Education,
- Teaching Practicum in Higher Education, and
- Teaching Immersion in Higher Education.

For international graduate students and teaching assistants who want to improve their English communication skills, CTL offers courses in conjunction with the Georgia Tech Language Institute.

- Communication Skills for International TAs,
- Academic Writing for International Graduate Students,
- Oral Communication for International Graduate Students, and
- Presentation Skills for International Students.
Courses offered by the Center for Teaching and Learning (CTL) can be viewed in the Course Catalog (https://oscar.gatech.edu/pls/bprod/bwckctlg.p_disp_dyn_ctlg).

Experiential Education

- Center for Career Discovery and Development (p. 83)
- Graduate Cooperative Plan (p. 83)
- Paid and Unpaid Internships (p. 83)

Center for Career Discovery and Development

Georgia Tech believes that obtaining relevant, academically related experience outside of the classroom is an integral part of the educational process. The Center for Career Discovery and Development ("C2D2") offers opportunities to obtain such experience through cooperative education and internships.

The Undergraduate Cooperative Plan (Co-op) has been offered at Georgia Tech since 1912. It offers students the opportunity to integrate practical experience with theory learned in the classroom. More than 600 students participate each semester, working full time on alternate semesters, for a total of three semesters, for employers throughout the United States and the world. Accredited by the Accreditation Council for Cooperative Education, it is the largest optional co-op program in the country and one of the highest ranked programs among public universities.

The Undergraduate Co-op Plan is available for students in all majors with the exception of architecture and building construction. Co-op students remain on the school rolls while on work periods by registering for the appropriate co-op courses. The Graduate Co-op Program is described in greater detail in another section in this catalog.

The work experience received is a valuable asset to graduates starting out in their chosen professions. Neither college laboratory experience nor employment during vacations can take the place of organized co-op training. The plan provides, to a substantial degree, the experience most companies require of their employees before promoting them to positions of higher responsibility. Work experience may also assist students who are undecided about their future plans in determining early in their college careers whether they wish to continue in a particular field.

Moreover, daily contact with diverse groups among their fellow employees offers students practical insight into sociology, psychology, economics, and ethics that no textbook can supply. Finally, students receive compensation for their services from the employer. Typically, co-op students can save enough from their earnings to pay for a substantial part of their school expenses.

Internships provide practical experience for students who choose not to follow the Undergraduate Co-op Plan. Internships, the majority of which are paid positions, are an extremely viable way to obtain out-of-classroom experience. Similar to cooperative education, the jobs and the students’ performance are monitored by the Center for Career Discovery and Development to ensure maximum benefit by all parties.

Students in all majors may participate in the internship program and may work any term during the academic year. There are also part-time internships available for those who wish to work while attending classes.

The Center for Career Discovery and Development also works with students to customize their experiential education path, with the option to combine co-op and internship experiences.

For more information on any programs offered through the Center for Career Discovery and Development, visit our website at careerdiscovey.gatech.edu (http://www.careerdiscovey.gatech.edu) or call C2D2 at 404-894-3320.

Graduate Cooperative Plan

The Graduate Cooperative Education Program provides master's and doctoral degree students majoring in any discipline at Georgia Tech the opportunity to supplement their graduate studies with specialized work experience. Graduate co-op students gain experience with top employers, earn competitive salaries to help defray educational expenses, and expand post-graduation career options while on semester-long work assignments.

The Graduate Co-op Program is available to enrolled Georgia Tech students and is based upon academic achievement. Internships related to a student’s field of study can receive academic approval as a graduate cooperative work assignment allowing students to work summer, fall, or spring semesters, full-time or part-time.

There are no fees associated with the Graduate Co-op Program and students are provided full-time enrollment status through their registration in a Graduate Co-op course. This permits students to retain all privileges of full-time enrolled students while on work assignments.

To participate in the Graduate Co-op Program, a student must

- have a 3.0 or better GPA,
- complete an online orientation session, and
- obtain a program participation letter from her or his major school.

Students normally identify their own job opportunities, but the Graduate Co-op Office provides access to a job posting database and can assist with career guidance, job searches, resumes, and cover letters. Graduate students accepting a graduate co-op/internship opportunity should see a Graduate Co-op Program advisor regarding offer letters, required academic approvals, registration permits, and any necessary work authorizations. Enrollment in a 6000-level co-op course, a noncredit/no-cost audit course with no student or Institute fees attached, is also required.

International students are eligible to participate, but F-1 visa holders must be enrolled for a minimum of two full-time semesters, excluding Summer sessions, before being able to work off campus. All international students on F-1, J-1, and other appropriate visas must work with the Office of International Education (http://www.oie.gatech.edu) to secure work authorization documentation.

For more information on the Georgia Tech Graduate Co-op and Internship Program, visit: www.gradcoop.gatech.edu (http://www.gradcoop.gatech.edu).

Paid and Unpaid Internships

In addition to the internship and cooperative programs administered through the Center for Career Discovery and Development, students may participate in internships through the academic units. These internships are either paid or unpaid.
Students who receive pay for the internship may not also receive academic credit for it. Students who receive academic credit for an internship may not also receive pay for it. There may be rare exceptions to this policy, such as the legislative internship that is part of the program in Public Policy. Exceptions have to be approved by the curriculum committee.

When students request enrollment in a departmental internship, they must (for credit or pay) complete a departmental approval form. Departmental internship sections are set up by permit only, and the student is permitted for the appropriate section to register for it.

Academic units are strongly encouraged to use the following standard numbering system for internships that they offer for pay or credit. Schools that wish to add an internship course will need to submit a new course proposal form to the curriculum committee and request course numbers under their subject codes.

Course Numbering

Freshmen and Sophomores

XXXX 2694: Undergraduate Internship for Pay (Audit only)

XXXX 2695: Undergraduate Internship for Credit

Juniors and Seniors

XXXX 4694: Undergraduate Internship for Pay (Audit only)

XXXX 4695: Undergraduate Internship for Credit

Contact Us

Georgia Tech-Lorraine

Georgia Tech-Lorraine (GTL) was established as the Institute’s first international campus in 1990 in Metz, France, a city recently named by the New York Times (http://www.nytimes.com/interactive/2009/01/11/travel/20090111_DESTINATIONS.html) as one of the top 44 places to see in the world. Centrally located in eastern France along the Luxembourg and German borders, GTL is less than 90 minutes by train from Paris. A highly innovative institution offering year-round undergraduate, Masters and PhD programs, GTL is also home to a strong sponsored research program that fosters the flow of new ideas, creates new opportunities, and develops highly valuable qualities in our students, such as global leadership and innovative thinking.

GTL affords students the opportunity to pursue their Georgia Tech degree while being immersed in the rich culture of Europe. At GTL, students from around the world get the opportunity to study in the heart of Europe and take courses taught in English by Georgia Tech faculty. As a faculty-led program, Georgia Tech-Lorraine offers a balance of engineering, computer science, humanities, French language, management, and social science courses from the Georgia Tech course catalog. Courses are specifically designed to fulfill the student’s major and International Plan requirements and students may also take advantage of undergraduate research and international internship opportunities. GTL also provides tremendous value. Out-of-state students save, on average, several thousand dollars in tuition when studying at GTL versus studying on the Atlanta campus and in-state students may take advantage of the HOPE scholarship to study at GTL.

Georgia Tech-Lorraine offers an extensive graduate program encompassing a broad range of study in the areas of mechanical engineering, electrical and computer engineering, as well as computer science. Programs leading to the Master’s or PhD degree from the Georgia Tech are available. GTL is home to the Unité Mixte Internationale GT-CNRS UMI 2958, a joint research laboratory with the Centre National de la Recherche Scientifique, the largest scientifique research organization in Europe. The UMI has state-of-the-art research facilities and a well-funded research program. Cooperative agreements with local partner institutions enable GTL graduate students to pursue double degrees in engineering and sciences in addition to degrees from Georgia Tech. Upon successful completion of these highly innovative and integrated programs, students are awarded a Master’s degree from the Georgia Tech and a Master’s degree from a partner institution.

For more information, visit the Georgia Tech-Lorraine website (http://lorraine.gatech.edu) or call 404.385.1865.

Dual Enrollment Program for High School Students

Georgia Tech partners with high school and home study programs to enroll students in advanced courses. Our program intends to enrich the high school experience, not replace it. Students who take classes at Georgia Tech usually continue taking classes and participating in activities and organizations in their high school communities.

Admission for Dual Enrollment is available for fall semester only. If you are admitted for fall semester, you may enroll in spring semester courses pending satisfactory academic performance in the fall. Summer courses are not available.

The admission process is selective and a prospective student should have a profile like students in the top quarter of our first-year class to be competitive. Visit the Office of Undergraduate Admission website (http://admission.gatech.edu/dual-enrollment) for more details.

Learning Support Policies

The Office of the Vice Provost for Undergraduate Education (OUE) administers the Learning Support Program. Co-requisite support courses (for non-academic credit) are offered for College Algebra, MATH 1111, and English Composition I, ENGL 1101, for students who need additional preparation to be successful in these and related courses.

Georgia Tech uses benchmark scores earned via the SAT (Critical Reading and Math) or ACT (English and Math) to determine placement in Learning Support. Students who score below a 24 on the SAT Reading Test (or 17 on the ACT English) will be required to complete the learning support program for English. Students who score below a 26.5 on the SAT Math Test (or 21 on the ACT Math) will be required to complete the learning support program for math. Students may be required to complete the learning support program for both English and math. Georgia Tech will consider the higher of the SAT and ACT scores when determining learning support placement.

Students who are required by the Institute to take courses in the Learning Support Program will be notified in writing.

Students placing into learning support for English will be required to take ENGL 0999, a three-hour (non-academic credit) course designed to reinforce critical reading and communications concepts concurrently with ENGL 1101, a three-hour course.

Students placing into learning support for math will be required to take MATH 0999, a two-hour (non-academic credit) course designed to...
reinforce basic mathematical concepts concurrently with MATH 1111, College Algebra, a four-hour course.

MATH 0999 and ENGL 0999 are not college level classes and cannot be applied to degree requirements, including free electives.

Students will have completed their learning support requirement when they have passed the college level course ENGL 1101 or MATH 1111 with a grade of D or better. Students who do not pass ENGL 1101 or MATH 1111 will be required to take the co-requisite class ENGL 0999 or MATH 0999 as well regardless of the grade they received in this course. Students will continue to take the combination of courses until they have passed the college level course, ENGL 1101 or MATH 1111. There is no limit to the number of times these classes and the corresponding co-requisite may be attempted.

The learning support requirements program should be completed as soon as possible after matriculation to Georgia Tech. Students should work with advisors to determine the best timing for these requirements.

Contact your advisor for further information and assistance.

Living Learning Communities
Living Learning Communities are an academic strategy that link academics to on-campus living. Each Georgia Tech community is an integrated experience that promotes interactions between faculty and students, fosters collaboration among students, enhances campus and civic engagement, and eases both the academic and social transition to college.

As an entering first-year student, students admitted to Georgia Tech are invited to apply to:

- Explore Living Learning Community
- Global Leadership Living Learning Community
- Grand Challenges Living Learning Community
- Honors Program Living Learning Community
- Impact Living Learning Community
- iGniTe Summer Programs Living Learning Community (Summer)

While each of these communities offers a different focus, they all have required academic coursework, a first year living requirement, and the option to continue living with members of the community in nearby apartments as upper-level students.

Rising second-year students are invited to apply to:

- Women, Science, and Technology (WST) Living Learning Community
- International House (I-House) Living Learning Community

WST and I-House require students to participate in community activities and events and offer optional coursework.

http://enrichment.gatech.edu/llc

Preprofessional Programs
Georgia Tech offers Pre-professional programs and advising in the following areas:

- Pre-Health (http://www.prehealth.gatech.edu) (includes all health professions, including pre-med, pre-dentistry, pre-pharmacy, and more)
- Pre-law (http://www.prelaw.gatech.edu)
- Pre-teaching (http://www.preteaching.gatech.edu) (K-12)

Students can look these advisors up on the Advising Web page (http://www.advising.gatech.edu).

Professional schools typically admit students with strong academic credentials, a well-balanced education, good communication skills, and a broad range of experiences. With the appropriate selection of elective courses, most majors at Georgia Tech provide suitable preparation for professional schools in any area.

The best choice of a major is usually the one in which the student has the greatest inherent interest. No specific major offers an obvious competitive advantage in assuring admission to professional schools.

Georgia Tech has elected not to have majors designated as pre-medicine, pre-dentistry, or pre-law. This approach to pre-professional education has two major advantages. First, students who elect not to enter professional school upon graduation are prepared for alternative careers immediately. Second, students who do continue on to professional school have backgrounds that often provide them with unique opportunities within their selected professions. Examples include medical research, development of medical devices and apparatus, patent law, or the legal aspects of design and construction.

President's Scholarship Program
The Stamps President’s Scholars Program is Georgia Tech’s premier merit-based scholarship. Recipients are selected from the top applicants for admission to Georgia Tech based on demonstrated excellence in scholarship, leadership, progress, and service as described on the Stamps President’s Scholars Program (http://stamppsp.gatech.edu) web page. From the applicant pool, students selected as semi-finalists submit a one-page resume before being interviewed. The top semi-finalists are named finalists and invited, with their parents, to campus for additional interviews and an information weekend in March.

Transfer students are not eligible for the four-year award. Recipients must be US Citizens, US Permanent Residents, or UK Citizens.

Each year, 40 incoming first-year students receive the Stamps President’s Scholarship, which is renewable for up to four academic years or eight semesters, contingent upon honors-level performance and continued leadership development as evidenced by involvement in program, campus, and community activities. Scholarships are “full ride,” including tuition and mandatory fees, room and board, books, and personal expenses. See the website below for more information on stipends.

To ensure consideration, a student must apply as an incoming first-year student, and submit the Georgia Tech Application for First-Year Admission, along with the application fee by the early action deadline of October 15th.

More information:

- Stamps President’s Scholars Program (http://stamppsp.gatech.edu)

ROTC
Georgia Tech offers three voluntary ROTC programs: Army, Navy, and Air Force.
Depending on the student’s major, Basic and Advanced ROTC classes count as a portion of elective credit. (Students may apply a maximum of 4 credit hours in Basic ROTC courses and six credit hours in Advanced ROTC courses toward meeting the elective requirements for any degree at the discretion of the school.) Consult specific colleges to determine the amount of hours that will count toward a degree. After earning a baccalaureate degree and completing the Advanced ROTC courses for any of the three services, a student may receive a commission as an officer in either the reserve or active forces.

Students accepted into the program earn more than just money for a college degree. Cadets and midshipmen receive training and experience in the one quality which is always in great demand: Leadership.

Students may apply a maximum of 4 credit hours in basic (1000-2000 level courses) ROTC courses and six hours in advanced (3000-4000 level) ROTC courses toward meeting the free elective requirements for any degree. Students should begin taking basic ROTC courses during the first term they are enrolled. For further information, see individual curricula for the schools. Please note some departments may have stricter guidelines regarding ROTC courses.

Airforce ROTC Information (http://www.catalog.gatech.edu/colleges/cola/air-force-aerospace-studies)

Army ROTC Information (http://www.catalog.gatech.edu/colleges/cola/military-science-army-rotc)

Navy ROTC Information (http://www.catalog.gatech.edu/colleges/cola/naval-science)

ROTC Credit (http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/rotc-credit)

Air Force ROTC Website (http://www.afrotc.gatech.edu)

Army ROTC Website (http://www.armyrotc.gatech.edu)

Navy ROTC Website (http://nrotc.gatech.edu)

Summer Language Programs

Languages for Business and Technology (LBAT)

The School of Modern Languages offers special summer immersion programs in the countries/regions related to our areas of language study: Arabic, Chinese, French, German, Japanese, Korean, Russian, and Spanish. These intensive programs in Languages for Business and Technology (LBAT) consist of study abroad in which classroom lessons in business, culture, and technology are combined with fieldwork, cultural events, excursions, and visits to area businesses, government agencies, and social concerns, all conducted in the target language. The professional visits provide students with firsthand experience of business life, the protocols and strategies of business and technology interactions, and a heightened awareness of the current economic and social issues facing the host country. The LBAT experience offers a unique opportunity for rapid growth in proficiency, for building a deeper appreciation for the cultures and lifestyle patterns of other peoples, and for making lifelong social and professional contacts.

Depending on the particular program, students will spend 6-8 weeks abroad and earn 9-15 semester hours at the 3000 level (with some programs including offerings at the 1000 or 2000 level); these credits often can count toward a certificate, a minor, or the joint majors offered by the School of Modern Languages. Program costs vary according to the country visited and the length of the program. The HOPE scholarship applies. See the School of Modern Languages’ “LBAT Programs (http://www.modlangs.gatech.edu/study-abroad)” web page for more information.

The International Plan

In today’s economy, employers are expecting to hire college graduates with international experience, global perspectives, intercultural communication skills, and the ability to work in diverse teams. In response to this need, Georgia Tech developed the International Plan, a globally-focused degree designation.

The International Plan is a challenging undergraduate academic program aimed at developing a student’s global competence within the context of his or her major. It is an optional degree-long program that integrates overseas experiences, language proficiency, and globally-focused coursework into any participating major at Georgia Tech. It builds on existing undergraduate degree requirements and international opportunities and is intended to be completed within the normal time frame of a four-year undergraduate degree. Completion of the International Plan is recognized by a designation on the student’s diploma indicating a commitment to developing global competence as part of the degree, e.g., “B.S. in Electrical Engineering: International Plan.”

A defining feature of the International Plan is coherence, which refers to the relationship between the destination(s) chosen to complete the international experiences, the language chosen to satisfy the language requirement, and the appropriateness to the student’s discipline. While some students’ plans are inherently coherent though language and culture, other students may choose to structure their plan with an intellectually coherent approach. The program is designed to give students a deep understanding of another culture so that they develop strong intercultural skills that will help them function effectively in a global environment. Students are encouraged to think strategically about their academic and international experience choices with the guidance of their advisors.

In order to earn the International Plan designation in a participating major, students will complete the following components:

1. Globally-focused coursework: complete three courses, to include one from each of the following categories:
 a. International relations
 b. A course about the country or region of the overseas experience
 c. Global economics

2. International Experience: Two terms abroad (at least twenty-six weeks) engaged in any combination of study abroad, research, and/or internship. International Experiences for the International Plan must be approved by the International Plan staff as well as the major IP faculty representative.

3. Second language proficiency: At a minimum, students in the program are expected to demonstrate proficiency equivalent to two years of college-level language study. An optional Language Proficiency Distinction is available to students who demonstrate more advanced oral proficiency skills.
Georgia Institute of Technology

4. Culminating Course: A capstone course in the major designed to tie
the international studies and experiences together with the student's
discipline.
5. Maintain a cumulative GPA of at least 2.7

COA 3115

X

COA 3116

X

FREN 3001

X

FREN 3002

X

For additional information about the International Plan visit https://
oie.gatech.edu/content/international-plan.

FREN 3004

X

FREN 3011

X

International Relations - International
Plan Electives

FREN 3012

X

FREN 3061

X

Course

HUM

SS

HTS 2037

X

HTS 2062

X

HTS 2100

X

HTS 3012

X

HTS 3055

X

HTS 3066

X

HTS 3067

X

INTA 1110

X

INTA 2030

X

INTA 2040

X

INTA 2042

X

INTA 2100

X

INTA 2120

X

INTA 2210

X

INTA 3031

X

INTA 3044

X

INTA 3050

X

INTA 3102

X

INTA 3103

X

INTA 3773

X

INTA 4050

X

INTA 4060

X

INTA 4241

X

PUBP 3600

X

Ethics

X

X

HUM

ARBC 2301

X

ARBC 3691

X

ARBC 3692

X

ARBC 3693

X

ARCH 4113

X

SS

ARCH 4123
ARCH 4125
ARCH 4126

X

ARCH 4128

X

CHIN 3692

X

CHIN 3696
CHIN 4006

X

CHIN 4500

X

X

FREN 3691

X

FREN 3692

X

FREN 3693

X

FREN 3694

X

FREN 4061

X

FREN 4062

X

FREN 4101

X

FREN 4102

X

FREN 4241

X

FREN 4242

X

FREN 4500

X

GRMN 3071

X

GRMN 3695

X

GRMN 3696

X

GRMN 3697

X

GRMN 4010

X

GRMN 4012

X

GRMN 4023

x

GRMN 4024

X

GRMN 4025

X

GRMN 4026

X

GRMN 4027
GRMN 4061
X

Country or Regional - International Plan
Electives
Course

FREN 3062

87

Ethics

X

GRMN 4065

X

GRMN 4500

X

GRMN 4692
GRMN 4694

X

HTS 1031

X

HTS 2036

X

HTS 2040

X

HTS 2041

X

HTS 2051

X

HTS 2061

X

HTS 3030

X

HTS 3031

X

HTS 3032

X

HTS 3033

X

HTS 3035

X

HTS 3036

X

HTS 3038

X

HTS 3039

X

HTS 3041

X

HTS 3043

X

Georgia Institute of Technology

87


<table>
<thead>
<tr>
<th>Course</th>
<th>HUM</th>
<th>SS</th>
<th>Ethics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2101</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 4311</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 4350</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 4411</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Culminating Course - International Plan Capstone

The IP Capstone is commonly integrated into the major’s senior design/ seminar course. Be sure to enroll in the appropriate course and section for your major as listed below. See your major’s IP faculty representative for additional information and instructions.

<table>
<thead>
<tr>
<th>Major</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering</td>
<td>AE 4350/AE 4351 - IP or AE 4356/ AE 4357 - IP</td>
</tr>
<tr>
<td>Applied Languages and Intercultural Studies</td>
<td>CHIN 4500/FREN 4500/ GRMN 4500/JAPN 4500/ RUSS 4500/SPAN 4500</td>
</tr>
<tr>
<td>Architecture</td>
<td>ARCH 4012R</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>CHEM 4699 - IP</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>BMED 4600/BMED 4601 - IP</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>CEE 4090 - IP</td>
</tr>
<tr>
<td>Chemical and Biomolecular Engineering</td>
<td>CHBE 4520 - IP</td>
</tr>
<tr>
<td>Chemistry</td>
<td>CHEM 4699 - IP</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Option 1: CS 4901 - IP plus 4XXX (crs taken abroad) - IP section</td>
</tr>
<tr>
<td></td>
<td>Option 2: CS 4001 - IP or CS 4002 - IP</td>
</tr>
<tr>
<td></td>
<td>Option 3: CS 4911 - IP</td>
</tr>
<tr>
<td></td>
<td>Option 4: INTA 4500 (Global Citizenship section only; taught by Dr. Birchfield)</td>
</tr>
<tr>
<td>Computational Media</td>
<td>See IP Faculty Representative</td>
</tr>
<tr>
<td>Earth & Atmospheric Sciences</td>
<td>See IP Faculty Representative</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>ECE 4012 - IP</td>
</tr>
<tr>
<td>Economics</td>
<td>See IP Faculty Representative</td>
</tr>
<tr>
<td>Economics and International Affairs</td>
<td>See IP Faculty Representatives</td>
</tr>
<tr>
<td>Global Economics and Modern Languages</td>
<td>CHIN 4500/FREN 4500/ GRMN 4500/JAPN 4500/ RUSS 4500/SPAN 4500</td>
</tr>
<tr>
<td>History, Technology, and Society</td>
<td>HTS 4091</td>
</tr>
<tr>
<td>International Affairs</td>
<td>INTA 4500 - IP</td>
</tr>
</tbody>
</table>

International Affairs and Modern Languages

<table>
<thead>
<tr>
<th>Language</th>
<th>CHIN 4500/FREN 4500/ GRMN 4500/JAPN 4500/ RUSS 4500/SPAN 4500</th>
</tr>
</thead>
</table>

Industrial Design

| ID 4012 - IP |

Industrial and Systems

| ISYE 4106 - IP |

Literature, Media, and Communication

| LMC 4100/LMC 4200/LMC 4300/ LMC 4400/ or LMC 4500 - IP or LMC 4102 - IP |

Mechanical Engineering

| ME 4182 - IP or GT 4823 |

Business Administration

| MGT 4195 - IP |

Psychology

| See IP Faculty Representative |

Transfer Programs

Dual Degree Program

Under the Dual Degree Program, students attend the participating Dual Degree school for three years and then come to Georgia Tech for approximately two years. Students participating in the Dual Degree Program may seek a degree from any undergraduate degree-granting program in the College of Engineering. Upon completion of the program, the student receives a bachelor’s degree from the first school and a bachelor’s degree in one of the engineering disciplines at Georgia Tech.

Participating in the Dual Degree Program are many of the schools in the University System of Georgia, including Morehouse College, Spelman College, Clark Atlanta University, and other historically black colleges and universities (HBCU) and predominantly women’s colleges in the southeast. For additional information on either of these programs, contact the College of Engineering at Georgia Tech or the Regents’ Engineering Transfer Program (RETP) or Dual Degree coordinator at a participating RETP or Dual Degree institution.

Regents’ Engineering Transfer Program

The Regents’ Engineering Transfer Program (RETP) is a cooperative program between Georgia Tech and colleges in the University System of Georgia.

For the first two years, students in this program attend one of the participating institutions, where they take all of the mathematics and science and many of the engineering courses required in the first two years of the Georgia Tech engineering curricula. Upon successful completion of the RETP requirements at the RETP institution, students are admitted to Georgia Tech to work toward completion of a Bachelor of Science in Engineering degree.

By enrolling in RETP, students may attend a college close to home, thereby decreasing the cost of their education and easing the adjustment to college life. At the same time, RETP students enjoy many of the advantages of Tech students: they have equal access to engineering majors at Tech, they can participate in the co-op program, and they are invited to the Tech campus once a year for campus tours, information sessions, and meetings with advisors in their engineering majors.

RETP Information http://www.coe.gatech.edu/content/regents-engineering-transfer-program-retp

RETP Transfers - Admissions http://www.admission.gatech.edu/transfer/#RETP
Dual Degree Program

Under the Dual Degree Program, students attend the participating Dual Degree school for three years and then come to Georgia Tech for approximately two years. Students participating in the Dual Degree Program may seek a degree from any undergraduate degree-granting program in the College of Engineering. Upon completion of the program, the student receives a bachelor's degree from the first school and a bachelor's degree in one of the engineering disciplines at Georgia Tech.

Participating in the Dual Degree Program are many of the schools in the University System of Georgia, including Morehouse College, Spelman College, Clark Atlanta University, and other historically black colleges and universities (HBCU) and predominantly women's colleges in the southeast. For additional information on either of these programs, contact the College of Engineering at Georgia Tech or the Regents’ Engineering Transfer Program (RETP) or Dual Degree coordinator at a participating RETP or Dual Degree institution.

Regents' Engineering Transfer Program

The Regents' Engineering Transfer Program (RETP) is a cooperative program between Georgia Tech and colleges in the University System of Georgia.

For the first two years in this program, students attend one of the participating institutions, where they take all of the mathematics and science and many of the engineering courses required in the first two years of the Georgia Tech Engineering curricula. Upon successful completion of the RETP requirements at the partnering institution, students are admitted to Georgia Tech to work toward completion of a Bachelor of Science in Engineering degree.

By enrolling in RETP, students may attend a college close to home, thereby decreasing the cost of their education and easing the adjustment to college life. At the same time, RETP students enjoy many of the advantages of Georgia Tech students: they have equal access to engineering majors at Tech, they can participate in the co-op program, and they are invited to the Georgia Tech campus once a year for campus tours, information sessions, and meetings with advisors in their engineering majors.

More information:

- Regents' Engineering Transfer Program (RETP)
- Transfer Admission (http://admission.gatech.edu/transfer/#RETP)

Undergraduate Research Opportunities Program

Undergraduate research offers students a unique opportunity to apply knowledge in a meaningful, real-world context to solve problems and explore issues no one has ever addressed before. Students doing undergraduate research also have the chance to develop deeper relationships with faculty and graduate students and to add résumé items that will make them stand out to graduate schools and potential employers.

The Undergraduate Research Opportunities Program (UROP) facilitates research experiences for undergraduates across all disciplines. UROP creates initiatives to encourage students to participate in knowledge creation and research enterprise with Georgia Tech’s world-class faculty. Students may participate in laboratory, scientific, or computing research, or they may be involved in new discoveries in literature, social sciences, architecture, or business. Undergraduate students can participate in part-time or full-time research for course credit or pay. Opportunities are available Institute-wide, within specific colleges and schools, or in interdisciplinary settings.

Additional opportunities include the President’s Undergraduate Research Awards (PURA), the Research Option, spring symposia, workshops and training sessions promoting good research practices. Students may also reach out to the Undergraduate Research Ambassadors (http://urop.gatech.edu/content/undergraduate-research-ambassadors) regarding any of the UROP programs or for assistance in finding research opportunities at Georgia Tech. More information is available on the Undergraduate Research (http://urop.gatech.edu) webpage.

Georgia Tech strongly encourages students to explore research in practical ways. To this end, UROP and the Student Innovation (SI) program have worked together to provide support and leadership in the area of research and student innovation. SI assists students in finding practical applications for their work and promote the importance of moving research and innovation into society to solve the world’s problems. The InVenture Prize, facilitated by SI, is one of the largest invention competitions in the United States. It emboldens students with an entrepreneurial and inventive interest to apply their skills and see the world as endless opportunities. Student who participate in this program are provided with one-on-one mentors, coaching, and awards to encourage prototype development. More information is available at the Student Innovation website (http://innovation.cae.gatech.edu).

The Research Option

The Research Option offers students the opportunity for an in-depth, long-term research experience that culminates in a final paper or thesis. While the exact requirements for a research option vary by academic unit, students typically take the following steps:

1. Complete at least nine units of undergraduate research. At least six of the nine required hours should be on the same project. This research must be done with an approved Georgia Tech faculty member.
 a. Over at least two, preferably three, terms
 b. Research may be for either pay or credit (specific option plans differ by department).
 i. For research for-pay to count towards the Research Option, you must register for an audit-only class (2698 or 4698 in most but not all academic units).

2. Take the sequence of two one-hour courses:
 a. LMC 4701 (typically taken during the first or second term of research in order to help students complete their required proposal), and
 b. LMC 4702 (taken during the term in which the thesis is completed).

3. Write a research proposal and submit a signed copy by two faculty readers (one being the primary faculty mentor) to the UROP office. All proposals must be approved and submitted, at the latest, before the student takes LMC 4702 and their final term of research. We would prefer that you complete and submit the signed and approved proposal upon completion of LMC 4701.
4. Write an undergraduate thesis/report of research on their findings prior to graduation or upon completion of LMC 4702. This must be uploaded to the Georgia Tech online thesis database by the last day of finals of the students graduating semester.

5. Submit the Certification Form for their participating school into the Undergraduate Research Opportunities Program office prior to graduation. The forms may be found here (http://urop.gatech.edu/ro-schools). This form must be signed by two faculty readers (one being the primary faculty mentor), the undergraduate coordinator for the participating school and the student.

For more information on specific plans and a list of participating schools, visit the Research Option (http://urop.gatech.edu/research-option) web page.

Undergraduate Academics

• Bachelor's Degree Programs (p. 171)
• BS/MS Degree Programs (p. 91)
• Cooperative Agreements (p. 91)
• Core Curriculum (p. 92)
• Credit, Tests, and Scores (p. 102)
• New Sequence of Math Core Courses (p. 107)
• Undergraduate-Level Courses (p. 107)

BS/MS Degree Programs

Many schools at Georgia Tech offer BS/MS degree options that, like the Graduate Course Option, allow eligible students to use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees. The BS/MS options typically include research and mentoring components and have their own GPA requirements.

• Aerospace Engineering (http://catalog.gatech.edu/programs/aerospace-engineering-bs/#designatorsandoptionstext)
• Biology (p.)
• Biology and Bioinformatics (BSBIO/MSBINF) (p.)
• Computer Science (p.)
• Chemical & Biomolecular Engineering (http://catalog.gatech.edu/programs/chemical-biomolecular-bs/#designatorsandoptionstext)
• Civil Engineering (http://catalog.gatech.edu/programs/civil-engineering-bs/#designatorsandoptionstext)
• Computational Media & Digital Media (BSCM/MSDM) (http://catalog.gatech.edu/programs/computational-media-bs/#designatorsandoptionstext)
• Earth and Atmospheric Sciences (http://catalog.gatech.edu/programs/earth-atmospheric-science-bs/#designatorsandoptionstext)
• Economics (http://catalog.gatech.edu/programs/economics-bs/#designatorsandoptionstext)
• Economics and International Affairs (BSEIA/MSINTA)
• Electrical Engineering (http://catalog.gatech.edu/programs/electrical-engineering-bs/#designatorsoptionstext)
• Computer Engineering (http://catalog.gatech.edu/programs/computer-engineering-bs/#designatorsandoptionstext)
• Environmental Engineering (http://catalog.gatech.edu/programs/environmental-engineering-bs/#designatorsandoptionstext)
• Industrial Engineering and Supply Chain Engineering (BSIE and MSSCE) (http://catalog.gatech.edu/programs/industrial-engineering-bs/#designatorsandoptionstext)
• International Affairs (http://catalog.gatech.edu/programs/international-affairs-bs/#designatorsandoptionstext)
• International Affairs and Modern Languages (BSIAML/MSINTA) (p.)
• Literature, Media, and Communication/Digital Media (BSLMC/MSDM) (http://catalog.gatech.edu/programs/literature-media-communication-bs/#designatorsandoptionstext)
• Materials Science Engineering (http://catalog.gatech.edu/programs/materials-science-engineering-bs-ms)
• Mechanical Engineering (http://catalog.gatech.edu/programs/mechanical-engineering-ms/#designatorsandoptionstext)
• Modern Languages (http://www.catalog.gatech.edu/shared/bsms-applied-languages-intercultural-studies)
• Nuclear and Radiological Engineering (http://catalog.gatech.edu/programs/nuclear-radiological-bs/#designatorsandoptionstext)
• Public Policy (http://catalog.gatech.edu/programs/public-policy-bs/#designatorsandoptionstext)

Cooperative Agreements

Georgia Institute of Technology and Emory University - Bachelor of Science/Juris Master's (BS-JM)

For more information on the cooperative agreement between the Georgia Institute of Technology and Emory University to offer a Bachelor of Science/Juris Master's (BS-JM), please see the link below.

http://law.emory.edu/academics/jm-degree-program/jm-dual-degrees.html

Georgia Institute of Technology and Georgia State University - Bachelor of Science/Master of Teaching program (BS-MAT)

For more information on the cooperative agreement between the Georgia Institute of Technology and Georgia State University to offer a Bachelor of Science/Master of Teaching program (BS-MAT), please see the link below.

http://mse.education.gsu.edu/programs/bachelors-and-non-degree-programs/georgiatech-b-s-m-a-t-collaboration/
Core Curriculum

Important Note:

On March 9, 2016, the Board of Regents of the University System of Georgia approved a revision to system-wide policies related to the Core Curriculum.

1. Institutions in the University System of Georgia will not be required to identify or track overlay requirements related to US Perspectives, Global Perspectives, and Critical Thinking.
2. Students will not be required to complete the overlay requirements from this point forward.
3. Students who are scheduled to graduate in the Spring 2016 Semester and who have not completed the overlays may graduate without fulfilling this requirement.

University System of Georgia Core Curriculum Requirements

The following describe the core requirements, effective in Fall 2011 and reflecting an important change in March 2016.

The courses that can be used to satisfy the various area requirements are subject to change, and will be updated as soon as possible. Students and advisors are encouraged to check this section of the Catalog regularly to obtain the most current information.

Any courses completed that were listed in prior catalogs as satisfying the Humanities/Social Science Requirement and were completed while that edition of the Catalog was in effect may also be used to satisfy that requirement.

More information about the University System of Georgia’s Core Curriculum policies is available on the Academics & Student Affairs Handbook (http://www.usg.edu/academic_affairs_handbook/section2/C738) on the USG website.

Core Curriculum Requirements:

- Constitution and History (p. 92)
- Core Area A1 (p. 92)
- Core Area A2 (p. 93)
- Core Area B (p. 93)
- Core Area C (p. 93)
- Core Area D (p. 97)
- Core Area E (p. 97)
- Core Area F (p. 101)
- Ethics (p. 101)
- Global Perspectives (p. 101)*
- U.S. Perspectives (p. 102)*
- Wellness (p. 102)

Constitution and History

Important Note:

On March 9, 2016, the Board of Regents of the University System of Georgia approved a revision to system-wide policies related to the Core Curriculum.

1. Institutions in the University System of Georgia will not be required to identify or track overlay requirements related to US Perspectives, Global Perspectives, and Critical Thinking.
2. Students will not be required to complete the overlay requirements from this point forward.
3. Students who are scheduled to graduate in the Spring 2016 Semester and who have not completed the overlays may graduate without fulfilling this requirement.

Constitution and History Requirements

The Georgia law, as amended March 4, 1953, requires that before receiving an undergraduate degree all students pass an examination or a comparable course in United States and Georgia history/constitution. Courses that fulfill the United States and Georgia History/Constitution Requirement are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses that carry the Social Science (p. 97) attribute and that appear on the list above can serve both purposes.

Core Area A1

Core Area A1: Communication Outcomes

Area A1 is satisfied by completion of 6 credit hours as follows.

Required for all majors:

Effective Fall 2010, for freshmen entering the USG system Fall 2010, students who have earned 60 hours but have not completed Area A1 must enroll in the next course necessary to make progress toward completing this Area in every semester in which they take classes.

Effective Fall 2011, this hour limit is lowered to 45 hours for freshmen entering the USG system Fall 2011, Spring 2012, and Summer 2012.

Effective Fall 2012, the hour limit is lowered to 30 hours for freshmen entering the USG system Fall 2012 and thereafter.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
</tbody>
</table>
Core Area A2

Core Area A2: Quantitative Outcomes

Required of all students majoring in the College of Architecture, College of Computing, College of Engineering, College of Sciences:

Area A2 is satisfied by completion of 4 semester hours as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Required of all other majors\(^1\). Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\) In the case of a degree (major) that is jointly offered and the Colleges' requirements in this area are different, the student must complete the course that is specified in the curriculum for the degree, regardless of which college is the declared "home" of the student. This area of the Core Curriculum is driven by the requirements of the specific degree program, not by the general requirements of the College, if a degree is jointly offered.

Effective Fall 2010, for freshmen entering the USG system Fall 2010, students who have earned 60 hours but have not completed Area A2 must enroll in the next course necessary to make progress toward completing this Area in every semester in which they take classes.

Effective Fall 2011, this hour limit is lowered to 45 hours for freshmen entering the USG system Fall 2011, Spring 2012, and Summer 2012.

Effective Fall 2012, freshmen entering the USG system Fall 2012 and thereafter, the hour limit is lowered to 30 hours.

Core Area B

Core Area B: Institutional Options

Area B is satisfied by students completing the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing(^1)</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^1\) Or another CS class designated by the School

Core Area C

Core Area C: Humanities, Fine Arts, and Ethics

Core Area C is satisfied by completion of 6 semester hours in courses that carry the HUM (Humanities) attribute. Fine Arts and some ethics related courses are included under Humanities at Georgia Tech. Courses that carry both the HUM and ETHS attribute can serve both purposes.

On March 9, 2016 the Board of Regents approved a revision to Board of Regents policies related to the Core Curriculum.

Effective immediately:

1. Institutions will not be required to identify or track overlay requirements related to US Perspectives, Global Perspectives, and Critical Thinking.
2. Students will not be required to complete the overlay requirements from this point forward.
3. Students who are scheduled to graduate this semester and who have not completed the overlays may graduate without fulfilling this requirement.

Note:

1. Any courses completed that were listed in prior catalogs as satisfying the humanities or ethics requirement and were completed while that catalog was in effect may also be used to satisfy this requirement.
2. Humanities credit is awarded for Modern Languages 1001 classes upon successful completion of the corresponding 1002 classes. Humanities credit is awarded for SPAN 1001 only upon the successful completion of SPAN 1002. In some instances, students may complete a Modern Languages course at 1001 and then be placed at the second-semester level and complete the 2001 level course. Therefore, the sequence that will warrant HUM credit for Modern Languages courses may be either the 1001-1002 or the 1001-2001 sequence.
3. Undergraduate Research courses numbered 2698, 2699, 4698, and 4699 cannot be used to fulfill requirements for humanities.
4. Additional information on Music courses: Students can earn humanities credit for participation in ensembles.

5. Humanities Credit for Ensemble Participation

Students can earn Humanities credit for participation in one or more specified School of Music ensembles. Each ensemble course is repeatable for credit and the following ensembles carry the humanities attribute:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 3121</td>
<td>Concert Band</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3131</td>
<td>Symphonic Band</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3231</td>
<td>Chamber Choir</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3241</td>
<td>Chorale</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3251</td>
<td>Glee Club</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3261</td>
<td>Treble Choir</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3311</td>
<td>Jazz Ensemble</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3511</td>
<td>Percussion Ensemble</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3531</td>
<td>New Music Ensemble</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3551</td>
<td>Rock and Pop Ensemble</td>
<td>1</td>
</tr>
<tr>
<td>MUSI 3611</td>
<td>Symphony Orchestra</td>
<td>1</td>
</tr>
</tbody>
</table>

6. Transfer Students:

Please be aware that when you see courses on your GT record that are listed with an "X" in the number (ECON 3XXX or JAPN 10X2, for example) it means that these are transfer courses and although they were not equated exactly with a GT course, they may have been accepted to meet a Core area such as Humanities and Social Science.
If you review your records in DegreeWorks (http://www.degreeworks.gatech.edu), you will be able to see how your transfer credit applies to your GT degree program. Refer to your academic advisor for more information.

Humanities Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARBC 1002</td>
<td>Elementary Arabic II</td>
<td>4</td>
</tr>
<tr>
<td>ARBC 1501</td>
<td>Understanding Arab Culture</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 2001</td>
<td>Intermediate Arabic I</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 2002</td>
<td>Intermediate Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 2301</td>
<td>Arabic Arts, Science and Technology Through History</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3001</td>
<td>Advanced Arabic I</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3002</td>
<td>Advanced Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3501</td>
<td>Men-Women In Islam</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3691</td>
<td>Intensive Advanced Arabic</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3692</td>
<td>Arabic for Business and Technology I</td>
<td>3</td>
</tr>
<tr>
<td>ARBC 3693</td>
<td>Arabic for Business and Technology II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2111</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2112</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2113</td>
<td>History of Renaissance and Mannerist Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2115</td>
<td>Modern Architecture and Art in Europe, America and Australia: Nineteenth and Twentieth Centuries</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4109</td>
<td>Architecture and Minimalism</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4110</td>
<td>Public Space: Questions and Configurations</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4112</td>
<td>History of Renaissance and Mannerist Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4113</td>
<td>History of Renaissance and Mannerist Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4114</td>
<td>Medieval Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4117</td>
<td>Architecture and the Arts and Crafts Movement</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4118</td>
<td>American Academic Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4119</td>
<td>Architecture of Frank Lloyd Wright</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4120</td>
<td>Atlanta Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4124</td>
<td>History of Architecture in the United States</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4128</td>
<td>Barcelona: Architecture, Urban Design, Public Space</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4151</td>
<td>History of Urban Form</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4305</td>
<td>Near and Far: Cross-Cultural Practices in Art, Architecture and Design</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 1002</td>
<td>Elementary Chinese II</td>
<td>4</td>
</tr>
<tr>
<td>CHIN 1012</td>
<td>Accelerated Elementary Chinese II</td>
<td>4</td>
</tr>
<tr>
<td>CHIN 2001</td>
<td>Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 2002</td>
<td>Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 2011</td>
<td>Accelerated Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 2012</td>
<td>Accelerated Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3003</td>
<td>Intermediate Chinese III</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3004</td>
<td>Advanced Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3021</td>
<td>Chinese Society and Culture I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3022</td>
<td>Chinese Society and Culture II</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3691</td>
<td>Chinese for Current Events</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 3692</td>
<td>Business Chinese</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4003</td>
<td>Advanced Chinese II: Contemporary China</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4004</td>
<td>Advanced Chinese III: Contemporary China</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4021</td>
<td>Advanced Language, Popular Music and Culture</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4031</td>
<td>Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>COA 2241</td>
<td>History of Art I</td>
<td>3</td>
</tr>
<tr>
<td>COA 2242</td>
<td>History of Art II</td>
<td>3</td>
</tr>
<tr>
<td>COA 3114</td>
<td>Art and Architecture in Classical Greece</td>
<td>3</td>
</tr>
<tr>
<td>COA 3115</td>
<td>Art and Architecture in Italy</td>
<td>3</td>
</tr>
<tr>
<td>COA 3116</td>
<td>Art and Architecture in Italy</td>
<td>3</td>
</tr>
<tr>
<td>CP 4040</td>
<td>The City in Fiction and Film</td>
<td>3</td>
</tr>
<tr>
<td>CS 4752</td>
<td>Philosophical Issues in Computation</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 1002</td>
<td>Elementary French II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 2001</td>
<td>Patterns of French Culture I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 2002</td>
<td>Patterns of French Culture II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 2005</td>
<td>LBAT French Culture and Language</td>
<td>6</td>
</tr>
<tr>
<td>FREN 3000</td>
<td>Survey of French Literature</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3001</td>
<td>French Literature from 1800 to 1850</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3002</td>
<td>French Literature from 1850 to 1900</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3004</td>
<td>Drama Workshop</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3011</td>
<td>France Today I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3012</td>
<td>France Today II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3014</td>
<td>Introduction to Contemporary France</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3015</td>
<td>Social Identities in Contemporary French Culture</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3017</td>
<td>Paris: Modernity Today</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3030</td>
<td>French Phonetics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3040</td>
<td>Reading and Translation</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3061</td>
<td>France: Culture, Economy, Commerce I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3062</td>
<td>France: Culture, Economy and Commerce II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3110</td>
<td>Comics & Graphic Arts</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3120</td>
<td>French Conversation</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3121</td>
<td>Advanced Composition</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3500</td>
<td>Field Work Abroad</td>
<td>1-3</td>
</tr>
<tr>
<td>FREN 3551</td>
<td>French for the Professions I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3691</td>
<td>Business Communication and Correspondence in France</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3692</td>
<td>French Business and Technology</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3693</td>
<td>French Business and Technology II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3694</td>
<td>French Business and Technology Abroad</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4001</td>
<td>French Stylistics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4011</td>
<td>French Art</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4013</td>
<td>French Literature and the Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4061</td>
<td>French Science and Technology I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4101</td>
<td>Literature of the Francophone World I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4102</td>
<td>Literature of the Francophone World II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4103</td>
<td>Francophone Africa Today</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4105</td>
<td>Francophone Cinema</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4107</td>
<td>The African Diasporas in France</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4200</td>
<td>Introduction to French Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>FREN 4241</td>
<td>French Cinema I: Cinematic Experiences</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4242</td>
<td>French Cinema II: The French New Wave</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4300</td>
<td>France and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 1002</td>
<td>Elementary German II</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 2001</td>
<td>Intermediate German I</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 2002</td>
<td>Intermediate German II</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3010</td>
<td>Introduction to German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3024</td>
<td>Conversation and Composition</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3026</td>
<td>German Stylistics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3030</td>
<td>Crossing Borders in Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3055</td>
<td>German Fairy Tales: From the Grimm Brothers to Disney</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3071</td>
<td>Introductory Business German I</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3110</td>
<td>Television & Electronic Culture</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3695</td>
<td>German Business and Technology: Structure, Communication and Correspondence</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3696</td>
<td>German Business and Technology: Current Issues</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3697</td>
<td>German Business and Technology: Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4010</td>
<td>Perspectives of German Media</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4012</td>
<td>Typical German Towards a German Identity</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4023</td>
<td>Selected Readings in German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4024</td>
<td>German Film and Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4025</td>
<td>German Culture & Film</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4026</td>
<td>German Post-Wall Cinema</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4061</td>
<td>Advanced Business German I</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4065</td>
<td>The European Union: History, Institutions and Current Issues and Challenges</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4120</td>
<td>Literary Representations of German History</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4126</td>
<td>Advanced Stylistics: Grammar and Discourse</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4693</td>
<td>Industrial Transformation and German Society/ Economy</td>
<td>3</td>
</tr>
<tr>
<td>ID 2202</td>
<td>History of Modern Industrial Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 2241</td>
<td>History of Art 1</td>
<td>3</td>
</tr>
<tr>
<td>ID 2242</td>
<td>History of Art 2</td>
<td>3</td>
</tr>
<tr>
<td>ID 4206</td>
<td>Culture of Objects: A Seminar on the Design and Culture of Objects</td>
<td>3</td>
</tr>
<tr>
<td>INTA 4743</td>
<td>Japanese Society and Politics</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 1002</td>
<td>Elementary Japanese II</td>
<td>4</td>
</tr>
<tr>
<td>JAPN 2001</td>
<td>Intermediate Japanese I</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 2002</td>
<td>Intermediate Japanese II</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3001</td>
<td>Advanced Japanese I</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3691</td>
<td>Technical and Scientific Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3692</td>
<td>Business Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3693</td>
<td>Japan Today</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4113</td>
<td>Advanced reading and Listening in Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4123</td>
<td>Technical and Business Japanese Translation</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4163</td>
<td>Introduction to Japanese Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4165</td>
<td>Critical Readings in Japanese Culture and Arts</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4173</td>
<td>Japanese Culture and Society through Anime</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4231</td>
<td>Designing Websites in Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4233</td>
<td>CALI Pedagogy for Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4235</td>
<td>3D RPG Development for Japanese Instruction</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4543</td>
<td>Advanced Japanese for NLP Development</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4743</td>
<td>Japanese Society and Politics</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4750</td>
<td>Japanese Discourse and Grammar</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4780</td>
<td>Japanese Applied Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>KOR 1002</td>
<td>Elementary Korean II</td>
<td>4</td>
</tr>
<tr>
<td>KOR 2001</td>
<td>Intermediate Korean I</td>
<td>3</td>
</tr>
<tr>
<td>KOR 2002</td>
<td>Intermediate Korean II</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3001</td>
<td>Advanced Korean I</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3002</td>
<td>Advanced Korean II</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3691</td>
<td>Business Korean</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3692</td>
<td>Current Issues and Technology in Korea</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3693</td>
<td>Exploring Modern Korea</td>
<td>3</td>
</tr>
<tr>
<td>KOR 4001</td>
<td>Contemporary Korean</td>
<td>3</td>
</tr>
<tr>
<td>KOR 4002</td>
<td>Selected Readings Of Modern Korean</td>
<td>3</td>
</tr>
<tr>
<td>LING 2100</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>LING 4780</td>
<td>Japanese Applied Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2060</td>
<td>Introduction to Literary Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2100</td>
<td>Introduction to Science, Technology and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3102</td>
<td>Science, Technology, and the Classical Tradition</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3104</td>
<td>The Age of Scientific Discovery</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3204</td>
<td>Poetry and Poetics</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3215</td>
<td>Science Fiction Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3226</td>
<td>Major Authors</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3228</td>
<td>Shakespeare</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3234</td>
<td>Creative Writing</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3236</td>
<td>Writing for the Stage and Screen</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3253</td>
<td>Animation</td>
<td>3</td>
</tr>
</tbody>
</table>
Core Area C

LMC 3254 Film History 3
LMC 3255 Cinema and Digital Culture 3
LMC 3256 Major Filmmakers 3
LMC 3257 Global Cinema 3
LMC 3258 Documentary Film 3
LMC 3259 Experimental Film 3
LMC 3262 Performance Studies 3
LMC 3263 Music, Culture, and Society 3
LMC 3302 Science, Technology, and Ideology 3
LMC 3304 Science, Technology, and Gender 3
LMC 3306 Science, Technology, and Race 3
LMC 3308 Environmentalism and Ecocriticism 3
LMC 3310 The Rhetoric of Scientific Inquiry 3
LMC 3314 Technologies of Representation 3
LMC 3316 Science, Technology, and Postcolonialism 3
LMC 3318 Biomedicine and Culture 3
LMC 3352 Film and/as Technology 3
LMC 3405 Media, Culture, and Society 3
LMC 3502 Ancient and Medieval Literature and Culture 3
LMC 3504 Renaissance Literature and Culture 3
LMC 3506 Enlightenment and Culture 3
LMC 3508 Formations of American Culture 3
LMC 3510 Rearticulations of American Culture 3
LMC 3512 British and Continental Romanticism 3
LMC 3514 Victorian Literature and Culture 3
LMC 3516 Literary and Cultural Modernism 3
LMC 3518 Literary and Cultural Postmodernism 3
LMC 4204 Poetry and Poetics II 3
MUSI 2010 Fundamentals of Musicianship I 3
MUSI 2011 Fundamentals of Musicianship II 3
MUSI 3121 Concert Band 1
MUSI 3131 Symphonic Band 1
MUSI 3231 Chamber Choir 1
MUSI 3241 Chorale 1
MUSI 3251 Glee Club 1
MUSI 3261 Treble Choir 1
MUSI 3311 Jazz Ensemble 1
MUSI 3450 Survey of Music Technology 3
MUSI 3500 Introduction of Synthesized Computer Music 2
MUSI 3511 Percussion Ensemble 1
MUSI 3531 New Music Ensemble 1
MUSI 3551 Rock and Pop Ensemble 1
MUSI 3611 Symphony Orchestra 1
MUSI 3621 European Composers and Thier Music 3
MUSI 3630 The History of Jazz, the Roots and Evolution of an American Musical Art Form 3
MUSI 4450 Integrating Music Into Multimedia 3
MUSI 4455 Streaming Media 3
PERS 1002 Elementary Persian II 4
PHIL 2010 Introduction to Philosophical Analysis 3
PHIL 2025 Philosophical Analysis of Policy Choices 3
PHIL 3050 Political Philosophy 3

PHIL 3102 Ancient Philosophy 3
PHIL 3103 Modern Philosophy 3
PHIL 3105 Ethical Theories 3
PHIL 3109 Engineering Ethics 3
PHIL 3113 Logic and Critical Thinking 3
PHIL 3115 Philosophy of Science 3
PHIL 3127 Science, Technology, and Human Values 3
PHIL 3135 Philosophy of Technology 3
PHIL 3140 Philosophy of Food 3
PHIL 4110 Theories of Knowledge 3
PHIL 4174 Perspectives in Science and Technology 3
PHIL 4176 Environmental Ethics 3
PHIL 4752 Philosophical Issues in Computation 3
RUSS 1002 Elementary Russian II 4
RUSS 1250 Vampires and Memory of Stalinism in Post-Soviet Russia 3
RUSS 1692 Intensive Elementary Russian II 3
RUSS 2001 History and Culture of Russia I 3
RUSS 2002 History and Culture of Russia II 3
RUSS 2691 Intensive Intermediate Russian I 3
RUSS 2692 Intensive Intermediate Russian II 3
RUSS 3001 Advanced Russian I 3
RUSS 3002 Advanced Russian II 3
RUSS 3222 The Russian Twentieth Century in Literature and Film 3
RUSS 3691 Intensive Advanced Russian 3
RUSS 3692 Advanced Reading and Composition for Business, Science and Technology 3
RUSS 3698 Russia Yesterday and Today 1
SPAN 1002 Elementary Spanish II 3
SPAN 2001 Intermediate Spanish I 3
SPAN 2002 Intermediate Spanish II 3
SPAN 2690 Intermed Span Abroad 3
SPAN 3050 Introduction to Reading Hispanic Literature 3
SPAN 3061 Spanish for Business I: Fundamentals 3
SPAN 3064 Medical Spanish 3
SPAN 3101 Spanish Conversation I 3
SPAN 3111 Composition: Analysis and Development I 3
SPAN 3122 Cultural History of Spain II: Nineteenth and Twentieth Century Spain 3
SPAN 3211 Spain Today 3
SPAN 3235 Latin America Today 3
SPAN 3241 The Individual and the Family in Hispanic Literature 3
SPAN 3242 Society in Hispanic Literature 3
SPAN 3260 Identity in Hispanic American Literature 3
SPAN 3500 Science Fiction in Latin America 3
SPAN 3691 Business Communication and Correspondence in the Hispanic 3
SPAN 3692 Business and Culture in the Hispanic World 3
SPAN 3693 Hispanic Science and Technology 3
SPAN 3694 Business and Culture in the Hispanic World: Seminar Abroad 3
Courses that fulfill both Humanities and Ethics Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3105</td>
<td>Ethical Theories</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3109</td>
<td>Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3127</td>
<td>Science, Technology, and Human Values</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3140</td>
<td>Philosophy of Food</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4176</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Area D

Core Area D: Natural Sciences, Math, and Technology

Core Area D is satisfied by students completing 8 semester hours from the science list and 4 semester hours from the Mathematics list.

Science

8 semester hours

Notice: The School of Biological Sciences has updated the course pre-fix for BIOL and APPH courses (excluding APPH 1040 and APPH 1050) effective in the 2019-20 Catalog year. Students who have taken BIOL 1220, BIOL 1510, BIOL 1520 may still use those courses toward Core D requirements.

Core Area E

Core Area E: Social Sciences

Area E is satisfied by completion of 12 credit hours as follows:

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
</tbody>
</table>

1. Biology majors should take BIOS 1207 and BIOS 1207L.
2. Biology majors should take BIOS 1208 and BIOS 1208L.
INTA 1200 American Government in Comparative Perspective
PUBP 3000 American Constitutional Issues

Select 9 credit hours from the following list.

Total Credit Hours 12

Some social science courses also carry the ethics attribute. Those courses (p. 101) may be used to satisfy both the SOC SCI and the Ethics (p. 101) requirements. **Credit not awarded for both POL 1101 and INTA 1200.**

Any courses completed that were listed in prior catalogs as satisfying the humanities/social science requirement and were completed while that catalog was in effect may also be used to satisfy this requirement.

Students can receive three credit hours for any one of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4160</td>
<td>Economic Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4180</td>
<td>Game Theory for Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4232</td>
<td>Labor Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4311</td>
<td>Strategic Economics for Global Enterprise</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4340</td>
<td>Economics of Industrial Competition</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4350</td>
<td>International Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4351</td>
<td>International Financial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4355</td>
<td>Global Financial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4357</td>
<td>Law and Economics of the Global Trading System</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4411</td>
<td>Economic Development</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4415</td>
<td>Conflict and Security in Developing Countries</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4421</td>
<td>Urban and Regional Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4430</td>
<td>Economics of Transportation and Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4440</td>
<td>Economics of Natural Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4450</td>
<td>Topics in African American Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4460</td>
<td>Public Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4510</td>
<td>Economics of Health and Health Care</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4610</td>
<td>Seminar in Economic Policy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4620</td>
<td>History of Economic Thought</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>HTS 1001</td>
<td>Introduction to History, Technology, and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td>3</td>
</tr>
<tr>
<td>HTS 1081</td>
<td>Engineering in History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2001</td>
<td>Early American History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2002</td>
<td>The American Revolution and Constitution</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2006</td>
<td>History of the Old South to 1865</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2007</td>
<td>History of the New South since 1865</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2111</td>
<td>The Gilded Age and the Progressive Era</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2113</td>
<td>Modern America: World War II and After</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2015</td>
<td>History of Sports in America</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2016</td>
<td>Social Issues and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2051</td>
<td>Colonial Latin America and the World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2052</td>
<td>North American Borderlands</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2080</td>
<td>Introduction to the History of Disease and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2081</td>
<td>The Scientific Revolution</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2082</td>
<td>Technology and Science in the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2084</td>
<td>Technology and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Transfer Students: Please be aware that when you see courses on your GT record that are listed with an “X” in the number (ECON 3XXX or JAPN 10X2, for example) it means that these are transfer courses and although there were not equated exactly with a GT course, they may have been accepted to meet a Core area such as Humanities and Social Science.

If you review your records in DegreeWorks (http:// www.degreeworks.gatech.edu), you will be able to see how your transfer credit applies to your GT degree program. Refer to your academic advisor for more information.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 2085</td>
<td>Reel History I: US History through Hollywood Films</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2100</td>
<td>Sci, Tech & Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2101</td>
<td>Historical and Social Research</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3001</td>
<td>American Economic History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3002</td>
<td>History of American Business</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3003</td>
<td>Sociology of Economic Institutions</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3005</td>
<td>American Environmental History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3006</td>
<td>United States Labor History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3007</td>
<td>Sociology of Work, Industry, and Occupations</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3008</td>
<td>Class, Power, and Social Inequality</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3009</td>
<td>The American Civil War</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3011</td>
<td>The City in American History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3012</td>
<td>Urban Sociology</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3015</td>
<td>History of the Vietnam War</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3016</td>
<td>Women and Gender in the United States</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3017</td>
<td>Sociology of Gender</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3018</td>
<td>New Religions and Cults in America</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3019</td>
<td>The Family, Sexuality, and Social Change in America</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3020</td>
<td>Gender and Technology</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3021</td>
<td>Women in Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3022</td>
<td>Gender and Sports</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3023</td>
<td>Slaves without Masters: Free People of Color before 1865</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3024</td>
<td>African American History to 1865</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3025</td>
<td>African American History since 1865</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3026</td>
<td>Sociology of Race and Ethnicity</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3027</td>
<td>The Civil Rights Movement</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3028</td>
<td>Ancient Greece: Gods, Heroes, and Ruins</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3029</td>
<td>Ancient Rome: From Greatness to Ruins</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3030</td>
<td>Medieval Europe: 350 to 1400</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3031</td>
<td>European Labor History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3033</td>
<td>Medieval England</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3035</td>
<td>Britain from 1815-1914</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3036</td>
<td>Britain Since 1914</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3038</td>
<td>The French Revolution</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3039</td>
<td>Modern France</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3041</td>
<td>Modern Spain</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3043</td>
<td>Modern Germany</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3045</td>
<td>Nazi Germany and the Holocaust</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3046</td>
<td>Science, Politics, and Culture in Nazi Germany</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3048</td>
<td>Modern Russian History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3051</td>
<td>Women and the Politics of Gender in the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3055</td>
<td>Globalization in the Modern Era</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3061</td>
<td>Modern China</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3062</td>
<td>Modern Japan</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3063</td>
<td>Outposts of Empire: Comparative History of British</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3064</td>
<td>Sociology of Development</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3065</td>
<td>History of Global Societies</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3066</td>
<td>Sociology of Politics and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3067</td>
<td>Revolutionary Movements in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3068</td>
<td>Social Movements</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3069</td>
<td>Modern Cuba</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3070</td>
<td>Culture and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3071</td>
<td>Sociology of Crime</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3072</td>
<td>Sociology of Education</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3073</td>
<td>Sociology of Sports</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3082</td>
<td>Sociology of Science</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3083</td>
<td>Technology and the Shaping of American Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3084</td>
<td>Culture and Technology</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3085</td>
<td>Law, Technology, and Politics</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3086</td>
<td>Sociology of Medicine and Health</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3087</td>
<td>History of Medicine</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3088</td>
<td>Race, Medicine & Science</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3089</td>
<td>Science, Technology and Sports</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3100</td>
<td>Introduction to Museum Studies</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3102</td>
<td>Social Theory and Social Structure</td>
<td>3</td>
</tr>
<tr>
<td>HTS 4001</td>
<td>Seminar in United States History</td>
<td>4</td>
</tr>
<tr>
<td>HTS 4011</td>
<td>Seminar in Sociology</td>
<td>4</td>
</tr>
<tr>
<td>HTS 4031</td>
<td>Seminar in European History</td>
<td>4</td>
</tr>
<tr>
<td>HTS 4051</td>
<td>Seminar in Asian History</td>
<td>4</td>
</tr>
<tr>
<td>INTA 1050</td>
<td>The World Today</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2030</td>
<td>Ethics in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2040</td>
<td>Science, Technology, and International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2042</td>
<td>Introduction to Global WMD Issues</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2050</td>
<td>Intro to Global Development</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2100</td>
<td>Theoretical Approaches to Great Power Relations</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2120</td>
<td>Introduction to International Security</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2210</td>
<td>Comparative Political Philosophies and Ideologies</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2220</td>
<td>Government and Politics of Western Europe</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2221</td>
<td>Politics of the European Union</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2230</td>
<td>Government and Politics of Asia</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2241</td>
<td>Government, Politics and Society of Latin America</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2260</td>
<td>Government, Politics and Society of the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3010</td>
<td>International Technology Transfer</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3012</td>
<td>War in the 20th Century</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3020</td>
<td>Contemporary Mexico</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3031</td>
<td>Human Rights in a Technological World</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3040</td>
<td>Energy, Environment, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3042</td>
<td>Energy and International Security</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3043</td>
<td>Space Policy</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3044</td>
<td>Global Politics of Technology</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3050</td>
<td>The Meaning of Global Citizenship</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>INTA 3101</td>
<td>International Institutions</td>
<td></td>
</tr>
<tr>
<td>INTA 3102</td>
<td>The Problem of Proliferation</td>
<td></td>
</tr>
<tr>
<td>INTA 3103</td>
<td>The Challenge of Terrorism</td>
<td></td>
</tr>
<tr>
<td>INTA 3104</td>
<td>International Negotiations</td>
<td></td>
</tr>
<tr>
<td>INTA 3110</td>
<td>U.S. Foreign Policy</td>
<td></td>
</tr>
<tr>
<td>INTA 3130</td>
<td>Foreign Policy of China</td>
<td></td>
</tr>
<tr>
<td>INTA 3131</td>
<td>Pacific Security Issues</td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 3220</td>
<td>Government and Politics of Germany</td>
<td></td>
</tr>
<tr>
<td>INTA 3221</td>
<td>Post-Soviet Government and Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 3223</td>
<td>Transatlantic Relations</td>
<td></td>
</tr>
<tr>
<td>INTA 3230</td>
<td>Government and Politics of China</td>
<td></td>
</tr>
<tr>
<td>INTA 3231</td>
<td>Government and Politics of Japan</td>
<td></td>
</tr>
<tr>
<td>INTA 3232</td>
<td>Sustainable Megaregion</td>
<td></td>
</tr>
<tr>
<td>INTA 3240</td>
<td>Government and Politics of Africa</td>
<td></td>
</tr>
<tr>
<td>INTA 3241</td>
<td>Latin American Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 3242</td>
<td>Soccer and Global Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 3243</td>
<td>US - Latin American Relations</td>
<td></td>
</tr>
<tr>
<td>INTA 3260</td>
<td>Middle East Relations</td>
<td></td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td></td>
</tr>
<tr>
<td>INTA 3303</td>
<td>Political Economy of Development</td>
<td></td>
</tr>
<tr>
<td>INTA 3304</td>
<td>International Trade and Production</td>
<td></td>
</tr>
<tr>
<td>INTA 3321</td>
<td>Political Economy of European Integration</td>
<td></td>
</tr>
<tr>
<td>INTA 3330</td>
<td>Political Economy of China</td>
<td></td>
</tr>
<tr>
<td>INTA 3331</td>
<td>Political Economy of Japan</td>
<td></td>
</tr>
<tr>
<td>INTA 4011</td>
<td>Technology and Military Organization</td>
<td></td>
</tr>
<tr>
<td>INTA 4040</td>
<td>Environmental Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 4050</td>
<td>International Affairs and Technology Policy Making</td>
<td></td>
</tr>
<tr>
<td>INTA 4060</td>
<td>International Law</td>
<td></td>
</tr>
<tr>
<td>INTA 4101</td>
<td>Politics of the Vietnam War</td>
<td></td>
</tr>
<tr>
<td>INTA 4121</td>
<td>Seminar in Europe: European Security</td>
<td></td>
</tr>
<tr>
<td>INTA 4230</td>
<td>Seminar in Europe: European Union</td>
<td></td>
</tr>
<tr>
<td>INTA 4240</td>
<td>Argentine Politics, History, and Culture</td>
<td></td>
</tr>
<tr>
<td>INTA 4241</td>
<td>Democracy in the Global South</td>
<td></td>
</tr>
<tr>
<td>INTA 4330</td>
<td>Chinese Economic Reform</td>
<td></td>
</tr>
<tr>
<td>INTA 4331</td>
<td>Chinese Politics in Transition</td>
<td></td>
</tr>
<tr>
<td>INTA 4332</td>
<td>Chinese Institutions and Policy Process</td>
<td></td>
</tr>
<tr>
<td>INTA 4333</td>
<td>Korean Security Policy</td>
<td></td>
</tr>
<tr>
<td>INTA 4340</td>
<td>Latin American Regional Economic and Political Integration</td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>POL 2101</td>
<td>State and Local Government</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td></td>
</tr>
<tr>
<td>PSYC 2020</td>
<td>Psychological Statistics</td>
<td></td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>Human Development Over the Life Span</td>
<td></td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2220</td>
<td>Industrial/Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2230</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2240</td>
<td>Personality Theory</td>
<td></td>
</tr>
<tr>
<td>PSYC 2250</td>
<td>Cross-Cultural Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2270</td>
<td>Introduction to Engineering Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2280</td>
<td>Psychology of Creativity and Art</td>
<td></td>
</tr>
<tr>
<td>PSYC 2400</td>
<td>Psychology and Contemporary Issues in Society</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3012</td>
<td>Introduction to Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 3041</td>
<td>Human Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 4260</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 4770</td>
<td>Psychology and Environmental Design</td>
<td></td>
</tr>
<tr>
<td>PUBP 2010</td>
<td>Political Processes</td>
<td></td>
</tr>
<tr>
<td>PUBP 2012</td>
<td>Foundations of Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 2030</td>
<td>Organizations and Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 3016</td>
<td>Judicial Process</td>
<td></td>
</tr>
<tr>
<td>PUBP 3020</td>
<td>Applied Political Economy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3030</td>
<td>Policy Analysis</td>
<td></td>
</tr>
<tr>
<td>PUBP 3120</td>
<td>Statistical Analysis for Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3130</td>
<td>Research Methods and Problem Solving</td>
<td></td>
</tr>
<tr>
<td>PUBP 3201</td>
<td>Introduction to Social Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3214</td>
<td>African American Politics</td>
<td></td>
</tr>
<tr>
<td>PUBP 3315</td>
<td>Environmental Policy and Politics</td>
<td></td>
</tr>
<tr>
<td>PUBP 3320</td>
<td>Climate Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>Sustainability, Technology, and Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3610</td>
<td>Pre-Law Seminar</td>
<td></td>
</tr>
<tr>
<td>PUBP 4010</td>
<td>Policy Task Force I</td>
<td></td>
</tr>
<tr>
<td>PUBP 4020</td>
<td>Policy Task Force II</td>
<td></td>
</tr>
<tr>
<td>PUBP 4111</td>
<td>Internet and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4120</td>
<td>Survey Research Methods</td>
<td></td>
</tr>
<tr>
<td>PUBP 4130</td>
<td>Policy Analysis and Program Evaluation</td>
<td></td>
</tr>
<tr>
<td>PUBP 4140</td>
<td>Foundations of Leadership</td>
<td></td>
</tr>
<tr>
<td>PUBP 4200</td>
<td>Social Policy Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 4211</td>
<td>Urban Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4212</td>
<td>Women and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4214</td>
<td>Gender, Science, Technology, and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4226</td>
<td>Business and Government</td>
<td></td>
</tr>
<tr>
<td>PUBP 4260</td>
<td>Economic Development Policy and Planning</td>
<td></td>
</tr>
<tr>
<td>PUBP 4338</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>PUBP 4410</td>
<td>Science, Technology, and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4414</td>
<td>Technology, Innovation, and Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4416</td>
<td>Critical Issues in Science and Technology</td>
<td></td>
</tr>
<tr>
<td>PUBP 4440</td>
<td>Science, Technology, and Regulation</td>
<td></td>
</tr>
<tr>
<td>PUBP 4501</td>
<td>Info Policy & Management</td>
<td></td>
</tr>
<tr>
<td>PUBP 4514</td>
<td>Mass Communication Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4600</td>
<td>Senior Seminar/The Thesis</td>
<td></td>
</tr>
<tr>
<td>PUBP 4609</td>
<td>Legal Practice</td>
<td></td>
</tr>
<tr>
<td>PUBP 4640</td>
<td>Technology Law, Policy, and Management</td>
<td></td>
</tr>
</tbody>
</table>
Social Sciences Courses that Also Satisfy Ethics Requirement

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 1081</td>
<td>Engineering in History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2084</td>
<td>Technology and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2100</td>
<td>Sci, Tech & Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2030</td>
<td>Ethics in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2220</td>
<td>Industrial/Organizational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2230</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2240</td>
<td>Personality Theory</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2270</td>
<td>Introduction to Engineering Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>Sustainability, Technology, and Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Area F

Core Area F - Lower-Division Major Requirements

Core Area F requirements vary with degree and major. It is expected that there will be 18 credit hours of lower division requirements in each major.

Ethics

The courses listed below carry the Georgia Tech-specific Ethics attribute. While some courses (as designated) meet Humanities (p. 93) or Social Science (p. 97) requirements, not all of the courses listed below will meet Core requirements. Additionally, some programs may require certain ethics courses to fulfill their degree requirements. Check with the major school accordingly.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4650</td>
<td>Bioethics</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 4651</td>
<td>Foundations of Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 4515</td>
<td>Chemical Process Safety</td>
<td>1</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td>3</td>
</tr>
<tr>
<td>HTS 1081</td>
<td>Engineering in History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2084</td>
<td>Technology and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2100</td>
<td>Sci, Tech & Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2030</td>
<td>Ethics in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
</tbody>
</table>
U.S. Perspectives

Important Note:

On March 9, 2016, the Board of Regents of the University System of Georgia approved a revision to system-wide policies related to the Core Curriculum.

1. Institutions in the University System of Georgia will not be required to identify or track overlay requirements related to US Perspectives, Global Perspectives, and Critical Thinking.
2. Students will not be required to complete the overlay requirements from this point forward.
3. Students who are scheduled to graduate in the Spring 2016 Semester and who have not completed the overlays may graduate without fulfilling this requirement.

Wellness

Wellness Requirement

All undergraduate students attending Georgia Tech must satisfactorily complete a wellness requirement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health ¹</td>
<td>2</td>
</tr>
<tr>
<td>APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
</tbody>
</table>

¹ Previously offered as HPS 1040 (Health).

Credit, Tests, and Scores

- Advanced Levels (A-Levels) (p. 102)
- Advanced Placement Exams (p. 102)
- Advanced Standing (p. 103)
- Departmental Exams (p. 104)
- French Baccalaureate (p. 104)
- German Language Exams (DSD) (p. 104)
- International Baccalaureate Exams (p. 104)
- Regents’ Testing Program (p. 105)
- ROTC Credit (p. 105)
- SAT II Subject Tests (p. 105)
- Transfer Courses with ‘X’ Numbers (p. 105)
- Transfer Credit (p. 106)
- Undergraduate Students Taking Graduate Courses (p. 107)

Advanced Levels (A-Levels)

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, The International Baccalaureate, Advanced Levels (A-Levels), and/or Georgia Tech Departmental Exams.

Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate, or A-Level Examinations for credit. All examinations must be completed prior to the student’s enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an Examination for Advanced Standing.

Advanced Placement Exams

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, The International Baccalaureate, and/or Georgia Tech Departmental Exams.

Please be aware that BIOL 1510 credit will be awarded as BIOS 1107 and BIOS 1107L effective Spring 2020.

College Board Advanced Placement Exams

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>AP Score: 4 or 5 = ID 2242</td>
<td>3</td>
</tr>
<tr>
<td>Biology</td>
<td>AP Score: 4 or 5 = BIOL 1510</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics - Calculus AB</td>
<td>AP Score: 4 or 5 = MATH 1551</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics - Calculus BC</td>
<td>AP Score: 4 or 5 = MATH 1551 & MATH 1552</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry - Effective Summer 2010</td>
<td>AP Score: 4 = CHEM 1211 K</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>AP Score: 5 = CHEM 1310</td>
<td>4</td>
</tr>
<tr>
<td>Subject</td>
<td>AP Score: 3 = CHIN 2002</td>
<td>3</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>AP Score: 4 = CHIN 2002 & CHIN 3003</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AP Score: 5 = CHIN 3003 & CHIN 3004</td>
<td>6</td>
</tr>
<tr>
<td>Computer Science (A)</td>
<td>AP Score: 4 or 5 = CS 1301</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Principles</td>
<td>AP Score: 4 or 5 = CS 1XXX</td>
<td>3</td>
</tr>
<tr>
<td>English Language and Composition</td>
<td>AP Score: 4 or 5 = ENGL 1101</td>
<td>3</td>
</tr>
<tr>
<td>English Literature and Composition</td>
<td>AP Score: 4 or 5 = ENGL 1101</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>AP Score: 4 or 5 = EAS 1600</td>
<td>4</td>
</tr>
<tr>
<td>European History</td>
<td>AP Score: 4 or 5 = HTS 1031</td>
<td>3</td>
</tr>
<tr>
<td>French Language and Culture</td>
<td>AP Score: 4 or 5 = FREN 2001 & FREN 2002</td>
<td>6</td>
</tr>
<tr>
<td>German Language and Culture</td>
<td>AP Score: 4 or 5 = GRMN 2001 & GRMN 2002</td>
<td>6</td>
</tr>
<tr>
<td>Government and Politics: Comparative</td>
<td>AP Score: 4 or 5 = INTA 1200 & INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>Government and Politics: U.S.</td>
<td>AP Score: 4 or 5 = POL 1101 & POL 1101</td>
<td>3</td>
</tr>
<tr>
<td>Human Geography</td>
<td>AP Score: 4 or 5 = SS 1XXX</td>
<td>3</td>
</tr>
<tr>
<td>Italian Language and Culture</td>
<td>No Credit Awarded</td>
<td>0</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>AP Score: 3 = JAPN 2002</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AP Score: 4 = JAPN 2002 & JAPN 3001</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AP Score: 5 = JAPN 3001 & JAPN 3001 & JAPN 3001</td>
<td>6</td>
</tr>
<tr>
<td>Latin (Language and Culture)</td>
<td>AP Score: 4 or 5 = LATN 2XXX</td>
<td>3</td>
</tr>
<tr>
<td>Economics (Macroeconomics)¹</td>
<td>AP Score: 4 or 5 = ECON 2105</td>
<td>3</td>
</tr>
<tr>
<td>Economics (Microeconomics)¹</td>
<td>AP Score: 4 or 5 = ECON 2106</td>
<td>3</td>
</tr>
<tr>
<td>Music Theory</td>
<td>AP Score: 4 or 5 = MUSI 2700</td>
<td>3</td>
</tr>
<tr>
<td>Physics B</td>
<td>AP Score: 4 or 5 = PHYS 3 2XXX</td>
<td>3</td>
</tr>
<tr>
<td>Physics C, Part I: Mechanics</td>
<td>AP Score: 5 = PHYS 2211 & PHYS 2211</td>
<td>4</td>
</tr>
<tr>
<td>Physics C, Part II: Elect & Magnetism</td>
<td>AP Score: 5 = PHYS 2212 & PHYS 2212</td>
<td>4</td>
</tr>
</tbody>
</table>

1. With a score of 4 or 5 in both macroeconomics and microeconomics, a student could instead elect to receive 3 semester hours of credit for ECON 2100.
2. HTS 1XXX represents a 1000 level elective course that may be used toward a social science requirement.
3. Students cannot receive credit for both INTA 1200 and POL 1101.
4. Students who receive a score of 4 will be contacted by the School of Physics after the AP scores are received (early in August each year) with information about taking a placement test to validate the credit. If students pass the test, they will be awarded credit.

SAT II Subject Tests (p. 105)

Advanced Baccalaureate (p. 104)

Advanced Standing

Examinations for Advanced Standing

1. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination. Such an examination is called an "Examination for Advanced Standing."
2. Examinations for advanced standing require the recommendation of the department of instruction in which the course is offered, payment of the appropriate fee to the Office of the Bursar, and authorization by the Office of the Registrar.
3. Examinations for Advanced Standing will usually be offered during the Final Examination Period.
4. A student will not be allowed to take an Examination for Advanced Standing in a given course more than twice.
5. Students will not be allowed to take an Examination for Advanced Standing in a course for which any prerequisite has not been met, except with the consent of the school offering the course.
6. An Examination for Advanced Standing will be reported with an "S" or "U" grade. Neither grade will be included in the calculation of grade-point average (GPA).
7. Advanced standing is not allowed for laboratory or studio classes, except with the consent of the school offering the course.
8. Students may not use more than nine credits of advanced standing to meet degree requirements.
9. Students may submit the Advanced Standing Application and Fee to obtain six to eight hours of proficiency credit for foreign language at the 1001 or 1002 levels upon completion of two classes in the same language at the 2000 level or higher with a minimum grade of "C."

Advanced Standing Form (http://www.registrar.gatech.edu/students/formlanding/advstanding.php)

Departmental Exams

Advanced Placement in Mathematics

The School of Mathematics will offer optional GT advanced placement mathematics examinations to incoming freshmen who wish to test out of MATH 1113 (https://gatech-curr.courseleaf.com/search/?P=MATH%201113), MATH 1551 (https://gatech-curr.courseleaf.com/search/?P=MATH%201551) (Differential Calculus), MATH 1552 (https://gatech-curr.courseleaf.com/search/?P=MATH%201552) (Integral Calculus) and/or MATH 1553 (https://gatech-curr.courseleaf.com/search/?P=MATH%201553) (Intro to Linear Algebra).

If a student already has GT credit for MATH 1551 (https://gatech-curr.courseleaf.com/search/?P=MATH%201551) the student does not have to take the optional GT Advanced Placement exam for MATH 1551 (https://gatech-curr.courseleaf.com/search/?P=MATH%201551). Such a student may elect to take the optional GT Advanced Placement exam for MATH 1552 (https://gatech-curr.courseleaf.com/search/?P=MATH%201552). If a student already has GT credit for MATH 1551 (https://gatech-curr.courseleaf.com/search/?P=MATH%201551) the student does not have to take the optional GT Advanced Placement exam for MATH 1551 (https://gatech-curr.courseleaf.com/search/?P=MATH%201551). Such a student may elect to take the optional GT Advanced Placement exam for MATH 1552 (https://gatech-curr.courseleaf.com/search/?P=MATH%201552).

French Baccalaureat

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, The International Baccalaureate, Advanced Levels (A-Levels), and/or Georgia Tech Departmental Exams.

Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate, or A-Level Examinations for credit. All examinations must be completed prior to the student’s enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an Examination for Advanced Standing.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Score</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>German Language Exams (DSD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSD I,2</td>
<td>GRMN 3XXX</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DSD II,2</td>
<td>GRMN 3XXX</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1 Effective for the 2019-20 Catalog Year.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Students must bring Deutsches Sprachdiplom transcript to the Registrar’s Office for evaluation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

International Baccalaureate Exams

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, The International Baccalaureate, and/or Georgia Tech Departmental Exams.

Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate, or A-Level Examinations for credit. All examinations must be completed prior to the student’s enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an Examination for Advanced Standing.

Please note: The awarded credit for BIOL 1510 and BIOL 1520 will be updated to BIOS 1107 and BIOS 1107L and BIOS 1108 and BIOS 1108L effective Spring 2020.

International Baccalaureate - High Level

<table>
<thead>
<tr>
<th>Subject</th>
<th>Higher Level Exam Scores</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>4 or 5</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td>6 or higher</td>
<td>8 hours</td>
</tr>
<tr>
<td></td>
<td>8 hours (BIOL 1510 and BIOL 1520)</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>5 or higher</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td>(CHEM 1310)</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>5 or higher</td>
<td>6 hours</td>
</tr>
<tr>
<td></td>
<td>(CHIN 3003 and CHIN 3004)</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>5 or higher</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>(CS 1301)</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>5 or higher</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>(ECON 2100)</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>4 or higher</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>(ENGL 1101)</td>
<td></td>
</tr>
<tr>
<td>European History</td>
<td>4 or higher</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>(HTS 2037)</td>
<td></td>
</tr>
</tbody>
</table>
Students accepted into the program earn more than just money for a college degree. Cadets and midshipmen receive training and experience in the one quality which is always in great demand: Leadership.

Students may apply a maximum of 4 credit hours in basic (1000-2000 level courses) ROTC courses and six hours in advanced (3000-4000 level) ROTC courses toward meeting the free elective requirements for any degree. Students should begin taking basic ROTC courses during the first term they are enrolled. For further information, see individual curricula for the schools. Please note some departments may have stricter guidelines regarding ROTC courses.

Airforce ROTC Information (http://www.catalog.gatech.edu/colleges/cola/air-force-aerospace-studies)

Army ROTC Information (http://www.catalog.gatech.edu/colleges/cola/military-science-army-rotc)

Navy ROTC Information (http://www.catalog.gatech.edu/colleges/cola/defense-science)

ROTC Credit

Georgia Tech offers three voluntary ROTC programs: Army, Navy, and Air Force.

Depending on the student's major, Basic and Advanced ROTC classes count as a portion of elective credit. (Students may apply a maximum of 4 credit hours in Basic ROTC courses and six credit hours in Advanced ROTC courses toward meeting the elective requirements for any degree at the discretion of the school.) Consult specific colleges to determine the amount of hours that will count toward a degree. After earning a baccalaureate degree and completing the Advanced ROTC courses for any of the three services, a student may receive a commission as an officer in either the reserve or active forces.

SAT II Subject Tests

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, The International Baccalaureate, and/or Georgia Tech Departmental Exams.

Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate, or A-Level Examinations for credit. All examinations must be completed prior to the student's enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an Examination for Advanced Standing.

The table below describes the course credit a student may earn if she/he achieves a specific score on a specific SAT II Subject Test.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Score</th>
<th>Semester Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>680</td>
<td>CHEM 1211K</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>730</td>
<td>CHEM 1310</td>
<td>4</td>
</tr>
<tr>
<td>Literature</td>
<td>750</td>
<td>HUM 1XXX</td>
<td>3</td>
</tr>
<tr>
<td>U.S. History</td>
<td>710</td>
<td>HIST 2111</td>
<td>3</td>
</tr>
<tr>
<td>World History</td>
<td>710</td>
<td>HTS 1XXX</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Placement (p. 102)

International Baccalaureate (p. 104)

Transfer Courses with 'X' Numbers

Transfer courses for which there is no exact Georgia Tech equivalent will be listed with the numbers 1XXX, 2XXX, etc. Courses so numbered can
be used as free electives or may be substituted for Georgia Tech courses at the discretion of the academic unit. Transfer courses with an “X” as the second or third number of the course (e.g., MATH 15X2) are lacking a component of the Georgia Tech course. These courses, in combination with another Georgia Tech course, may be considered as equivalent for prerequisite checking and degree requirements. Students should seek advisement from their academic unit regarding the use of these courses toward fulfilling degree requirements.

Transfer Credit

The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades (“C” or better) at other accredited colleges and universities in the United States and Canada, provided the courses correspond in time and content to courses offered at Georgia Tech. The Institute will not accept credit for courses successfully completed at another institution but previously taken at Georgia Tech unless the final grade received at Georgia Tech is a “W.” The student must request and file an official transcript of transfer courses before the Institute can award credit. Coursework completed at colleges and universities outside the United States and Canada will be evaluated on a case-by-case basis. Transfer credit is not calculated in the Georgia Tech grade-point average.

Students may attend another institution as a transient student during terms when not enrolled at Georgia Tech. Students should discuss their course selection with their academic advisor to ensure transferability and applicability toward their degree programs. With the exception of officially sanctioned cross-enrolled programs, students are not to be enrolled at Georgia Tech and another institution during the same term without the specific approval of the Institute Undergraduate Curriculum Committee or Institute Graduate Curriculum Committee, as appropriate.

Policy on Transfer Credit

A. Only official transcripts from other schools may be used to evaluate and/or award credit.
 • New students must request an official transcript from all previously attended colleges and universities be mailed to the Admissions Office.
 • Georgia Institute of Technology
 Undergraduate Admissions Office
 Atlanta, GA 30332-0320

B. Current or previously enrolled Georgia Tech students must have an official transcript from all other colleges and universities mailed to:
 • Georgia Institute of Technology
 Office of the Registrar
 Transfer Credit
 Atlanta, GA 30332-0320

C. Georgia Tech will not award credit for courses successfully completed at another institution which were previously taken at Georgia Tech.

D. A petition to the faculty must be approved to use course work more than ten years old.

E. Georgia Tech reserves the right to test the proficiency of any student in course work transferred from other institutions and to disallow credit in courses in which the student cannot demonstrate acceptable proficiency.

Transfer Credit for Online Courses

A. Currently, online versions of all Lab Science courses, International Affairs, Psychology, Economics and courses equivalent to HIST 2111 and HIST 2112 are not eligible for transfer credit consideration. In most cases, Mathematics courses are not eligible for consideration unless sufficient documentation is provided to show the course exams are proctored. Students interested in taking the online versions of any Mathematics courses that meet this requirement, or have questions regarding this policy, the Office of the Registrar via email: comments@registrar.gatech.edu.

Requesting Transfer Credit for Courses Not Previously Evaluated

A. Check the online equivalency database (https://oscar.gatech.edu/pls/bprod/wwsktma.P_find_location) for updates. New evaluations are posted daily.

B. Notify the Office of the Registrar’s Transfer Credit Department of any not-awarded credit. Send an email to comments@registrar.gatech.edu

C. Using the Transfer Credit web site (https://transfercredit.gatech.edu), submit courses for evaluation.

About Transfer Credit

A. Georgia Tech does not offer correspondence courses and does not grant credit for correspondence courses taken at other institutions. Academic units reserve the right to take such things as delivery method into consideration. For example, on-line courses and computer-instructed courses may not be accepted by some academic units for credit.

B. Georgia Tech does not grant credit for the College Level General Educational Development Tests, CLEP, SATI, USAFI courses, or courses completed at any United States armed services, with the exception of the military academies and schools with full accreditation by a regional accrediting body.

C. Georgia Tech does not grant credit for professional certificate programs.

D. The following items are among other circumstances in which non-resident credit is not granted:
 • Courses previously completed at Georgia Tech.
 • College courses taken to meet freshman admissions requirements.
 • Remedial courses.
 • Courses basically secondary school or pre-college level.
 • Courses with essentially non-academic content.
 • Vocational courses.
 • Learning support courses.

E. Non-resident credit is not computed as a part of the student’s grade point average at Georgia Tech.
Advanced Placement (AP) and International Baccalaureate (IB)
A. Follow the steps below to view AP or IB equivalencies.
1. Go to https://oscar.gatech.edu
2. Select the “Transfer Equivalencies” icon
3. Select the asterisk (*) from the pull down menu
4. Click “Continue” button
5. Select your option from the pull down menu
6. Click “Get Courses” button

B. Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate or A-Level Examinations for credit. All examinations must be completed prior the student’s enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an “Examination for Advanced Standing (p. 103).”

More information:
Transfer Equivalency Catalog (https://oscar.gatech.edu/pls/bprod/wwsktma.P_find_location)

Undergraduate Students Taking Graduate Courses
A senior with a grade-point average (GPA) of at least 2.7 may enroll in a graduate course if she/he obtains permission from the school or department offering the course.

1. Up to twelve credit hours earned as an undergraduate student may count toward earning a master’s degree if the following conditions are satisfied.
 a. The student was in residence at Georgia Tech for at least two semesters before registering for the course(s).
 b. The student did not apply credit for the course toward a bachelor’s degree. Special exceptions may apply in certain schools, as described below.
 i. If student pursues both a bachelor’s and master’s at Georgia Tech, and if both degrees are in the same discipline, she/he may apply up to six credit hours of graduate-level credit in the major discipline to satisfying the requirements for both degrees. Because some master’s degree programs do not have any unique undergraduate counterpart program, and because some master’s programs are offered by several schools, the definition of “discipline” will be broadly interpreted in such cases. To qualify for this option, a student must complete the bachelor’s degree with a cumulative GPA of 3.5 or higher and complete the master’s degree within a two-year period following the award date of the bachelor’s degree.

Graduate Course Option
Students completing both a bachelor’s and master’s in the same discipline at Georgia Tech may use up to six credit hours of graduate-level coursework in the major discipline for both degrees. Recognizing that some master’s degree programs do not have a unique undergraduate counterpart program and that some master’s programs are offered by several schools, the term “discipline” in the prior sentence will be broadly interpreted in such cases. To qualify for this option, students must complete the undergraduate degree with a cumulative GPA of 3.5 or higher and complete the master’s degree within a two-year period from the award date of the bachelor’s degree.

More information: See BS/MS Programs (http://catalog.gatech.edu/academics/special-academic-programs/bs-ms-programs) for more information.

New Sequence of Math Core Courses
Math Courses Redesigned for Fall 2015
The School of Mathematics announced a new sequence of math core courses starting Fall 2015. The change involved two primary goals which were:

1. to separate the calculus and the linear algebra sequences and
2. to improve the cutting points in the calculus sequence.

The old core sequence of calculus and linear algebra involved MATH 1501, and MATH 1502. However, a large portion of MATH 1502 was material from linear algebra.

In the new math core, the calculus material are covered in MATH 1551, and MATH 1552. The linear algebra material can be covered in one of three equivalent courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1564</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td>4</td>
</tr>
</tbody>
</table>

More information can be found at http://www.math.gatech.edu, and questions can be addressed to academics@math.gatech.edu.

Undergraduate-Level Courses
Undergraduate Minors
An undergraduate minor is a defined program of study outside the student’s major field. Minors are intended to broaden the student’s education by encouraging and officially recognizing knowledge obtained by the student in fields other than their major.

Minors are typically offered by Schools which also offer a major. A program of study for the minor is outlined and it may include more than one option or “track”. Tracks allow students to focus on an aspect of the academic field that is of particular interest to them. It is expected that there will be depth of the program of study and that specific educational objectives will be met upon completion of the minor.

Other minors are offered where there is no undergraduate degree granting program at Georgia Tech. These minors cover fields which are inherently multidisciplinary; i.e., ones that are covered in part by multiple degree granting academic programs. Multidisciplinary minors require particularly broad Programs of Study which include courses from multiple Schools and/or Colleges.

Program of Study
The program of study for each minor must satisfy the curricular requirements listed below. However, some minors, at the discretion of the offering academic unit(s), may be exempt from some of these requirements, may exceed some requirements, and/or add additional
requirements. Consult the advisor for the minor program for the specific requirements of that minor.

Requirements for the Program of Study

1. A minor program of study must have at least 15 credit hours of coursework.
2. A minor program of study must include at least 9 credit hours of courses numbered 3000 or above.
3. Courses used to satisfy Core Areas A through E in a student’s major degree program cannot also be used to satisfy the course requirements for a minor.
4. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
5. All academic units may designate a block/blocks of courses outside of the student’s major field of study in which the same course can be used to satisfy the course requirements in the student’s major degree program and also be used to satisfy the course requirements for a minor.
6. A multidisciplinary or other minor may contain courses in a student’s major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor, provided these courses are not also used to satisfy any course requirement in the student’s major degree program.
7. A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
8. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
9. A course may not be used to satisfy the requirements of more than one minor or certificate.
10. All courses counting toward the minor must be taken on a letter-grade basis.
11. All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.

Other Guidelines

1. A student should select a minor in consultation with an advisor in their major field of study. The minor selected must be:
 a. outside of the student’s major, or
 b. a multidisciplinary minor that may include some courses in the student’s major field of study. (See requirement #6 above.)
2. The student should consult with an advisor in the minor field of study who can inform and advise the student about the specific requirements of the minor. Some of these may be different than the requirements listed above.
3. Students can declare a minor at any time. However, it is recommended that students declare the minor as soon as they have made the decision so that they can monitor their progress using the online degree audit and with their advisor. Declaration of the minor also provides information to the relevant academic units that is helpful in planning courses. The minor declaration form is on the Registrar’s Office website at: http://www.registrar.gatech.edu/students/formlanding/changeminor.php.
4. The student must complete a minor program of study form at the same time the online application for graduation is completed, generally during the semester before the terminal one. Program of study forms for all minors can be found here (http://catalog.gatech.edu/academics/minors/#minorofferedtext).
5. The minor is conferred at the same time the major degree is conferred. The major degree and minor will be recorded on the student’s transcript. The minor will not appear on the student’s diploma.
6. Minors will not be conferred retroactively upon students who have graduated.

Administrative Guidelines

1. All proposals for a minor must originate from the faculty of the academic unit(s) offering the minor. Minors may originate in several ways, such as:
 a. a minor in a field in which Georgia Tech offers a degree program through a single academic unit (College/School),
 b. a multidisciplinary minor, in which the subject matter is covered by multiple degree granting academic programs in multiple academic units (Colleges/Schools),
 c. a minor in a field in which there is no undergraduate degree-granting program at Georgia Tech. In this case, the proposed minor must be in a recognized academic field or discipline and the offering academic unit(s) must have in place sufficient courses, faculty, and facilities.
2. All proposals for a minor must include a statement of the educational objectives of the minor and how the program of study is used to satisfy these objectives.
3. The academic unit(s) offering the minor may choose to require an admission process, set admission standards, and/or set enrollment limits.
4. The academic units(s) offering the minor may request to be exempted from some of the curricular requirements applied to the program of study or add additional requirements if this is justified as essential to meeting the stated educational objectives of the minor.
5. For a multidisciplinary or other minor, a maximum of 6 semester hours of courses in the student’s major field of study may be used to satisfy the course requirements for a minor when their inclusion is justified as essential to meeting the stated educational objectives of the minor. However, these courses cannot also be used to satisfy any course requirement in the student’s major degree program unless they belong to the special block of courses described in requirement #6 of the Requirements for the Program of Study of the minor.
6. All proposals for a minor must include a plan for advising students pursuing the minor and for approving a student’s completion of the required program of study.
7. All proposals for a minor must be endorsed by the appropriate College Dean(s) and by the Provost.
8. All undergraduate minors must be approved by the Institute Undergraduate Curriculum Committee and by the Academic Senate. Multidisciplinary minors must also be approved by the Chancellor of the Board of Regents.
9. Information and relevant documents for proposing a new minor can be found at http://www.icc.gatech.edu/submit/requirements.php?type=101
Aerospace Engineering
Description (p. 555)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-aerospace-engineering)

Architectural History
Description (p. 555)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-architectural-history)

Architecture
Description (p. 556)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-architecture)

Biology
Description (p. 557)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-biology)

Biochemistry
Description (p. 557)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-biochemistry)

Biomedical Engineering
Description (p. 557)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-biomedical-engineering)

Chemistry
Description (p. 559)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-chemistry)

Chinese
Description (p. 559)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-chinese)

Computational Data Analysis
Description (p. 560)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computational-data-analysis)

Computing and Business
Description (p. 560)
Program of Study - Track for Computer Science and Computational Media students (https://registrar.gatech.edu/info/program-of-study-form-

Computing and Devices
Description (p. 561)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-devices)

Computing and Information Internetworks
Description (p. 565)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-information-internetworks)

Computing and Intelligence
Description (p. 562)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-intelligence)

Computing and Media
Description (p. 562)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-media)

Computing and People
Description (p. 563)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-people)

Computing and Systems and Architecture
Description (p. 563)

Computing and Theory
Description (p. 564)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-computing-and-theory)

Earth and Atmospheric Sciences
Description (p. 565)
Program of Study - Environmental Science Track (https://registrar.gatech.edu/info/program-of-study-form-earth-and-atmospheric-sciences-environmental-science-track)
Undergraduate Minors

East Asian Studies
Description (p. 567)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-east-asian-studies)

Economics
Description (p. 569)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-economics)

Energy Systems
Description (p. 569)

Program of Study - Track for Aerospace Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-aerospace-engineering-students)

Program of Study - Track for Chemical and Biomolecular Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-chemical-and-biomolecular-engineering-students)

Program of Study - Track for Electrical and Computer Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-electrical-and-computer-engineering-students)

Program of Study - Track for Industrial and Systems Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-industrial-and-systems-engineering-students)

Program of Study - Track for Mechanical Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-mechanical-engineering-students)

Program of Study - Track for Economics (including EIA, and GEML) students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-economics-students)

Program of Study - Track for Public Policy students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-public-policy-students)

Program of Study - Track for Biology students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-biology-students)

Program of Study - Track for Chemistry and Biochemistry students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-chemistry-and-biochemistry-students)

Program of Study - Track for Earth and Atmospheric Sciences students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-energy-systems-track-for-earth-and-atmospheric-sciences-students)

Engineering and Business
Description (p. 578)

Program of Study - Track for Business Administration students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-engineering-and-business-track-for-business-administration-students)

Program of Study - Track for College of Engineering students (https://registrar.gatech.edu/info/program-of-study-form-minor-in-engineering-and-business-track-for-college-of-engineering-students)

Film and Media Studies
Description (p. 581)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-film-and-media-studies)

French
Description (p. 582)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-french)

German
Description (p. 582)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-german)

Global Development
Description (p. 583)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-global-development)

Health and Medical Sciences
Description (p. 583)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-health-and-medical-sciences)

Health, Medicine, and Society
Description (p. 584)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-health-medicine-and-society)

History
Description (p. 585)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-history)

Industrial Design
Description (p. 585)

Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-industrial-design)
International Affairs
Description (p. 586)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-international-affairs)

International Business, Language, and Culture
Description (p. 586)
Program of Study (p. 586)

Japanese
Description (p. 590)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-japanese)

Korean
Description (p. 590)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-korean)

Law, Science, and Technology
Description (p. 590)
Program of Study (https://registrar.gatech.edu/info/program-of-study-forms-minor-law-science-and-technology)

Leadership Studies
Description (p. 591)
Program of Study - Business Track (https://registrar.gatech.edu/info/program-of-study-form-minor-in-leadership-studies-business-track)
Program of Study – Global Engineering Track (https://registrar.gatech.edu/info/program-of-study-form-minor-in-leadership-studies-global-engineering-track)
Program of Study - Policy Track (https://registrar.gatech.edu/info/program-of-study-form-minor-in-leadership-studies-policy-track)

Linguistics
Description (http://catalog.gatech.edu/programs/minor-linguistics/#text)
Program of Study (http://catalog.gatech.edu/programs/minor-linguistics/#requirementstext)

Materials Science and Engineering
Description (p. 593)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-materials-science-and-engineering)

Mathematics
Description (p. 594)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-mathematics)

Middle Eastern and North African Studies
Description (http://catalog.gatech.edu/programs/minor-middle-eastern-north-african-studies)
Program of Study (http://catalog.gatech.edu/programs/minor-middle-eastern-north-african-studies/#requirementstext)

Music
Description (p. 595)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-music)

Music Performance
Description (http://www.catalog.gatech.edu/programs/minor-music-performance)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-music-performance)

Music Technology
Description (p. 596)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-music-technology)

Naval Sciences
Description (http://catalog.gatech.edu/programs/minor-naval-science)
Program of Study (http://catalog.gatech.edu/programs/minor-naval-science/#requirementstext)

Nuclear and Radiological Engineering
Description (p. 598)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-nuclear-and-radiological-engineering)

Philosophy
Description (p. 598)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-philosophy)

Physics
Description (p. 599)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-physics)

Physiology
Description (p. 599)
Program of Study (https://registrar.gatech.edu/info/program-of-study-forms-minor-in-physiology)

Political Science
Description (p. 600)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-political-science)

Psychology
Description (p. 601)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-psychology)
Public Policy
Description (p. 601)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-public-policy)

Robotics
Description (p. 602)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-robotics)

Russian Studies
Description (p. 603)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-russian-studies)

Science, Technology, and Society
Description (p. 604)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-science-technology-and-society)

Science Fiction Studies
Description (p. 603)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-science-fiction-studies)

Scientific and Engineering Computing
Description (p. 605)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-scientific-and-engineering-computing)

Social Justice
Description (p. 606)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-social-justice)

Sociology
Description (p. 607)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-sociology)

Sports, Society, and Technology
Description (p. 608)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-sports-society-and-technology)

Spanish
Description (p. 608)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-spanish)

Sustainable Cities
Description (p. 609)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-sustainable-cities)

Technology and Business
Description (p. 610)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-technology-and-business)

Women, Science, and Technology
Description (p. 610)
Program of Study (https://registrar.gatech.edu/info/program-of-study-form-minor-in-women-science-and-technology)
ADMISSIONS

- Graduate Admissions (p. 113)
- Undergraduate Admissions (p. 114)

Graduate Admissions

Prospective students may obtain information and apply for admission via the Graduate Studies website (http://www.grad.gatech.edu). The site provides information regarding minimum admission standards and relevant deadlines for individual programs.

Applicants for Georgia Tech’s graduate programs should hold a bachelor’s degree from a regionally accredited institution and be able to demonstrate experience with their selected field of graduate studies such as an undergraduate degree in the field or work experience in a related job.

- Admissions Information (p. 113)
- Graduate Record Exam (GRE) (p. 113)
- Orientation - New Students (p. 113)
- Reactivation of Application (p. 113)
- Readmission (p. 113)
- TOEFL for Int’l Students (p. 113)
- Transfer of Credit (p. 114)
- Types of Standing (p. 114)

Admissions Information

Anyone who is qualified is welcome to seek admission to Georgia Tech, and anyone who applies for and accepts admission can be confident that the policy and regular practice of the Institute will not discriminate against him or her on the basis of race, religion, sex, or national origin.

Verification of credentials and certification of compliance with Institute admissions policies shall be the responsibility of the Office of Graduate Studies. Policies and procedures that are approved by the Office of the President, Board of Regents of the University System of Georgia, and the Academic Faculty Senate of the Institute shall be applied in determining eligibility. From those eligible candidates, final admission decisions shall be the responsibility of the admitting department. Satisfying minimal standard does not guarantee admission, since the number of eligible applicants generally far exceeds the number of places available. As a result, many well-qualified applicants cannot be accommodated.

The criteria used in determining each applicant’s eligibility for consideration shall include:

1. Evidence of award of a bachelor’s degree, its equivalent, or higher degree (prior to matriculation) from a regionally accredited institution; demonstrated academic excellence; and evidence of experience in the selected field of graduate study.
2. For international applicants, satisfactory scores on the Test of English as a Foreign Language (TOEFL).

Departments make final admission decisions from the pool of eligible candidates based on a combination of factors, including academic degrees and records, the statement of purpose, letters of recommendation, test scores, and relevant work experience. Departments may also consider the appropriateness of the applicant’s goals to the degree program in which they are interested and to the research interests of the program’s faculty. In addition, consideration may be given to how the applicant’s background and life experience would contribute significantly to an educationally beneficial mix of students.

Graduate Record Examinations (GRE)

Official GRE general test scores are required by most graduate programs, except those in the Scheller College of Business, which require official Graduate Management Admission Test (GMAT) scores. GRE subject test scores are required for some programs. Check the Graduate Studies (http://www.gradadmiss.gatech.edu/degree-programs) website for test requirements in specific programs.

Orientation - New Students

Each new graduate student should plan to attend one of the Institute’s orientation sessions. Information on these sessions will be posted on the Graduate Studies website at www.grad.gatech.edu (http://www.grad.gatech.edu). In some cases, individual programs will also hold program orientations. New students should plan to attend both the Institute and the program orientation as the same information is not covered in these separate sessions.

 Reactivation of Application

Applicants to a Georgia Tech graduate program who do not enter in the term for which they originally applied, and subsequently wish to be considered for a later term, must reactivate their applications for the new term by written request to the program to which they originally applied. Since the Graduate Studies office keeps files on never-entered students for one academic year only, students who delay more than one academic year in the reactivation request must reapply and provide a new set of application materials. The number of reactivations per applicant is limited.

Readmission

Students who interrupt the continuity of their graduate programs by not registering for two or more consecutive terms must seek readmission by filing a completed Request for Readmission form with the Registrar. Individuals who have received a graduate degree from Georgia Tech and who wish to reenter to receive an additional graduate degree (at the same level or higher) must also request readmission through this process. (It is not necessary to file a new application.) Readmission forms are available from the Office of the Registrar (http://www.registrar.gatech.edu/students/readmission.php). For more information, see the policy for withdrawal and readmission (p. 156).

Students who have been out two or more terms will be required to meet health, lawful presence, and other certification requirements in effect at the time of readmission.

TOEFL for International Students

All international students from countries in which English is not the primary native language must take the Test of English as a Foreign Language (TOEFL), except international students who have attended a college or university in the United States for at least one academic year (two semesters or three quarters). No other language test may be substituted. The TOEFL is the only test accepted by Georgia Tech.
The minimum score for graduate admission required by Georgia Tech is:

- 577 (paper based), or
- 90 (Internet based) and minimum section scores of 19

Some academic programs require higher scores. (See the program(s) of choice in the degree program listing found at www.grad.gatech.edu to determine the minimum scores required by each program.) Since the results of this test constitute part of the material reviewed for admission to graduate study at Georgia Tech, students must arrange to have the Educational Testing Service send their official scores to the Graduate Studies office as early as possible.

Transfer of Credit

A student may not apply for transfer credit until after matriculation at Georgia Tech. The courses to be transferred would typically be those appearing on the approved program of study form for the masters degree. A doctoral student normally does not request transfer credit. The rules relative to and the process for obtaining transfer of credit for graduate-level courses are as follows:

1. Student’s in a master’s degree program requiring fewer than 33 semester credit hours may receive up to six hours of transfer credit for graduate-level courses taken at an institution accredited by a Canadian or U.S. regional accrediting board, or at a foreign school or university that has a signed partner agreement with Georgia Tech, and not used for credit toward another degree. A student in a master’s degree program requiring 33 semester credit hours or more may receive up to nine hours of transfer credit for graduate-level courses taken at an institution accredited by a Canadian or U.S. regional accrediting board, or at a foreign school or university that has a signed partner agreement with Georgia Tech, and not used for credit toward another degree. The student must supply a current transcript for this evaluation.

2. To obtain transfer of credit, the student must complete the following procedure:
 a. The student will confer with the graduate advisor to ascertain whether the courses to be transferred are a logical part of the student’s graduate program;
 b. If the courses are appropriate, the student will deliver to the school that teaches such courses a copy of the current transcript, necessary descriptive materials including catalog descriptions, and textbooks used for evaluation. The faculty of the appropriate school will determine the equivalent Georgia Tech course and the number of credit hours accepted. The faculty member who prepares the transfer credit form should have the school chair cosign it. The school should then send the form directly to the registrar with a copy of the student’s Approved Program of Study attached;
 c. If the student wishes to transfer more than the number of hours permitted in item one listed above, a petition must be submitted to the Institute Graduate Curriculum Committee that includes statements of possible justification for the granting of such a petition, transfer credit forms, and the recommendation of the student’s school chair.

3. A joint enrollment student may receive graduate credit for up to one-third of the hours required for the degree for graduate courses taken at Emory University or Georgia State University provided that the following is true:
 a. Georgia Tech does not offer such courses;
 b. The student’s advisor and school chair approve the courses in advance and in writing;
 c. The student passes the courses with a C or better. Advance approval is satisfied when the courses appear on the student’s proposed Program of Study.

4. A student may not receive transfer credit from universities outside the United States and Canada unless the courses were taken at a foreign institution or university that is accredited by a Canadian or U.S. regional accrediting board or has a signed partner agreement with Georgia Tech. In any other case, an international student can obtain credit for courses previously taken but not applied toward another degree by filling out an Examination for Advanced Standing Authorization Request Form, paying the appropriate fee at the Bursar’s Office, and passing the examination for advanced standing. The school or college that normally teaches the equivalent course will administer any necessary examinations.

Types of Standing

Applicants holding a bachelor’s degree in an appropriate field from a regionally accredited institution will be given full graduate standing upon acceptance and matriculation, provided their previous work is of sufficient quality to indicate immediate success in advanced study.

If the work of an applicant holding an approved bachelor’s degree is deficient in content or quality so that supplemental study or demonstrated ability is necessary, the applicant may be given conditional graduate standing upon acceptance.

Applicants who do not wish to qualify for an advanced degree at Georgia Tech, but demonstrate the potential benefits of their participation in advanced study, may gain admission as special non-degree graduate students. Students who are admitted with special non-degree standing for failure to submit official transcripts or for other administrative reasons may apply not more than 16 semester credit hours taken on special non-degree standing toward a degree.

Graduate students in good standing at other U.S. universities may enroll at Georgia Tech as transient graduate students by filing an application for admission and by providing a letter of verification of good standing status from the registrar of the institution at which they are currently enrolled. Work undertaken in transient standing will not apply toward a Georgia Tech degree.

Undergraduate Admissions, not Graduate Studies, will admit students working toward a second bachelor’s degree.

In addition to full, conditional, and special non-degree graduate standing, graduate students will be classified by academic standing according to their GPAs: good standing, warning, probation, or drop. (The graduate GPA includes the grades on all courses scheduled by the student after admission to graduate study.) For specific information, see the scholastic regulations (p.).

Undergraduate Admissions

- First-Year (p. 115)
- Transfer (p. 115)
- Readmission (p. 117)
First-Year Admission

General Information for First-Year Admission

First-year students may only apply for the summer or fall terms. A completed application for first-year admission includes a non-refundable application fee, high school transcript (or equivalent), and SAT I and/or ACT scores sent directly to the Office of Undergraduate Admission. International applicants and applicants who have been homeschooled may be required to submit additional information. We accept both the Coalition Application (https://www.mycoalition.org/public/info/gatech) and Common Application (https://www.commonapp.org/school/georgia-institute-technology) for first-year admission. We do not have a preference, and there is no advantage in the admission process to using one application or the other. Students should select the application they are most comfortable submitting.

It is the applicant’s responsibility to ensure that all required elements, including the application, non-refundable application fee, high school transcript, and SAT I and/or ACT scores are submitted by stipulated deadlines. All elements must be received prior to the first-year application deadlines. More information regarding first-year application deadlines can be found at http://admission.gatech.edu/first-year/deadlines-fees.

The Office of Undergraduate Admission will consider all completed applications on file by the stated deadlines. For more information regarding first-year admission to the Georgia Institute of Technology, visit www.admission.gatech.edu (http://www.admission.gatech.edu), call 404.894.4154, or email admission@gatech.edu.

Transfer Admissions

The Application for Transfer Admission is available online at www.admission.gatech.edu/apply (http://www.admission.gatech.edu/apply). To be eligible for admission, students must complete the application, submit the non-refundable application fee, and submit official transcripts from all United States colleges or universities ever attended. Students who have completed any coursework outside the United States will be required to submit additional information. All documents must be original and certified as appropriate.

The Office of Undergraduate Admission will consider all completed applications on file by the stated deadlines. For more information regarding transfer admission to the Georgia Tech, visit www.transfer.gatech.edu (http://www.transfer.gatech.edu) or call 404.894.4154, or email admission@gatech.edu.

Policy on the Competitive Admission of Transfer Applicants

All qualified persons are equally welcome to seek transfer admission to Georgia Tech, and all persons may apply for and accept admission confident that the policy and regular practice of the Institute will not discriminate against them on the basis of race, religion, sex, or national origin.

Projections of the number of transfer students to be admitted and enrolled in any year will be determined

1. by the capacity of the Institute and
2. by approved enrollment levels.

If the number of qualified applicants for admission exceeds the number of applicants who can be admitted and enrolled, those to be offered admission will be selected on the basis of

1. the Institute’s judgment of the applicant’s relative qualifications for satisfactory performance in the Institute and
2. recognition of the Institute’s special responsibilities to the residents of Georgia.

The policy of competitive admissions, set forth above, will not prevent the admission of selected applicants who give evidence of possessing special talents for the Institute’s programs requiring such special talents.

The admission of undergraduate students to pursue programs leading to a bachelor’s degree shall be the responsibility of the Office of Undergraduate Admission. That office will apply policies and procedures that are approved by the Office of the President and the Board of Regents of the University System of Georgia.

The criteria used in determining each transfer applicant’s qualifications for admission will include satisfactory evidence of scholastic promise based upon the applicant’s previous academic transfer record.

Appeals concerning individual admission decisions shall be addressed to the director of the Office of Undergraduate Admission.

More information:

- Catalog | Out-of-State Tuition Wavers (p. 132)
- Undergraduate Admission | Transfer Admission (http://admission.gatech.edu/transfer)

Academic Advising

The appointed academic advisor is the key source of information about the college. All entering students are assigned an academic advisor depending on their declared majors at Georgia Tech. To find the assigned advisor, visit the advising Web page (http://advising.gatech.edu). Students will meet their assigned advisors at orientation and at regular intervals during their college careers. Advisors welcome questions about different programs and areas.

Academic advisors are the guides through the college experience. They will help to identify the correct major, curriculum, minor, certificates, study abroad, internships, campus resources, and much more.

While the degree requirements are posted on the Registrar’s Office web page (http://registrar.gatech.edu), it is essential to check in with the assigned advisor at least once a year (if not more) to ensure that
requirements are being met and communication lines are open. Also, regular contact with the advisor will enhance each student’s college experience and help them reach their future goals.

Academic Advising (http://www.advising.gatech.edu)

Degree Requirements (http://catalog.gatech.edu/programs)

Required Computer Ownership

In an effort to foster equal access to computers and to make the most of the teaching and learning technology available at Georgia Tech, all undergraduate students entering Georgia Tech under this or subsequent catalogs are required to own or lease a computer. The minimum hardware and software requirements (as well as purchasing and financing options) are sent each spring to students accepted for the summer and fall semesters, and in the fall to students accepted for spring semester.

Because computer ownership is mandatory, an average cost for the minimum hardware and software required can be included in computing a new student’s cost of education for the purpose of determining their eligibility for all forms of student financial aid. Students should contact the Office of Scholarships and Financial Aid for more information.

Student Computer Ownership Website (http://www.sco.gatech.edu)

International Students

International students should access further information regarding application policies and procedures and other basic information helpful to applicants from other countries by visiting www.admission.gatech.edu/international (http://www.admission.gatech.edu/international). International students will not receive financial aid or institutional scholarships.

For more information, email the Office of Undergraduate Admission at admission@gatech.edu.

Office of International Education (https://www.oie.gatech.edu)

Office of Undergraduate Admission (http://admission.gatech.edu)

FASET (New Student Orientation)

Familiarization and Adaptation to the Surroundings and Environ of Tech (FASET) is coordinated by The Office of New Student and Transition Programs.

FASET is Georgia Tech’s orientation program for incoming undergraduate students and their families.

- First-year students
- New transfer students
- New exchange students
- Parents, family members, and guests of these students

FASET has been a Georgia Tech tradition since 1972. Orientation sessions are offered at the start of each semester for transfer and exchange students and during the summer for incoming first-year students.

During FASET, new students receive academic advisement, register for their first semester of courses, and complete other business items. In addition, Georgia Tech faculty, staff, and administrators discuss important campus services, student organizations, the undergraduate curriculum, and academic programs. Most importantly, students, parents, and guests have the opportunity to meet and interact with current Georgia Tech students and to get to know other new students, parents, and guests.

For more information, call 404.894.6897 or visit www.transitionprograms.gatech.edu (http://www.nssp.gatech.edu).

Regents’ Testing Program Effective Spring 2010

The Regents’ exam is no longer required at Georgia Tech as a result of a recent decision by The Board of Regents.

Sophomore Programs

In collaboration with campus departments and academic units, the Office of New Student and Sophomore Programs provides programs and services to support sophomore success and meet the unique needs of students during this critical academic transition. The overall goals of these programs are to help sophomores in managing and succeeding with sophomore year courses, moving from exploration to decision-making about majors and careers, developing meaningful relationships on-campus and beyond, pursuing involvement and leadership opportunities, and creating a sophomore class identity. These goals are achieved through multiple programs, including:

- Sophomore Leadership Council
- Sophomore Leadership Forum
- Year 2 at Tech E-Newsletter (http://www.nssp.gatech.edu/content/737/year-2-at-tech)
- Sophomore Career Experience (http://www.nssp.gatech.edu/content/411/sophomore-career-experience)

More information is available from the Office of New Student and Sophomore Programs (http://nssp.gatech.edu).

Transfer Credit

The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades (“C” or better) at other accredited colleges and universities in the United States and Canada, provided the courses correspond in time and content to courses offered at Georgia Tech. The Institute will not accept credit for courses successfully completed at another institution but previously taken at Georgia Tech unless the final grade received at Georgia Tech is a “W.” The student must request and file an official transcript of transfer courses before the Institute can award credit. Coursework completed at colleges and universities outside the United States and Canada will be evaluated on a case-by-case basis. Transfer credit is not calculated in the Georgia Tech grade-point average.

Students may attend another institution as a transient student during terms when not enrolled at Georgia Tech. Students should discuss their course selection with their academic advisor to ensure transferability and applicability toward their degree programs. With the exception of officially sanctioned cross-enrolled programs, students are not to be enrolled at Georgia Tech and another institution during the same term without the specific approval of the Institute Undergraduate Curriculum Committee or Institute Graduate Curriculum Committee, as appropriate.
Transfer Credit Policy

Policy on Transfer Credit

A. Only official transcripts from other schools may be used to evaluate and/or award credit.
 - **New students** must request that an official transcript from all previously attended colleges and universities be mailed to the Admissions Office.
 - Georgia Institute of Technology
 Undergraduate Admissions Office
 Atlanta, GA 30332-0320

B. Current or previously enrolled Georgia Tech students must have an official transcript from all other colleges and universities mailed to:
 - Georgia Institute of Technology
 Office of the Registrar
 Transfer Credit
 Atlanta, GA 30332-0320

B. The basic policy regarding the acceptance of the courses by transfer is to allow credit for courses completed with satisfactory grades (C or better) in other accredited colleges provided the courses correspond in time and content to courses offered at the Georgia Institute of Technology. Georgia Tech assumes responsibility for the academic quality of any work or credit recorded on the institution’s transcript. Transfer credits will be accepted from newly-formed institutions of the University System of Georgia prior to accreditation.

C. Georgia Tech will not award credit for courses successfully completed at another institution which were previously taken at Georgia Tech.

D. A petition to the faculty must be approved to use course work more than ten years old.

E. Georgia Tech reserves the right to test the proficiency of any student in course work transferred from other institutions and to disallow credit in courses in which the student cannot demonstrate acceptable proficiency.

Transfer Credit for Online Courses

A. Currently, online versions of all Lab Science courses, International Affairs, Psychology, Economics and courses equivalent to HIST 2111 and HIST 2112 are not eligible for transfer credit consideration. In most cases Mathematics courses are not eligible for consideration unless sufficient documentation is provided to show the course exams are proctored. Students interested in taking the online versions of any Mathematics courses that meet this requirement, or have questions regarding this policy, the Office of the Registrar via email: comments@registrar.gatech.edu.

Requesting Transfer Credit for Courses Not Previously Evaluated

A. Check the online equivalency database (https://oscar.gatech.edu/pls/bprod/wwsktrna.P_find_location) for updates. New evaluations are posted daily.

B. Notify the Office of the Registrar’s Transfer Credit Department of any not-awarded credit. Send an email to comments@registrar.gatech.edu

C. Using the Transfer Credit web site (https://transfercredit.gatech.edu), submit courses for evaluation.

About Transfer Credit

A. Georgia Tech does not offer correspondence courses and does not grant credit for correspondence courses taken at other institutions. Academic units reserve the right to take such things as delivery method into consideration. For example, on-line courses and computer-instructed courses may not be accepted by some academic units for credit.

B. Georgia Tech does not grant credit for the College Level General Educational Development Tests, CLEP, USAFI courses, or courses completed at any United States armed services, with the exception of the military academies and schools with full accreditation by a regional accrediting body.

C. Georgia Tech does not grant credit for professional certificate programs.

D. The following items are among other circumstances in which non-resident credit is not granted:
 - Courses previously completed at Georgia Tech.
 - College courses taken to meet freshman admissions requirements.
 - Remedial courses.
 - Courses basically secondary school or pre-college level.
 - Courses with essentially non-academic content.
 - Vocational courses.
 - Learning support courses.

E. Non-resident credit is not computed as a part of the student’s grade point average at Georgia Tech.

Advanced Placement (AP) and International Baccalaureated (IB)

A. Follow the steps below to view AP or IB equivalencies.
 1. Go to https://oscar.gatech.edu
 2. Select the “Transfer Equivalencies” icon
 3. Select the asterisk (*) from the pull down menu
 4. Click “Continue” button
 5. Select your option from the pull down menu
 6. Click “Get Courses” button

B. Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate or A-Level Examinations for credit. All examinations must be completed prior the student’s enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an "Examination for Advanced Standing (p. 103)."

More information:

Transfer Equivalency Catalog (https://oscar.gatech.edu/pls/bprod/wwsktrna.P_find_location)

Readmission

Any student who is not enrolled for two or more consecutive terms (counting Summer Session) must apply for readmission. The Application for Readmission, with all pertinent supporting information, must be submitted to the Office of the Registrar before the deadline for the term for which readmission is requested as listed below:
Term Deadline

<table>
<thead>
<tr>
<th>Term</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>July 1st</td>
</tr>
<tr>
<td>Spring</td>
<td>December 1st</td>
</tr>
<tr>
<td>Summer</td>
<td>April 1st</td>
</tr>
</tbody>
</table>

1 Former students on drop or review status should apply at least two months prior to these deadlines in order to ensure sufficient time for the review process.

The "Rules and Regulations (http://catalog.gatech.edu/rules)" section in this Catalog contains additional information on readmission.

Students who withdraw from the Institute (receiving all grades of "W") will not ordinarily be permitted to enroll the next succeeding term. If an exception is requested due to unusual circumstances, a Petition to the Faculty must be filed.

Students who have been out two or more terms will be required to meet health, lawful presence, and other certification requirements in effect at the time of readmission.

More information:
- Withdrawal / Readmission Policies (p. 156)
- Medical Regulations (p. 164)
- Lawful Presence Requirement (http://www.registrar.gatech.edu/students/lpr.php)

Regents' Testing Program

Effective Spring 2010

The Regents' exam is no longer required at Georgia Tech as a result of a recent decision by The Board of Regents'.

Transfer Credit

The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades ("C" or better) at other accredited colleges and universities in the United States and Canada, provided the courses correspond in time and content to courses offered at Georgia Tech. The Institute will not accept credit for courses successfully completed at another institution but previously taken at Georgia Tech unless the final grade received at Georgia Tech is a "W." The student must request and file an official transcript of transfer courses before the Institute can award credit. Coursework completed at colleges and universities outside the United States and Canada will be evaluated on a case-by-case basis. Transfer credit is not calculated in the Georgia Tech grade-point average.

Students may attend another institution as a transient student during terms when not enrolled at Georgia Tech. Students should discuss their course selection with their academic advisor to ensure transferability and applicability toward their degree programs. With the exception of officially sanctioned cross-enrolled programs, students are not to be enrolled at Georgia Tech and another institution during the same term without the specific approval of the Institute Undergraduate Curriculum Committee or Institute Graduate Curriculum Committee, as appropriate.

Policy on Transfer Credit

A. Only official transcripts from other schools may be used to evaluate and/or award credit.
 - New students must request that an official transcript from all previously attended colleges and universities be mailed to the Admissions Office.
 - Georgia Institute of Technology Undergraduate Admissions Office
 Atlanta, GA 30332-0320
 - Current or previously enrolled Georgia Tech students must have an official transcript from all other colleges and universities mailed to:
 - Georgia Institute of Technology
 Office of the Registrar
 Transfer Credit
 Atlanta, GA 30332-0320
B. The basic policy regarding the acceptance of the courses by transfer is to allow credit for courses completed with satisfactory grades (C or better) in other accredited colleges provided the courses correspond in time and content to courses offered at the Georgia Institute of Technology. Georgia Tech assumes responsibility for the academic quality of any work or credit recorded on the institution's transcript. Transfer credits will be accepted from newly-formed institutions of the University System of Georgia prior to accreditation.

C. Georgia Tech will not award credit for courses successfully completed at another institution which were previously taken at Georgia Tech.

D. A petition to the faculty must be approved to use course work more than ten years old.

E. Georgia Tech reserves the right to test the proficiency of any student in course work transferred from other institutions and to disallow credit in courses in which the student cannot demonstrate acceptable proficiency.

Transfer Credit for Online Courses

A. Currently, online versions of all Lab Science courses, International Affairs, Psychology, Economics and courses equivalent to HIST 2111 and HIST 2112 are not eligible for transfer credit consideration. In most cases Mathematics courses are not eligible for consideration unless sufficient documentation is provided to show the course exams are proctored. Students interested in taking the online versions of any Mathematics courses that meet this requirement, or have questions regarding this policy, the Office of the Registrar via email: comments@registrar.gatech.edu.

Requesting Transfer Credit for Courses Not Previously Evaluated

A. Check the online equivalency database (https://oscar.gatech.edu/pls/bprod/wwsktrna.P_find_location) for updates. New evaluations are posted daily.

B. Notify the Office of the Registrar's Transfer Credit Department of any not-awarded credit. Send an email to comments@registrar.gatech.edu

C. Using the Transfer Credit web site (https://transfercredit.gatech.edu), submit courses for evaluation.

About Transfer Credit

A. Georgia Tech does not offer correspondence courses and does not grant credit for correspondence courses taken at other institutions. Academic units reserve the right to take such things as delivery method into consideration. For example, on-line courses and computer-instructed courses may not be accepted by some academic units for credit.

B. Georgia Tech does not grant credit for the College Level General Educational Development Tests, CLEP, USAFI courses, or courses completed at any United States armed services, with the exception of the military academies and schools with full accreditation by a regional accrediting body.

C. Georgia Tech does not grant credit for professional certificate programs.

D. The following items are among other circumstances in which non-resident credit is not granted:
 - Remedial courses.
 - Courses basically secondary school or pre-college level.
 - Courses with essentially non-academic content.
 - Vocational courses.
 - Learning support courses.

E. Non-resident credit is not computed as a part of the student’s grade point average at Georgia Tech.

Advanced Placement (AP) and International Baccalaureated (IB)

A. Follow the steps below to view AP or IB equivalencies.
 1. Go to https://oscar.gatech.edu
 2. Select the "Transfer Equivalencies" icon
 3. Select the asterisk (*) from the pull down menu
 4. Click "Continue" button
 5. Select your option from the pull down menu
 6. Click "Get Courses" button

B. Once enrolled at Georgia Tech, students are not allowed to take College Board (Advanced Placement and SAT II), International Baccalaureate or A-Level Examinations for credit. All examinations must be completed prior to the student's enrollment date. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination at Georgia Tech. Such an examination is called an "Examination for Advanced Standing (p. 103)."

More information:

Transfer Equivalency Catalog (https://oscar.gatech.edu/pls/bprod/wwsktrna.P_find_location)
FINANCIAL

• Assistance (p. 120)
• Billing (p. 129)
• Cancellation of Registration (p. 129)
• Fees (p. 129)
• Payment (p. 130)
• Refunds (p. 131)
• Student Financial Agreement (p. 131)
• Tuition (p. 132)
• Verification of Participation (p. 135)

Assistance

• Graduate Financial Assistance (p. 120)
• Undergraduate Financial Assistance (p. 124)

Graduate Financial Assistance

The Institute offers financial aid from a variety of sources to assist students with the pursuit and completion of their degrees as rapidly as circumstances permit.

Students should address inquiries for financial assistance to the graduate coordinator of the school in which they plan to study. Graduate school applicants should also investigate national fellowships offered by various foundations, professional organizations, and government agencies; many are listed with the Fellowships Office (http://fellowships.gatech.edu). Educational loans are available for qualified applicants through the Office of Scholarships and Financial Aid. More information about Federal Loan programs and various alternative loan programs may be found at www.finaid.gatech.edu (http://www.finaid.gatech.edu).

• Assistantships (p. 120)
• Fellowships (p. 120)
• Out-of-State Tuition Waivers (p. 121)
• Outside Sponsorships (p. 122)
• Veterans Services (p. 123)

Assistantships

Graduate Research Assistantships

Students receiving Graduate Research Assistantships must be registered for at least twelve total graduate credits with at least nine hours attempted for a letter grade or on a Pass/Fail basis and be employed at least one-third of the time by the Institute. Students receiving Graduate Research Assistantships are also eligible for a tuition waiver.

Graduate Teaching Assistantships

Students receiving Graduate Teaching Assistantships must be registered for at least twelve total graduate credits with at least nine hours attempted for a letter grade or on a Pass/Fail basis and be employed at least one-third of the time by the Institute. Students receiving Graduate Teaching Assistantships are also eligible for a tuition waiver.

Graduate Assistantship Schedule and Flexibility Policy

Source: Georgia Tech Policy Library (http://www.policylibrary.gatech.edu/personal-services-reporting-using-plan-confirmation-system)

Policy Statement: The work duties of Graduate Research Assistants (GRAs) and Graduate Teaching Assistants (GTAs) encompass 4.5 calendar months for fall and spring terms and three calendar months for summer term. The fall term work period consists of half of August and all of September through December. The spring term work period consists of January through April and half of May. Summer term consists of half of May, all of June and July, and half of August. Supervisors are generally expected to employ a GRA or GTA for the full work period, providing continuous employment and pay throughout the year.

GRAs and GTAs are not required to work on official Institute holidays, which appear on the Human Resources web site. In addition, at the discretion of the student’s supervisor, a GRA or GTA may be permitted to average effort over several weeks or cluster research or teaching activities in order to spend one or more weeks away from campus during the semester or, more frequently, during periods when classes are not in session. Any time away requires the approval of the supervisor. This flexibility may be used to allow later start dates for students new to campus. Some work assignments may not permit this flexibility.

GRAs or GTAs appointed to sponsored research projects should monitor their appointments monthly in the Electronic Workload Assignment Form (EWAF), because they will be required to sign an Annual Statement of Reasonableness indicating that the effort they put into projects was correctly recorded. For more information, read the policy on Personal Services Reporting Using the Plan Confirmation System (http://www.policylibrary.gatech.edu/personal-services-reporting-using-plan-confirmation-system) in the Georgia Tech Policy Library (http://www.policylibrary.gatech.edu/personal-services-reporting-using-plan-confirmation-system).

Fee Payment through Payroll Deduction

The Office of the Bursar maintains information regarding the GRA/GTA-Fee Payment Program which facilitates the payment of tuition and fees through payroll deductions for students who are employed at Georgia Tech as Graduate Research Assistants (GRAs) or Graduate Teaching Assistants (GTAs) and who are paid on a monthly basis. For more information, read the policy on Payroll Deduction for Tuition and Fees (http://www.bursar.gatech.edu/content/gra-gta-payroll-deduction) on the Office of the Bursar’s web site (http://www.bursar.gatech.edu/content/gra-gta-payroll-deduction).

 Fellowships

Georgia Tech awards a large number of individual fellowships. They vary in value from a few hundred dollars to $30,000 per year or more. Most of them are awarded by schools, not by the Office of Graduate Studies or the Office of Financial Aid. Even for programs where several schools are eligible, nominations come from within the programs, not directly from individual students.

The only Institute-level fellowship programs (http://www.finaid.gatech.edu/fellowships) are President’s Fellowships ($5,500 per year) and Institute Fellowships ($11,000 per year). These supplement assistantships or other fellowships. Programs nominate incoming students for these programs, and the Office of Graduate
Out-of-State Tuition Waivers

Georgia Tech has permission from the Board of Regents to award out-of-state tuition differential waivers and assess in-state tuition for certain nonresidents of Georgia for the following reasons and under the following conditions. The waivers processed in the Office of the Registrar are listed below.

- **University System Employees and Dependents**
 Full-time employees of the University System, their spouses, and their dependent children.
 Download Application for USG Employess and Dependents (http://registrar.gatech.edu/docs/pdf/residency/usg.pdf)

- **Full-time School Employees**
 Full-time employees in the public schools of Georgia or the Technical College System of Georgia, their spouses, and their dependent children. Teachers employed full-time on military bases in Georgia shall also qualify for this waiver (BR Minutes, 1988-89, p. 43).
 Download Application for Full-Time School Employees (http://registrar.gatech.edu/docs/pdf/residency/full_time_school_employees_waiver.pdf)

- **Career Consular Officials**
 Career consular officers, their spouses, and their dependent children who are citizens of the foreign nation that their Consulate office represents and who are stationed and living in Georgia under orders of their respective governments.
 Download Application for Career Consular Officials (http://registrar.gatech.edu/docs/pdf/residency/career_consular_waiver.pdf)

- **Military**
 1. Active duty military personnel, their spouses, and their dependent children who meet one of the following:
 a. The military sponsor is currently stationed in or assigned to Georgia; or,
 b. The military sponsor previously stationed in or assigned to Georgia is reassigned outside of Georgia, and the student(s) remain (s) continuously enrolled in a Georgia school, Technical College System of Georgia institution, and/or a University System of Georgia institution; or,
 c. The military sponsor is reassigned outside of Georgia and the spouse and/or dependent children remain in Georgia; or,
 d. The military sponsor is stationed in a state contiguous to the Georgia border and resides in Georgia; or,
 e. Dependent children of a military sponsor, previously stationed in or assigned to Georgia within the previous five years, or the child completed at least one year of high school in Georgia; or,
 f. Any student utilizing VA educational benefits transferred from a currently serving military member is also eligible, even if the student is no longer a dependent of the transferor.
 g. Individuals stationed in or assigned to Georgia due to a NATO assignment (in the U.S. on a NATO visa and part of a NATO exchange program). Students must present their current U.S. military ID card showing they are active duty and a copy of their NATO orders showing they are assigned to Georgia.
 2. Active members of the Georgia National Guard stationed or assigned to Georgia or active members of a unit of the U.S. Military Reserves based in Georgia, and their spouses and their dependent children (BoR Minutes, October 2008).
 3. Separated military members from a uniformed military service of the United States who meet one of the following (BoR Minutes, June 2004; October 2008; October 2013: March 2016; May 2017):
 a. Individuals who within thirty-six (36) months of separation from such service, enroll in an academic program and demonstrate intent to become domiciled in Georgia. This waiver may also be granted to their spouses and dependent children.
 b. Any separated service member or any student utilizing transferred VA educational benefits, and physically residing in the state, who enrolls within one hundred-twenty (120) months of separation is also eligible.
 d. Anyone using benefits under the Marine Gunnery Sergeant John David Fry Scholarship who lives in the state in which the institution is located (regardless of formal state residence).
 - Except...
 - Surviving spouses can use the Fry Scholarship for 15 years from the anniversary of the service member’s death or until they remarry.
 - Eligible children can use the Fry Scholarship between the ages of 18 and 33.
 - Download Application for Those Separated from the Military (http://registrar.gatech.edu/docs/pdf/residency/Recently-Separated-Military.pdf)

- **Economic Advantage**
 As of the first day of classes for the term, an economic advantage waiver may be granted to a U.S. citizen or U.S. legal permanent resident who is a dependent or independent student and can provide clear evidence that the student or the student’s parent, spouse, or U.S. court-appointed legal guardian has relocated to the State of Georgia to accept full-time, self-sustaining employment and has established domicile in the State of Georgia. Relocation to the state must be for reasons other than enrolling in an institution of higher education. For U.S. citizens or U.S. legal permanent residents, this waiver will expire 12 months from the date the waiver was granted.
 As of the first day of classes for the term, an economic advantage waiver may be granted to an independent non-citizen possessing a valid employment-related visa status who can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward...
establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Independent non-citizen students may continue to receive this waiver as long as they maintain a valid employment-related visa status and can demonstrate continued efforts to establish U.S. legal permanent residence and legal domicile in the State of Georgia. A dependent non-citizen student who can provide clear evidence that the student’s parent, spouse, or U.S. court-appointed legal guardian possesses a valid employment-related visa status and can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment is also eligible to receive this waiver. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Non-citizen students currently receiving a waiver who are dependents of a parent, spouse, or U.S. court-appointed legal guardian possessing a valid employment-related visa status may continue to receive this waiver as long as they can demonstrate that their parent, spouse, or U.S. court-appointed legal guardian is maintaining full-time, self-sustaining employment in Georgia and is continuing efforts to pursue an adjustment of status to U.S. legal permanent resident and the establishment of legal domicile in the State of Georgia. (BR Minutes, October 2008.)

Download Application for Economic Advantage (http://registrar.gatech.edu/docs/pdf/residency/economic_advantage_waiver.pdf)

• Non-Resident Students

As of the first day of classes for the term, a non-resident student can be considered for this waiver under the following conditions:

• Students under 24.
 • If the parent, or United States court-appointed legal guardian has maintained domicile in Georgia for at least twelve (12) consecutive months and the student can provide clear and legal evidence showing the relationship to the parent or United States court-appointed legal guardian has existed for at least twelve (12) consecutive months immediately preceding the first day of classes for the term. Under Georgia code, legal guardianship must be established prior to the student’s 18th birthday (BoR Minutes, October 2008, title amended February 2010); or
 • If the student can provide clear and legal evidence showing a familial relationship to the spouse and the spouse has maintained domicile in Georgia for at least twelve (12) consecutive months immediately preceding the first day of classes for the term (BoR Minutes, February 2010).

• Students 24 and Older.
 • If the student can provide clear and legal evidence showing a familial relationship to the spouse and the spouse has maintained domicile in Georgia for at least twelve (12) consecutive months immediately preceding the first day of classes for the term. This waiver can remain in effect as long as the student remains continuously enrolled (BoR Minutes, October 2008, title amended February 2010).

This waiver can remain in effect as long as the student remains continuously enrolled (BoR Minutes, October 2008).

Download Application for Non-Resident Students (http://registrar.gatech.edu/docs/pdf/residency/non-residents_student.pdf)

• Senior Citizen Waiver

A waiver of in-state tuition and fees may be granted to a legal resident of Georgia aged 62 and over. This waiver can remain in effect as long as the student is continuously enrolled. Students who come to Georgia Tech from another state and work for companies in Georgia remain ineligible for in-state tuition in the absence of compelling evidence of intent to remain in Georgia permanently.

For further information concerning residency, students should contact the Residency Office in Room 112 of TechTower, write to the Office of the Registrar, Residency, Georgia Tech, Atlanta, GA 30332-0315, or email registrar@gatech.edu (http://www.registrar.gatech.edu/tuitionclassification). The Residency Office must receive an application for classification as a legal resident for fee payment purposes no later than one month prior to the academic registration date for the term in which the student seeks to pay fees as a resident of Georgia. Requests for tuition waivers must be received by the Office of the Registrar no later than the first day of classes for the term for which the out-of-state tuition is to be waived. See the official Academic Calendar (http://www.registrar.gatech.edu/students/calendar.php) for dates.

Outside Sponsorships

A student whose tuition and fees are to be paid by a corporate or government sponsor must notify the Bursar’s Office by submitting an authorization or voucher from the sponsor on original letterhead and signed by an official authorized to obligate payment by the organization per the specifics outlined here (http://www.bursar.gatech.edu/content/third-party-billing). Authorizations must be received before the fee payment deadline of each semester. Fee payment deadlines for upcoming terms are published on the Bursar’s Calendar (http://bursar.gatech.edu/content/bursar-calendar). As a courtesy to students, the Bursar’s Office will send a billing statement to the sponsor after the Registration Period ends. Students whose sponsor fails to pay the authorized charges will have their conditional credit reversed and will be responsible for the unpaid charges. A financial hold will be placed on the student’s account until the balance is paid in full. Students are encouraged to remain in contact with their sponsor until the terms of the billing authorization have been met.

Important links:

• The Office of the Bursar | Third-Party Billing (http://www.bursar.gatech.edu/content/third-party-billing)
• The Office of the Bursar | Bursar’s Calendar (http://bursar.gatech.edu/content/bursar-calendar)
Veterans Services

Veterans Services at Georgia Tech is not a division of the US Department of Veterans Affairs (DVA) but part of the Office of the Registrar. It serves as a liaison between veteran students and the DVA. Its primary purposes are to assist veteran students with the processing of forms for educational benefits, to advise veteran students about certain procedural requirements, and to certify enrollment of Georgia Tech veteran students to the Department of Veterans Affairs.

Because the US Department of Veterans Affairs (DVA) must receive certification of enrollment before issuing benefit payments, any student planning to enroll under any of the DVA’s programs should initiate the certification procedure through the Office of the Registrar as early as possible.

Veterans must apply to Georgia Tech through the regular admissions procedure. Eligibility for DVA benefits does not guarantee acceptance into the Institute, nor does acceptance signify eligibility for DVA benefits. The Institute serves only as a source of certification and information to the DVA; the student must carry out all financial transactions with the US Department of Veterans Affairs directly.

- Contact Information (p. 123)
- Starting Benefits (p. 123)
- Types of Benefits (p. 124)
- Certification Process (p. 124)
- Frequently Used Forms (p. 124)
- Additional Information (p. 124)

Contact Information

GT School Certifying Official (SCO):
Eugenia Sneed
GT Veterans Benefit Coordinator
veterans@registrar.gatech.edu
phone: 404.894.4953
fax: 404.894.0167

VA Regional Office:
Department of Veterans Affairs
Atlanta Regional Office
P.O. Box 100026
Decatur, GA 30037-7026
atlirpo@vba.va.gov

US Department of Veterans Affairs:
Online Queries (https://gibill.custhelp.com/app/utils/login_form/redirect/ask)
1.888.GIBILL.1
1.888.422.4551

Starting Benefits

Before a student can use GI Bill education benefits, she/he must be formally admitted to Georgia Tech. Prospective students who need information about applying should see the Undergraduate Admissions web site. Individuals who intend to utilize GI Bill education benefits are admitted by the same standards as any other students.

Those who intend to utilize GI Bill education benefits for the first time should apply for these benefits least two months before the start of the first academic term in which they will be enrolled as students at Georgia Tech.

First-Time GI Bill Applicants

If the student has already applied for GI Bill Education Benefits

- After a student applies for education benefits, the US Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Sneed, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

If the student need to apply for GI Bill Education Benefits

- If the student is the veteran herself/himself
 - Veterans enrolling at Georgia Tech must apply for benefits through the GI Bill web site.
 - After a student applies for education benefits, the US Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Sneed, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

- If the student is the dependent or spouse of the veteran
 - A veteran may transfer Ch 33 Post 9/11 GI Bill benefits to a family member with the approval of the US Department of Defence (DoD). Information regarding transfer of benefits is available on the GI Bill web site (http://www.benefits.va.gov/gibill/post911_gibill.asp). Once the DoD approves transfer of benefits, the family member must submit Form 22-1990e, "Application for Family Member to Use Transferred Benefits," online (https://www.ebenefits.va.gov/ebenefits/homepage) or by mailing the printable form (http://www.vba.va.gov/pubs/forms/VBA-22-1990e-ARE.pdf) to the address below:
 Department of Veterans Affairs
 Atlanta Regional Office
 P.O. Box 100026
 Decatur, GA 30037-7026
 - After family member applies for education benefits, the Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Sneed, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

Transferring GI Bill Education Benefits to Georgia Tech

- A student who has used GI Bill Education Benefits at another college or university must complete Form 22-1995, "Request for Change of Program or Place of Training," This form may be submitted online (https://www.ebenefits.va.gov/ebenefits/homepage) or by mailing the printable form (http://www.vba.va.gov/pubs/forms/VBA-22-1995-ARE.pdf) to the address below:
 Department of Veterans Affairs
 Atlanta Regional Office
 P.O. Box 100026
 Decatur, GA 30037-7026
Signing Up for Yellow Ribbon

- A formally admitted student who is eligible and who has already sent a copy of her/his Certificate of Eligibility (COE) letter to the School Certifying Official (SCO) may be added to either the Yellow Ribbon participant list or the waiting list. Yellow Ribbon is given on a first-come, first-served basis. If all 40 participant slots are taken when a student completes the Yellow Ribbon Participation Request Form (http://www.registrar.gatech.edu/docs/pdf/Yellow_Ribbon_Participation_Request_Form.pdf), the student will be placed on a waiting list until a slot becomes available.
- The Yellow Ribbon Participation Request Form is submitted only once. After student is given a participant slot for the Yellow Ribbon program, she/he is eligible to receive this benefit until she/he exhausts her/his Ch 33 benefits, graduates, or stops attending Georgia Tech (e.g., loses registration eligibility by absence or failure to participate in scheduled classes).

Types of Benefits

The Department of Veterans Affairs (DVA) administers a variety of education benefit programs. Many veterans and active duty personnel can qualify for education benefits. Currently, Georgia Tech participates in the following programs:

- Chapter 33 (http://www.benefits.va.gov/gibill/post911_gibill.asp), The Post-9/11 GI Bill (Yellow Ribbon)
- Chapter 30 (http://www.benefits.va.gov/gibill/montgomery_bill.asp), Montgomery GI Bill - Active Duty (MGIB-AD)
- Chapter 35 (http://www.benefits.va.gov/gibill/#DEA), Survivors’ and Dependents’ Educational Assistance Program (DEA)
- 1606 (http://www.benefits.va.gov/gibill/montgomery_bill.asp) - Montgomery GI Bill - Selected Reserve (MGIB-SR)
- 1607 (http://www.benefits.va.gov/gibill/#REAP) - Reserve Educational Assistance Program (REAP)
- Chapter 31 (http://www.benefits.va.gov/vocrehab), Vocational Rehabilitation Program

Certification Process

The School Certifying Official (SCO) releases an email to notify veteran students that initial enrollment certifications will be submitted 45 days before the start of the academic term. At this time, students may ask any questions or request to not be certified. Submitting the initial enrollment certification 45 days prior to the start of the semester ensures that students’ first monthly stipend will be issued on time.

For students under Chapter 33 Post-9/11 GI Bill (Yellow Ribbon), this is the first of two certifications. The first certification reports a student’s enrollment for her/his monthly stipend. The second certification reports tuition and mandatory student fees (and Yellow Ribbon funding if applicable) after the Phase 2 Registration Period ends.

The Office of the Bursar places a deferral on each Chapter 33 student’s account for the amount expected from the DVA. This deferral prevents the assessment of late fees or schedule cancellation due to the student’s account balance. Students should make plans to pay whatever balance is not covered by Chapter 33 (e.g., housing, parking, meal plan) before the regular payment deadlines.

Students’ Responsibilities

Veteran students at Georgia Tech have ongoing responsibilities to the Department of Veterans Affairs. The DVA and the Veterans Services office at Georgia Tech closely monitor each veteran student’s enrollment status and academic program. The student’s entitlement is based upon the number of credit hours for which a student is enrolled and any changes in academic program. To ensure that a student’s enrollment is certified to the DVA accurately, the student must abide by the following requirements:

- Check the Georgia Tech Veterans Services web page for current news
- Read all notification emails from the School Certifying Official (SCO)
- Email the SCO if adjustments need to be made to class schedule during the Phase 2 Registration Period
- Email the SCO if adjustments need to be made to schedule after the Phase 2 Registration Period ends
- Email the SCO if changing address or academic major

Frequently Used Forms

Many of the US Department of Veterans Affairs’ forms can be submitted online (http://www.gibill.va.gov/resources/student_handouts). Below are the most frequently used printable forms. All other printable forms may be found in the Forms Library (http://www.va.gov/vaforms/search_action.asp) the DVA web site.

- Printable forms should be mailed to the DVA regional office in Atlanta.
 Department of Veterans Affairs
 Atlanta Regional Office
 P.O. Box 100026
 Decatur, GA 30037-7026

- Form 22-1990e (http://www.vba.va.gov/pubs/forms/VBA-22-1990e-ARE.pdf), Application for Family Member to Use Transferred Benefits
- Form 22-1995 (http://www.vba.va.gov/pubs/forms/VBA-22-1995-ARE.pdf), Request for Change of Program or Place of Training
- Form 22-5495 (http://www.vba.va.gov/pubs/forms/VBA-22-5495-ARE.pdf), Dependents’ Request for Change of Program or Place of Training
- VA Course Withdrawal Form (http://www.registrar.gatech.edu/docs/pdf/Veterans_Drop.pdf)
- Tuition Assistance Withdrawal Form (http://www.registrar.gatech.edu/docs/pdf/TA_withdrawal.pdf)
- Yellow Ribbon Participation Request Form (http://www.registrar.gatech.edu/docs/pdf/Yellow_Ribbon_Participation_Request_Form.pdf)
- Mandatory Student Fee Waiver Form for Active Duty Military and Veterans (http://www.registrar.gatech.edu/docs/pdf/studentfeewaiver.pdf)

Additional Information

More information is available on the Office of the Registrar’s web site on the Veterans Services’ Frequently Asked Questions (http://www.registrar.gatech.edu/students/veterans) (FAQ) page.

Undergraduate Financial Assistance

The Office of Scholarships and Financial Aid (OSFA) is dedicated to helping current and prospective students and parents apply for financial aid and understand the options for meeting the cost of a college education at Georgia Tech. The OSFA awards federal, state, and Institute funds to students and directs students to other sources of aid.
Additionally, the OSFA serves as the disbursement and delivery agent for all sources of assistance for students, including awards for Georgia Tech students from outside agencies.

All US Citizen and Permanent Resident undergraduate students, including transfer students, who are interested in scholarships, grants, loans, and/or work opportunities must submit the “Georgia Tech Application for Scholarships and Financial Aid” and the “Free Application for Federal Student Aid” (FAFSA). The priority application deadline for entering freshman students, returning undergraduate students, and transfer students is January 31st.

Additional information is available for the Office of Scholarships and Financial Aid (http://www.finaid.gatech.edu).

Office of Scholarships and Financial Aid
Georgia Institute of Technology
Atlanta, Georgia 30332-0460.

- Out-of-State Tuition Waivers (p. 125)
- Outside Sponsorships (p. 126)
- President’s Scholarship Program (p. 127)
- Veterans Services (p. 127)

Out-of-State Tuition Waivers

Georgia Tech has permission from the Board of Regents to award out-of-state tuition differential waivers and assess in-state tuition for certain nonresidents of Georgia for the following reasons and under the following conditions. The waivers processed in the Office of the Registrar are listed below.

- **University System Employees and Dependents**
 - Full-time employees of the University System, their spouses, and their dependent children.
 - Download Application for USG Employees and Dependents (http://registrar.gatech.edu/docs/pdf/residency/usg.pdf)

- **Full-time School Employees**
 - Full-time employees in the public schools of Georgia or the Technical College System of Georgia, their spouses, and their dependent children. Teachers employed full-time on military bases in Georgia shall also qualify for this waiver (BR Minutes, 1988-89, p.43).
 - Download Application for Full-Time School Employees (http://registrar.gatech.edu/docs/pdf/residency/full_time_school_employees_waiver.pdf)

- **Career Consular Officials**
 - Career consular officers, their spouses, and their dependent children who are citizens of the foreign nation that their Consulate office represents and who are stationed and living in Georgia under orders of their respective governments.
 - Download Application for Career Consular Officials (http://registrar.gatech.edu/docs/pdf/residency/career_consular_waiver.pdf)

- **Military**
 1. Active duty military personnel, their spouses, and their dependent children who meet one of the following:
 a. The military sponsor is currently stationed in or assigned to Georgia; or,
 b. The military sponsor previously stationed in or assigned to Georgia is reassigned outside of Georgia, and the student(s) remain (s) continuously enrolled in a Georgia school,

Technical College System of Georgia institution, and/or a University System of Georgia institution; or,

- c. The military sponsor is reassigned outside of Georgia and the spouse and/or dependent children remain in Georgia; or,
- d. The military sponsor is stationed in a state contiguous to the Georgia border and resides in Georgia; or,
- e. Dependent children of a military sponsor, previously stationed in or assigned to Georgia within the previous five years, or the child completed at least one year of high school in Georgia; or,
- f. Any student utilizing VA educational benefits transferred from a currently serving military member is also eligible, even if the student is no longer a dependent of the transferor.

- g. Individuals stationed in or assigned to Georgia due to a NATO assignment (in the U.S. on a NATO visa and part of a NATO exchange program). Students must present their current U.S. military ID card showing they are active duty and a copy of their NATO orders showing they are assigned to Georgia. Dependent students and spouses are also eligible provided they submit documentation of their relationship to the individual assigned to Georgia on NATO orders in addition to the other documentation.
 - Download Application for Active Duty Military Personnel (http://registrar.gatech.edu/docs/pdf/residency/Military-Personnel.pdf)

2. Active members of the Georgia National Guard stationed or assigned to Georgia or active members of a unit of the U.S. Military Reserves based in Georgia, and their spouses and their dependent children (BoR Minutes, October 2008).
 - Download Application for GA National Guard and Reservists (http://registrar.gatech.edu/docs/pdf/residency/GA-National-Guard-and-Reservists.pdf)

3. Separated military members from a uniformed military service of the United States who meet one of the following (BoR Minutes, June 2004; October 2008; October 2013: March 2016; May 2017):
 a. Individuals who within thirty-six (36) months of separation from such service, enroll in an academic program and demonstrate intent to become domiciled in Georgia. This waiver may also be granted to their spouses and dependent children.
 b. Any separated service member or any student utilizing transferred VA educational benefits, and physically residing in the state, who enrolls within one hundred-twenty (120) months of separation is also eligible.
 d. Anyone using benefits under the Marine Gunnery Sergeant John David Fry Scholarship who lives in the state in which the institution is located (regardless of formal state residence).
 - Except...
 - Surviving spouses can use the Fry Scholarship for 15 years from the anniversary of the service member’s death or until they remarry.
 - Eligible children can use the Fry Scholarship between the ages of 18 and 33.
 - Download Application for Those Separated from the Military (http://registrar.gatech.edu/docs/pdf/residency/Recently-Separated-Military.pdf)

- **Economic Advantage**
As of the first day of classes for the term, an economic advantage waiver may be granted to a U.S. citizen or U.S. legal permanent resident who is a dependent or independent student and can provide clear evidence that the student or the student’s parent, spouse, or U.S. court-appointed legal guardian has relocated to the State of Georgia to accept full-time, self-sustaining employment and has established domicile in the State of Georgia. Relocation to the state must be for reasons other than enrolling in an institution of higher education. For U.S. citizens or U.S. legal permanent residents, this waiver will expire 12 months from the date the waiver was granted. As of the first day of classes for the term, an economic advantage waiver may be granted to an independent non-citizen possessing a valid employment-related visa status who can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Independent non-citizen students may continue to receive this waiver as long as they maintain a valid employment-related visa status and can demonstrate continued efforts to establish U.S. legal permanent residence and legal domicile in the State of Georgia.

A dependent non-citizen student who can provide clear evidence that the student’s parent, spouse, or U.S. court-appointed legal guardian possesses a valid employment-related visa status and can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment is also eligible to receive this waiver. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Non-citizen students currently receiving a waiver who are dependents of a parent, spouse, or U.S. court-appointed legal guardian possessing a valid employment-related visa status may continue to receive this waiver as long as they can demonstrate that their parent, spouse, or U.S. court-appointed legal guardian possesses a valid employment-related visa status and can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Independent non-citizen students may continue to receive this waiver as long as they maintain a valid employment-related visa status and can demonstrate continued efforts to establish U.S. legal permanent residence and legal domicile in the State of Georgia.

Students who come to Georgia Tech from another state and work for companies in Georgia remain ineligible for in-state tuition in the absence of compelling evidence of intent to remain in Georgia permanently. Having Georgia voter registration, having employment in any position normally filled by a student (such as co-op, graduate research assistant, or graduate teaching assistant), having a lease of living quarters, having a Georgia automobile registration, and having Georgia driver’s license do not constitute sufficient evidence of domicile to affect classification as an in-state student under the Board of Regents’ policy.

For further information concerning residency, students should contact the Residency Office in Room 112 of TechTower, write to the Office of the Registrar, Residency, Georgia Tech, Atlanta, GA 30332-0315, or email (http://www.registrar.gatech.edu/tuitionclassification). The Residency Office must receive an application for classification as a legal resident for fee payment purposes no later than one month prior to the academic registration date for the term in which the student seeks to pay fees as a resident of Georgia. Requests for tuition waivers must be received by the Office of the Registrar no later than the first day of classes for the term for which the out-of-state tuition is to be waived. See the official Academic Calendar (http://www.registrar.gatech.edu/students/calendar.php) for dates.

Outside Sponsorships

A student whose tuition and fees are to be paid by a corporate or government sponsor must notify the Bursar’s Office by submitting an authorization or voucher from the sponsor on original letterhead and signed by an official authorized to obligate payment by the organization per the specifics outlined here (http://www.bursar.gatech.edu/content/third-party-billing). Authorizations must be received before the fee payment deadline of each semester. Fee payment deadlines for upcoming terms are published on the Bursar’s Calendar (http://bursar.gatech.edu/content/bursar-calendar). As a courtesy to students, the Bursar’s Office
will send a billing statement to the sponsor after the Registration Period ends. Students whose sponsor fails to pay the authorized charges will have their conditional credit reversed and will be responsible for the unpaid charges. A financial hold will be placed on the student’s account until the balance is paid in full. Students are encouraged to remain in contact with their sponsor until the terms of the billing authorization have been met.

Important links:

- The Office of the Bursar | Third-Party Billing (http://www.bursar.gatech.edu/content/third-party-billing)
- The Office of the Bursar | Bursar’s Calendar (http://bursar.gatech.edu/content/bursar-calendar)

President’s Scholarship Program

The Stamps President’s Scholars Program is Georgia Tech’s premier merit-based scholarship. Recipients are selected from the top applicants for admission to Georgia Tech based on demonstrated excellence in scholarship, leadership, progress, and service as described on the Stamps President’s Scholars Program (http://stampsps.gatech.edu) webpage. From the applicant pool, students selected as semi-finalists submit a one-page resume before being interviewed. The top semi-finalists are named finalists and invited, with their parents, to campus for additional interviews and an information weekend in March.

Transfer students are not eligible for the four-year award. Recipients must be US Citizens, US Permanent Residents, or UK Citizens.

Each year, 40 incoming first-year students receive the Stamps President’s Scholarship, which is renewable for up to four academic years or eight semesters, contingent upon honors-level performance and continued leadership development as evidenced by involvement in program, campus, and community activities. Scholarships are “full ride,” including tuition and mandatory fees, room and board, books, and personal expenses. See the website below for more information on stipends.

To ensure consideration, a student must apply as an incoming first-year student, and submit the Georgia Tech Application for First-Year Admission, along with the application fee by the early action deadline of October 15th.

More information:

- Stamps President’s Scholars Program (http://stampsps.gatech.edu)

Veterans Services

Veterans Services at Georgia Tech is not a division of the US Department of Veterans Affairs (DVA) but part of the Office of the Registrar. It serves as a liaison between veteran students and the DVA. Its primary purposes are to assist veteran students with the processing of forms for educational benefits, to advise veteran students about certain procedural requirements, and to certify enrollment of Georgia Tech veteran students to the Department of Veterans Affairs.

Because the US Department of Veterans Affairs (DVA) must receive certification of enrollment before issuing benefit payments, any student planning to enroll under any of the DVA’s programs should initiate the certification procedure through the Office of the Registrar as early as possible.

Veterans must apply to Georgia Tech through the regular admissions procedure. Eligibility for DVA benefits does not guarantee acceptance into the Institute, nor does acceptance signify eligibility for DVA benefits. The Institute serves only as a source of certification and information to the DVA; the student must carry out all financial transactions with the US Department of Veterans Affairs directly.

- Contact Information (p. 127)
- Starting Benefits (p. 127)
- Types of Benefits (p. 128)
- Certification Process (p. 128)
- Frequently Used Forms (p. 129)
- Additional Information (p. 129)

Contact Information

GT School Certifying Official (SCO):
Eugenia Snead
GT Veterans Benefit Coordinator
veterans@registrar.gatech.edu
phone: 404.894.4953
fax: 404.894.0167

VA Regional Office:
Department of Veterans Affairs
Atlanta Regional Office
P.O. Box 100026
Decatur, GA 30031-7026
atlrpo@vba.va.gov

US Department of Veterans Affairs:
Online Queries (https://gibill.custhelp.com/app/utils/login_form/redirect/ask)
1.888.GIBILL.1
1.888.422.4551

Starting Benefits

Before a student can use GI Bill education benefits, she/he must be formally admitted to Georgia Tech. Prospective students who need information about applying should see the Undergraduate Admissions web site. Individuals who intend to utilize GI Bill education benefits are admitted by the same standards as any other students.

Those who intend to utilize GI Bill education benefits for the first time should apply for these benefits least two months before the start of the first academic term in which they will be enrolled as students at Georgia Tech.

First-Time GI Bill Applicants

If the student has already applied for GI Bill Education Benefits

- After a student applies for education benefits, the US Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Snead, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

If the student need to apply for GI Bill Education Benefits
If the student is the veteran herself/himself
 • Veterans enrolling at Georgia Tech must apply for benefits through the GI Bill website.
 • After a student applies for education benefits, the US Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Snead, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

If the student is the dependent or spouse of the veteran
 • A student who has used GI Bill education benefits at another college must apply for GI Bill education benefits at Georgia Tech (e.g., loses registration eligibility by absence or failure to participate in scheduled classes).

Types of Benefits
The Department of Veterans Affairs (DVA) administers a variety of education benefit programs. Many veterans and active duty personnel can qualify for education benefits. Currently, Georgia Tech participates in the following programs:

• Chapter 33 (http://www.benefits.va.gov/gibill/post911_gibill.asp), The Post-9/11 GI Bill (Yellow Ribbon)
• Chapter 30 (http://www.benefits.va.gov/gibill/montgomery_bill.asp), Montgomery GI Bill - Active Duty (MGIB-AD)
• Chapter 35 (http://www.benefits.va.gov/gibill/#DEA), Survivors’ and Dependents’ Educational Assistance Program (DEA)
• 1606 (http://www.benefits.va.gov/gibill/gibill#ARE) - Reserve Educational Assistance Program (REAP)
• Chapter 31 (http://www.benefits.va.gov/vocrehab), Vocational Rehabilitation Program

Transferring GI Bill Education Benefits to Georgia Tech
• A student who has used GI Bill Education Benefits at another college or university must complete Form 22-1995, “Request for Change of Program or Place of Training.” This form may be submitted online (https://www.ebenefits.va.gov/ebenefits/homepage) or by mailing the printable form (http://www.vba.va.gov/pubs/forms/VBA-22-1995-ARE.pdf) to the address below:
 Department of Veterans Affairs
 Atlanta Regional Office
 P.O. Box 100026
 Decatur, GA 30037-7026

 • After family members apply for education benefits, the Department of Veterans Affairs (DVA) sends a Certificate of Eligibility (COE) letter indicating the type of benefit awarded and the terms of eligibility under that benefit. A copy of this letter must be submitted to Eugenia Snead, the School Certifying Official (SCO) at Georgia Tech, via fax at 404.894.0167 or e-mail at veterans@registrar.gatech.edu.

Signing Up for Yellow Ribbon
• A formally admitted student who is eligible and who has already sent a copy of her/his Certificate of Eligibility (COE) letter to the School Certifying Official (SCO) may be added to the Yellow Ribbon participant list or the waiting list. Yellow Ribbon is given on a first-come, first-served basis. If all 40 participant slots are taken when a student completes the Yellow Ribbon Participation Request Form (http://www.registrar.gatech.edu/docs/pdf/Yellow_Ribbon_Participation_Request_Form.pdf), the student will be placed on a waiting list until a slot becomes available.
 • The Yellow Ribbon Participation Request Form is submitted only once. After student is given a participant slot for the Yellow Ribbon program, she/he is eligible to receive this benefit until she/he exhausts her/his Ch 33 benefits, graduates, or stops attending Georgia Tech.

Certification Process
The School Certifying Official (SCO) releases an email to notify veteran students that initial enrollment certifications will be submitted 45 days before the start of the academic term. At this time, students may ask any questions or request to not be certified. Submitting the initial enrollment certification 45 days prior to the start of the semester ensures that students’ first monthly stipend will be issued on time.

For students under Chapter 33 Post-9/11 GI Bill (Yellow Ribbon), this is the first of two certifications. The first certification reports a student’s enrollment for her/his monthly stipend. The second certification reports tuition and mandatory student fees (and Yellow Ribbon funding if applicable) after the Phase 2 Registration Period ends.

The Office of the Bursar places a deferral on each Chapter 33 student’s account for the amount expected from the DVA. This deferral prevents the assessment of late fees or schedule cancellation due to the student’s account balance. Students must make plans to pay whatever balance is not covered by Chapter 33 (e.g., housing, parking, meal plan) before the regular payment deadlines.

Students’ Responsibilities
Veteran students at Georgia Tech have ongoing responsibilities to the Department of Veterans Affairs. The DVA and the Veterans Services office at Georgia Tech closely monitor each veteran student’s enrollment status and academic program. The student’s entitlement is based upon the number of credit hours for which a student is enrolled and any changes in academic program. To ensure that a student’s enrollment is certified to the DVA accurately, the student must abide by the following requirements:

• Check the Georgia Tech Veterans Services web page for current news
• Read all notification emails from the School Certifying Official (SCO)
• Email the SCO if adjustments need to be made to class schedule during the Phase 2 Registration Period
• Email the SCO if adjustments need to be made to schedule after the Phase 2 Registration Period ends
• Email the SCO if changing address or academic major
Frequently Used Forms
Many of the US Department of Veterans Affairs’ forms can be submitted online (http://www.gibill.va.gov/resources/student_handouts). Below are the most frequently used printable forms. All other printable forms may be found in the Forms Library (http://www.va.gov/vaforms/search_action.asp) the DVA website.

- Printable forms should be mailed to the DVA regional office in Atlanta.
 Department of Veterans Affairs
 Atlanta Regional Office
 P.O. Box 100026
 Decatur, GA 30037-7026

- Form 22-1990e (http://www.vba.va.gov/pubs/forms/VBA-22-1990e-ARE.pdf), Application for Family Member to Use Transferred Benefits
- Form 22-1995 (http://www.vba.va.gov/pubs/forms/VBA-22-1995-ARE.pdf), Request for Change of Program or Place of Training
- Form 22-5495 (http://www.vba.va.gov/pubs/forms/VBA-22-5495-ARE.pdf), Dependents’ Request for Change of Program or Place of Training
- VA Course Withdrawal Form (http://www.registrar.gatech.edu/docs/pdf/Veterans_Drop.pdf)
- Tuition Assistance Withdrawal Form (http://www.registrar.gatech.edu/docs/pdf/TA_withdrawal.pdf)
- Yellow Ribbon Participation Request Form (http://www.registrar.gatech.edu/docs/pdf/Yellow_Ribbon_Participation_Request_Form.pdf)
- Mandatory Student Fee Waiver Form for Active Duty Military and Veterans (http://www.registrar.gatech.edu/docs/pdf/studentfeewaiver.pdf)

Additional Information
More information is available on the Office of the Registrar’s web site on the Veterans Services’ Frequently Asked Questions (FAQ) page.

Billing
A complete itemized statement of the student account is available to students and authorized users by logging into the Bill Payment portal. This portal can be accessed either through Buzzport or via the Student/Parent Pay Now links on the Bursar’s Office website. Registration changes impacting tuition and fee charges as well as online payments are updated in real time to show the most current information on the account. Parking/Meal Plan changes are uploaded daily to the student account. Please note that the Bursar’s Office does not mail invoices to students.

It is the student’s responsibility to make sure all requirements of his or her account are satisfied by the fee payment deadline for the term. Questions concerning charges on the student account or refunds should be directed to the Bursar’s Office. Verbal misinformation is not grounds for a waiver of a regulation. All tuition and other charges are subject to change without notice.

To access your student account, go to Buzzport or the Pay Now links on the Bursar’s website, bursar.gatech.edu (http://bursar.gatech.edu), to log into Bill+Payment. You will need your student or authorized user credentials to log in to Bill+Payment. Please keep in mind that all notices from the Bursar’s Office concerning your account will be sent to the student’s Georgia Tech e-mail account, which is the Institute’s official means of communication with students.

Additional details are available on the Bursar’s web site (http://www.bursar.gatech.edu).

- Student Payment Instructions (http://www.bursar.gatech.edu/content/student-payment-instructions)
- Parent Payment Instructions (http://www.bursar.gatech.edu/content/parent-payment-instructions)
- Cost of Attendance (http://www.finaid.gatech.edu/content/cost-attendance-2015-2016)

Official policies are available in the Georgia Tech Policy Library (http://policylibrary.gatech.edu/student-affairs/financial-aid-and-bursar-policies).

- Code of Conduct Regarding Private Lending and Student Choice (http://policylibrary.gatech.edu/student-affairs/code-conduct-regarding-private-lending-and-student-choice)
- Grade Substitution Policy (http://policylibrary.gatech.edu/student-affairs/grade-substitution-policy)
- Institute Policy for Scholarship/Fellowship Payments and the Payment of Prizes/Awards to Students (http://policylibrary.gatech.edu/student-affairs/institute-policy-scholarshipfellowship-payments-and-payment-prizesawards-students)
- Mandatory Student Insurance (http://policylibrary.gatech.edu/student-affairs/mandatory-student-insurance)
- Refunds (http://policylibrary.gatech.edu/student-affairs/refunds)
- Satisfactory Academic Progress (http://policylibrary.gatech.edu/student-affairs/satisfactory-academic-progress)
- Student Appeals (http://policylibrary.gatech.edu/student-affairs/student-appeals)
- Voluntary Student Fees (http://policylibrary.gatech.edu/student-affairs/voluntary-student-fees)

Cancellation of Registration
Students who register for classes and do not attend must cancel classes online. Failure to do so will result in awarded financial aid being applied to the student’s account. Non-attendance then results in the student receiving a grade of “F” in each course.

All students must be aware of Georgia Tech’s policies and processes regarding Verification of Participation (p. 135).

Fees
Paying Tuition and Fees
Tuition and fees are payable by the deadline published on the official Academic Calendar (http://www.registrar.gatech.edu/home/calendar.php) and on the Bursar’s Office (http://www.bursar.gatech.edu/content/bursar-calendar) web page for each academic term. Registration is not complete until all charges are paid. The Institute reserves the right at any time during the semester to drop any student from classes for failure to pay his/her balance in full. In no case is a regulation waived or an exception granted because a student pleads ignorance of the regulation or asserts that he or she was not informed of it by an adviser or other authority. Students who owe the Institute money and have
been placed on "hold" because of failure to pay may have their account forwarded to a professional collection agency.

Payment may be made by cash with U.S. dollars, a check payable in U.S. currency and drawn on a financial institution located in the United States (made payable to "Georgia Institute of Technology" and with an encoded account number), or a cashier's check. Credit card payments (MasterCard, American Express, and Discover) and WebChecks are accepted online through the Bill Payment portal. Credit card payments are processed by a third party vendor which charges a service fee of 2.85 percent for this service. A fee is not charged for WebCheck transactions. Credit or debit card payments cannot be made by mail, phone, fax, or in person.

Tuition and Fee Rates

The tuition and fees listed are estimates and are subject to change. These amounts should be used only as a planning guide for future payments. Tuition charges can vary based on state residency status and degree program of study. Residency status is determined by the Office of Admissions at the time of acceptance. Students are either classified as a resident or nonresident of Georgia for tuition purposes in accordance with the regulations of the Board of Regents of the University System of Georgia. The most current information on tuition and fees is available at http://www.bursar.gatech.edu/content/tuition-fees.

Mandatory Student Fees

Published student fees are subject to change and should be considered estimates for use in planning future payments. Students registered for four or more credit hours in one academic term are charged all mandatory student fees which are due at the same time as tuition charges. Mandatory student fees are considered part of the registration process and must be paid in full for the student to be considered enrolled. The Student Activity Fee, Athletic Fee, CRC Operations Fee, Health Fee, Recreation Fee, Student Center Operations Fee, Special Institutional Fee, Technology Fee, and Transportation Fee are mandatory student fees used to provide cultural, social, and athletic programs for the entire student body. In addition, these fees provide financial support for student facilities at the Institute, guest speakers and lecturers, student publications, and many special events that are available exclusively for Georgia Tech students. These fees also assist in defraying shuttle costs for transporting students around campus. The Technology Fee supports the infrastructure necessary to provide students with the latest online computing services technology. Students registering for fewer than four credit hours in one academic term are required to pay the Technology Fee, Transportation Fee, and Special Institutional Fee. See http://www.bursar.gatech.edu/content/tuition-fees for current information.

Late Registration Fees

Students who do not meet payment deadlines may incur penalty fees. If a student does not pay all required fees by the published fee deadlines (http://www.bursar.gatech.edu/content/bursar-calendar) registration may be cancelled. The late payment fee is currently $100. If registration is cancelled, the reinstatement fee is $200. Reinstatement is not guaranteed.

Payment

Fee Payment

All fees are payable by the deadline published on the official Academic Calendar (http://www.registrar.gatech.edu/home/calendar.php) and on the Bursar’s Office (http://www.bursar.gatech.edu/content/bursar-calendar) web page for each academic term. Registration is not complete until all fees are paid. The Institute reserves the right at any time during the semester to drop any student from classes for failure to pay fees. In no case is a regulation waived or an exception granted because a student pleads ignorance of the regulation or asserts that he or she was not informed of it by an advisor or other authority. Students who owe the Institute money and have been placed on "Hold" because of failure to pay may have their account forwarded to a professional collection agency.

Payment may be made with cash (U.S. dollars); a check payable in U.S. currency and drawn on a financial institution located in the United States (checks must be made payable to "Georgia Institute of Technology" and have the checking account number encoded); or a cashier's check. Georgia Tech does not accept credit card payments directly for payment of tuition, fees, and room and board that appear on the student's account summary. Credit card payments can only be made via the Student Information System (http://www.buzzport.gatech.edu) and are processed by Georgia Tech’s vendor. Credit card users are charged a service fee by the vendor for this service. A fee is not charged for WebCheck transactions. MasterCard, American Express, and Discover (credit and debit), and WebChecks are accepted for online payments. Credit and debit card payments cannot be made by mail, phone, fax, or in person.

Choosing a Payment Option

Online Webcheck (ACH) or Credit Card

The Bursar’s Office accepts ACH and credit card (AMEX, Visa, MasterCard & Discover) payments on-line. To make a payment for an account, go to Buzzport (https://buzzport.gatech.edu) and select the PayNow--Bursar icon on the Home or Student tab.

Mail In

Make all checks or money orders payable to Georgia Institute of Technology. The student's ID number must be clearly printed on all checks or money orders. Payments must be received (not postmarked) by 4:00 PM, Eastern Standard Time, on the fee deadline date. Mail payments to the following address:

Georgia Institute of Technology
Office of the Bursar
Suite 111 Lyman Hall
225 North Avenue
Atlanta, Georgia 30332-0255

On Campus

Students who pay in person should bring their cash or check to the Bursar’s Office Cashier Window; First Floor, Lyman Hall. Payment by check or money order may be deposited in the drop box, located in the entry vestibule to Lyman Hall, at any hour of the day before the fee deadline. Do not put cash in the drop box. Checks should be made out to "Georgia Institute of Technology" and should contain the student id in the memo line.

Prepayments

Prepayment of fees is accepted. However, prepayment does not guarantee the student will successfully register for any or all classes needed. It is the student’s responsibility to properly register for classes by the registration deadline.
Fee Payment Using Financial Aid

All tuition waivers, financial aid, scholarships, and fellowships awarded are disbursed to the student’s account and applied to any outstanding balances. Financial aid is initially estimated before it is actually disbursed. The "Balance Due" for a student is reduced by this estimated amount. Actual disbursements begin approximately one week prior to the fee deadline. It is the student’s responsibility to ensure all funds are properly credited by the fee deadline date by reviewing his or her student Web invoice. If funds are not/will not be disbursed or credited by the fee deadline, the student may be eligible to request a deferment from the Office of Scholarships and Financial Aid. Deferments must be requested and will be granted only for the lesser of the amount of the financial aid award or the amount due to the Institute.

Disbursement of Financial Aid Checks

Financial aid processed by the Office of Scholarships and Financial Aid is applied directly to the student’s account in the Office of the Bursar. If a credit balance exists after all charges are posted and paid, the Office of the Bursar will deposit the credit amount into the student’s bank account. Many financial aid programs — including the HOPE scholarship, Federal Pell Grant, and Stafford Loan — do not require the student be enrolled full time in order for disbursement to occur. However, because some scholarships and grants do require full-time study, and some aid programs require registration for at least six hours of courses for disbursement, students who are planning to enroll for fewer than twelve hours and who are unsure of the requirements are advised to seek clarification from the Office of Scholarships and Financial Aid.

Important links:

- The Office of Scholarships and Financial Aid (http://www.finaid.gatech.edu)
- The Office of the Bursar | Policy on Returned Checks (http://www.bursar.gatech.edu/content/returned-check-policy)

Returned Checks

If a check is returned from the bank (e.g., for insufficient funds, stop payment), the student is required to redeem the returned check with cash or a cashier’s check in the Office of the Bursar. A returned check fee will be added to the amount of the check. Returned checks remaining unredeemed after a reasonable period of time may be forwarded to a collection agency. Students who have three checks returned against their Georgia Tech accounts will be denied future check-writing privileges.

If the student intends to withdraw from Georgia Tech, it is the student’s responsibility to formally withdraw by following the Procedures for Withdrawal and Dropping Courses (http://www.registrar.gatech.edu/students/withdrawal.php) on the Office of the Registrar’s website.

Important links:

- The Office of the Registrar | Procedures for Withdrawal and Dropping Courses (http://www.registrar.gatech.edu/students/withdrawal.php)
- The Office of the Bursar | Policy on Returned Checks (http://www.bursar.gatech.edu/content/returned-check-policy)

Refunds

Refunds for Students with Financial Aid

For students withdrawing from school, a calculation is made on any financial aid received to determine whether a student who completely withdraws during a term has "earned" the monies disbursed. Students "earn" their aid based on the period of time they were enrolled. During the first 60 percent of the term, a student earns financial aid funds in direct proportion to the length of time the student was enrolled. Beyond the 60 percentage point, all aid is considered earned. The responsibility to repay "unearned" aid is shared by the Institute and the student in proportion to the aid each is assumed to possess. The most current refund schedule can be found at http://www.bursar.gatech.edu/content/refund-calendars.

If a student intends to withdraw from Georgia Tech, it is the student’s responsibility to formally withdraw by following the Withdrawal From School Procedures (http://www.registrar.gatech.edu/students/withdrawal.php) on the Registrar’s website.

Refund Policy

The refund amount for students withdrawing from the Institute shall be based on a pro rata percentage determined by dividing the number of calendar days in the semester that the student completed by the total number of calendar days in the semester. The total number of calendar days in a semester is calculated by using the first day of class through the last day of final exams for the Institute and excludes scheduled breaks of five or more consecutive days. Institutional charges are refunded up to the point in time that the percentage equals 60 percent. Students who withdraw from the Institute when the calculated percentage of completion is greater than 60 percent are not entitled to a refund of any portion of institutional charges. A full refund (100 percent) is available to students who fully withdraw from the Institute or to students who drop individual courses by the end of late registration, if the reduction in hours changes their tuition tier under the flat rate tuition model or they cease to be enrolled at least twelve hours under the fixed rate tuition model. No further refunds are given for individual classes dropped after the end of late registration.

Students suspended or expelled from the Institute for any reason forfeit their right to a refund of any credit balance on their student account.

Refund Information (http://www.bursar.gatech.edu/content/refunds)
 Withdrawal Information (http://www.registrar.gatech.edu/students/withdrawal.php)

Student Financial Agreement

By registering for classes at the Georgia Institute of Technology (Georgia Tech), I agree to the following terms and conditions:

1. I accept full responsibility for payment of all tuition, fees and other associated costs assessed as a result of my class registration and/or receipt of services at Georgia Tech. I understand Georgia Tech uses electronic billing as the official billing method and does not mail invoices. I am responsible for reviewing and paying my student account balance by the scheduled due date. I further understand failure to review my account does not constitute a valid reason for non-payment by the scheduled due date.

2. If I drop or withdraw from some or all classes for which I register, I accept responsibility for paying all tuition and mandatory fees in accordance with the published tuition refund schedule at http://www.bursar.gatech.edu/content/refund-calendars. I further understand non-attendance does not absolve me of this responsibility.

3. I agree my financial aid is to be used to pay charges assessed to my account at Georgia Tech such as tuition, fees, campus housing and
meal plans, student health insurance, parking permits, service fees, fines, bookstore charges, or any other charge, in accordance with the terms of the aid. If any portion of my financial aid is revoked, I agree to repay all revoked aid that was disbursed to my account and either applied to charges or refunded to me.

4. I understand if I fail to pay my student account bill or any monies owed to Georgia Tech by the scheduled due date, Georgia Tech will place a financial hold on my student account, preventing me from registering for future classes, requesting transcripts, or receiving my diploma. Georgia Tech may also assess late payment fees and/or cancel my class registration.

5. I understand if I fail to pay my student account bill or any monies owed to Georgia Tech by the scheduled due date, and also fail to make acceptable payment arrangements to bring my account current, Georgia Tech may refer my delinquent account to a collection agency. I further understand that if Georgia Tech refers my student account balance to a third party for collection, a collection fee will be assessed and due in full at the time of the referral to the third party. The collection fee will be calculated as a percentage at a maximum of Fifteen (15%) percent of my delinquent account. Further, I understand that my delinquent account may be reported to one or more of the national credit bureaus.

6. I understand Georgia Tech and its agents and contractors may contact me at my current and any future cellular phone number(s), email address(es) or wireless device(s) regarding my delinquent student account(s)/loan(s), any other debt I owe to Georgia Tech, or to receive general information...I authorize Georgia Tech and its agents and contractors to use automated telephone dialing equipment, artificial or pre-recorded voice or text messages, and personal calls and emails, in their efforts to contact me. I may withdraw my consent to call my cellular phone using automated telephone dialing equipment by submitting my request in writing to the Georgia Tech Bursar's Office or in writing to the applicable contractor or agent contacting me on behalf of Georgia Tech.

7. I understand I am responsible for complying with all applicable Georgia Tech policies and procedures.

8. I understand Georgia Tech uses the e-mail account provided by the institution as the official method of communication with me and I am responsible for reading Georgia Tech e-mails on a timely basis.

9. I understand I am responsible for keeping Georgia Tech records up to date with my current physical addresses, email addresses, and phone numbers by following the procedure at http://www.registrar.gatech.edu/students/formlanding/address.php. The linked procedure is incorporated herein by reference. Upon leaving Georgia Tech for any reason, it is my responsibility to provide Georgia Tech with updated contact information for purposes of continued communication regarding any amounts owed to Georgia Tech.

10. I understand that this Agreement shall be governed by the laws of the state of Georgia without regard to choice of law provisions and that all actions arising under this agreement will be filed and litigated exclusively in the state or federal courts in Atlanta, Georgia and I expressly agree to the jurisdiction of such courts.

Tuition

Tuition and Fee Rates
Published tuition and fees listed are subject to change. These amounts should be used only as a planning guide for future payments. Tuition charges can vary based on state residency status and degree program of study. Residency status is determined by the Office of Admission at the time of acceptance. Students are either classified as a "resident" or "nonresident" of Georgia for tuition purposes in accordance with the regulations of the Board of Regents of the University System of Georgia. The most current information on tuition and fees is available from the Bursar’s Office (http://www.bursar.gatech.edu/content/tuition-fees).

More information:
- Out-of-State Tuition Waivers (p. 132)
- Tuition Classification (p. 134)

Out-of-State Tuition Waivers
Georgia Tech has permission from the Board of Regents to award out-of-state tuition differential waivers and assess in-state tuition for certain nonresidents of Georgia for the following reasons and under the following conditions. The waivers processed in the Office of the Registrar are listed below.

- University System Employees and Dependents
 Full-time employees of the University System, their spouses, and their dependent children.
 Download Application for USG Employees and Dependents (http://registrar.gatech.edu/docs/pdf/residency/usg.pdf)

- Full-time School Employees
 Full-time employees in the public schools of Georgia or the Technical College System of Georgia, their spouses, and their dependent children.
 Teachers employed full-time on military bases in Georgia shall also qualify for this waiver (BR Minutes, 1988-89, p.43).
 Download Application for Full-Time School Employees (http://registrar.gatech.edu/docs/pdf/residency/full_time_school_employees_waiver.pdf)

- Career Consular Officials
 Career consular officers, their spouses, and their dependent children who are citizens of the foreign nation that their Consulate office represents and who are stationed and living in Georgia under orders of their respective governments.
 Download Application for Career Consular Officials (http://registrar.gatech.edu/docs/pdf/residency/career_consular_waiver.pdf)

- Military
 1. Active duty military personnel, their spouses, and their dependent children who meet one of the following:
 a. The military sponsor is currently stationed in or assigned to Georgia; or,
 b. The military sponsor previously stationed in or assigned to Georgia is reassigned outside of Georgia, and the student(s) remain (s) continuously enrolled in a Georgia school, Technical College System of Georgia institution, and/or a University System of Georgia institution; or,
 c. The military sponsor is reassigned outside of Georgia and the spouse and/or dependent children remain in Georgia; or,
 d. The military sponsor is stationed in a state contiguous to the Georgia border and resides in Georgia; or,
 e. Dependent children of a military sponsor, previously stationed in or assigned to Georgia within the previous five years, or the child completed at least one year of high school in Georgia; or,
 f. Any student utilizing VA educational benefits transferred from a currently serving military member is also eligible, even if the student is no longer a dependent of the transferee.
As of the first day of classes for the term, an economic advantage waiver will expire 12 months from the date the waiver was granted. Must be for reasons other than enrolling in an institution of higher education. These individuals must be able to show clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Independent non-citizen students may continue to receive this waiver as long as they maintain a valid employment-related visa status and can demonstrate continued efforts to establish U.S. legal permanent residence and legal domicile in the State of Georgia.

A dependent non-citizen student who can provide clear evidence that the student’s parent, spouse, or U.S. court-appointed legal guardian possesses a valid employment-related visa status and can provide clear evidence of having relocated to the State of Georgia to accept full-time, self-sustaining employment is also eligible to receive this waiver. Relocation to the state must be for employment reasons and not for the purpose of enrolling in an institution of higher education. These individuals must be able to show clear evidence of having taken legally permissible steps toward establishing legal permanent residence in the United States and the establishment of legal domicile in the State of Georgia. Non-citizen students currently receiving a waiver who are dependents of a parent, spouse, or U.S. court-appointed legal guardian possessing a valid employment-related visa status may continue to receive this waiver as long as they can demonstrate that their parent, spouse, or U.S. court-appointed legal guardian is maintaining full-time, self-sustaining employment in Georgia and is continuing efforts to pursue an adjustment of status to U.S. legal permanent resident and the establishment of legal domicile in the State of Georgia. (BR Minutes, October 2008.)

Download Application for Economic Advantage (http://registrar.gatech.edu/docs/pdf/residency/economic_advantage_waiver.pdf)

- Non-Resident Students

As of the first day of classes for the term, a non-resident student can be considered for this waiver under the following conditions:

- Students under 24.
 - If the parent, or United States court-appointed legal guardian has maintained domicile in Georgia for at least twelve (12) consecutive months and the student can provide clear and legal evidence showing the relationship to the parent or United States court-appointed legal guardian has existed for at least twelve (12) consecutive months immediately preceding the first day of classes for the term. Under Georgia code, legal guardianship must be established prior to the student’s 18th birthday (BoR Minutes, October 2008, title amended February 2010); or

- If the student can provide clear and legal evidence showing a familial relationship to the spouse and the spouse has maintained domicile in Georgia for at least twelve (12) consecutive months immediately preceding the first day of classes for the term (BoR Minutes, February 2010).

- Students 24 and Older.
 - If the student can provide clear and legal evidence showing a familial relationship to the spouse and the spouse has maintained domicile in Georgia for at least twelve (12) consecutive months immediately preceding the first day of classes for the term. This waiver can remain in effect
Tuition Classification

Classification of Students for Tuition Purposes

Under the Constitution and laws of Georgia, the Board of Regents of the University System of Georgia was created to govern, control, and manage a system of public institutions providing quality higher education for the benefit of Georgia citizens. The state, in turn, receives substantial benefit from individuals who attend or have attended these institutions through their significant contributions to the civic, political, economic, and social advancement of the citizens of Georgia.

Because the overwhelming proportion of financial support for the operation of the public institutions of higher education in Georgia comes from the citizens through the payment of taxes, the determination of whether a student is classified as a resident or a nonresident of the state for tuition purposes becomes a significant matter. The tuition paid by in-state students covers only about one-fourth of the total cost of their education in the University System. Therefore, Georgia taxpayers are contributing three-fourths of the necessary funds to provide quality education for the citizens of the state.

The practice followed by state colleges and universities of assessing out-of-state students a higher tuition rate is a rational attempt by states to achieve a partial cost equalization between those who have and those who have not recently contributed to the state's economy, even though no precise way exists to determine the degree to which higher tuition charges equalize the cost of educating in-state and out-of-state students.

Courts that have been faced with challenges to residency classification procedures have consistently recognized the right of public institutions of higher education to charge higher rates to out-of-state students and to adopt reasonable criteria for determining the establishment of in-state status.

For the purpose of these regulations, the question to be answered is not primarily whether a student is a resident or nonresident of Georgia, but whether the student should pay University System fees on an in-state basis. The term “resident” is confusing because it may have several definitions as it relates to voter registration, driver's licenses, automobile registration, deeds, contracts, wills, income taxes, and other matters. A student may be a resident of Georgia for some purposes, but not entitled to in-state status for tuition purposes.

The Board of Regents has adopted certain policies governing the classification of students as residents and nonresidents for tuition purposes in keeping with its responsibilities to the citizens of Georgia for an appropriate assessment of fees and reasonable share of the cost of their education. The taxpayers of Georgia are thereby assured that they are not assuming the financial burden of educating persons whose presence in the state is not intended to be permanent.

With these considerations in mind, the Board of Regents has adopted the following policies governing the classification of students for fee payment purposes:

http://www.usg.edu/policymanual/section4/policy/4.3_student_residency/

1. United States Citizens
 a. An independent student who has established and maintained a domicile in the State of Georgia for a period of at least twelve consecutive months immediately preceding the first day of classes for the term shall be classified as “in-state” for tuition purposes.

 It is presumed that no student shall have gained or acquired in-state classification while attending any postsecondary educational institution in this state without clear evidence of having established domicile in Georgia for purposes other than attending a postsecondary educational institution in this state.

 b. A dependent student shall be classified as “in-state” for tuition purposes if either:

 i. the dependent student’s parent has established and maintained domicile in the State of Georgia for at least twelve consecutive months immediately preceding the first day of classes for the term and the student has graduated from a Georgia high school or

 ii. the dependent student’s parent has established and maintained domicile in the State of Georgia for at least twelve consecutive months immediately preceding the first day of

 Download Application for Senior Citizens (http://registrar.gatech.edu/docs/pdf/residency/senior_waiver.pdf)

 This waiver can remain in effect as long as the student remains continuously enrolled (BoR Minutes, October 2008).

Download Application for Non-Resident Students (http://registrar.gatech.edu/docs/pdf/residency/non-residents_student.pdf)

• Senior Citizen Waiver

 A resident of the state for tuition purposes becomes a significant matter. The tuition paid by in-state students covers only about one-fourth of the total cost of their education in the University System. Therefore, Georgia taxpayers
classes for the term and the parent claimed the student as a dependent on the parent's most recent federal income tax return.

c. A dependent student shall be classified as "in-state" for tuition purposes if a U.S. court-appointed legal guardian has established and maintained domicile in the State of Georgia for at least twelve consecutive months immediately preceding the first day of classes for the term, provided that appointment was not made to avoid payment of out-of-state tuition and the U.S. court-appointed legal guardian can provide clear evidence of having established and maintained domicile in the State of Georgia for a period of at least twelve consecutive months immediately preceding the first day of classes for the term.

d. If an independent student classified as "in-state" relocates temporarily but returns to the State of Georgia within 12 months, the student shall be entitled to retain in-state tuition classification.

e. If the parent or U.S. court-appointed legal guardian of a dependent student currently classified as "in-state" for tuition purposes establishes domicile outside of Georgia after having established and maintained domicile in the State of Georgia, the student may retain in-state tuition classification as long as the student remains continuously enrolled in a public postsecondary educational institution in the state, regardless of the domicile of the parent or U.S. court-appointed legal guardian.

2. Noncitizens

Noncitizens initially shall not be classified as "in-state" for tuition purposes unless there is evidence to warrant consideration of in-state classification. Lawful permanent residents, refugees, asylees, or other eligible noncitizens as defined by federal Title IV regulations may be extended the same consideration as citizens of the United States in determining whether they qualify for in-state classification. International students who reside in the United States under nonimmigrant status conditioned at least in part upon intent not to abandon a foreign domicile are not eligible for in-state classification.

Form:

Out-of-State Tuition Waivers-Residency (http://registrar.gatech.edu/docs/catalog/tuition_waiver_undergrad.pdf)

Verification of Participation

Verification of participation is a process whereby instructional faculty report to the Office of the Registrar and the Office of Scholarships and Financial Aid whether they have students enrolled in their classes who are not engaged with the course.

Verification of participation is a Federal Title IV requirement. The rule requires students who are receiving Federal Title IV financial aid to participate in all courses (credit hours) for which they have been funded. For example, if a student is enrolled in twelve credit hours and her/his financial aid award has been based on a twelve-credit-hour course load, participation must be verified for all twelve credit hours.

Any student who is reported as "not participating" in the courses for which financial aid was awarded will see her/his amount of aid recalculated and revoked as appropriate. The student will be required to pay back the remaining amount. Lack of participation results in a financial impact for the student. Students cannot accept Federal Title IV aid and then neglect to engage in the study that it is funding.

Participation must be verified for all undergraduate and graduate classes that earn credit, are billable, and are gradable. For example, 7000- and 9000-level thesis courses for graduate students must be reported. Courses that are graded on a Pass/Fail basis must also be reported. Classes that are delivered online or at a distance must be reported.

Participation in a course can be indicated in a variety of ways. As instructional faculty are reporting their findings at the beginning of each term, the following examples might be helpful.

- Attending the class
- Handing in homework
- Taking a quiz or exam
- Posting information or accessing information on a website
- Posting blog entries or comments in a chat room
- Participation in group projects
- Meeting with or communicating with the thesis advisor on research progress
- Any other activity that demonstrates engagement in the course

The tool for reporting the verification of participation is available at http://verifyparticipation.gatech.edu.
POLICIES

The Rules and Regulations (p. 150) section of this catalog contains detailed information regarding the academic regulations of the Institute. Students who have questions concerning these regulations should consult either their major school or the Registrar’s Office (http://www.registrar.gatech.edu).

- Academic Honor Code (p. 136)
- Alcohol and Drug Policy (p. 136)
- Certificate Guidelines (p. 138)
- Disabled Persons Assistance (p. 140)
- Discrimination (p. 140)
- Family Educational Rights and Privacy Act (FERPA) and Applicant Records (p. 140)
- Grading GPA (p. 142)
- Health Policies (p. 146)
- Institute Commitment to Diversity, Equity, and Inclusion (p. 146)
- Intellectual Property Policy (p. 147)
- Required Computer Ownership (p. 147)
- Sexual Misconduct Policy (p. 147)
- Student Absence from Class Due to Illness or Personal Emergencies (p. 147)

Academic Honor Code

The Academic Honor Code is a student initiative that became an official Institute policy in 1996. The objective of the Academic Honor Code is to increase academic integrity and strengthen trust in the Georgia Tech community. All students are required to sign an agreement acknowledging their awareness of the Academic Honor Code. They are strongly encouraged to seek a full understanding of their instructors’ expectations regarding academic honor.

Alcohol and Drug Policy

The Student/Student Organization Alcohol Policy (http://www.policylibrary.gatech.edu/student-affairs/student-student-organization-alcohol-policy) is maintained by the Office of Student Integrity (http://osi.gatech.edu) and published in the Georgia Tech Policy Library (http://www.policylibrary.gatech.edu/student-affairs/student-student-organization-alcohol-policy). In the event of any conflict, the most current policy shown on the OSI web site and/or the Policy Library shall govern.

Student/Student Organization Alcohol Policy

Last Revised: August 2015

Review Date: August 2018

Policy Owner: Student Life

Contact Name: Peter Paquette

Contact Title: Director of the Office of Student Integrity

Contact Email: peter.paquette@vpss.gatech.edu

The purpose of this policy is to promote and educate about the lawful and responsible use of alcohol by students, and to educate about illegal drugs in order to maintain an environment that is consistent with the educational focus of Georgia Tech.

Georgia Tech will comply with all federal, state, and local laws and policies, including the policies of the Board of Regents of the University System of Georgia, on the abuse of alcohol and other drugs by its students. The legal drinking age in the State of Georgia is 21.

Each member of the Georgia Tech community should be involved in the implementation of, and compliance with this policy. Unless otherwise stated by law, each individual retains responsibility for his or her actions at all times regardless of his or her mental state, even if altered by alcohol or other drugs.

Campus organizations may develop and enforce additional group/individual standards which are more restrictive than those established in this policy.

Standards of Conduct and Sanctions

In accordance with federal and state laws and because of the potential detriment to the health and well-being of its students, all students are prohibited from engaging in the unlawful use, possession, manufacture, distribution, dispensation, and sale of alcoholic beverages, controlled substances (including marijuana), and other drugs. The term “dangerous drug” is defined in the Official Code of Georgia Section 16-13-71.

A. Alcohol

The sale, distribution, and consumption of alcoholic beverages in or on all Georgia Tech owned or leased (by) property, or on sidewalks/streets are specifically prohibited, with the exception of those approved by the Office of the President or designee. This policy does not prohibit the lawful use of alcohol in Institute-owned residences.

Individual possession and/or consumption of alcohol is acceptable, provided individuals DO NOT:

a. Possess or consume alcohol if under 21 years of age.

b. Furnish, or cause to be furnished, any alcohol to persons under 21 years of age.

c. Conspicuously display open containers of alcohol in any public location, including, but not limited to, grounds, sidewalks, and streets within campus boundaries (but not the public sidewalks and streets, or privately owned or leased property).

d. Sell alcoholic beverages.

e. Misrepresent one’s age or identity in any manner for the purpose of obtaining or possessing alcohol.

f. Serve or make available alcohol to intoxicated persons.

Alcoholic beverages may be served and/or consumed by individuals 21 and older at advertised events and activities that are promoted, sponsored, or supervised by a chartered Georgia Tech organization, providing the organization shall:

a. Be responsible for enforcing the entire Student Policy on Alcohol and Illegal Drugs.
b. Completed and confirmed review of the "Acknowledgement of Alcohol and Illegal Drugs Policy." This form will remain on file in the Office of Leadership and Civic Engagement, 2211 Student Center Commons. Acknowledgment of Alcohol and Illegal Drugs Policy Forms are available in the Office of Leadership and Civic Engagement. This must be signed with every officer transition.

c. Ensure that alcohol is not the focal point, the reason for, or the drawing card for an event.

d. Submit, and have approved, a completed Alcohol Event Planning Form. Alcohol Event Planning Forms are available in the Office of Leadership and Civic Engagement.

e. Not advertise the service or availability of alcoholic beverages at functions.

f. Ensure that alcoholic beverages are not consumed by any individual under the legal drinking age of 21.

g. Provide non-alcoholic beverages and food in reasonable quantity, in the same general area, and for the same time period, as the alcoholic beverages are accessible.

h. Control access to the alcoholic beverages through a central point of distribution by a designated server within a designated area at the event (e.g. beer garden) and through the use of sober monitors. Only students who have shown proper proof of age may enter the designated area where alcohol is being served. All alcohol must be distributed and consumed within the designated area. Control is for the purpose of restricting use by those under 21 and/or who are obviously intoxicated.

i. Not use organizational funds to purchase alcohol. Any funds used to pay for alcohol must be taken from personal/private sources and paid to a properly licensed third party vendor. Alcohol may not be purchased by the student organization via a sale at the activity or by charging admission fees either in advance or at the door (as stated in the Georgia Code of Law, Section 3-3-21).

j. Not use kegs, champagne/punch fountains, or other common usage containers (such as punch bowls or frozen drink machines) for alcoholic beverages.

k. In the absence of a third-party vendor, designate or hire a TIPS (Training Intervention Procedures for Servers) trained server to monitor the service and consumption of alcohol. It is unlawful to serve or make available alcohol to intoxicated persons (as stated in the Georgia Code of Law, Section 3-3-22).

l. Require a full-time Institute employee, who must not be a minor, to be present for the duration of functions hosted by student organizations where alcohol is served or made available. Advisers are encouraged to attend such functions.

Promotional activities regarding alcohol are as follows:

a. The posted advertisement of alcoholic beverages on campus is not permitted. This includes, but is not limited to: chalking, electronic communications, bulletins, flyers, and social media sites.

b. Campus publications are encouraged to minimize/eliminate all advertisement of alcoholic beverages.

c. No promotion or advertising on campus of incentive drinking ("happy hours", "2-for-1 specials", unlimited quantities of alcohol available at reduced prices or free, events focusing on the consumption of alcohol, etc.) is permitted.

d. Chartered student organizations and student groups may not seek or accept sponsorship or support from companies/vendors whose main focus of business is the manufacture, distribution, or sale of alcohol, other drugs or related paraphernalia.

Participants in Study Abroad programs are bound by the legal drinking age of the respective countries in which they are traveling and in all other respects this policy applies.

Sanctions for Violation of Standards:
Students who violate this policy will be subject to disciplinary action and penalties in accordance with the Georgia Tech Student Code of Conduct.

Attempts to circumvent the provisions in this policy in any way are an infraction of this policy.

B. Possession and/or Use of Illegal Drugs
Georgia Tech does not permit or condone the illegal possession and/or use of controlled substances. Controlled substances means any drug, substance, or immediate precursor included in the definition of controlled substance in the Official Code of Georgia Section 16-13-21 (4) or Schedule I through V of Section 202 of the Federal Controlled Substance Act [21 United States Code 812]. The term “dangerous drug” is defined in the Official Code of Georgia Section 16-13-71.

Sanctions for Violation of Standards:
Any student who violates this policy or any federal or state law or policy regarding the manufacture, distribution, sale, possession, or use of controlled substances or other dangerous drugs shall be subject to disciplinary actions and penalties in accordance with the Georgia Tech Student Code of Conduct.

Additionally, in accordance with Georgia law, any student convicted of a felony that involves the manufacture, distribution, sale, possession, or use of controlled substances or other illegal drugs, or chartered student organizations and student groups involved in these activities may be subject to specific penalties required by state law.

Further information regarding the effects of drug abuse and penalties for manufacture, distribution, sale, possession, or use of controlled substances or other illegal drugs is available in the Counseling Center, Stamps Health Services and the Office of the Vice President for Student Life and Dean of Students.

Participants in Study Abroad programs are bound by the policies of the Georgia Institute of Technology regarding the possession and/or use of controlled substances or other illegal drugs.

Drug and Alcohol Counseling, Treatment, and Rehabilitation Programs
Students with alcohol- or drug-related concerns may be referred to, or seek assistance from the Division of Student Affairs. The Division of Student Affairs provides trained professional and paraprofessional counselors in the Counseling Center for drug and alcohol abuse prevention, education, and counseling.

Policy Review
This policy shall be reviewed by a Task Force which includes student representation and is appointed by the Vice President for Student Life and Dean of Students or their designee, to determine its effectiveness, to ensure that policies are enforced and the disciplinary sanctions are consistently applied, to evaluate the effectiveness of the implementation of the educational component of the policy, and to recommend and implement changes as appropriate.
Certificate Guidelines

Policy Distribution
The Vice President for Student Life and Dean of Students, or their designee, shall oversee the annual distribution of this policy to every Georgia Tech student. Additional copies of the Policy on Student Alcohol and Illegal Drugs may be obtained from the Office of the Vice President for Student Life and Dean of Students.

Parental Notification Policy
Parents or legal guardians of students under the age of 21 may be notified when a student is found responsible for violating the Student/Student Organization Alcohol Policy when any of the following occur:

- A student endangers himself/herself or others while under the influence of alcohol or other substances. Specific instances include driving under the influence, fighting, alcohol poisoning, and hospitalization.
- When the Vice President for Student Life and Dean of Students determines that any future violation of Institute Policy will most likely result in suspension from Georgia Tech.
- When a student conduct administrator determines that any future violation of Institute policy will likely result in removal from housing.

Certificate Guidelines

- Graduate Certificate Guidelines (p. 138)
- Undergraduate Certificate Guidelines (p. 139)

Graduate Certificate Guidelines
Georgia Institute of Technology offers two types of graduate certificates: embedded certificates and stand-alone certificates.

Embedded Graduate Certificates Guidelines
Embedded certificates are intended to encourage students to use the elective requirements in their degree program to form a coherent concentration of coursework in a specified area.

1. Embedded certificates will be granted only to students who, in addition to the certificate program requirements, have satisfied requirements for a graduate degree. The offering unit is responsible for verifying satisfaction of all certificate requirements, as well as completion of a graduate degree. Embedded certificates are not recorded on the student's transcript or diploma. Arrangements must be made for awarding embedded certificates within colleges or offering units. Embedded certificates will not be awarded at the Institute level.
2. All graduate embedded certificate programs must be approved by the Graduate Curriculum Committee and by the Academic Senate.
3. Departments, schools, and colleges are eligible to offer graduate certificate programs in well-defined and coherent subject areas. Certificate programs sponsored jointly by more than one academic unit may be designated as multi-disciplinary certificates, subject to the special requirements listed below.
4. A certificate program generally will be available to all graduate students, subject to the restrictions below. Exceptions must be clearly justified in the certificate proposal.
5. All proposals for a certificate must originate from the faculty of the academic unit offering the certificate or, in the case of a multi-disciplinary certificate, from the faculty of each participating academic unit. Proposals must be endorsed by the appropriate College Dean(s) and by the Provost.
6. In addition to the academic requirements for the certificate, the proposal must define the procedures for management of the program and for awarding certificates. The offering unit must record and maintain enrollment and completion for certificates. The design and working of certificates must be approved by the Provost and a draft must be submitted with the proposal.
7. The embedded certificate program must comprise at least 12 semester hours in a coherent program of which at least three semester hours are foundational to provide a broad overview of that discipline. A multi-disciplinary certificate program will additionally require that courses be taken from more than one academic unit and that at least three semester hours be taken outside the student’s major field. Cross-listed courses may be counted as being outside the student’s major field.
8. No more than a total of 4 semester hours of Special Problems courses may be included in an embedded certificate program.
9. Courses used in a certificate also may be used to fulfill elective requirements in the student’s major degree program.
10. A course may not be counted toward more than one certificate.
11. All courses counting toward the embedded certificate must be taken on a letter-grade basis, and be completed with a grade of B or higher.
12. The availability of a certificate should be noted in the catalog, at least by title, under the appropriate academic unit(s). The academic unit(s) offering the certificate shall publish and make available to students the requirements for the certificate – the courses and total number of hours required, along with the enumeration of any particular courses that are mandated or excluded, and any grade requirements that differ from the general grade requirements of this policy.
13. All certificate programs are to be reviewed during the scheduled academic program review in the sponsoring unit(s).

Georgia Institute of Technology offers two types of graduate certificates: embedded certificates and stand-alone certificates.

Stand-Alone Graduate Certificates Guidelines
Stand-alone certificates may be completed independent of students being enrolled as Master’s or Doctoral student. These certificates represent a cohesive program of study of a smaller size than a Master’s program and provide more flexibility to professionals for pursing graduate education, including a means for professionals to renew and retrain due to a fast-changing work force. When completed, these certificates appear on the student’s academic record (transcript), and the student receives a certificate of completion.

Curricular Requirements and Approvals

1. Departments, schools, and colleges are eligible to offer graduate certificate programs in well-defined and coherent subject areas. Certificate programs sponsored jointly by more than one academic unit may be designated as multi-disciplinary certificates, subject to the special requirements listed below.
2. All proposals for a certificate must originate from the faculty of the academic unit offering the certificate or, in the case of a multi-disciplinary certificate, from the faculty of each participating academic unit.
Admissions

1. Students must be admitted to the Institute as either Graduate Certificate-seeking students or degree-seeking graduate students.
2. Admission requirements for Graduate Certificate-seeking students are listed in the description of the Certificate in the Catalog. A minimum requirement is a Bachelor’s Degree.

Completion

1. Certificates will be granted only to students who have satisfied the requirements as listed in the Catalog. Students must complete the certificate requirements within a four-year time-frame.
2. The offering unit is responsible for verifying satisfaction of all Certificate requirements with the final audit being conducted by the Registrar’s Office.
3. Upon completion of the required courses, the student must apply for the stand-alone certificate online through the on-line application for graduation. Stand-alone certificates will be awarded three times per year, in May, December, and August. The award of the Certificates coincides with the award of degrees.
4. Award of the Certificate will be posted by the Registrar to the academic record (transcript), and the Registrar’s Office will issue a certificate of completion. The design of the certificate of completion will be uniform across the Institute and will be managed in a fashion similar to diplomas.

Management of the Program

1. The availability of a stand-alone certificate should be noted in the Catalog, at least by title, under the appropriate academic unit(s). The academic unit(s) offering the certificate shall publish and make available to students the requirements for the certificate – the courses and total number of hours required, along with the enumeration of any particular courses that are mandated or excluded, any grade requirements that differ from the general grade requirements of this policy, and whether the courses taken for the certificate can be counted towards an MS Degree in that unit.
2. The offering unit must record and maintain data related to student learning and professional opportunities enhanced related to Gainful Employment requirements. Data related to Gainful Employment is required if the Certificate is approved as eligible under Federal Title IV financial aid rules.
3. All certificate programs are to be reviewed during the scheduled academic program review in the sponsoring unit(s).
4. Costs may vary by program

Undergraduate Certificate Guidelines

Certificates are intended to encourage students to use the elective course requirements in their degree program to form a coherent package of coursework in a specified area.

1. Certificates will be granted only to students who, in addition to the certificate program requirements, have satisfied requirements for an undergraduate degree. The offering unit is responsible for verifying satisfaction of all certificate requirements, as well as completion of an undergraduate degree. Certificates are not recorded on the student’s transcript or diploma. Arrangements must be made for awarding certificates within colleges or offering units. Certificates will not be awarded at the Institute level.
2. All undergraduate certificate programs must be approved by the Undergraduate Curriculum Committee and by the Academic Senate.
3. Departments, schools, and colleges are eligible to offer undergraduate certificate programs in well-defined and coherent subject areas. Certificate programs sponsored jointly by more than one academic unit may be designated as multi-disciplinary certificates, subject to the special requirements listed below.
4. A certificate program generally will be available to all undergraduate students, subject to the restrictions below. Exceptions must be clearly justified in the certificate proposal.
5. All proposals for a certificate must originate from the faculty of the academic unit offering the certificate or, in the case of a multi-disciplinary certificate, from the faculty of each participating academic unit. Proposals must be endorsed by the appropriate College dean(s) and by the Provost.
6. In addition to the academic requirements for the certificate, the proposal must define the procedures for management of the program and for awarding certificates. The design and wording of certificates must be approved by the Provost and a draft must be submitted with the proposal.
7. A certificate program must comprise at least twelve semester hours in a coherent program, of which at least nine semester hours are upper-division coursework (numbered 3000 or above). A multi-disciplinary certificate program will additionally require that courses be taken from more than one academic unit and that at least three semester hours be taken outside the student’s major field. Cross-listed courses may be counted as being outside the student’s major field.
8. No more than 6 semester hours of Special Topics courses may be included in a certificate program. No more than a total of 4 semester hours of Special Problems or Undergraduate Research courses may be included in a certificate program.
9. Courses required by name and number in a student’s major degree program can not be used in satisfying the course requirements for a certificate.
10. Courses used to satisfy Core Areas A through E in a student’s major degree program cannot also be used to satisfy the course requirements for a certificate.
11. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a certificate.
12. All academic units may designate a block/blocks of courses outside of the student’s major field of study in which the same course can be used to satisfy the course requirements in the student’s major degree program and also be used to satisfy the course requirements for a certificate.
13. A course may not be counted toward more than one certificate and/or minor.
14. All courses counting toward the certificate must be taken on a letter-grade basis, and be completed with a grade of C or better.
15. The availability of a certificate should be noted in the catalog, at least by title, under the appropriate academic unit(s). The academic unit(s) offering the certificate shall publish and make available to students the requirements for the certificate – the courses and total number of hours required, along with the enumeration of any particular courses that are mandated or excluded, and any grade requirements that differ from the general grade requirements of this policy.
16. All certificate programs are to be reviewed during the scheduled academic program review in the sponsoring unit(s).

Disabled Persons Assistance
Assistance for Individuals with Disabilities

The Office of Disability Services provides accessible programs, services, activities, and reasonable accommodations for students with a disability as defined by section 504 of the Rehabilitation Act of 1973, as amended, and by the Americans with Disabilities Act of 1990 and 2008. Services are available to ensure that individuals with disabilities have an equal opportunity to pursue education, employment, or other campus programs, activities, or services.

The Office of Disability Services offers self-identified students with permanent or temporary disabilities assistance with registration, accessibility, transportation, parking, housing, counseling, note taking, recorded textbooks, advocacy, test proctoring, referral services, and other needs. Disability Services promotes disability awareness programs for departmental faculty and staff, as well as the Georgia Tech community.

Students and prospective students who wish to learn more about accommodations for students with disabilities should contact:

Office of Disability Services
Suite 221 Smithgall
Student Services Building
Georgia Institute of Technology
Atlanta, Georgia 30332-0285

call 404.894.2563 (voice) or 404.894.1664 (TTY)
visit http://disabilityservices.gatech.edu
email dsinfo@gatech.edu

Faculty, staff, and visitors should contact Disability Services in the Office of Human Resources at 404.894.3344 (voice) or 404.894.9411 (TDD).

Office of Disability Services Website (http://www.adapts.gatech.edu)

Academic Accommodations for Students with Disabilities

Reasonable accommodations are provided to self-identified students with disabilities who meet the academic and technical standards requisite to admission or participation in the program of study.

Consideration may be given to the substitution or modification of certain course requirements as long as such changes do not detract from the quality of the educational experience and the changes remain within the accreditation criteria for the degree program. Such substitutions or modifications must be approved by the school chair, department head, or college dean, and the Undergraduate Curriculum Committee and/or the Graduate Committee.

Office of Disability Services Website (http://www.adapts.gatech.edu)

Discrimination

This institution is in compliance with Title VI of the Civil Rights Act of 1964 (http://www.justice.gov/crt/about/cor/coord/titlevi.php) and does not discriminate on the basis of race, creed, color, or national origin and is also in compliance with the provisions of Title IX of the Educational Amendments of 1972 (http://www.dol.gov/ofamregs/statutes/titleix.htm), which prohibit discrimination on the basis of sex.

Family Educational Rights and Privacy Act (FERPA) and Applicant Records

Notification of Student Rights Under FERPA

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

• The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

 • The right to inspect and review the student’s education records within forty-five days of the day that the Institute receives the request for access.

Students should submit written requests to the Registrar’s office in order to identify the record(s) they wish to inspect. The Registrar will make arrangements for access and notify the student of the time and place where the records may be inspected.

Students should specify the specific records being requested as stated below when making such written request:

• Transcripts (Office of the Registrar)
• Student Disciplinary Records (Office of Student Integrity)
• Title IX records (Title IX Coordinator)
• Student Housing (Department of Housing)
• Financial Aid Records (Office of Scholarships and Financial Aid)

For education records that are not specified above, please include a sufficient description and, if possible, the location for the
requested records as these records are transient in nature and are not routinely maintained as part of a student's FERPA records.

Please note that fees may be assessed solely to remove other student information that is protected by FERPA and that may be contained within these transient records. You will not be charged to review your student records except as stated herein and we will notify you first if fees may be assessed.

- The right to request the amendment of the student's education records that the student believes are inaccurate or misleading.

Students may ask the Institute to amend a record that they believe is inaccurate or misleading. They should write the registrar, clearly identifying the part of the record they want changed, and specify why it is inaccurate or misleading.

If the Institute decides not to amend the record as requested by the student, the Institute will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

- The right to consent to disclosures of personally identifiable information contained in the student's education records, except to the extent that FERPA authorizes disclosure without consent.

One exception which permits disclosure without consent is disclosure to school officials with legitimate educational interests. A school official is

- a person whether volunteering for or employed by the Institute in an administrative, supervisory, academic or research, or support staff position (including law enforcement unit personnel and health staff);
- a person or company with whom the Institute has contracted (such as an attorney, auditor, or collection agent);
- a person serving on the Board of Regents;
- a staff member in the office of the Board of Regents;
- staff in the Office of the Attorney General; or
- a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks.

A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility.

- The right to file a complaint with the United States Department of Education concerning alleged failures by the Georgia Institute of Technology to comply with the requirements of FERPA.

The name and address of the Office that administers FERPA is:

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue, SW
Washington, DC 20202-4605

Applicant Records

Access to applicant records is strictly controlled and governed by Institute policy. To the extent permitted by law, these records are treated as confidential.

Annual Notice of Directory Information Contents

"Directory Information" is information not generally considered harmful or an invasion of privacy if disclosed. Effective November 12, 2016, the Georgia Institute of Technology considers the following information to be directory information:

- Name, address (including GT email address), and telephone listing
- Level (graduate or undergraduate)
- Field of study
- Enrollment status (full-time, part-time, less than part-time)
- Dates of attendance
- Degrees with associated honors and designations, and date(s) awarded
- Anticipated date of graduation
- Participation in NCAA Division I sports, including terms of team membership

Directory information cannot include social security numbers.

Students who wish to prohibit the release of Directory Information can view information on the registrar’s confidentiality Web page (http://www.registrar.gatech.edu/students/formlanding/confid.php).

Possible Federal and State Data Collection and Use

As of January 3, 2012, the U.S. Department of Education’s FERPA regulations expand the circumstances under which your education records and personally identifiable information (PII) contained in such records — including your Social Security Number, grades, or other private information — may be accessed without your consent. First, the U.S. Comptroller General, the U.S. Attorney General, the U.S. Secretary of Education, or state and local education authorities ("Federal and State Authorities") may allow access to your records and PII without your consent to any third party designated by a Federal or State Authority to evaluate a federal- or state-supported education program. The evaluation may relate to any program that is "principally engaged in the provision of education," such as early childhood education and job training, as well as any program that is administered by an education agency or institution. Second, Federal and State Authorities may allow access to your education records and PII without your consent to researchers performing certain types of studies, in certain cases even when we object to or do not request such research. Federal and State Authorities must obtain certain use-restriction and data security promises from the entities that they authorize to receive your PII, but the Authorities need not maintain direct control over such entities. In addition, in connection with Statewide Longitudinal Data Systems, State Authorities may collect, compile, permanently retain, and share without your consent PII from your education records, and they may track your participation in education and other programs by linking such PII to other personal information about you that they obtain from other Federal or State data sources, including workforce development, unemployment insurance, child welfare, juvenile justice, military service, and migrant student records systems.
Academic Average

The “academic average,” or grade-point average (GPA), is the ratio of total quality points earned to total credit hours attempted.

When a student passes a course, she/he receives the designated number of credit hours; at the same time, she/he receives a certain number of quality points, based on the letter grade earned. Multiply the number of credit hours designated to the specific course by the numerical value of the letter grade earned to determine the number of quality points earned. Letter grades carry the following numerical values:

- "A" = 4
- "B" = 3
- "C" = 2
- "D" = 1

For example, when a student earns a letter grade of "C" in a 3-credit-hour course, she/he receives 6 quality points.

Grade-point averages are truncated after two decimal places.

A student who repeats a course for which the student has previously received credit (either by class work at the Institute, through AP/IB credit, or credit transferred from another school) forfeits the original credit in the event the student should fail the course on a subsequent attempt. Where a course has been repeated, both the original and subsequent grades are included in the average, but the credit is counted only once. The academic average includes all subsequent attempts, unless a grade substitution request has been approved and processed.

If a student takes the same course more than once, any later grade does not replace any earlier one. The academic average includes both attempts, unless a grade substitution has been approved and processed.

If a student takes a course on a Pass/Fail basis, the course is not included in her/his academic average.

For undergraduate students, the academic average is calculated by summing the number of quality points earned by the student for all courses in which she/he has enrolled as an undergraduate and dividing this sum by the number of credit hours designated to all courses in which she/he has enrolled as an undergraduate.

For graduate students, the academic average includes only the courses in which the student has enrolled after her/his entrance into the graduate division.

Auditing

1. The auditing of a course will be permitted to regularly enrolled students who have obtained the approval of her/his advisor and the departments concerned. Such a course counts at full value in computing the student’s course load for an academic term.

2. The grade of “V” (i.e., "Visitor") is earned when a student audits a course. The "V" grade has no effect on a student’s grade-point average (GPA).

3. No academic credit is granted for auditing a course.

4. Students are not permitted to change to or from an auditing status except through the regular procedures for schedule change or withdrawal. Any student who does not meet the instructor’s requirements for a successful audit will be withdrawn with a grade of "W" assigned at the end of the academic term.

Final Examinations

Final Instructional Class Days and Reading Periods

The following applies to the standard academic terms, including the Fall Semester, Spring Semester, and Full Summer Session. It does not apply to the Early Short Summer Session and Late Short Summer Session.

Given the variability in the exact timing of the Full Summer Session, the Office of the Registrar will adjust the final instructional class days and reading periods for this semester only in order to meet required instructional time. This policy replaces the former Dead Week (Week Preceding Final Examinations) policy.

Final Instructional Class Days

a. Final Instructional Class Days are scheduled during each standard academic term including the Full Summer Session, and are the last two days a course officially meets.

b. No tests or quizzes are to be administered on these days. Lab quizzes and/or practicums may be given in courses comprised of both a lecture and a scheduled lab, wherein the lecture carries at least two credits.

c. For all courses, graded homework or assignments, lab reports, course projects, demonstrations, studio reviews, and presentations may be due during these two days, provided that they are listed on the syllabus at the start of the semester.

d. All quizzes and tests should be graded and reported to students on or before the last Final Instructional Class Day.

Reading Periods

a. Reading Periods will be designated to provide time for students to prepare for final examinations.

b. No classes meet. This includes labs, recitations, projects, design/capstone courses, and studios.

c. No assignments, projects, presentations, or other graded activities are allowed.

d. Instructors may schedule optional study review sessions for students during reading periods, but no credit or extra credit may be attached to these optional sessions. New content may not be covered, and any materials (e.g., handouts, slides, practice problems, etc.) that are provided at these optional review sessions must be made available.
to all students. This provision does not require that such optional sessions be audio or video recorded.

e. Requests for exceptions to the Final Instructional Class Day and Reading Period policies may be made in writing by the Dean of the College (or her/his designee) to the Student Rules and Regulations Committee (SRR). The SRR will then make a recommendation to the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate, for approval or denial. Requests must be made no later than the academic term prior to the desired term of implementation and will be regularly reviewed.

f. Student concerns may be discussed with the faculty member and/or reported to the Chief Academic Officer of the department of instruction, or with the Assistant Provost for Academic Advocacy and Conflict Resolution. For more information, see the Student Academic Grievance Policy.

Final Examinations

1. In regularly scheduled lecture courses of the Institute, a final examination shall be administered at the time specified in the official Final Examination Schedule as distributed by the Office of the Registrar. In courses such as seminars, senior design, capstone, writing courses, and laboratories, final examinations may be waived and may be replaced with appropriate assessment. The decision to give a final examination in these courses shall be made by the instructor of record. An announcement of the course’s final examination policy shall be made to the class at its first meeting and included in the syllabus.

2. No assessment other than a final examination or its replacement may be due during the Final Examination Period.

3. Requests to change a class’s final examination time within the Final Examination Period must be submitted to the Chief Academic Officer of the department of instruction for approval no later than one week before the beginning of the Final Examination Period. Any such request must have the unanimous approval of the class as shown by secret ballot, as well as approval by the instructor of the class.

4. A change in the scheduling of a final examination for an individual student ordinarily will not be permitted; however, such a change may be allowed for hardship cases at the discretion of the instructor. The request for a change must be justified in writing by the student and shall be submitted to the instructor prior to Final Examination Period and may be rescheduled to an appropriate time.

5. In the event a student has two final examinations scheduled for at the same time, the course having the lower number shall be considered in conflict and the student shall notify the instructor no later than two weeks before the Thursday of the Final Examination Period. In such case, the final examination in that course shall be given during the Conflict Examination Period or, by agreement of the instructor and the student, at a mutually satisfactory time.

a. If the student notifies the instructor after the above deadline but before the Thursday of the Final Examination Period, the student shall, at the discretion of the instructor:
 i. receive a score of zero on the final examination, or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

b. A student who fails to notify the instructor of the conflict before the Thursday of the Final Examination Period shall, at the discretion of the instructor:
 i. receive a score of zero on the final examination, or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

6. In the event a student is scheduled for three final examinations in one day, the examination scheduled for the middle period shall be considered in conflict and the student shall notify the instructor no later than two weeks before the Thursday of the Final Examination Period. In such case, the final examination in that course shall be given during the Conflict Examination Period or, by agreement of the instructor and the student, at a mutually satisfactory time.

a. If the student notifies the instructor after the above deadline but before the Thursday of the Final Examination Period, the student shall, at the discretion of the instructor:
 i. receive a course grade of “I” (Incomplete), with an opportunity to take a makeup final examination the following academic term (and have the course grade changed as warranted by the results of the test), or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period, or
 iii. be given the final examination at the time scheduled for the course.

b. A student who fails to notify the instructor of the conflict before the Thursday of the Final Examination Period shall, at the discretion of the instructor:
 i. receive a score of zero on the final examination, or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period, or
 iii. be given the final examination at the time scheduled for the course.

Grade Substitution

Undergraduate students may repeat courses for grade substitution according to the following set of criteria. If these conditions are not met, the general policy governing repeated courses applies.

a. Undergraduate students may repeat for grade substitution up to two GT courses with posted letter grades of D or F. These courses will be excluded from calculation of their cumulative grade point average.

b. A course can be taken for grade substitution only once and must be repeated within one calendar year.

c. A course is not eligible for grade substitution if the student was found responsible for any academic misconduct in that course regardless of how many times it is repeated.

d. Grades excluded under previous Institute rules (such as the Grade Substitution policy that was in effect up until 2019) count toward the maximum two courses allowed for substitution.

e. Once a grade substitution is posted, the student cannot remove the exclusion or change it to another course at a later date. A student cannot request a grade substitution after they have graduated.

f. The application for grade substitution must be filed with the Registrar’s Office no later than the deadline for withdrawing from a
course during the student’s next term of enrollment after the course is repeated.

The original grade and the repeated grades will all appear on the official transcript. Once a grade substitution is applied to a course, the credit hours attempted and earned on the course will be removed from the calculation of the cumulative grade point. Excluded courses and hours will continue to be counted in calculations of satisfactory progress, for financial aid eligibility, and for tuition.

Students should be aware that many graduate and professional schools recalculate grade point averages in the process of considering an applicant for admission to such programs. This recalculation may include restoring the grades of the repeated classes and their effects on the cumulative grade point average.

Download Form (https://registrar.gatech.edu/info/grade-substitution-form)

Frequently Asked Questions about the Grade Substitution Policy (https://registrar.gatech.edu/faq-about-grade-substitution-policy)

Grading System

Grades

- The letter grades used in the calculation of grade-point average (GPA) are as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent. Four quality points.</td>
</tr>
<tr>
<td>B</td>
<td>Good. Three quality points.</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory. Two quality points.</td>
</tr>
<tr>
<td>D</td>
<td>Passing. One quality point.</td>
</tr>
<tr>
<td>F</td>
<td>Failure. No quality points. If the course is required, the student must repeat it.</td>
</tr>
</tbody>
</table>

- The following grades are used under special conditions and are not included in the calculation of grade-point average (GPA):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>U</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>V</td>
<td>No credit earned. The "V" grade is used when a student audits a course.</td>
</tr>
</tbody>
</table>

- The following grades are used in the cases indicated and are not be included in the calculation of grade-point average (GPA):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Incomplete. The "I" grade is used when, for reasons beyond her/his control and deemed acceptable by the instructor, a student whose academic performance had been satisfactory becomes unable to fulfill a course's requirements. If the student's academic performance had been so poor as to preclude her/his passing, the instructor shall assign the grade of "F". Regulation VII., "Deficiencies," outlines the removal of the "I" grade. See the Registrar’s Office website for more guidance on the use of the Incomplete grade under Incomplete grade page under the Faculty section.</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawal without Penalty. Withdrawals from individual courses without penalty are not permitted after 60 percent of the academic term has passed, as specified by the official Academic Calendar, except in cases of hardship, as determined by the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate. Withdrawal from the Institute is not permitted after 60 percent of the academic term has passed, except in cases of hardship, as determined by the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate. With the exception of part-time graduate students, those who withdraw from the Institute and receive all grades of "W" customarily will not be permitted to enroll in courses in the next succeeding academic term. Regulation VII., "Withdrawal and Readmission" outlines the Institute’s policies on readmission. Faculty are expected to return to students a graded assignment or other meaningful performance feedback prior to the deadline for withdrawing from classes so that students can make informed decisions about withdrawing.</td>
</tr>
<tr>
<td>NR</td>
<td>Not Reported. The "NR" grade is used when, by no fault of the student, the instructors fails to submit grades before the deadline.</td>
</tr>
</tbody>
</table>
Incomplete Judicial. The “IJ” is used when academic misconduct has been reported in a class and the investigation is being conducted. It is a placeholder grade that is changed to a permanent grade as determined by the outcome of the investigation. It remains in place until the charges are adjudicated and a proper final grade is determined and assigned.

- Final grades are reported to the Office of the Registrar at the end of each academic term.
- Progress report grades are submitted to the Office of the Registrar for all classes numbered 1000 and 2000 in the Fall Semester and Spring Semester. These grades are used for advising students, not for calculating any grade-point average (GPA) at Georgia Tech. Progress report grades are “S” or “U.” A grade of “U” indicates that, based on the work completed to that point in the academic term, the student’s standing is in the “D” or lower range. Progress report grades must be submitted once 40 percent of the academic term has passed, as specified by the official Academic Calendar. The due date for reporting will be noon on Monday and the grades will be available to students that afternoon.
- If a final course grade is believed to be erroneous, the student should contact the professor as soon as possible. In general, no change of grade will be made after the end of the student’s next academic term in residence.

Academic Average

The “academic average,” or grade-point average (GPA), is the ratio of total quality points earned to total credit hours attempted.

When a student passes a course, she/he receives the designated number of credit hours; at the same time, she/he receives a certain number of quality points, based on the letter grade earned. Multiply the number of credit hours designated to the specific course by the numerical value of the letter grade earned to determine the number of quality points earned. Letter grades carry the following numerical values:

- “A” = 4
- “B” = 3
- “C” = 2
- “D” = 1

For example, when a student earns a letter grade of “C” in a 3-credit-hour course, she/he receives 6 quality points.

Grade-point averages are truncated after two decimal places.

A student who repeats a course for which the student has previously received credit (either by class work at the Institute, through AP/IB credit, or credit transferred from another school) forfeits the original credit in the event the student should fail the course on a subsequent attempt. Where a course has been repeated, both the original and subsequent grades are included in the average, but the credit is counted only once. The academic average includes all subsequent attempts, unless a grade substitution request has been approved and processed.

If a student takes the same course more than once, any later grade does not replace any earlier one. The academic average includes both attempts, unless a grade substitution has been approved and processed.

If a student takes a course on a Pass/Fail basis, the course is not included in her/his academic average.

For undergraduate students, the academic average is calculated by summing the number of quality points earned by the student for all courses in which she/he has enrolled as an undergraduate and dividing this sum by the number of credit hours designated to all courses in which she/he has enrolled as an undergraduate.

For graduate students, the academic average includes only the courses in which the student has enrolled after her/his entrance into the graduate division.

Pass/Fail Grading

A. General

1. At the option of the student’s major school, credit toward a bachelor’s degree may be allowed for courses taken under the pass/fail system and completed with a grade of “Pass.”
2. The major school must approve all pass/fail courses included in the final program of study, and students should be aware of school requirements.
3. In graduate programs, thesis research hours will be evaluated on a pass/fail basis.
4. Pass/fail enrollment in any course may be restricted by the school or department offering the course.
5. Students who are permitted to register under the pass/fail system will be so designated on the official class rolls. The grades recorded will be “S” for “Satisfactory” or “U” for “Unsatisfactory.” These grades will not be included in the calculation of the grade-point average and cannot be changed to a grade that will count in the average.
6. Withdrawals from courses taken on a pass/fail basis will follow the same rules that govern withdrawals from courses included in the grade-point average.
7. The deadline to change the grade mode from letter grade to pass/fail (and vice versa) is the same day as the Last Day to Withdraw from Individual Courses without a Penalty.

Grade mode changes are allowed online during the Registration Period. After the Registration Period ends, the following form must be completed and submitted to the Office of the Registrar.

Download Form (http://www.registrar.gatech.edu/docs/catalog/grade_mode.pdf)

B. Credit Hours Permitted

1. The maximum number of credit hours that a student may earn on a pass/fail basis is related to the number of credit hours required for the program of study in which the student is enrolled.
2. For a second undergraduate degree, these limits apply to the credit hours included in the program of study for that second degree.
3. A master's degree program of study may include up to three semester credit hours on a pass/fail basis.

Progress Reports

Progress Report grades of "S" or "U" are issued for all students enrolled in 1000 and 2000 level courses in the Fall Semester and Spring Semester prior to midterm, a Progress Report grade of "U" indicates a performance level of "D" or lower. These are not permanent grades and never appear on a transcript, but are issued to help students assess where they stand in the class and obtain academic help from the faculty and the many academic resource services available on campus.

For more information, see Regulation V., "Grades/Average," Section A, "Grades." (p. 152)

Health Policies

A Medical Entrance Form and proof of required immunizations and tuberculosis screening must be on file with Stamps Health Services (http://www.health.gatech.edu). Failure to provide this information may result in a health hold and delay of registration. All international students (F1 and J1 visas) are required to have health insurance coverage. Students may elect to purchase the health insurance made available by the health insurance provider contracted by Georgia Tech or may have their own comparable medical insurance.

Student Health Insurance

Source: Stamps Health Services (https://health.gatech.edu/finance/insurance)

The Georgia Board of Regents (BOR) offers student health insurance for eligible students and their dependent(s). Two groups of students may purchase student health insurance: Mandatory and Voluntary. Mandatory students are required by the BOR to have student health insurance and the charge is applied automatically to the student's account along with tuition. Mandatory Graduates: Teaching Assistant, F1 or J1 visa holder, Research Assistant, Fellowship or Full tuition waiver. Mandatory Undergraduates: F1 or J1 visa holders. Mandatory students who already have health insurance may apply to waive the Board of Regents (BOR) student health insurance coverage.

There is a 30 day open enrollment period at the start of each semester to enroll for student insurance coverage, to enroll for the voluntary plan, or for mandatory students to add spouse/dependent(s) coverage. For students and spouses with Board of Regents (BOR) student health insurance, Stamps Health Services (SHS) is the primary care provider. SHS renders care to students, spouses, and domestic partners. Dependent children are not eligible to be treated at SHS.

For more information, visit www.health.gatech.edu (http://www.health.gatech.edu)

Immunizations

Source: Stamps Health Services (https://health.gatech.edu/immunization/requirements)

All incoming students must comply with the Board of Regents of the University System of Georgia's immunization requirements. It is strongly recommended that immunization requirements are met as soon as possible to avoid a registration hold. A registration hold keeps students from registering for classes.

Incoming students must use Stamps Health Services Immunizations Form.

More information is available at www.health.gatech.edu (http://www.health.gatech.edu)

Special Health Considerations

Source: Georgia Tech Policy Library (http://www.library.gatech.edu/student-affairs/special-health-considerations)

It is the responsibility of all students to notify the Health Center, the School of Applied Physiology, and the Office of Disabled Student Services of any disability that would make participation in swimming, competitive sports, and aerobic training hazardous to their well-being. Any student requesting special consideration because of mental or physical disability should have his or her physician write an explanatory letter, giving full details of the disability and consequent limitations on physical activity, to the medical director of Health Services. This letter must accompany the Medical Entrance Form.

Institute Commitment to Diversity, Equity, and Inclusion

Diversity is one of Georgia Tech's greatest strengths and one of the major priorities identified in our twenty-five-year strategic plan.

"We will recruit, develop, retain, and engage a diverse cadre of students, faculty, and staff with a wide variety of background, perspectives, interests, and talents, creating a campus community that exemplifies the best in all of us—in our intellectual pursuits, our diversity of thought, our personal integrity, and our inclusive excellence." — Georgia Tech Strategic Plan

At Tech, we embrace and leverage diversity in all its manifestations. We are proud that we are one of the most diverse universities in the world with students who represent every state in the nation and more than 100 countries. In the years ahead, our goal is to continue to build a campus culture of collegiality, close collaboration, global perspective, intercultural sensitivity, respect, and thoughtful interaction among a diverse community of students, employees, and alumni.

We realize that, in order to achieve our vision for Georgia Tech as a leader in influencing the major technological, social, and policy decisions in the twenty-first century, we must recruit and retain faculty, staff, and students from a wide array of backgrounds, perspectives, interests, and talents. In doing so, we will create a community that exemplifies the best in all of us — our intellectual pursuits, our diversity of thought, and our personal integrity. Our mission to achieve inclusive excellence means unleashing the full potential of Tech's human capacity to create a better, sustainable future for us all.

You are invited to join us on the journey of creating and sustaining a future that builds upon the talents of all members of our community in addressing the major challenges of this and future generations.

The Office of the President
Georgia Institute of Technology
Intellectual Property Policy

The Georgia Institute of Technology (GIT) is dedicated to teaching, research, and the extension of knowledge to the public. Its personnel recognize as two of their major objectives, the production of new knowledge and the dissemination of both old and new knowledge. Inherent in these objectives is the need to encourage the development of new and useful devices and processes, the publication of scholarly works and educational materials, the development of computer Software, and other forms of Intellectual Property.

The Institute's Intellectual Property Policy, concerning inventions, copyright, and computer software, applies to students as well as to faculty and staff. Adherence thereto is a condition of continued enrollment at the Institute.

All full or part-time faculty and staff shall, as a condition of employment with the Institute, execute an agreement, assigning all rights, title, and interest, to the extent prescribed in this policy, in any Intellectual Property to the Georgia Tech Research Corporation.

Students shall be required to execute an agreement:

1. When working on a research project funded by an entity other than GIT, the Georgia Tech Foundation, or the Board of Regents;
2. When employed by GIT; or
3. When required by the Office of the Provost. Such requirement may be recommended by a faculty member who has students working in faculty-directed research.

For more information and the full text from the Institute's Intellectual Property policies, visit Georgia Tech's online Policy Library and the Faculty Handbook.

Faculty Handbook (http://www.academic.gatech.edu/handbook)

O (http://otr.gtrc.gatech.edu)Office of Industry Engagement and Georgia Tech's Online Invention Disclosure System (https://industry.gatech.edu)

Georgia Tech Research Corporation (https://gtrc.gatech.edu)

Required Computer Ownership

In an effort to foster equal access to computers and to make the most of the teaching and learning technology available at Georgia Tech, all undergraduate students entering Georgia Tech under this or subsequent catalogs are required to own or lease a computer. The minimum hardware and software requirements (as well as purchasing and financing options) are sent each spring to students accepted for the summer and fall semesters, and in the fall to students accepted for spring semester.

Because computer ownership is mandatory, an average cost for the minimum hardware and software required can be included in computing a new student's cost of education for the purpose of determining their eligibility for all forms of student financial aid. Students should contact the Office of Scholarships and Financial Aid for more information.

Student Computer Ownership Website (http://www.sco.gatech.edu)

Sexual Misconduct Policy

The official and most current version of the Sexual Misconduct Policy is available in the Georgia Tech Policy Library.

Student Absence from Class Due to Illness or Personal Emergencies

Expectations, Rights, and Responsibilities

A. A student may miss class on occasion due to medical issues. The following statement intends to describe the expectations, rights, and responsibilities of all involved including students, Office of Student Life, instructors, and health care providers. The information is intended to give students better direction as to how they should proceed to notify instructors when they are ill and need to miss class and what kind of documentation they should provide and to whom. The information is intended to provide faculty, instructors, information that will be more useful to them in determining the student's options for making up the work, or understanding the implications on their grade in the class. The information is intended to provide some guidance to the on-campus health services staff and off-campus health care providers in terms of what kinds of documentation is needed and how it will be handled once provided.

1. **Students: Expectations, Rights, and Responsibilities**

 Students who need to miss class due to illness should be aware of the following:

 a. If ill, and possibly contagious, students are expected to take appropriate action including not coming to class and seeking medical treatment.

 b. Students have the right to expect that their privacy will be protected under HIPAA but they must follow proper procedures in order to ensure that health care information is kept private.

 c. Students are responsible for seeking medical attention and for obtaining some type of documentation that would include the following minimal information:

 i. Date of the visit

 ii. Name of medical facility where treatment occurred

 iii. Diagnosis or indication of whether class absence is recommended or required

 iv. Expected duration of the recovery

 d. Students are responsible for providing the documentation to the Office of Student Life where it will be treated and handled confidentially with necessary information being submitted to the student's instructors for that term.

2. **Office of Student Life: Expectations, Rights, and Responsibilities**

 In regard to supporting students who need to miss class due to illness the Office of Student Life is expected to remain aware of the following:

 a. Students shall be required to execute an agreement:

 i. When working on a research project funded by an entity other than GIT, the Georgia Tech Foundation, or the Board of Regents;

 ii. When employed by GIT; or

 iii. When required by the Office of the Provost. Such requirement may be recommended by a faculty member who has students working in faculty-directed research.

 b. Office of Student Life: Expectations, Rights, and Responsibilities

 Students who need to miss class due to illness should be aware of the following:

 a. If ill, and possibly contagious, students are expected to take appropriate action including not coming to class and seeking medical treatment.

 b. Students have the right to expect that their privacy will be protected under HIPAA but they must follow proper procedures in order to ensure that health care information is kept private.

 c. Students are responsible for seeking medical attention and for obtaining some type of documentation that would include the following minimal information:

 i. Date of the visit

 ii. Name of medical facility where treatment occurred

 iii. Diagnosis or indication of whether class absence is recommended or required

 iv. Expected duration of the recovery

 d. Students are responsible for providing the documentation to the Office of Student Life where it will be treated and handled confidentially with necessary information being submitted to the student's instructors for that term.
a. It will serve as the collection point for medical documentation and treat it in a confidential manner.
b. It will share the medical documentation with appropriate instructional faculty. Sufficient information from the medical documentation to ensure that the dates of illness or of treatment for the illness occurred will be shared with the instructional faculty.
c. It will share sufficient information as to help determine whether the illness was of sufficient concern that missing class was recommended or required.
d. It will answer questions that instructional faculty may have if they are unclear about what to do with the information.

3. Instructors of Classes: Expectations, Rights, and Responsibilities

In regard to supporting students who need to miss class due to illness, instructors are expected to remain aware of the following:

a. It is the responsibility of the instructors to respect the student's right to confidentiality and understand that medical documentation will be handled by the Office of Student Life in an appropriate manner.
b. It is expected that instructors will not ask the student directly for medical documentation. If it is provided without being requested, the instructors should return it to the student or destroy it.
c. Instructors are expected to:
 i. Work with the student to make up the missed assignments, when possible.
 ii. Work with the student to find alternatives, if possible, if the assignments missed cannot be made up.
 iii. Do so within a reasonable timeframe.

4. Medical Professionals: Expectations, Rights, and Responsibilities

In regard to supporting students who need to miss class due to illness, medical professionals are expected to remain aware of the following:

a. At the request of the student (patient), it is expected that some type of document be provided that indicates at minimum the date of the visit or treatment. If the student is to miss class, it is expected that the student would have sufficient information from the medical facility to support that need.
b. It is expected that the medical professional will provide sufficient information to the student so that the student can then provide it to the Office of Student Life.
c. The medical professional can expect the information to be handled in a confidential manner.
d. The medical documentation must be on official letterhead of the facility and contain a date.

B. A student may miss class on occasion due to personal emergencies. Whatever the type of personal that exists, there are expectations on part of the students, the Office of Student Life, and the instructional faculty.

1. Students: Expectations, Rights, and Responsibilities

Students who need to miss class due to personal emergencies should remain aware of the following:

a. Some type of documentation is required by the Office of Student Life. This could take the form of an obituary, travel itinerary, or other type of document that would include a date and possibly some type of explanation for the absence.
b. The length of the absence needs to be clear as part of the documentation.
c. Student have the right to expect that their privacy will be protected under FERPA.

2. Office of Student Life: Expectations, Rights, and Responsibilities

In regard to supporting students who need to miss class due to personal emergencies, the Office of Student Life will remain aware of the following:

a. It will serve as the collection point for documentation and treat it in a confidential manner.
b. It will share with appropriate instructors sufficient information from the documentation to ensure that the dates of the incident or event are clear and that it was a severe enough life interruption to cause absence from class.
c. It will answer questions that instructional faculty may have if they are unclear about what to do with the information.

3. Faculty/Instructors of Classes: Expectations, Rights, and Responsibilities

In regard to supporting students who need to miss class due to personal emergencies, instructors are expected to remain aware of the following:

a. It is the responsibility of the instructors to respect the student's right to confidentiality and understand that the documentation will be handled by the Office of Student Life in an appropriate manner.
b. It is expected that instructors will not ask the student directly for documentation. If it is provided without being requested, the instructors should return it to the student or destroy it.
c. Instructors are expected to:
 i. Work with the student to make up the missed assignments, when possible.
ii. Work with the student to find alternatives, if possible, if the assignments missed cannot be made up.

iii. Do so within a reasonable timeframe.

Forms:

RULES AND REGULATIONS

I. Purpose (p. 150)
II. Academic Calendar (p. 150)
III. Notices (p. 151)
IV. Attendance (p. 151)
V. Grades / Average (p. 152)
VI. Scholastic Regulations (p. 154)
VII. Deficiencies (p. 156)
VIII. Withdrawal/Readmission (p. 156)
IX. Scheduling (p. 158)
X. Pass/Fail Grading (p. 159)
XI. Cross Enrollment and Concurrent Registration (p. 159)
XII. Examinations (p. 160)
XIII. Undergraduate Degrees (p. 161)
XIV. Graduate Degrees (p. 163)
XV. Student Vehicles (p. 164)
XVI. Medical Regulations (p. 164)
XVII. Extracurricular Activities (p. 165)
XVIII. Academic Honor Code (p. 166)
XIX. Code of Conduct (p. 166)
XX. Grievance Procedures (p. 166)
XXI. Exceptions (p. 167)
XXII. Student-Faculty Expectations (p. 168)

B. Other Academic Terms

I. Purpose

These regulations are intended to set forth the requirements of the faculty to the end that a large student body may live and work together harmoniously with a minimum of friction and misunderstanding. Each student is expected to be a law-abiding citizen and to obey the laws of the city of Atlanta, Fulton County, the state of Georgia, and the United States.

II. Academic Calendar

A. Standard Calendar

Georgia Tech’s standard Academic Calendar consists of a Fall Semester, a Spring Semester, and an accelerated Summer Session. Each Fall Semester and each Spring Semester normally includes approximately fifteen weeks of instruction plus one week of final examinations. A normal Summer Session includes approximately eleven weeks of instruction plus one week of final examinations. Each Academic Year consists of one sequence of a Fall Semester followed by a Spring Semester. The word “term” may refer to a Fall Semester, a Spring Semester, or a Summer Session. The Office of the Registrar publishes the official Academic Calendar for each term. Due to variations in the yearly calendar and the need to balance the dates of campus events, particularly in the Fall Semester, the Registrar uses discretion, as appropriate, to set dates on the Academic Calendar, such as Fall Recess, the Last Day to Withdraw from Individual Courses without a Penalty, and the Progress Report Grade Due Date. See Catalog Regulation V. Grades and Scholastic Average (http://catalog.gatech.edu/rules/5) for more information.

B. Other Academic Terms

In addition to the standard Academic Calendar, some programs may be offered on other schedules. All such offerings are subject to the approval of the Institute Undergraduate Curriculum Committee, Institute Graduate Committee, and/or the Registrar, as appropriate. With approval, such programs may operate under different academic rules, such as credit hour limits or withdrawal dates, than those specified for standard academic terms.

C. Curriculum Year

1. Requirements for degrees and minors shall be specified for each Curriculum Year, which is comprised of a Summer Session plus the immediately following Fall Semester and Spring Semester. This designation shall be independent of any schedule for publication of such requirements in printed or electronic form.

2. All changes in degree and minor requirements shall become effective at the beginning of the next Curriculum Year following final approval by the Institute Undergraduate Curriculum Committee, Institute Graduate Committee, Academic Senate, and/or University System, as appropriate.

3. The Office of the Registrar shall maintain an archival record of all degree and minor requirements associated with each curriculum year.

D. Unit of Credit Defined

The current Academic Calendar is semester-based, consisting of fifteen weeks of instruction in a standard Fall/Spring semester where one contact hour is equal to 50 minutes of instruction. The amount of class attendance is 750 minutes for each scheduled credit hour in a standard semester.

One unit of credit represents how much time a typical student is expected to devote to learning in a typical week of study. Each unit of credit is representative of in-seat effort and out-of-seat effort. One credit awarded yields a total of 3 contact hours of effort on the student’s behalf. The breakdown of effort from in-seat effort (scheduled time) vs. out-of-seat effort (non-scheduled time) differs by course structure and schedule type.

For scheduled time, one 15-minute instructional break per 75 minutes of continuous instruction will be included for courses meeting in durations of greater than 75 continuous minutes.

This policy is consistent with specifications in the University System of Georgia Academic and Student Affairs Handbook, Section 2.1 Semester System, Uniform Academic Calendar, Cancellation of Classes and Religious Holidays. The policy is also consistent with the Southern Association of Colleges and Schools policy statement on credit hours.

The amount of time that students should expect to spend in-seat (scheduled time) and out-of-seat (nonscheduled time) should be commensurate with catalog structure of the course as approved by the Institute Undergraduate Curriculum Committee and/or the Institute Graduate Curriculum Committee. The appropriate committee must approve exceptions to this policy.

At Georgia Tech, courses have historically been classified as ‘lecture’ with a 1:1 ratio and/or ‘laboratory’ with a 3:1 ratio. These labels have become increasingly inconsistent with the creation of new scheduling types as faculty introduce new pedagogies in the classroom. The list below offers
effort. "Effort 3 (Laboratory)" means that for every 1 credit hour of unsupervised laboratory, there are 3 non-scheduled contact hours and an expectation for no scheduled effort.

B. Class Attendance

1. There are no formal institutional regulations regarding class attendance at Georgia Tech. The resources of the Institute are provided for the intellectual growth and development of the students who attend. A schedule of courses is provided for the students and faculty to facilitate an orderly arrangement of the program of instruction. The fact that classes are scheduled is evidence that attendance is important; students should, therefore, maintain regular attendance if they are to attain maximum success in the pursuit of their studies.

2. All students are responsible for obtaining an understanding of each instructor's policy regarding absences; all students are expected to attend announced quizzes, laboratory periods, and final examinations. Although it is recognized that occasionally it may be necessary for students to be absent from scheduled classes or laboratories for personal reasons, students are responsible for all material covered in their absences, and they are responsible for the academic consequences of their absences. Students should discuss planned absences with their instructors as soon as possible after the beginning of an academic term. Work missed may be made up at the discretion of the instructors.

3. In the event of a medical emergency or an illness that is severe enough to require medical attention, students are responsible for contacting the Office of the Vice President for Student Life and Dean of Students as soon as possible to report the medical issue or emergency, providing dated documentation from a medical professional and requesting assistance in notifying their instructors. The medical documentation will be handled confidentially within the Office of the Vice President for Student Life and Dean of Students and will inform a decision as to whether communication with instructional faculty is appropriate. It is the expectation of the Institute that instructional faculty will honor a request from the Office of the Vice President for Student Life and Dean of Students to excuse a medical emergency or illness and allow make-up of the work missed, including assignments.

4. Students who are absent because of participation in approved Institute activities (such as field trips, professional conferences, and athletic events) will be permitted to make up the work missed during their absences. Approval of such activities will be granted by the Student Academic and Financial Affairs Committee of the Academic Senate, and statements of the approved absence may be obtained from the Office of the Registrar. Course instructors are responsible for establishing reasonable deadlines and/or make-up materials for the missed work, and for clearly communicating this information to the relevant student(s), when absences for Institute activities are approved.

More in even increments (i.e., 2, 4, 6, credit hours, etc.), that half of the total credit hours are treated as supervised laboratories and half are treated as unsupervised laboratories. Breakdown in whole credits only.

III. Notices

A. Notices

All enrolled students have an e-mail account provided by Georgia Tech. This account is a student's official point of contact with the Institute, and the student is expected to check it each school day. Students are also expected to be aware of notices that appear on the Student Access System and of general notices that are in the *Technique*. It is the student's responsibility to check the Student Access System, both during the Drop/Add Period and during the academic term, in order to verify the accuracy of her/his course schedule and to become aware of important notices. A student should verify her/his course schedule at least once during the first five weeks of the academic term and once after Mid-term.

B. Change of Address

When a student's address changes, the student is responsible for updating her/his record in the Student Access System within one week of the change.

C. Unclaimed Mail

Students are responsible for returning to the front window of the Post Office all mail in their Post Office boxes that is unclaimed after three days.
V. Grades / Average

A. Grades

- The letter grades used in the calculation of grade-point average (GPA) are as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent. Four quality points.</td>
</tr>
<tr>
<td>B</td>
<td>Good. Three quality points.</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory. Two quality points.</td>
</tr>
<tr>
<td>D</td>
<td>Passing. One quality point.</td>
</tr>
<tr>
<td>F</td>
<td>Failure. No quality points. If the course is required, the student must repeat it.</td>
</tr>
</tbody>
</table>

- The following grades are used under special conditions and are not included in the calculation of grade-point average (GPA):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>U</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

V

No credit earned. The "V" grade is used when a student audits a course.

- The following grades are used in the cases indicated and are not included in the calculation of grade-point average (GPA):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Incomplete. The "I" grade is used when, for reasons beyond her/his control and deemed acceptable by the instructor, a student whose academic performance had been satisfactory becomes unable to fulfill a course's requirements. If the student's academic performance had been so poor as to preclude her/his passing, the instructor shall assign the grade of "F." Regulation VII, "Deficiencies," outlines the removal of the "I" grade. See the Registrar's Office website for more guidance on the use of the Incomplete grade under Incomplete grade page under the Faculty section.</td>
</tr>
</tbody>
</table>
Withdrawal without Penalty. Withdrawals from individual courses without penalty are not permitted after 60 percent of the academic term has passed, as specified by the official Academic Calendar, except in cases of hardship, as determined by the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate. Withdrawal from the Institute is not permitted after 60 percent of the academic term has passed, except in cases of hardship, as determined by the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate. With the exception of part-time graduate students, those who withdraw from the Institute and receive all grades of "W" customarily will not be permitted to enroll in courses in the next succeeding academic term. Regulation VII. "Withdrawal and Readmission," outlines the Institute's policies on readmission. Faculty are expected to return to students a graded assignment or other meaningful performance feedback prior to the deadline for withdrawing from classes so that students can make informed decisions about withdrawing.

Not Reported. The "NR" grade is used when, by no fault of the student, the instructors fails to submit grades before the deadline.

Incomplete Judicial. The "IJ" is used when academic misconduct has been reported in a class and the investigation is being conducted. It is a placeholder grade that is changed to a permanent grade as determined by the outcome of the investigation. It remains in place until the charges are adjudicated and a proper final grade is determined and assigned.

Final grades are reported to the Office of the Registrar at the end of each academic term.

Progress report grades are submitted to the Office of the Registrar for all classes numbered 1000 and 2000 in the Fall Semester and Spring Semester. These grades are used for advising students, not for calculating any grade-point average (GPA) at Georgia Tech. Progress report grades are "S" or "U." A grade of "U" indicates that, based on the work completed to that point in the academic term, the student’s standing is in the "D" or lower range. Progress report grades must be submitted once 40 percent of the academic term has passed, as specified by the official Academic Calendar. The due date for reporting will be noon on Monday and the grades will be available to students that afternoon.

If a final course grade is believed to be erroneous, the student should contact the professor as soon as possible. In general, no change of grade will be made after the end of the student’s next academic term in residence.

B. Academic Average

The "academic average," or grade-point average (GPA), is the ratio of total quality points earned to total credit hours attempted.

When a student passes a course, she/he receives the designated number of credit hours; at the same time, she/he receives a certain number of quality points, based on the letter grade earned. Multiply the number of credit hours designated to the specific course by the numerical value of the letter grade earned to determine the number of quality points earned. Letter grades carry the following numerical values:

- "A" = 4
- "B" = 3
- "C" = 2
- "D" = 1

For example, when a student earns a letter grade of "C" in a 3-credit-hour course, she/he receives 6 quality points.

Grade-point averages are truncated after two decimal places.

A student who repeats a course for which the student has previously received credit (either by class work at the Institute, through AP/IB credit, or credit transferred from another school) forfeits the original credit in the event the student should fail the course on a subsequent attempt. Where a course has been repeated, both the original and subsequent grades are included in the average, but the credit is counted only once. The academic average includes all subsequent attempts, unless a grade substitution request has been approved and processed.

If a student takes the same course more than once, any later grade does not replace any earlier one. The academic average includes both attempts, unless a grade substitution has been approved and processed.

For undergraduate students, the academic average is calculated by summing the number of quality points earned by the student for all courses in which she/he has enrolled as an undergraduate and dividing this sum by the number of credit hours designated to all courses in which she/he has enrolled as an undergraduate.

For graduate students, the academic average includes only the courses in which the student has enrolled after her/his entrance into the graduate division.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>4</td>
</tr>
<tr>
<td>"B"</td>
<td>3</td>
</tr>
<tr>
<td>"C"</td>
<td>2</td>
</tr>
<tr>
<td>"D"</td>
<td>1</td>
</tr>
</tbody>
</table>

Grades are included in the average, but the credit is counted only once.
C. Grade Substitution

Undergraduate students may repeat courses for grade substitution according to the following set of criteria. If these conditions are not met, the general policy governing repeated courses applies.

a. Undergraduate students may repeat for grade substitution up to two GT courses with posted letter grades of D or F. These courses will be excluded from calculation of their cumulative grade point average.

b. A course can be taken for grade substitution only once and must be repeated within one calendar year.

c. A course is not eligible for grade substitution if the student was found responsible for any academic misconduct in that course regardless of how many times it is repeated.

d. Grades excluded under previous Institute rules (such as the Grade Substitution policy that was in effect up until 2019) count toward the maximum two courses allowed for substitution.

e. Once a grade substitution is posted, the student cannot remove the exclusion or change it to another course at a later date. A student cannot request a grade substitution after they have graduated.

f. The application for grade substitution must be filed with the Registrar’s Office no later than the deadline for withdrawing from a course during the student’s next term of enrollment after the course is repeated.

The original grade and the repeated grades will all appear on the official transcript. Once a grade substitution is applied to a course, the credit hours attempted and earned on the course will be removed from the calculation of the cumulative grade point. Excluded courses and hours will continue to be counted in calculations of satisfactory progress, for financial aid eligibility, and for tuition.

Students should be aware that many graduate and professional schools recalculate grade point averages in the process of considering an applicant for admission to such programs. This recalculation may include restoring the grades of the repeated classes and their effects on the cumulative grade point average.

Students scheduled for at least twelve (12) credit hours in a semester are classified as full-time students; those scheduled for six to eleven (6-11) hours are classified as part-time students; and those scheduled for one to five (1-5) hours are classified as less-than-part-time students.

B. Eligibility for Class Rings

A student may purchase a class ring any time after successfully earning credit for 70 attempted credit hours.

C. Academic Standing

1. The assignment of academic standing is based on both the student’s most recent academic term and her/his cumulative grade-point average.
2. The minimum satisfactory grade-point average (GPA) is 1.70 for freshmen and joint-enrolled high school students; 1.80 for sophomores; 1.95 for juniors; 2.00 for seniors and special undergraduates; 2.70 for master’s and special graduate students; and, 3.00 for doctoral students.
3. Students not on academic probation are in good academic standing.
4. Academic warning
 a. Academic warning is a subcategory of good academic standing, differing only in the maximum allowable schedule load.
 b. A student who has a cumulative grade-point average below the minimum satisfactory scholarship requirement, or whose cumulative grade-point average for work taken during any term is below this requirement, shall be placed on academic warning.
 c. A student on academic warning whose grade-point average for the academic term is above the minimum satisfactory scholarship requirement and cumulative grade-point average is below the minimum satisfactory scholarship requirement shall remain on academic warning.

5. Academic probation
 a. A student on academic warning whose grade-point average is below the minimum satisfactory scholarship requirement for any academic term shall be placed on academic probation.
 b. An undergraduate student in good academic standing whose grade-point average for any academic term is below 1.00, based on at least six graded hours, shall be placed on academic probation.
 c. A student who has a cumulative grade-point average below the minimum satisfactory scholarship requirement and cumulative grade-point average is below the minimum satisfactory scholarship requirement shall remain on academic probation.
 d. A student also may be placed on academic probation through other actions, as described in the following section.
6. Dismissal for unsatisfactory scholarship
 a. The Institute may drop from the rolls at any time a student whose record in scholarship is unsatisfactory.
 b. A student whose grade-point average for any term is below 1.00, based on at least six graded hours, and cumulative grade-point average is below the
minimum satisfactory scholarship requirement shall be dropped from the rolls for unsatisfactory scholarship.

e. The record of a student on academic probation whose grade-point average for the academic term in unsatisfactory, but whose overall academic record is satisfactory, may be reviewed by the Institute Undergraduate Curriculum Committee or the Institute Graduate Curriculum Committee, as appropriate. The student may be dropped or may be continued on academic probation.

7. Academic review
A student who normally would be dropped from the rolls for academic deficiencies, but appears from the record not to have completed the academic term, may be placed on academic review. This is a temporary standing that makes the student ineligible for registration. If no acceptable explanation is given within a reasonable time, the standing is changed to drop.

8. The academic standing regulations given previously for graduate students do not preclude a school from having more rigorous requirements.

D. Satisfactory Academic Progress Toward Degree Completion

1. Satisfactory academic progress toward degree completion means that for each term of enrollment, the student completes a course or courses with the minimum necessary grades that are either prerequisites for courses required in the major or that are degree applicable to stay on track towards graduation. It is noted that some majors may require a minimum grade that is higher than “D.”

2. If a student withdraws from all courses in a term, there will be no change in status. However, if a student withdraws from all courses in a second term of enrollment, they will be placed on warning for lack of satisfactory academic progress towards degree completion. If withdrawal occurs in a third term of enrollment, the status will be revised to probation. If withdrawal occurs in a fourth term of enrollment, the student will be placed on academic dismissal for lack of satisfactory progress towards degree completion. The number of withdrawal terms is cumulative and irrespective of whether or not they occur consecutively.

3. Students applying for readmission may be denied based on prior terms of withdrawals.

4. Eligibility for financial aid, NCAA Division I sports, etc. may be predicated on different satisfactory progress requirements. Information on those requirements should be directed to the appropriate office on campus and should not be confused with this academic policy.

E. Maximum Schedule Load

1. The maximum number of credit hours for which an undergraduate student may register in a Fall Semester or Spring Semester, based on her/his academic standing, is as follows:

<table>
<thead>
<tr>
<th>Status</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>21</td>
</tr>
<tr>
<td>Warning</td>
<td>16</td>
</tr>
<tr>
<td>Probation</td>
<td>14</td>
</tr>
</tbody>
</table>

2. The maximum number of credit hours for which an undergraduate student may register in a regular Summer Session, based on her/his academic standing, is as follows:

<table>
<thead>
<tr>
<th>Status</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>16</td>
</tr>
<tr>
<td>Warning</td>
<td>14</td>
</tr>
<tr>
<td>Probation</td>
<td>12</td>
</tr>
</tbody>
</table>

3. Students who are on probation or probation from dismissal may choose or be required to enroll in GT 2100 This course does not count toward graduation requirements nor would it count against the maximum course loads listed above.

4. A graduate student may register for a maximum of 21 credit hours in a Fall Semester or Spring Semester and a maximum of 16 credit hours during a regular Summer Session.

5. Requests for schedule overloads must be recommended by the student’s major school and approved by the Institute Undergraduate Curriculum Committee or Institute Graduate Curriculum Committee, as appropriate.

6. During Phase 1 Registration, the Institute reserves the right to limit undergraduate students to 18 credits maximum for the Fall Semester and Spring Semester and to limit graduate students to less than 21 credit hours depending upon the needs of the program or school.

F. Academic Honors

The Institute encourages excellence in scholarship and gives official recognition to undergraduate students whose work is superior in any given academic term.

1. Dean’s List
 a. The Dean’s List includes all degree-seeking undergraduates who, during the preceding academic term, earned a grade-point average (GPA) of 3.00 or higher, completed a schedule of at least twelve credit hours of coursework on a letter-grade basis, and are not on academic warning or probation or subject to any disciplinary action. All grades must be reported.

2. Faculty Honors
 a. Faculty Honors includes all degree-seeking undergraduates who, during the preceding academic term, earned a grade-point average (GPA) of 4.00, completed a schedule of at least twelve credit hours of coursework on a letter-grade basis with no “W” grades, and are not on academic warning or probation or subject to any disciplinary action. All grades must be reported.

G. Change of Major

1. Undergraduate students, with the exception of entering freshmen, by filing the required form, will be permitted one unrestricted transfer between majors (including undecided) until they have accumulated credit for sixty hours. After sixty hours or upon subsequent request for transfer, the transfer will be permitted at the discretion of the school that the student is seeking to enter. Students who transfer from another institution to pursue a degree at Georgia Tech will be permitted to change their major only at the discretion of the school that the student is seeking to enter. Students who transfer from another institution to pursue a degree at Georgia Tech will be permitted to change their major only at the discretion of the school that the student is seeking to enter. Transfer students are not eligible for the one unrestricted change of major. (Note: Certain majors, because of high enrollment, have been granted a waiver of the one unrestricted transfer regulation. Students should consult with the individual school concerning its current transfer policy.)

 Programs with Change-of-Major restrictions:
 - Industrial and Systems Engineering (https://www.isye.gatech.edu/academics/bachelors/current-students/change-major)
VII. Deficiencies

A. About Deficiencies
1. A student who has received a grade of "I," "F," or "U" in a course has a deficiency in the course.
2. A student whose final grade is "F" or "U" has failed the course. The student must repeat and pass the course before credit will be allowed.

B. Removal of Deficiencies
1. When a grade of "I" ("Incomplete") is assigned in a course, the "I" grade must be removed and the grade change reported by the end of the student's next academic term in residence or, if the student has not been enrolled, by the end of the academic term one calendar year from the date the incomplete was assigned. Failing to remove the "I" in the allotted time will result in the grade of "I" being changed to the grade of "F." To remove the "I" grade, the student should consult with the instructor as soon as possible after the academic term is over and complete whatever remaining coursework is outlined by the instructor. Repeating the course for credit does not remove the grade of "I."
2. A student who has a grade of "F" in a required course must schedule that course the next time it is offered while the student is in residence. When a course in which a "D" grade was earned is repeated and a grade of "F" is earned, the student must file a Petition to the Faculty to be allowed to use the "D" grade to meet graduation requirements.
3. A degree candidate who has otherwise completed all requirements for graduation and who has an "Incomplete" in laboratory work taken during his or her final academic term in residence may remove the "Incomplete" at the convenience of the department of instruction concerned.

VIII. Withdrawal/Readmission

A. Withdrawal
1. Withdrawal from the Institute will not be permitted after 60 percent of the academic term has passed, except in cases of hardship as determined by the Institute Undergraduate Curriculum Committee or Graduate Curriculum Committee, as appropriate. With the exception of part-time graduate students, students who withdraw from the Institute and receive all grades of "W" will not ordinarily be permitted to re-enroll the following term. A student may withdraw from the Institute via the Student Information System by the posted deadline in the official Academic Calendar. All holds on the student's record must be cleared prior to withdrawal.
2. Students who cease attendance without withdrawing via the Student Information System receive grades of "F," "U," or "I" for their ongoing courses.
3. Permission and/or formal resignation are not required when a student has completed an academic term and does not register for the following term.
4. See Regulation V.A.3 (http://catalog.gatech.edu/rules/5) for further information on grading as it relates to withdrawal.
B. Readmission

1. Any student who is not enrolled for two or more consecutive terms (counting Summer Session) must apply for readmission. This application, with all the pertinent supporting information, must be submitted to the Office of the Registrar before the deadline for the academic term for which readmission is requested. Deadlines are listed below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>July 1</td>
</tr>
<tr>
<td>Spring</td>
<td>December 1</td>
</tr>
<tr>
<td>Summer</td>
<td>April 1</td>
</tr>
</tbody>
</table>

Applications received after these deadlines will not be accepted.

2. Readmission is not guaranteed. Schools/Colleges must recommend readmission for any student wishing to return in majors under their jurisdiction.

3. The readmission policy supersedes the change of major policy. No School/College is obligated to readmit a student even if that student is within their limit for requesting a non-restricted change of major. Once readmission applies, the change of major process is not applicable including the non-restricted change of major.

4. Any student who has attended any other college or university should plan her/his readmission process in a way that allows ample time for her/his official transcript(s) from any other institution to arrive at Georgia Tech. If official transcripts have not been received prior to the last day of the Registration Period, the student seeking readmission will not be allowed to register.

5. Any student in good standing who is not enrolled for one single term will be allowed to re-enroll without applying for readmission to the Institute. This regulation makes no distinction among Fall Semester, Spring Semester, and Summer Session.

6. A student who is on academic warning or academic probation and who does not enroll for one single term may have a registration hold placed on their account. If a hold is placed, the student will be notified and the hold must be cleared by their major school. For example, if a student is placed on academic probation at the end of the Fall Semester and fails to enroll by the close of the Registration Period for the Spring Semester, a registration hold may be set, and it must be cleared by the student’s major school before they can register for any future academic term.

7. A student who has been dropped once for unsatisfactory scholarship usually will not be readmitted. A student who seeks an exception to this rule must have been out of the Institute for at least one term and have had a conference with the major school concerning the readmission. The Readmission Application Deadline for a student who has been dropped is two months prior to the published Readmission Application Deadline for the academic term.

8. A student who is dropped a second time for unsatisfactory scholarship will not be readmitted to the Institute.

9. A student who is on expulsion, defined as permanent separation from the Institute, is not eligible for readmission.

10. Students are readmitted under the current catalog that is in effect at the time of readmission. If a student wishes to follow the degree requirements from a catalog in effect prior to the term of readmission, she/he must make a request to the major school. There is no guarantee that such a request will be granted, and readmitted students should be prepared to follow the degree requirements as outlined in the current catalog. Programs of study that have been deactivated or terminated are not available for readmission.

Students who were enrolled in a program of study that has since been deactivated are eligible for readmission to the Institute; however, they must select an active program at the time of readmission. Once a decision is made to no longer admit students to a program of study due to an impending deactivation or termination, readmission is also not allowed.

11. Any student, except a part-time graduate student, who withdraws during an academic term and wishes to return the following academic term must complete a Petition to the Faculty for consideration. This petition must be submitted to the Office of the Registrar before the deadline for the academic term for which readmission is requested.

12. Students may be eligible for academic renewal. See below for more information.

 a. University System of Georgia undergraduate students who have been readmitted or reinstated after a period of absence of three (3) calendar years or longer are eligible for academic renewal. Academic renewal for the student signals the initiation of a new grade-point average to be used for determining academic standing. This provision allows University System of Georgia degree-seeking students who earlier experienced academic difficulty to make a fresh start and have one final opportunity to earn an associate or bachelor’s degree (BR Minutes, June, 1995, p. 7). The complete policy is available online at: www.usg.edu/academic_affairs_handbook/section2/handbook/2.5_grading_system/ (http://www.usg.edu/academic_affairs_handbook/section2/handbook/2.5_grading_system)

 b. The application for academic renewal shall be considered as a petition to the Undergraduate Curriculum Committee.

13. Students may be eligible for an approved leave of absence.

 a. Interruption in enrollment due to circumstances outside the student’s control may qualify for an approved Leave of Absence. This may include, for example, required military service.

 b. It should be noted that an approved Leave of Absence would be effective in a future term (see item I for more details). Students on an approved Leave of Absence would not have to apply for re-admission and would be able to retain their email accounts during the approved absence. Prior to returning, the student would have to notify the Registrar's Office so that the record could be reactivated for re-entry.

 c. The Leave of Absence would cover eligible students for at least two and no more than seven semesters (including Summer). If the seventh semester is a Spring term, students may opt to return in either the Summer or Fall term.

 d. Students who are on an Approved Leave of Absence may not attend class, live in campus housing, or access other campus services.

 e. The form to request an Approved Leave of Absence is on the Registrar’s Office website under the student tab, forms and student records.

 f. The Leave of absence may be used more than once, but for no more than seven total semesters during the student’s enrollment at Tech.

 g. Students who have been placed on academic drop or suspended or expelled for disciplinary reasons may not participate.

 h. Students must clear up any other issues such as registration holds or providing any requested documentation prior to re-entry. The Approved Leave of Absence does not override other considerations or restrictions on enrollment.
i. Students should apply for the Leave of Absence as soon as possible. Applications for Leave of Absence will require review and signatures by the Office of the Vice President for Student Life and Dean of Students and the student’s major academic advisor. Other signature approvals, such as the Office of International Education and Financial Aid may also need to be obtained.

- Students should bear in mind the time limits as outlined in section k below in determining the anticipated date of return.
- Readmission is required when two or more consecutive terms have been missed (which includes Summer). Once the student has made the decision that they will have to or need to be out for two or more consecutive terms and the student wishes to return to Tech without being readmitted, the application for a Leave of Absence should be filed with the Registrar’s Office.
- The clock begins when the student does not enroll for a second consecutive term. The Leave of Absence Request would have to be effective for the second consecutive missed term to avoid readmission.

j. The Leave of Absence cannot be approved retroactively.

k. Students must file a Return from Leave of Absence form to return. If the leave exceeds the 7 semester time frame, the student must apply for readmission. The form is on the Registrar’s Office website under the student tab, forms and student records.

l. The Leave of Absence, if approved, would be effective in a future term. It will not be approved to be effective in the term in which application is made. It in no way supplants or replaces any other policy. If a student needs to withdraw from classes within a given term, they should follow the withdrawal process and if a Leave of Absence is needed or desired, it would be effective for a future term or terms only as approved.

m. Normally, students would not enroll in courses at another school while on Leave of Absence. However, students who wish to or need to take classes at another institution must obtain prior approval from the academic unit and from the Registrar to do so. Students who fail to obtain prior permission may forfeit their opportunity to transfer the credit back to Georgia Tech. In all cases, students on Leave of Absence should consult with their academic advisor for information pertaining to transfer-credit, the 36-hour rule, and other applicable rules and regulations.

C. Transfer Credit

1. Coursework pursued at another institution after dismissal from Georgia Tech for unsatisfactory scholarship may be considered as evidence for readmission.
2. If readmitted, a student will not necessarily be awarded transfer credit for credits earned at another institution after she/he withdrew from or was dismissed from Georgia Tech.
3. With the exception of a course from which a student withdrew and received a grade of "W" or "V", in no case will a student be awarded transfer credit for a course she/he completed at another institution if she/he had previously taken the course at Georgia Tech.

D. Study Abroad

Any student in good standing who chooses to participate in an approved study abroad program for two or more terms must complete a Student Information Update Form with the study abroad coordinator prior to departure. This form enables the student to re-enroll for the term of "planned re-entry" without submitting a formal readmission application. It will be the student’s responsibility to inform the study abroad coordinator of any change to her/his planned re-entry date.

IX. Scheduling

A. General

1. All previously scheduled coursework takes precedence over newly scheduled material. Therefore, all work that is incomplete from a previous term should be completed, or arrangements to complete it should be made prior to placing emphasis on new coursework.
2. Students must follow the approved curriculum of the academic school in which they are registered. Students who do not follow the approved curriculum may be denied registration privileges.
3. Each student is strongly advised each term to schedule all prerequisite courses. A student who has not completed the stated prerequisites for a course but believes she/he has the necessary knowledge to fulfill prerequisite requirements should contact the department of instruction.
4. The completion of incomplete work from a previous term and the scheduling of out-of-sequence courses are the responsibility of the student, and, consequently, she/he will be held accountable. The number of scheduled credit hours allowed for an academic term may be adjusted to take into consideration the amount of incomplete work remaining regardless of the student's academic standing.
5. Students may not repeat courses on a letter-grade basis in which the grade of "B" or higher has been earned previously.
6. Subject to approval by a faculty advisor, a course may be taken more than once for academic credit. All grades and hours will count in determining the student’s grade-point average (GPA), but the course will be counted only once for credit toward a degree.
7. See Regulation X, "Pass/Fail Grading," (http://catalog.gatech.edu/rules/10) for the Institute’s rules regarding courses taken on a Pass/Fail basis.

B. Academic Load

1. Maximum credit hour loads are explained in Regulation VI, "Scholastic Regulations," Section D, "Maximum Schedule Load," (p.) Any hours above these limits must obtain prior approval from the Undergraduate Institute Curriculum Committee or the Graduate Institute Curriculum Committee, as appropriate.
2. Graduate students must maintain a minimum of three credit hours each academic term. Exceptions to this regulation may be made during the term in which the student graduates.

C. Auditing of Courses

1. The auditing of a course will be permitted for a regularly enrolled student who has obtained the approval of her/his advisor and the departments concerned. Such a course counts at full value in computing the student’s course load for an academic term.
2. The grade of "V" (i.e., "Visitor") is earned when a student audits a course. The "V" grade has no effect on a student’s grade-point average (GPA).
3. No academic credit is granted for auditing a course.
4. Students are not permitted to change to or from an auditing status except through the regular procedures for schedule change or withdrawal. Any student who does not meet the instructor's requirements for a successful audit will be withdrawn with a grade of "W" assigned at the end of the academic term.
5. Members of the faculty or staff of the Georgia Institute of Technology may sit in on, rather than audit, a course with the permission of the instructor. The permission is granted on a space-available basis in the class.

D. Attending Classes
1. Students may attend only those particular classes for which they are registered and paid.

E. Undergraduate Students Taking Graduate Courses
A senior with a grade-point average (GPA) of at least 2.7 may enroll in a graduate course if she/he obtains permission from the school or department offering the course.

1. Up to twelve credit hours earned as an undergraduate student may count toward earning a master's degree if the following conditions are satisfied.
 a. The student was in residence at Georgia Tech for at least two semesters before registering for the course(s).
 b. The student did not apply credit for the course toward a bachelor's degree. Special exceptions may apply in certain schools, as described below.
 i. If student pursues both a bachelor's and master's at Georgia Tech, and if both degrees are in the same discipline, she/he may apply up to six credit hours of graduate-level credit in the major discipline to satisfying the requirements for both degrees. Because some master's degree programs do not have any unique undergraduate counterpart program, and because some master's programs are offered by several schools, the definition of "discipline" will be broadly interpreted in such cases. To qualify for this option, a student must complete the bachelor's degree with a cumulative grade-point average (GPA) of 3.5 or higher, and she/he must complete the master's degree within a two-year period following the award date of the bachelor's degree.

F. Graduate Students Taking Undergraduate Courses
Graduate students who wish to take a 1000- or 2000-level course must obtain a permit from the department teaching the course. The student must have the department of instruction enter a permit on her/his account, and then come in-person to the Office of the Registrar to have the course added to her/his schedule. Institute policy allows a graduate student to take a 1000- or 2000-level course on a Pass/Fail or audit basis only.

X. Pass/Fail Grading

A. General
1. At the option of the student's major school, credit toward a bachelor's degree may be allowed for courses taken under the pass/fail system and completed with a grade of "Pass."
2. The major school must approve all pass/fail courses included in the final program of study, and students should be aware of school requirements.
3. In graduate programs, thesis research hours will be evaluated on a pass/fail basis.
4. Pass/fail enrollment in any course may be restricted by the school or department offering the course.
5. Students who are permitted to register under the pass/fail system will be so designated on the official class rolls. The grades recorded will be "S" for "Satisfactory" or "U" for "Unsatisfactory." These grades will not be included in the calculation of the grade-point average and cannot be changed to a grade that will count in the average.
6. Withdrawals from courses taken on a pass/fail basis will follow the same rules that govern withdrawals from courses included in the grade-point average.
7. The deadline to change the grade mode from letter grade to pass/fail (and vice versa) is the same day as the Last Day to Withdraw from Individual Courses without a Penalty.

Grade mode changes are allowed online during the Registration Period. After the Registration Period ends, the following form must be completed and submitted to the Office of the Registrar.

Download Form (http://www.registrar.gatech.edu/docs/catalog/grade_mode.pdf)

B. Credit Hours Permitted
1. The maximum number of credit hours that a student may earn on a pass/fail basis is related to the number of credit hours required for the program of study in which the student is enrolled.

<table>
<thead>
<tr>
<th>Hours included in program of study</th>
<th>Hours allowed on pass/fail basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 70 credit hours</td>
<td>3 credit hours</td>
</tr>
<tr>
<td>71 to 90 credit hours</td>
<td>6 credit hours</td>
</tr>
<tr>
<td>91 or more credit hours</td>
<td>9 credit hours</td>
</tr>
</tbody>
</table>

2. For a second undergraduate degree, these limits apply to the credit hours included in the program of study for that second degree.
3. A master's degree program of study may include up to three semester credit hours on a pass/fail basis.

XI. Cross Enrollment and Concurrent Registration

A. General
1. Students who are enrolled at Georgia Tech may not receive credit for courses completed at another institution during the same academic term, unless prior permission has been obtained for cross enrollment or concurrent registration, as described in this section.
2. With the approval of the student's major school, a student may schedule courses at any one of the colleges or universities comprising the Atlanta Regional Consortium for Higher Education
B. Eligibility

1. Cross enrollment and concurrent registration are available only to degree-seeking juniors, seniors, and graduating students, except during the Summer Session, when concurrent registration is available to all degree-seeking students. Ordinarily students will not be allowed to participate during their first academic term at Georgia Tech, nor will students be allowed to cross enroll for more than two courses per academic term. Special rules apply to students participating in the RETP programs. International Plan students may cross enroll or register concurrently for a language course(s) not offered at Georgia Tech as early as the second semester of their first year of enrollment. Special permission to do this will be granted to accepted International Plan students only. Forms and procedures are available from the Office of the Registrar. Any student seeking an exception to these eligibility requirements should contact the Office of the Registrar.

2. To participate in cross enrollment or concurrent registration, a student must be in good standing during the term when the application is processed.

3. During the term of cross enrollment or concurrent registration, the student must enroll in three or more credit hours at Georgia Tech and be in good standing. The total academic load carried at all institutions combined may not exceed the number of credit hours for which the student would be allowed to register at Georgia Tech.

4. Cross enrollment also is permitted among institutions participating in the Georgia Tech Regional Engineering Program (GTREP) and selected institutions in the Regents' Engineering Transfer Program (RETP).

5. For institutions not participating in cross enrollment, a student must apply in advance for permission to be concurrently registered at both Georgia Tech and the other institution, except during the Summer.

B. Examinations for Advanced Standing

1. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination. Such an examination is called an “Examination for Advanced Standing.”

2. Examinations for advanced standing require the recommendation of the department of instruction in which the course is offered, payment of the appropriate fee to the Office of the Bursar, and authorization by the Office of the Registrar.

3. Examinations for Advanced Standing will usually be offered during the Final Examination Period.

4. A student will not be allowed to take an Examination for Advanced Standing in a given course more than twice.

5. Students will not be allowed to take an Examination for Advanced Standing in a course for which any prerequisite has not been met, except with the consent of the school offering the course.

6. An Examination for Advanced Standing will be reported with an “S” or “U” grade. Neither grade will be included in the calculation of grade-point average (GPA).

7. Advanced standing is not allowed for laboratory or studio classes, except with the consent of the school offering the course.

8. Students may not use more than nine credits of advanced standing to meet degree requirements.

9. Students may submit the Advanced Standing Application and Fee to do so may receive credit for a course by examination. Such an application is received by the Office of the Registrar.

C. Final Instructional Class Days and Reading Periods

The following applies to the standard academic terms, including the Fall Semester, Spring Semester, and Full Summer Session. It does not apply to the Early Short Summer Session and Late Short Summer Session. Given the variability in the exact timing of the Full Summer Session, the Office of the Registrar will adjust the final instructional class days and reading periods for this semester only in order to meet required instructional time. This policy replaces the former Dead Week (Week Preceding Final Examinations) policy.

1. Final Instructional Class Days

 a. Final Instructional Class Days are scheduled during each regular term including the Full Summer Session and are the last two instructional days of the term immediately preceding the first reading period.

 b. No tests or quizzes are to be administered on these days. Lab quizzes and/or practicums may be given in courses comprised of both a lecture and a scheduled lab, wherein the lecture carries at least two credits.

 c. For all courses, graded homework or assignments, lab reports, course projects, demonstrations, studio reviews, and presentations may be due during these two days, provided that they are listed on the syllabus at the start of the semester.

 d. All quizzes and tests should be graded and reported to students on or before the last Final Instructional Class Day.

2. Reading Periods

 a. Reading Periods will be designated to provide time for students to prepare for final examinations.
b. No classes meet. This includes labs, recitations, projects, design/capstone courses, and studios.

c. No assignments, projects, presentations, or other graded activities are allowed.

d. Instructors may schedule optional study review sessions for students during reading periods, but no credit or extra credit may be attached to these optional sessions. New content may not be covered, and any materials (e.g., handouts, slides, practice problems, etc.) that are provided at these optional review sessions must be made available to all students. This provision does not require that such optional sessions be audio or video recorded.

3. Requests for exceptions to the Final Instructional Class Day and Reading Period policies may be made in writing by the Dean of the College (or her/his designee) to the Student Rules and Regulations Committee (SRR). The SRR will then make a recommendation to the Undergraduate Institute Curriculum Committee or Graduate Institute Curriculum Committee, as appropriate, for approval or denial. Requests must be made no later than the academic term prior to the desired term of implementation and will be regularly reviewed.

4. Student concerns may be discussed with the faculty member and/or reported to the Chief Academic Officer of the department of instruction, or with the Assistant Provost for Academic Advocacy and Conflict Resolution. For more information, see the Student Academic Grievance Policy.

D. Final Examinations

1. In regularly scheduled lecture courses of the Institute, a final examination shall be administered at the time specified in the official Final Examination Schedule as distributed by the Office of the Registrar. In courses such as seminars, senior design, capstone, writing courses, and laboratories, final examinations may be waived and may be replaced with appropriate assessment. The decision to give a final examination in these courses shall be made by the instructor of record. An announcement of the course’s final examination policy shall be made to the class at its first meeting and included in the syllabus.

2. No assessment other than a final examination or its replacement may be due during the Final Examination Period.

3. Requests to change a class’s final examination time within the Final Examination Period must be submitted to the Chief Academic Officer of the department of instruction for approval no later than one week before the beginning of the Final Examination Period. Any such request must have the unanimous approval of the class as shown by secret ballot, as well as approval by the instructor of the class.

4. A change in the scheduling of a final examination for an individual student ordinarily will not be permitted; however, such a change may be allowed for hardship cases at the discretion of the instructor. The request for a change must be justified in writing by the student and shall be submitted to the instructor prior to Final Examination Period and may be rescheduled to an appropriate time.

5. In the event a student has two final examinations scheduled for at the same time, the course having the lower number shall be considered in conflict and the student shall notify the instructor no later than two weeks before the Thursday of the Final Examination Period. In such case, the final examination in that course shall be given during the Conflict Examination Period or, by agreement of the instructor and the student, at a mutually satisfactory time.

a. If the student notifies the instructor after the above deadline but before the Thursday of the Final Examination Period, the student shall, at the discretion of the instructor:
 i. receive a course grade of "I" (Incomplete), with an opportunity to take a makeup final examination the following academic term (and have the course grade changed as warranted by the results of the test), or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

b. A student who fails to notify the instructor of the conflict before the Thursday of the Final Examination Period shall, at the discretion of the instructor:
 i. receive a score of zero on the final examination, or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

6. In the event a student is scheduled for three final examinations in one day, the examination scheduled for the middle period shall be considered in conflict and the student shall notify the instructor no later than two weeks before the Thursday of the Final Examination Period. In such case, the final examination in that course shall be given during the Conflict Examination Period or, by agreement of the instructor and the student, at a mutually satisfactory time.

a. If the student notifies the instructor after the above deadline but before the Thursday of the Final Examination Period, the student shall, at the discretion of the instructor:
 i. receive a course grade of "I" (Incomplete), with an opportunity to take a makeup final examination the following academic term (and have the course grade changed as warranted by the results of the test), or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

b. A student who fails to notify the instructor of the conflict before the Thursday of the Final Examination Period shall, at the discretion of the instructor:
 i. receive a score of zero on the final examination, or
 ii. be given the final examination during the Conflict Examination Period or at an alternative time during the Final Examination Period.

 iii. be given the final examination at the time scheduled for the course.

7. At the discretion of the instructor, students who arrive late, who exit the room without permission, or who are absent for an excessive period of time may forfeit their opportunity to complete the final examination.

XIII. Undergraduate Degrees

A. General

1. To be considered for admission to candidacy for a degree, a student must complete the Online Application for Graduation during the academic term preceding the term in which she/he will complete the degree requirements for her/his program.

2. A student who wishes to withdraw her/his name from the rolls of degree candidates must formally withdraw the Online Application for
Graduation before the end of the seventh week of the semester (or fourth week of the summer term). This privilege will be extended to a degree candidate only once.

3. A degree program may include a maximum of four hours of basic ROTC and a maximum of six hours of advanced ROTC.

4. The diploma of a candidate for a degree shall bear the date of the commencement at which the degree is awarded.

5. All requirements for the degree must be completed and certified by the Registrar no later than 48 hours after Final Grade Submission Deadline of the academic term in which the candidate intends to graduate. If a candidate is not certified by the appropriate deadline, the candidate will be graduated at the next scheduled commencement. The diploma will bear the date of the commencement at which the degree is awarded. It is the responsibility of the student to reinitiate the Online Application for Graduation for the appropriate term.

B. Residency Rule

No student may be considered a candidate for a degree unless the final 36 credit hours required for the degree are earned in residence at Georgia Tech and approved by the major school.

C. Ten-Year Rule

Work that was completed more than ten years prior to commencement must be validated by special examinations before it can be counted toward a degree.

D. Requirements For a Bachelor’s Degree

1. To be a candidate for a degree, undergraduate students must have passed or be enrolled in all courses required for the degree, must have a grade-point average for their entire academic program of at least 2.00, and must have done creditable work in their departmental courses so as to merit the recommendation for the degree by the chair and faculty of their school.

2. A bachelor’s degree program must require at least 21 credit hours of upper division courses in the major field and at least 39 credit hours of upper division work overall.

3. A bachelor’s degree program must require at least 120 credit hours, plus the Wellness Requirement, for a total of 122 credit hours.

4. A student, with the approval of her/his school or specialization, may satisfy the requirements for a bachelor’s degree by meeting all of the requirements associated with any one curriculum year that has been in effect during her/his period of enrollment in the Institute (or that has been in effect during her/his last two years in the program at one of the RETP institutions, if her/his enrollment there occurred prior to her/his enrollment at Georgia Tech). A curriculum year is in effect for a student only if the student’s date of matriculation is prior to the ending date of the Spring Semester concluding that curriculum year.

5. Constitution and History Requirements
 a. The Georgia law, as amended March 4, 1953, requires that before graduation all students pass examinations or pass comparable courses in United States and Georgia history and in the United States and Georgia Constitutions.
 b. For courses that may satisfy the Constitution Requirement and History Requirement, see the Core Curriculum (p. 92) section of the Catalog.

6. Regents’ Exam
 • Since Spring 2010, the Regents’ Exam has no longer required at Georgia Tech. To be considered a degree candidate, a student must complete an Online Application for Graduation during the term preceding the final term in residence.

7. Wellness Requirement
 a. Unless medically exempted, all students are required to satisfy the wellness requirement prior to graduation, as specified in the Core Curriculum (p. 102) section of the Catalog.
 b. The Health Information Record on file with the Director of Health Services will be used to determine any medical exemptions from the Wellness Requirement. All certificates of disability from personal physicians must be endorsed by the Director of Health Services before they will be accepted by the School of Applied Physiology.

E. Graduation with Academic Distinction

1. For graduation with highest honor, the minimum grade-point average (GPA) shall be 3.55.
 For graduation with high honor, the minimum grade-point average (GPA) shall be 3.35.
 For graduation with honor, the minimum grade-point average (GPA) shall be 3.15.

2. A student must have earned at least 60 semester credit hours (excluding remedial coursework) at Georgia Tech to graduate with highest honor, with high honor, or with honor.

3. In order to qualify for graduation with honors, all grades or grade corrections affecting the honors designation must be received and certified by the Office of the Registrar no later than noon on Wednesday following Commencement.

4. Tentative honors at graduation (recognized at Commencement) are determined by the grade-point average (GPA) entering the graduating term and the sum total of graded hours accumulated prior to the graduation term plus graded hours registered for and pending during the graduation term.

F. Second Undergraduate Degree

1. A student enrolled for a second undergraduate degree shall be classified as an undergraduate student, except that a graduate student wishing to pursue a second undergraduate degree will remain classified as a graduate student. A graduate student, with approval of the major school, may work toward a second undergraduate degree while pursuing a graduate program.

2. To be a candidate for a second undergraduate degree, a student must have the recommendation of the chair of the school concerned and the approval of the Undergraduate Institute Curriculum Committee.

3. To obtain a second undergraduate degree, a student must complete all major required courses for the degree and earn credit for a total of at least 36 credit hours in excess of the requirement for any previous degrees earned.

4. All items in Regulation XIII, "Undergraduate Degrees," (p. 161) apply to students completing second undergraduate degrees.

G. Minors

1. A student may complete a minor in another academic field while completing the requirements of her/his major degree program.

2. With the approval of the major school, the student should consult an advisor in the minor field, who can inform the student of the requirements for the minor.

3. A Change of Undergraduate Minor Form must be completed, signed by the Minor Advisor/Coordinator and the Major Advisor, and
submitted to Office of the Registrar. Students are encouraged to submit the completed form when they decide to pursue the minor but no later than the Deadline for the Online Application for Graduation in the academic term preceding anticipated graduation.

4. Students who change or add a minor must complete the requirements in the Catalog that was effective for the term in which the change or addition of a minor became official, or any subsequent edition of the Catalog.

5. A readmitted student who wishes to pursue a minor must indicate her/his choice on the Application for Readmission. Requirements for the minor are those in effect at the time the student is readmitted as stated in the current edition of the Catalog. The readmitted student may select only minors offered at the time of readmission.

6. Some courses in a minor may have prerequisites that are not included in the minor description. Some minors may have additional requirements that students must meet before being admitted to that minor.

7. The student must declare any minor(s) prior to applying for graduation. A Minor Program of Study Form signed by the major and minor advisor may be required depending on the minor. Minor requirements and information for a Minor Program of Study Form are located in DegreeWorks.

8. The minor will be conferred at the same time the degree is conferred.

9. Minors may not be conferred retroactively upon students who have graduated.

10. The minor will not be printed on the diploma, but both the degree and minor will be recorded on the student’s transcript.

11. A student who has applied for a minor but does not wish to complete the minor must have her/his advisor contact the Office of the Registrar for the minor to be removed prior to completing an Online Application for Graduation. Minors will be audited with the major and the status will be noted in DegreeWorks.

XIV. Graduate Degrees

The faculty of Georgia Tech grants advanced degrees in engineering, science, management, computing, architecture, city and regional planning, public policy, and other technology-related areas. The goals for graduate studies and research are to establish an educational environment that will strengthen students’ personal and professional development, to encourage students and faculty to pursue the discovery and generation of new knowledge through research, to investigate ways of applying such knowledge for the benefit of society and humanity, and to foster the development of new tools, objects, and ideas.

Students whose interests and aptitudes lead them beyond the limits of the traditional undergraduate curriculum may broaden their knowledge of a given field and pursue independent inquiry through graduate study. A graduate education is of particular benefit to students interested in careers in research, management, development, design, or consulting; to those who aspire to formulate and administer policy; and to those who desire careers in higher education.

Graduate Student Work Loads

Full-time students must be enrolled for at least 12 credit hours on a letter grade or pass/fail basis. As an exception, the advisor and school chair may allow up to three hours out of the minimum to be taken on an audit basis in fall and spring semesters; in summer semesters, the advisor and school chair may allow up to six hours out of the 12 minimum to be taken on an audit basis. Hours in excess of the required 12 may be taken on any basis. Full-time students working exclusively on thesis research should be registered for 18 or more hours of 7000 or 9000 level courses (master’s or doctoral thesis courses) in fall and spring semesters, and for up to 16 hours during summer semesters.

The maximum load for graduate students in good standing is 21 hours in fall/spring and 16 hours in summer. The minimum load is three hours, except for the semester of graduation. During the semester of graduation, a student is permitted to register for only one hour of master’s or doctoral thesis courses (7000 or 9000). This exception may be used only once for each degree.

Students with fellowships, graduate research or teaching assistantships, traineeships, tuition waivers, or student visas, and those assigned to the Institute by the armed forces for the purpose of pursuing a degree are required to enroll full-time. Part-time doctoral students engaged in research for their Ph.D.s should meet the minimum enrollment requirement and register for the number of 9000 level hours consistent with the time they and their faculty advisors spend on the dissertation research.

Graduate Policies and Regulations

The Institute Graduate Curriculum Committee, with the approval of the Academic Faculty Senate, is responsible for establishing academic policy for the graduate programs; however, final authority rests with the Senate. This committee reserves the right to change requirements for degrees as may be appropriate. Students enrolled at the time such changes appear in the catalog have the privilege of following either the regulations stated in the catalog effective the semester in which they enrolled or the regulations in the catalog that records the change.

This catalog records the institute-wide policies and regulations that govern the graduate programs. Schools may make additional rules concerning their programs and the pursuit of their degrees, but such rules may not contradict Institute policies and regulations.

Transfer Credit

A student may not apply for transfer credit until after matriculation at Georgia Tech. The courses to be transferred would typically be those appearing on the approved program of study form for the masters degree. A doctoral student normally does not request transfer credit. The rules relative to and the process for obtaining transfer credit for graduate-level courses are as follows:

1. Student’s in a master’s degree program requiring fewer than 33 semester credit hours may receive up to six hours of transfer credit for graduate-level courses taken at an institution accredited by a Canadian or U.S. regional accrediting board, or at a foreign school or university that has a signed partner agreement with Georgia Tech, and not used for credit toward another degree. This ensures completion of at least one-third of the courses for a degree in residence at Georgia Tech (applies to programs that are face-to-face and online format). A student in a master’s degree program requiring 33 semester credit hours or more may receive up to nine hours of transfer credit for graduate-level courses taken at an institution accredited by a Canadian or U.S. regional accrediting board, or at a foreign school or university that has a signed partner agreement with Georgia Tech, and not used for credit toward another degree. This ensures completion of at least one-third of the courses for a degree in residence at Georgia Tech (applies to programs that are face-to-face and online format). The student must supply a current transcript for this evaluation.
2. To obtain transfer of credit, the student must complete the following procedure:
 a. The student will confer with the graduate advisor to ascertain whether the courses to be transferred are a logical part of the student’s graduate program;
 b. If the courses are appropriate, the student will deliver to the school that teaches such courses a copy of the current transcript, necessary descriptive materials including catalog descriptions, and textbooks used for evaluation. The faculty of the appropriate school will determine the equivalent Georgia Tech course and the number of credit hours accepted. The faculty member who prepares the transfer credit form should have the school chair cosign it. The school should then send the form directly to the registrar with a copy of the student’s Approved Program of Study attached;
 c. If the student wishes to transfer more than the number of hours permitted in item one listed above, a petition must be submitted to the Institute Graduate Curriculum Committee that includes statements of possible justification for the granting of such a petition, transfer credit forms, and the recommendation of the student’s school chair.

3. A joint enrollment student may receive graduate credit for up to one-third of the hours required for the degree for graduate courses taken at Emory University or Georgia State University provided that the following is true:
 a. Georgia Tech does not offer such courses;
 b. The student’s advisor and school chair approve the courses in advance and in writing;
 c. The student passes the courses with a C or better. Advance approval is satisfied when the courses appear on the student’s proposed Program of Study.

4. A student may not receive transfer credit from universities outside the United States and Canada unless the courses were taken at a foreign institution or university that is accredited by a Canadian or U.S. regional accrediting board or has a signed partner agreement with Georgia Tech. In any other case, an international student can obtain credit for courses previously taken but not applied toward another degree by filling out an Examination for Advanced Standing Authorization Request Form, paying the appropriate fee at the Bursar’s Office, and passing the examination for advanced standing. The school or college that normally teaches the equivalent course will administer any necessary examinations.

Double Counting Credit between Master’s Degrees
Students who are pursuing two Master’s degrees at Georgia Tech may double count a maximum of 6 hours of credit for both degrees. This ensures that each degree involves a minimum of 24 hours of coursework completed at Tech that is not double counted.

The six-hour limit may be exceeded when specifically allowed as a component of an approved degree program.

Staff Members
No staff member beyond the rank of instructor in a school may work for a master’s degree in that school. No new staff member with the rank of assistant professor in a school may work for a doctoral degree in that school.

General
A student who wishes to withdraw her/his name from the rolls of degree candidates must formally withdraw the Online Application for Graduation before the end of the seventh week of the semester (or fourth week of the summer term). This privilege will be extended to a degree candidate only once.

XV. Student Vehicles
Students desiring to operate motor vehicles on campus are subject to all rules set forth by the Georgia Tech motor vehicle regulations.

Parking and Transportation Services
Georgia Tech Parking and Transportation Services maintains information on its web site regarding:

- Parking (https://pts.gatech.edu/parking)
- Campus Transit (https://pts.gatech.edu/campus-transit)
- Alternative Transportation (https://pts.gatech.edu/alternative-transportation)

Bicycles
The Georgia Tech Police Department provides important information for students who ride bicycles.

- Bicycle Information (http://www.police.gatech.edu/crime-prevention/safety-tips/bicycle)

XVI. Medical Regulations
A Medical Entrance Form and proof of required immunizations and tuberculosis screening must be on file with Stamps Health Services (http://www.health.gatech.edu). Failure to provide this information may result in a health hold and delay of registration. All international students (F1 and J1 visas) are required to have health insurance coverage. Students may elect to purchase the health insurance made available by the health insurance provider contracted by Georgia Tech or may have their own comparable medical insurance.

Student Health Insurance
Source: Stamps Health Services (https://health.gatech.edu/finance/insurance)

The Georgia Board of Regents (BOR) offers student health insurance for eligible students and their dependent(s). Two groups of students may purchase student health insurance: Mandatory and Voluntary. Mandatory students are required by the BOR to have student health insurance and the charge is applied automatically to the student’s account along with tuition. Mandatory Graduates: Teaching Assistant, F1 or J1 visa holder, Research Assistant, Fellowship or Full tuition waiver. Mandatory Undergraduates: F1 or J1 visa holders. Mandatory students who already have health insurance may apply to waive the Board of Regents (BOR) student health insurance coverage.

There is a 30 day open enrollment period at the start of each semester to enroll for student insurance coverage, to enroll for the voluntary plan, or for mandatory students to add spouse/dependents coverage. For students and spouses with Board of Regents (BOR) student health insurance, Stamps Health Services (SHS) is the primary care provider. SHS renders care to students, spouses, and domestic partners. Dependent children are not eligible to be treated at SHS.
More information is available at www.health.gatech.edu (http://www.health.gatech.edu)

Immunizations
Source: Stamps Health Services (https://health.gatech.edu/immunization/requirements)

All incoming students must comply with the Board of Regents of the University System of Georgia’s immunization requirements. It is strongly recommended that immunization requirements are met as soon as possible to avoid a registration hold. A registration hold keeps students from registering for classes.

Incoming students must use Stamps Health Services Immunizations Form.

More information is available at www.health.gatech.edu (http://www.health.gatech.edu)

Special Health Considerations
Source: Georgia Tech Policy Library (http://www.policylibrary.gatech.edu/student-affairs/special-health-considerations)

It is the responsibility of all students to notify the Health Center, the School of Applied Physiology, and the Office of Disabled Student Services of any disability that would make participation in swimming, competitive sports, and aerobic training hazardous to their well-being. Any student requesting special consideration because of mental or physical disability should have his or her physician write an explanatory letter, giving full details of the disability and consequent limitations on physical activity, to the medical director of Health Services. This letter must accompany the Medical Entrance Form.

XVII. Extracurricular Activities

A. Participation

1. In order to be eligible to participate in extracurricular activities, a student must satisfy the following requirements:
 a. be enrolled in a degree program and be registered;
 b. for Fall and Spring semesters, maintain a schedule with at least six credit hours on a for-credit basis or be a student registered with the Center for Career Discovery and Development on a work term;
 c. all student organization officers must be enrolled in Georgia Tech classes with at least six credit hours on a for-credit basis or be a student registered with the Center for Career Discovery and Development on a work term in Atlanta.

2. Changes in academic standing that affect eligibility become effective at the end of each academic term, usually the Tuesday following Final Examination Period.

3. Any student placed on Academic Drop/Dismissal or Review, or placed on Suspension or Expulsion by the Office of Student Integrity, is immediately ineligible for participation. Any student placed on Suspension in Abeyance may be immediately ineligible, based upon the individual organization’s decision to allow participation.

4. Changes in disciplinary standing that affect eligibility become effective immediately.

5. Participation also requires satisfaction of any additional requirements established by the Student Activities Committee of the Academic Senate.

B. Scheduling of Events

1. All student organizations must make written application to, and receive permission from, the Division of Student Life to hold a social function.

2. In each term, the weekend before the Final Examination Period is closed to student-sponsored extracurricular events.

C. Student Organizations

1. All student organizations must adhere to the Student Organization Code of Conduct, the Student/Student Organization Alcohol Policy, and other policies set forth by the Division of Student Life.

2. Every organization must renew its charter every year or when changing officers by submitting an Officer Update Form and by signing the Alcohol Policy Acknowledgement Form.

3. Requirements and standards for chartering a student organization are established by the Student Activities Committee of the Academic Senate and are available from the Division of Student Life.

D. Fraternity and Sorority Regulations

1. To be eligible for initiation, a student must be a full-time student not on academic or disciplinary probation.

2. The initiation of any individual must be registered with and approved by the Division of Student Life prior to the initiation.

3. The individual must meet all Georgia Tech Interfraternity Council (IFC) or Panhellenic requirements concerning initiation.

4. All fraternities and sororities are subject to the rules established by the Georgia Tech IFC/Panhellenic/National Pan-Hellenic and all Georgia Tech policies, rules, and regulations.

E. Intercollegiate Athletics Regulations

1. To be eligible for intercollegiate athletic competition, a student must satisfy the following requirements:
 a. be eligible to participate in extracurricular activities, as defined in Regulation XVII, “Extracurricular Activities,” Section A, “Participation” (http://catalog.gatech.edu/rules/17);
 b. be carrying a full-time workload as defined in Regulation VI, “Scholastic Regulations,” Section A, “Classification of Students,” Item 3 (p. 154);
 c. for Summer semesters, be carrying an appropriate workload (3-16 hours) with the provision that the definition of full-time in Regulation VI, “Scholastic Regulations,” Section A, “Classification of Students,” Item 3 remains applicable;
 d. be making satisfactory progress toward a degree; and
 e. meet any further requirements of the NCAA or other governing organization; see the Athletic Director for details.

2. No student may be excused from regularly scheduled classes for athletic practice.

3. Special accommodations may be made (or coordinated) for intercollegiate student-athletes whose competition schedules conflict with the first week of reading periods and final exams.

4. No student may participate in more than two sports in intercollegiate competition in any school year, except by permission of the Division of Student Life. Being a manager or assistant manager is counted as participation within the meaning of this rule.
XVIII. Academic Honor Code

Academic Honor Code

The Academic Honor Code is a student initiative that became an official Institute policy in 1996. The objective of the Academic Honor Code is to increase academic integrity and strengthen trust in the Georgia Tech community. All students are required to sign an agreement acknowledging their awareness of the Academic Honor Code. They are strongly encouraged to seek a full understanding of their instructors’ expectations regarding academic honor.

The Honor Agreement

"Having read the Georgia Institute of Technology Academic Honor Code, I understand and accept my responsibility as a member of the Georgia Tech community to uphold the Honor Code at all times. In addition, I understand my options for reporting honor violations as detailed in the Code."

XIX. Code of Conduct

The official and most current versions of this policy document can be found in the Georgia Tech Policy Library (http://www.policylibrary.gatech.edu) and/or the Office of Student Integrity (http://osi.gatech.edu) web site. In the event of any conflict, the document in the Policy Library and/or on the OSI web site shall govern.

- Student Code of Conduct (http://www.policylibrary.gatech.edu/student-affairs/code-conduct)

Additional policy documents are available in the Georgia Tech Policy Library (http://www.policylibrary.gatech.edu).

- Academic Honor Code (http://www.policylibrary.gatech.edu/student-affairs/academic-honor-code)
- Student Organizations Code of Conduct (https://policylibrary.gatech.edu/student-life/student-organizations-conduct)
- Student/Student Organization Alcohol Policy (http://www.policylibrary.gatech.edu/student-affairs/student-student-organization-alcohol-policy)
- Student Sexual Misconduct Policy (https://policylibrary.gatech.edu/student-life/sexual-misconduct)

XX. Grievance Procedures

These procedures are intended to provide students at Georgia Tech a means for setting forth grievances relating to academic matters, intellectual diversity, and final course grade disputes when they believe that an instructor has acted unfairly or improperly in assignment of grades. It is not the intention of these procedures to provide a forum for questioning the judgment or grading policies of faculty. A student’s concerns may be discussed with a faculty member and/or reported to the school or unit head, the academic deans, or the Associate Vice Provost for Advocacy and Conflict Resolution.

A. Applicability of the Grievance Procedures

1. Subject Matter:
 These procedures apply to the review of grievances concerning academic matters and final course grade disputes. Grade appeals must be initiated by the grievant within their next enrolled academic term following the academic term of the course in question, and best efforts should be applied to resolve the appeal within that academic term.

2. Grievant:
 These procedures shall be the appellate procedures for students at Georgia Tech. Students who have pursued a formal grievance procedure or who have pursued informally the resolution of a grievance in their own school, college, or unit and have had that appeal dismissed, may submit the grievance for review under these procedures.

B. Overview of Grievance Process

1. Informal resolution attempted at the school, department, or unit level.
2. Formal resolution sought at the school, department, or unit level.
3. Formal resolution sought at the Institute level: appeal reviewed and, if so determined, heard by the Student Grievance and Appeal Committee.

C. Steps in the Grievance Process*

*The steps of the grievance process must followed in the order presented below.

1. The student shall attempt to resolve the grievance with the individual faculty member, the department, or the unit involved.
2. If the grievance is not resolved in Step C.1 and the student elects to continue the grievance process, the student may request a formal hearing setting forth in writing the complaint and the remedy sought at the school, college, or unit level. Upon receipt of such appeal, the unit director will acknowledge the appeal in writing within seven calendar days and will expeditiously proceed to constitute an ad hoc appeal committee. The unit director will serve as a nonvoting member of the committee. In addition, the following four committee members will be selected:
 a. One tenured faculty member from within the unit, selected by the unit director.
 b. One member of the academic faculty, selected by the student. The student may elect not to select a faculty member; in that case, the committee will consist of three members.
 c. One member from outside the unit, selected by the Student Grievance and Appeal Committee in consultation with the unit director.
 d. One member of the academic faculty selected by the faculty member whose action is in question.

The Committee will proceed with due haste to examine the merits of the complaint and to render a decision within 30 days. During the proceedings, the student may present any and all evidence that the student deems necessary to support the complaint, except that the Committee must agree that the evidence is in some way relevant. Such evidence may consist of documentation and/or testimony, within reason. Both grievant and respondent may be accompanied by advisors; the role of advisor must,
D. Remedies

1. General

If the Committee finds, after a formal hearing, that a faculty member, a departmental committee, or an administrator of a unit has not acted fairly or properly, it will recommend a remedy. It will seek to find a remedy that can be implemented by those whose cooperation is needed. In the matter of a grade dispute, this must include the faculty member involved in the dispute.

2. Enforcement

a. If any party does not comply with the decision of the Committee, the Committee shall, upon request of any party, seek full compliance through the administrative offices of the Institute through the Chief Academic Officer (CAO).

b. The merits of the dispute shall not be subject to review in the process of enforcement. There shall be strong presumption in favor of the remedy selected by the Committee.

3. Report of a Final Decision

After a final decision has been made in a case, the Committee shall prepare a report setting forth its findings and recommendations for action and present the report to the CAO. A copy of the report shall be presented to the parties concerned and to those persons involved in implementing the Committee's recommendations. All such communications shall be effected in person or by certified mail with a return receipt requested; such receipt will become part of the Institute's records of the case.

Care will be given that no incomplete or inaccurate information pertaining to the grievance is placed in any file and that all evidence obtained at any stage of the process and all deliberations and proceedings be kept confidential. At the conclusion of each case, the Student Grievance and Appeal Committee shall transmit original or true copies of the documents related to the case to the appropriate Office of the Vice President of Student Affairs, who shall keep such records securely as Institute records for a period of time specified by Institute statutes.

a. Grade Changes:

In decisions that would result in the changing of a posted grade, the CAO will instruct the unit director to ask the involved faculty member to effect the prescribed grade change or, if cooperation is not forthcoming, to effect the grade change directly by action of the unit director. Such action shall not be construed as restrictive of the resources of the faculty member through the usual appeal procedure of the Institute.

4. Final Appeal

Appeal of the decision of the Committee to the CAO shall be permitted only for the purposes of procedural review. Such appeals shall be submitted in writing, with copies to the Committee. The CAO will review the findings of the Committee and, upon judgment that the Committee has failed to follow the procedures approved by the Academic Senate for the operation of the Student Grievance and Appeal Committee (XXI. C.3.c.c6), return the case to the Committee for reconsideration, along with description of the received error in procedure and a recommendation for its correction.

XXI. Exceptions

Where appeals are not otherwise specified, exceptions to these regulations may be made by the appropriate faculty committee upon petition by the student and recommendation of the student's school or department. Blanket exceptions that have the effect of amending these regulations shall be referred to the Academic Senate for approval.
XXII. Student-Faculty Expectations

A. Preamble

The Georgia Tech community believes that it is important to continually strive for an atmosphere of mutual respect, acknowledgement, and responsibility between faculty members and the student body. Therefore, we herein endeavors to enumerate the specific expectations of each side. However, this document is not intended to be either comprehensive or limiting in regards to the Institute’s statutes. Ultimately, simple respect for knowledge, hard work, and cordial interactions will help build the environment we seek. We remain committed to the ideals of Georgia Tech, agree to abide by these principles in our time here, and will encourage each other to uphold these responsibilities.

B. Student Expectations

We hold that all students have the right to expect:

1. a positive, respectful, and engaged academic environment inside and outside the classroom;
2. to attend classes at regularly scheduled times without undue variations and without penalty if the student cannot attend instructional, lab, or examination hours not institutionally scheduled; to have their instructor of record be present during most scheduled lecture periods.
3. to receive a syllabus which should include an outline of the course objectives, evaluation criteria, and any other requirements for successful completion of each course during the first week of class meetings and to be clearly informed of any changes made to the syllabus during the semester with reasonable time to adjust to these changes;
4. to consult with faculty outside of usual classroom times through regularly scheduled office hours or a mutually convenient appointment;
5. to have reasonable access to Institute facilities and equipment in order to complete course assignments and/or objectives;
6. to have reasonable time to learn course material prior to the administration of an examination;
7. to receive a clear explanation of the faculty’s definition and interpretation of academic misconduct within the course that extends over and beyond those clearly defined in the Georgia Tech Honor Code;
8. to have reasonable access to graded materials for assignments, projects, or exams, to review graded material in a timely fashion, and to have a clear explanation of grading criteria and grade determination;
9. to have their letter grade in a class based on their performance based on course criteria and not solely on their performance relative to their classmates;
10. faculty to adhere to formal Institute policies, rules and regulations, such as the policy on Final Instructional Class Days and Reading Periods, and the confidentiality policies of FERPA.
11. faculty to be supportive of students’ desires and needs to find rewarding careers after graduation from Georgia Tech. Faculty should be flexible in allowing students to attend the Georgia Tech All Majors Career Fair (http://www.careerdiscovery.gatech.edu/all-majors-career-fair) that occurs in the Fall and Spring Semesters and should refrain when possible from scheduling quizzes or tests on those days;
12. faculty to be flexible during the semester when students have off campus interviews for jobs or graduate/professional schools and should allow students to make up missed work when possible.

C. Faculty Expectations

We hold that all faculty members have the right to expect:

1. a positive, respectful, and engaged academic environment inside and outside the classroom;
2. students to appear regularly for class meetings in a timely fashion;
3. to select qualified Teaching Assistants in accordance with departmental protocols as well as the right to delegate grading, studio and laboratory instruction, tutoring, and other academic activities to these individuals;
4. students to appear at office hours or a mutually convenient appointment for official matters of academic concern;
5. full attendance at examination, midterms, presentations, studios, and laboratories, with the exception of formal pre-approved excused absences or emergency situations;
6. students to be prepared for class, appearing with appropriate materials and having completed assigned readings and homework;
7. full engagement within the classroom, including meaningful focus during lectures, appropriate and relevant questions, and class participation;
8. to cancel class due to emergency situations and to cover missed material during subsequent class meeting times at the discretion of the instructor;
9. students to act with integrity and to adhere to the principles of the Georgia Tech Student Honor Code;
10. students to adhere to the formal Institute policies, such as the Student Code of Conduct.
11. students to make every effort to minimize their absences from scheduled lectures, laboratories, and studios during the Georgia Tech All Majors Career Fair (http://www.careerdiscovery.gatech.edu/all-majors-career-fair) that occurs in the Fall and Spring Semesters, and to notify them in advance if they intend to miss class to attend the Georgia Tech All Majors Career Fair;
12. students to notify them as soon as possible when they have off campus interviews for jobs or graduate/professional schools that conflict with class attendance.
PROGRAMS

- Aerospace Engineering. Minor (p. 555), BS (p. 177), MS (p. 522), PhD (p. 487)
- Algorithms, Combinatorics, and Optimization. PhD (p. 488)
- Analytics. MS (p. 523)
- Applied Languages and Intercultural Studies. BS (p. 179), MS (p. 524)
- Applied Physics. BS (p. 196)
- Applied Physiology. PhD (p. 488)
- Applied Systems Engineering. PMASE (p. 612)
- Architectural History. Minor (p. 555)
- Architecture. Minor (p. 556), BS (p. 197), M.Arch (p. 516), MS (p. 525), PhD (p. 488)
- Biochemistry. BS (p. 208)
- Bioengineering. MS (p. 525), PhD (p. 490)
- Bioinformatics. MS (p. 526), PhD (p. 490)
- Biology. Minor (p. 557), BS (p. 212), MS (p. 526), PhD (p. 490)
- Biomedical Engineering. Minor (p. 557), BS (p. 212), MS (p. 526), PhD (p. 491)
- Biomedical Innovation and Development. MBID (p. 517)
- Building Construction. PhD (p. 491)
- Building Construction and Facility Management. MS (p. 527)
- Business Administration. BS (p. 225), MBA (p. 518).
- Business Administration - Global Business. MBA (p. 517).
- Business Administration - Management of Technology. MBA (p. 519).
- Chemical and Biomolecular Engineering. BS (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs)
- Chemical Engineering. MS (p. 528), PhD (p. 492)
- Chemistry. BS (p. 240), MS (p. 528), PhD (p. 492)
- Chemistry and Biochemistry. Minor (p. 558)
- Chinese. Minor (p. 559)
- City and Regional Planning. MCRP (p. 520), PhD (p. 493)
- City and Regional Planning & Architecture. M.Arch/MCRP (p. 516)
- City and Regional Planning & Civil Engineering. MCRP/MSCE (p. 510)
- City and Regional Planning & Public Policy. MCRP/MSPP (p. 509)
- City and Regional Planning & Law. MCRP/JD (p. 509)
- Civil Engineering. BS (p. 241), MS (p. 529), PhD (p. 493)
- Computational Data Analysis. Minor (p. 560)
- Computational Media. BS (p. 259)
- Computational Science and Engineering. MS (p. 529), PhD (p. 493)
- Computer Engineering. BS (p. 260)
- Computer Science. BS (p. 323), MS (p. 530), PhD (p. 494)
- Computing and Business. Minor (p. 560)
- Computing and Devices. Minor (p. 561)
- Computing and Information Internetworks. Minor (p. 565)
- Computing and Intelligence. Minor (p. 562)
- Computing and Media. Minor (p. 562)
- Computing and People. Minor (p. 563)
- Computing and Systems and Architecture. Minor (p. 563)
- Computing and Theory. Minor (p. 564)
- Cybersecurity. MS (p. 534)
- Digital Media. MS (p. 535), PhD (p. 494)
- Earth and Atmospheric Sciences. Minor (p. 565), BS (p. 328), MS (p. 536), PhD (p. 495)
- East Asian Studies. Minor (p. 567)
- Economics. Minor (p. 569), BS (p. 330), MS (p. 536), PhD (p. 495)
- Economics and International Affairs. BS (p. 328)
- Electrical Engineering. BS (p. 331)
- Electrical and Computer Engineering. MS (p. 537), PhD (p. 496)
- Energy Systems. Minor (p. 569)
- Engineering and Business. Minor (p. 578)
- Engineering Science and Mechanics. MS (p. 537), PhD (p. 496)
- Environmental Engineering. BS (p. 333), MS (p. 538), PhD (p. 496)
- European Studies. Minor (p. 578)
- Film and Media Studies. Minor (p. 581)
- French. Minor (p. 582)
- Geographic Information Science and Technology. MS (p. 538)
- German. Minor (p. 582)
- Global Development. Minor (p. 583)
- Global Economics and Modern Languages. BS (p. 347)
- Global Media and Cultures. MS (p. 539)
- Health and Medical Sciences. Minor (p. 583)
- Health, Medicine, and Society. Minor (p. 584)
- Health Systems. MS (p. 539)
- History. Minor (p. 585)
- History, Technology, and Society. BS (p. 347)
- History and Sociology of Technology and Science. MS (p. 540), PhD (p. 496)
- Human-Computer Interaction. MS (p. 541)
- Human-Centered Computing. PhD (p. 497)
- Industrial Design. Minor (p. 585) BS (p. 350), M.ID (p. 521)
- Industrial Engineering. BS (p. 371), MS, (p. 544) PhD (p. 498)
- International Affairs. Minor (p. 586), BS (p. 388), MS (p. 545)
- International Affairs and Modern Language. BS (p. 387)
- International Affairs, Science, and Technology. PhD (p. 499)
- International Business, Language, and Culture. Minor (p. 586)
- International Logistics. MS (p. 545)
- Japanese. Minor (p. 590)
- Korean. Minor (p. 590)
- Law, Science, and Technology. Minor (p. 590)
- Leadership Studies. Minor (p. 591)
- Linguistics. Minor (p. 593)
- Literature, Media, and Communication. BS (p. 426)
- Machine Learning. PhD (p. 500)
- Management. MS (p. 554), PhD (p. 503).
- Materials Science and Engineering. Minor (p. 593), BS (p. 434), MS (p. 546), PhD (p. 503)
- Mathematics. Minor (p. 594), BS (p. 441), MS (p. 546), PhD (p. 503)
- Mechanical Engineering. BS (p. 464), MS (p. 547), PhD (p. 503)
• Medical Physics. MS (p. 548)
• Manufacturing Leadership. PMML (p. 612)
• Middle Eastern and North African Studies. Minor (p. 594)
• Music. Minor (p. 595)
• Music Technology. Minor, (p. 596) BS (p. 470), MS (p. 548), PhD (p. 504)
• Naval Science. Minor (p. 597)
• Nuclear Engineering. MS (p. 549), PhD (p. 505)
• Nuclear and Radiological Engineering. Minor (p. 598), BS (p. 476)
• Neuroscience. BS (p. 471)
• Ocean Science and Engineering. PhD (p. 505)
• Operations Research. MS (p. 549), PhD (p. 506)
• Occupational Safety and Health. PMOSH (p. 613)
• Philosophy. Minor (p. 598)
• Physics. Minor (p. 599), BS (p. 481), MS (p. 550), PhD (p. 506)
• Physiology. Minor (p. 599)
• Political Science. Minor (p. 600)
• Psychology. Minor (p. 601), BS (p. 485), MS, (p. 550) PhD (p. 506)
• Public Policy. Minor (p. 601), BS (p. 485), MS (p. 550), PhD (p. 508)
• Public Policy Joint Degree with Georgia State University. PhD (p. 507)
• Quantitative Biosciences. PhD (p. 509)
• Quantitative and Computational Finance. MS (p. 552)
• Real Estate Development. MRED (p. 522)
• Robotics. Minor (p. 602), PhD (p. 509)
• Russian. Minor (p. 603)
• Science, Technology, and Society. Minor (p. 604)
• Science Fiction Studies. Minor (p. 603)
• Scientific and Engineering Computing. Minor (p. 605)
• Social Justice. Minor (p. 606)
• Sociology. Minor (p. 607)
• Spanish. Minor (p. 608)
• Sports, Society, and Technology. Minor (p. 608)
• Statistics. MS (p. 552)
• Supply Chain Engineering. MS (p. 553)
• Sustainable Cities. Minor (p. 609)
• Sustainable Electrical Energy. PMSEE (p. 613)
• Sustainable Energy and Environmental Management. MSEEM (p. 555)
• Technology and Business. Minor (p. 610)
• Urban Design. MS (p. 553)
• Women, Science, and Technology. Minor (p. 610)

• Aerospace Engineering. Minor (p. 555)
• Architectural History. Minor (p. 555)
• Architecture. Minor (p. 556)
• Biology. Minor (p. 557)
• Biomedical Engineering. Minor (p. 557)
• Chemistry and Biochemistry. Minor (p. 558)
• Chinese. Minor (p. 559)
• Computational Data Analysis. Minor (p. 560)
• Computing and Business. Minor (p. 560)
• Computing and Devices. Minor (p. 561)
• Computing and Information Internetworks. Minor (p. 565)
• Computing and Intelligence. Minor (p. 562)
• Computing and Media. Minor (p. 562)
• Computing and People. Minor (p. 563)
• Computing and Systems and Architecture. Minor (p. 563)
• Computing and Theory. Minor (p. 564)
• Earth and Atmospheric Sciences. Minor (p. 565)
• East Asian Studies. Minor (p. 567)
• Economics. Minor (p. 569)
• Energy Systems. Minor (p. 569)
• Engineering and Business. Minor (p. 578)
• European Studies. Minor (p. 578)
• Film and Media Studies. Minor (p. 581)
• French. Minor (p. 582)
• German. Minor (p. 582)
• Global Development. Minor (p. 583)
• Health and Medical Sciences. Minor (p. 583)
• Health, Medicine, and Society. Minor (p. 584)
• History. Minor (p. 585)
• Industrial Design. Minor (p. 585)
• International Affairs. Minor (p. 586)
• International Business, Language, and Culture. Minor (p. 586)
• Japanese. Minor (p. 590)
• Korean. Minor (p. 590)
• Law, Science, and Technology. Minor (p. 590)
• Leadership Studies. Minor (p. 591)
• Linguistics. Minor (p. 593)
• Materials Science and Engineering. Minor (p. 593)
• Mathematics. Minor (p. 594)
• Middle Eastern and North African Studies. Minor (p. 594)
• Music. Minor (p. 595)
• Music Technology. Minor (p. 596)
• Naval Science. Minor (p. 597)
• Nuclear and Radiological Engineering. Minor (p. 598)
• Philosophy. Minor (p. 598)
• Physics. Minor (p. 599)
• Physiology. Minor (p. 599)
• Political Science. Minor (p. 600)
• Psychology. Minor (p. 601)
• Public Policy. Minor (p. 601)
• Robotics. Minor (p. 602)
• Russian. Minor (p. 603)
• Science, Technology, and Society. Minor (p. 604)
• Science Fiction Studies. Minor (p. 603)
• Scientific and Engineering Computing. Minor (p. 605)
• Social Justice. Minor (p. 606)
• Sociology. Minor (p. 607)
• Spanish. Minor (p. 608)
• Sports, Society, and Technology. Minor (p. 608)
• Sustainable Cities. Minor (p. 609)
• Aerospace Engineering. BS (p. 177)
• Applied Languages & Intercultural Studies. BS (p. 179)
• Applied Physics. BS (p. 196)
• Architecture. BS (p. 197)
• Biochemistry. BS (p. 208)
• Biology. BS (p. 212)
• Biomedical Engineering. BS (p. 212)
• Business Administration. BS (p. 225)
• Chemistry. BS (p. 240)
• Chemical and Biomolecular Engineering. BS (http://www.catalog.gatech.edu/programs/chemical-biomolecular-bs)
• Civil Engineering. BS (p. 241)
• Computational Media. BS (p. 259)
• Computer Engineering. BS (p. 260)
• Computer Science. BS (p. 328)
• Economics. BS (p. 330)
• Economics and International Affairs. BS (p. 328)
• Electrical Engineering. BS (p. 331)
• Environmental Engineering. BS (p. 333)
• Global Economics and Modern Languages. BS (p. 347)
• History, Technology, and Society. BS (p. 347)
• Industrial Design. BS (p. 350)
• Industrial Engineering. BS (p. 371)
• International Affairs. BS (p. 388)
• International Affairs and Modern Language. BS (p. 387)
• Literature, Media, and Communication. BS (p. 426)
• Mathematics. BS (p. 441)
• Materials Science and Engineering. BS (p. 434)
• Mechanical Engineering. BS (p. 464)
• Music Technology. BS (p. 470)
• Neuroscience. BS (http://www.catalog.gatech.edu/programs/neuroscience-bs)
• Nuclear and Radiological Engineering. BS (p. 476)
• Physics. BS (p. 481)
• Psychology. BS (p. 485)
• Public Policy. BS (p. 485)
• Aerospace Engineering. MS (p. 522)
• Analytics. MS (p. 523)
• Applied Languages and Intercultural Studies. MS (p. 524)
• Applied Systems Engineering. PMASE (p. 612)
• Architecture. M.Arch (p. 516), MS (p. 525)
• Bioengineering. MS (p. 525)
• Bioinformatics. MS (p. 526)
• Biomedical Engineering. MS (p. 526)
• Biology. MS (p. 526)
• Biomedical Innovation and Development. MBID (p. 517)
• Building Construction and Facility Management. MS (p. 527)
• Business Administration. MBA (p. 518).
• Business Administration - Global Business. MBA (p. 517).
• Business Administration - Management of Technology. MBA (p. 519).
• Chemical Engineering. MS (p. 528)
• Chemistry. MS (p. 528)
• City and Regional Planning. MCRP (http://catalog.gatech.edu/programs/mcrp)
• City and Regional Planning & Architecture. M.Arch/MCRP (http://catalog.gatech.edu/programs/march-mcrp-degree)
• City and Regional Planning & Civil Engineering. MCRP/MSCE (http://catalog.gatech.edu/programs/mcrp-msce-degree)
• City and Regional Planning & Public Policy. MCRP/MSPP (http://catalog.gatech.edu/programs/mcrp-public-policy-ms)
• City and Regional Planning & Law. MCRP/JD (http://catalog.gatech.edu/programs/planning-law-mcrp-jd)
• Civil Engineering. MS (p. 529)
• Computational Science and Engineering. MS (p. 529)
• Computer Science. MS (p. 530)
• Cybersecurity. MS (p. 534)
• Digital Media. MS (p. 535)
• Earth and Atmospheric Sciences. MS (p. 536)
• Economics. MS (p. 536)
• Electrical and Computer Engineering. MS (p. 537)
• Engineering Science and Mechanics. MS (p. 537)
• Environmental Engineering. MS (p. 538)
• Geographic Information Science and Technology. MS (p. 538)
• Global Media and Cultures. MS (p. 539)
• Health Systems. MS (p. 539)
• History and Sociology of Technology and Science. MS (p. 540)
• Human-Computer Interaction. MS (p. 541)
• Industrial Design. M.ID (p. 521)
• Industrial Engineering. MS (p. 544)
• International Affairs. MS (p. 545)
• International Logistics. MS (p. 545)
• Management. MS (p. 554)
• Materials Science and Engineering. MS (p. 546)
• Mathematics. MS (p. 546)
• Mechanical Engineering. MS (p. 547)
• Medical Physics. MS (p. 548)
• Manufacturing Leadership. PMML (p. 612)
• Music Technology. MS (p. 548)
• Nuclear Engineering. MS (p. 549)
• Operations Research. MS (p. 549)
• Occupational Safety and Health. PMOSH (p. 613)
• Physics. MS (p. 550)
• Psychology. MS (p. 550)
• Public Policy. MS (p. 550)
• Quantitative and Computational Finance. MS (p. 552)
• Real Estate Development. MRED (p. 522)
• Statistics. MS (p. 552)
• Supply Chain Engineering. MS (p. 553)
• Sustainable Electrical Energy. PMSEE (p. 613)
• Sustainable Energy and Environmental Management. MSEEM (p. 555)
• Urban Design. MS (p. 553)
• Aerospace Engineering. PhD (p. 487)
• Algorithms, Combinatorics, and Optimization. PhD (p. 488)
• Applied Physiology. PhD (p. 488)
• Architecture. PhD (p. 488)
• Bioengineering. PhD (p. 490)
• Bioinformatics. PhD (p. 490)
• Biology. PhD (p. 490)
• Biomedical Engineering. PhD (p. 491)
• Building Construction. PhD (p. 491)
• Chemical Engineering. PhD (p. 492)
• Chemistry. PhD (p. 492)
• City and Regional Planning. PhD (p. 493)
• Civil Engineering. PhD (p. 493)
• Computational Science and Engineering. PhD (p. 493)
• Computer Science. PhD (p. 494)
• Digital Media. PhD (p. 494)
• Earth and Atmospheric Sciences. PhD (p. 495)
• Economics. PhD (p. 495)
• Electrical and Computer Engineering. PhD (p. 496)
• Engineering Science and Mechanics. PhD (p. 496)
• Environmental Engineering. PhD (p. 496)
• History and Sociology of Technology and Science. PhD (p. 496)
• Human-Centered Computing. PhD (p. 497)
• Industrial Engineering. PhD (p. 498)
• International Affairs, Science, and Technology. PhD (p. 499)
• Machine Learning. PhD (p. 500)
• Management. PhD (p. 503).
• Materials Science and Engineering. PhD (p. 503)
• Mathematics. PhD (p. 503)
• Mechanical Engineering. PhD (p. 503)
• Music Technology. PhD (p. 504)
• Nuclear Engineering. PhD (p. 505)
• Ocean Science and Engineering. PhD (p. 505)
• Operations Research. PhD (p. 506)
• Physics. PhD (p. 506)
• Psychology. PhD (p. 506)
• Public Policy. PhD (p. 508)
• Public Policy Joint Degree with Georgia State University. PhD (p. 507)
• Quantitative Biosciences. PhD (p. 509)
• Robotics. PhD (p. 509)
• Analytics. MS (p. 524)
• Computer Science. MS (p. 534)
• Cybersecurity. MS (p. 535)

Georgia Institute of Technology offers three types of Certificates:

Undergraduate Embedded

Undergraduate embedded certificates are intended to encourage students to use the elective course requirements in their degree program to form a coherent package of coursework in a specified area.

Undergraduate embedded certificates will be granted only to students who, in addition to the undergraduate embedded certificate program requirements, have satisfied requirements for an undergraduate degree. The offering unit is responsible for verifying satisfaction of all undergraduate embedded certificate requirements, as well as completion of an undergraduate degree. Undergraduate embedded certificates are not recorded on the student’s transcript or diploma. Arrangements must be made for awarding undergraduate embedded certificates within colleges or offering units. Undergraduate embedded certificates will not be awarded at the Institute level.

Graduate Embedded

Graduate embedded certificates are intended to encourage students to use the elective course requirements in their degree program to form a coherent package of coursework in a specified area.

Graduate embedded certificates will be granted only to students who, in addition to the graduate embedded certificate program requirements, have satisfied requirements for a graduate degree. The offering unit is responsible for verifying satisfaction of all graduate embedded certificate requirements, as well as completion of an graduate degree. Graduate embedded certificates are not recorded on the student’s transcript or diploma. Arrangements must be made for awarding graduate embedded certificates within colleges or offering units. Graduate embedded certificates will not be awarded at the Institute level.

Graduate Embedded Certificate Guidelines

Graduate Stand-Alone (p. 174)

Stand-alone certificates may be completed independent of students being enrolled as Master’s or Doctoral student. These certificates represent a cohesive program of study of a smaller size than a Master’s program and provide more flexibility to professionals for pursuing graduate education, including a means for professionals to renew and retrain due to a fast-changing work force. When completed, these certificates appear on the student’s academic record (transcript), and the student receives a certificate of completion.

Graduate Stand-Alone Certificate Guidelines

Undergraduate Embedded Certificates

• Applied Physiology. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-applied-physiology)
• Architecture and Society. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-architecture-society)
• Astrophysics. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-astrophysics)
• Biologically Inspired Design. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-biologically-inspired-design)
• Biomedical Science. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-biomedical-science)
• Biomolecular Technology. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-biomolecular-technology)
• Business Analytics. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-business-analytics)
• Chinese. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-chinese)
• Computation and Quantitative Biology. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• Computational Design. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• Construction Management. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-construction-management)
• Economics. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• Entrepreneurship. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-entrepreneurship)
• Environmental Science. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-environmental-science)
• European Affairs. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-european-affairs)
• French. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• German. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-german)
• Information Technology Management. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-information-technology-management)
• Integrative Biology. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-integrative-biology)
• International Business. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-international-business)
• Land Development. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• Latin American Affairs. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-latin-american-affairs)
• Leadership and Organizational Change. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-leadership-organizational-change)
• Linguistics. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-linguistics)
• Nuclear and Radiological Engineering. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-nuclear-radiological-engineering)
• Philosophy. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-philosophy)
• Pre-Law. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-pre-law)
• Political Science. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-political-science)
• Public Policy. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-public-policy)
• Russian. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-russian)
• Software Engineering. Undergraduate Certificate (http://catalog.gatech.edu/policies/certificate-guidelines/undergraduate-certificate-guidelines)
• Spanish. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-spanish)
• Sustainable Architecture. Undergraduate Certificate (http://www.catalog.gatech.edu/programs/undergraduate-embedded-certificate-sustainable-architecture)

Graduate Embedded Certificates
• Astrobiology. Graduate Certificate (p. 511)
• BioRobotics. Graduate Certificate (p. 511)
• Geographic Information Systems. Graduate Certificate (p. 512)
• Industrial Design Fundamentals. Graduate Certificate (p. 512)
• Mechanical Properties of Materials. Graduate Certificate (p. 512)
• Micro Electro Mechanical Systems. Graduate Certificate (p. 513)
• Public Policy. Graduate Certificate (p. 513)
• Science, Technology, and Society. Graduate Certificate (p. 514)
Graduate Stand-Alone Certificates

- Sustainable Energy and Environmental Management. Graduate Certificate (p. 515)

Once graduate stand-alone certificate programs are approved by the Institute, they will be listed here.
BACHELOR OF SCIENCE IN BUSINESS ADMINISTRATION
- LEADERSHIP AND ORGANIZATIONAL CHANGE

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a “change of major” meeting. Contact the College of Business Undergraduate Program Office (http://mgmt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BSM Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BSM Management degree. BSM Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgmt.gatech.edu).

Bachelor of Business Administration
- Strategy and Innovation

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the
College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a “change of major” meeting. Contact the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

Code Title Credit Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 17 Mathematics for Management II</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& MATH 1553 and Introduction to Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

Concentration electives: 1,2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3659</td>
<td>Foundations of Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3664</td>
<td>Corporate Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4196</td>
<td>Strategy Consulting Practicum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4220</td>
<td>Integrative Management Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Strategy and Innovation Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3661</td>
<td>Advanced Concepts in International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3662</td>
<td>Management in the Healthcare Sector</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3663</td>
<td>Technology Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Behavioral Economics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Global Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>IP Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Managerial Economics and Strategic Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Strategic Entrepreneurship</td>
<td>3</td>
</tr>
</tbody>
</table>

Group B: 5

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3510</td>
<td>Management of Technology</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4050</td>
<td>Business Analytics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4072</td>
<td>Entrepreneurial Finance</td>
<td>3</td>
</tr>
</tbody>
</table>
MGT 4341 Management of Healthcare Operations
MGT 4670 Entrepreneurship
MGT 4803 Sustainable Business Practicum
MGT 4803 Innovation Tournaments for Sustainability

Non-MGT Electives
Non-MGT Electives 3 6
Free Electives
Free Electives 4 10
Total Credit Hours 122

Pass-fail only allowed for Free Electives.

1 C-minimum required.
2 Students must select one of two options: (1) they may select 9 credit hours of coursework from Group B or (2) select 6 credit hours of coursework from Group B and 3 credit hours of coursework from Group C.
3 Any courses except for MGT or ACCT.
4 Maximum 3 credits of internship; Maximum 9 credits of undergraduate research; Maximum 3 credits of Special Problems/Independent Study.
5 Other advisor approved MGT 4803 courses offered by the Strategy & Innovation Faculty.

International Plan
The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Aerospace Engineering
The first year focuses on coursework in the areas of chemistry, mathematics, physics, humanities, social sciences. The second year adds coursework in general engineering sciences and aerospace specific disciplines. The third and fourth years emphasize aerospace disciplines, vehicle systems integration and design, and Options courses that allow students to individualize their education. The undergraduate curriculum is designed to provide each student with a general background for employment in industry or government, or advanced study in graduate school at the end of four years. The program stresses the analytical, experimental, and design aspects of aerospace engineering. A certain degree of specialization is available to undergraduate students through the proper choice of Options and through a choice of air- or space-focused tracks. In addition, opportunities for undergraduate research and team competition courses are available, depending on the student’s abilities and career objectives. Courses do not have to be taken during the specific semester indicated in the curriculum, but all prerequisites must be satisfied for each course. Advisement is encouraged before registration, with each student assigned a faculty advisor who remains the same for the full undergraduate program, unless the student requests a change. Students should consult with academic advisors for the availability of courses and recommended course sequences.

Educational Objectives
The undergraduate aerospace engineering degree program is designed to achieve the following objectives:

• Our graduates will be technically proficient and effective leaders and entrepreneurs. They will display high professional and ethical standards in aerospace engineering and related fields, and within industry, academia, and government.
• Our graduates will create new knowledge and engineering practices and develop products and services that have a global impact. They will collaborate with international partners and engage in culturally diverse teams.
• Our graduates will be life-long learners, continually developing their leadership, critical thinking, and problem-solving skills. They will be actively engaged in the acquisition and advancement of knowledge and technical expertise through research and development, and through active participation in professional societies, graduate studies, conferences, and symposia.
• Our graduates will transfer the knowledge gained from their aerospace engineering degrees to new fields that intersect with aerospace engineering such as robotics, medicine, and clean energy. They will use their degrees as a launching point for careers in other professional fields such as law, medicine, and public service.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td></td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
</tbody>
</table>
Select one of the following:

- **ECON 2100 Economic Analysis and Policy Problems**
- **ECON 2101 The Global Economy**
- **ECON 2105 Principles of Macroeconomics**
- **ECON 2106 Principles of Microeconomics**

Any SS (p. 97)

Core F - Courses Related to Major

- **MATH 2551 Multivariable Calculus 1**
- **MATH 2552 Differential Equations 1**
- **MSE 2001 Principles and Applications of Engineering Materials**
- **CHEM 1310 General Chemistry**
- **AE 1601 Introduction to Aerospace Engineering**
- **COE 2001 Statics 1**

Major Requirements

- **AE 2010 Thermodynamics & Fluids Fundamentals 1**
- **AE 2220 Dynamics 1**
- **COE 3001 Mechanics of Deformable Bodies**
- **AE 2610 Introduction to Experimental Methods in Aerospace**
- **AE 2611 Technical Communications for Aerospace Engineers**
- **AE 3330 Introduction to Aerospace Vehicle Performance**
- **AE 3030 Aerodynamics**
- **AE 3140 Structural Analysis**
- **AE 3340 Design and Systems Engineering Methods**
- **AE 3530 System Dynamics and Vibration**
- **AE 3531 Control System Analysis and Design**
- **AE 3610 Experiments in Fluid and Solid Mechanics**
- **AE 4531 Aircraft Flight Dynamics**
- **AE 4451 Jet and Rocket Propulsion**
- **AE 4341 Aircraft Design**
- **AE 4610 Dynamics and Control Laboratory**
- **AE Options 4**

Non-AE Required Courses

- **ME 1770 Introduction to Engineering Graphics and Visualization**
- **ECE 3710 Circuits and Electronics**
- **ECE 3741 Instrumentation and Electronics Lab**
- **Math Option 5**

Free Electives

- **Free Electives 6**

Total Credit Hours 132

Pass-fail only allowed for Free Electives.

1 Minimum grade of C required.

2 If PHYS 2231 (5 credit hours) is taken, excess hour applies to Free Electives.

3 If PHYS 2232 (5 credit hours) is taken, excess hour applies to Free Electives.

4 AE courses from list supplied by School

5 Math Options: MATH 3215, MATH 3670, MATH 4305, MATH 4317, MATH 4320, MATH 4347, MATH 4541, MATH 4581, MATH 4640

6 ME 2202, ME 3015, ME 3322, and PHYS 2XXX (AP credit) are not allowed.

7 MATH 1554 or MATH 1564 may be used in place of MATH 1553.

- A grade of C or better is required in each 1000 and 2000 level mathematics and physics course; a course with a D or F grade must be repeated the next semester the student is in residence.
- A 2.0 or higher overall grade-point average is required to schedule COE 2001

Cooperative Plan

The School of Aerospace Engineering offers BSAE with COOP option. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. For additional information about the Georgia Tech Co-Op program, visit www.coop.gatech.edu (http://www.coop.gatech.edu).

International Plan

The International Plan is a challenging and coherent academic program for undergraduates emphasizing global competence within the context of the aerospace engineering major. This program has specific language requirements. There are also coursework requirements related to history, global economy, international culture, and residential foreign experience. Refer to www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu) for the general requirements of the International Plan. These requirements may be satisfied by carefully selecting the humanities, social sciences, and free elective hours available in the program, in consultation with a faculty advisor.

Research Option

The school of Aerospace Engineering offers the “Research Option” under the BSAE degree program. In order to graduate with a BSAE (RO) degree, the students must

- Complete at least nine units of undergraduate research (over at least two, preferably three terms). Research may be for either pay (AE 2698 or AE 4698) or credit (AE 2699 or AE 4699). Research for credit may be used towards the BSAE free elective requirements.
- Write an undergraduate thesis/report of research on their findings. This is usually done during the graduating term.
- Take both LMC 4701 (typically taken during the first or second semester of research) and LMC 4702: (taken during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a prerequisite for LMC 4702. Completion of Research Option is noted on the student’s transcript.
For additional details, please contact:

Lakshmi Sankar
Daurette Joseph

BS/MS Honors Program

A combined BS/MS honors program is also offered that prepares students for graduate studies and research. Please see http://ae.gatech.edu/bs-ms-honors-program for more information.

Bachelor of Science in Applied Languages & Intercultural Studies

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

- Bachelor of Science in Applied Languages and Intercultural Studies - Chinese (p. 179)
- Bachelor of Science in Applied Languages and Intercultural Studies - French (p. 181)
- Bachelor of Science in Applied Languages and Intercultural Studies - German (p. 183)
- Bachelor of Science in Applied Languages and Intercultural Studies - Japanese (p. 185)
- Bachelor of Science in Applied Languages and Intercultural Studies - Korean (p. 187)
- Bachelor of Science in Applied Languages and Intercultural Studies - Russian (p. 189)
- Bachelor of Science in Applied Languages and Intercultural Studies - Spanish (p. 191)

Bachelor of Science in Applied Languages and Intercultural Studies - Chinese

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or</td>
<td>APPH 1050 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td>MATH 15 Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>CS 1371 Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td>MATH 15 Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>MATH 15 and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
</tbody>
</table>
PUBP 3000 American Constitutional Issues

Core F - Courses Related to Major

Tech Requirement 7 3

Approved Cluster 1 15

ALIS Major Requirements

Select two of the following: 2,8

CHIN 3021 Chinese Society and Culture I
CHIN 3022 Chinese Society and Culture II
CHIN 3691 Chinese for Current Events
CHIN 3693 Conversation Practicum (LBAT)
CHIN 4021 Advanced Language, Popular Music and Culture
CHIN 4031 Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China
CHIN 4813 Special Topics
CHIN 4901 Special Problems in Chinese
CHIN 4902 Special Problems in Chinese
CHIN 3692 Business Chinese 3
or CHIN 369 Conversation Practicum (LBAT)
or CHIN 4696 Chinese Internship

Select one of the following: 4,8

CHIN 3021 Chinese Society and Culture I
CHIN 3022 Chinese Society and Culture II
CHIN 3813 Special Topics
CHIN 4003 Advanced Chinese II: Contemporary China
CHIN 4004 Advanced Chinese III: Contemporary China
CHIN 4021 Advanced Language, Popular Music and Culture
CHIN 4031 Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China
CHIN 4699 Undergraduate Research
CHIN 4813 Special Topics
CHIN 4901 Special Problems in Chinese

Select two of the following: 5,8

CHIN 3003 Intermediate Chinese III
CHIN 3004 Advanced Chinese I
CHIN 3021 Chinese Society and Culture I
CHIN 3022 Chinese Society and Culture II
CHIN 3691 Chinese for Current Events
CHIN 3692 Business Chinese
CHIN 3693 Conversation Practicum (LBAT)
CHIN 3813 Special Topics
CHIN 4003 Advanced Chinese II: Contemporary China
CHIN 4004 Advanced Chinese III: Contemporary China
CHIN 4021 Advanced Language, Popular Music and Culture
CHIN 4031 Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China
CHIN 4699 Undergraduate Research
CHIN 4813 Special Topics
CHIN 4901 Special Problems in Chinese

CHIN 4902 Special Problems in Chinese

CHIN 4500 Advanced Intercultural Seminar 3
ML Electives 5,8 15

Free Electives
Free Electives 26

Total Credit Hours 122

1. Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
2. Courses related to Societies/Cultures thread
3. Courses related to Industry/Technology thread
4.Courses related to Arts/Media thread
5. Courses related to Advanced Language Acquisition thread
6. Must be CHIN 3000/4000 level course
7. ARCH 4220, BC 3630, BMED 2400, CEE 1370, CHEM 1315, CP 4510, CS 1301, CS 1315, CS 1316, CS 1331, CS 1332, CS 4235, EAS 4430, EAS 4610, ECE 2030, ID 3103, ID 4103, LMC 3402, LMC 3410, ME 1770, ME 2016, MGT 2210, MGT 4051, MGT 4058, MGT 4052, MUSI 4630, PHYS 3266
8. Up to two CHIN 34XX courses may be counted in total for the ALIS-CHIN major requirements.

International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS-IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
 d. transnational problems of the environment, terrorism, health, and migration; among other issues.
2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional
economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members

2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)

3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.

4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.

5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.

6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - French

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics for Management II or MATH 15 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS</td>
<td>Introduction to Computing or CS 1315 Introduction to Media Computation or CS 1371 Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>HIST</td>
<td>History of the World or History of a Country</td>
<td>6</td>
</tr>
<tr>
<td>Lab</td>
<td>Science</td>
<td>4</td>
</tr>
<tr>
<td>Lab</td>
<td>Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH</td>
<td>Finite Mathematics or MATH 15 Differential Calculus & MATH 15 Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>POL</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>HIST</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td>Government of the United States</td>
<td></td>
</tr>
</tbody>
</table>

Degree Information (http://www.modlangs.gatech.edu/degrees)
Bachelor of Science in Applied Languages and Intercultural Studies - French

Core F - Courses Related to Major

- **Tech Requirement**: 3
- **Approved Cluster**: 15

ALIS Major Requirements

Select one of the following: 3

- FREN 3011 France Today I
- FREN 3012 France Today II
- FREN 3014 Introduction to Contemporary France
- FREN 3015 Social Identities in Contemporary French Culture
- FREN 3017 Paris: Modernity Today
- FREN 3061 France: Culture, Economy, Commerce I
- FREN 3062 France: Culture, Economy and Commerce II
- FREN 3500 Field Work Abroad
- FREN 3691 Business Communication and Correspondence in France
- FREN 3692 French Business and Technology
- FREN 3693 French Business and Technology II
- FREN 3694 French Business and Technology Abroad
- FREN 3813 Special Topics
- FREN 4001 French Stylistics
- FREN 4061 French Science and Technology I
- FREN 4101 Literature of the Francophone World I
- FREN 4102 Literature of the Francophone World II
- FREN 4103 Francophone Africa Today
- FREN 4105 Francophone Cinema
- FREN 4200 Introduction to French Philosophy
- FREN 4241 French Cinema I: Cinematic Experiences
- FREN 4242 French Cinema II: The French New Wave
- FREN 4500 Advanced Intercultural Seminar
- FREN 4695 French Internship
- FREN 4699 Undergraduate Research
- FREN 4901 Special Problems in French
- FREN 4902 Special Problems in French

Select two of the following: 3

- FREN 3030 French Phonetics
- FREN 3040 Reading and Translation
- FREN 3121 Advanced Composition
- FREN 3813 Special Topics
- FREN 4001 French Stylistics
- FREN 4061 French Science and Technology I
- FREN 4101 Literature of the Francophone World I
- FREN 4102 Literature of the Francophone World II
- FREN 4103 Francophone Africa Today
- FREN 4105 Francophone Cinema
- FREN 4200 Introduction to French Philosophy
- FREN 4241 French Cinema I: Cinematic Experiences
- FREN 4242 French Cinema II: The French New Wave
- FREN 4500 Advanced Intercultural Seminar
- FREN 4695 French Internship
- FREN 4699 Undergraduate Research
- FREN 4901 Special Problems in French
- FREN 4902 Special Problems in French

International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS - IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and...
Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
 d. transnational problems of the environment, terrorism, health, and migration; among other issues.

2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization, and questions of natural resource sustainability.

3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members

2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)

3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.

4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.

5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.

6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - German

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Calculus II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93) 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus & MATH 15: Introduction to Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Any SS (p. 97) 9

Core F - Courses Related to Major

Tech Requirement 7

Approved Cluster 1

15

ALIS Major Requirements

Select one of the following: 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRMN 301</td>
<td>Introduction to German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td></td>
</tr>
<tr>
<td>GRMN 303</td>
<td>Crossing Borders in Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>GRMN 3110</td>
<td>Television & Electronic Culture</td>
<td></td>
</tr>
<tr>
<td>GRMN 369</td>
<td>German Business and Technology: Current Issues</td>
<td></td>
</tr>
<tr>
<td>GRMN 3691</td>
<td>German Business and Technology: Communication</td>
<td></td>
</tr>
<tr>
<td>GRMN 381</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>GRMN 3901</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>GRMN 401</td>
<td>Perspectives of German Media</td>
<td></td>
</tr>
<tr>
<td>GRMN 402</td>
<td>Typical German Towards a German Identity</td>
<td></td>
</tr>
<tr>
<td>GRMN 4022</td>
<td>Selected Readings in German Literature</td>
<td></td>
</tr>
<tr>
<td>GRMN 4024</td>
<td>German Film and Literature</td>
<td></td>
</tr>
<tr>
<td>GRMN 4025</td>
<td>German Culture & Film</td>
<td></td>
</tr>
<tr>
<td>GRMN 4026</td>
<td>German Post-Wall Cinema</td>
<td></td>
</tr>
<tr>
<td>GRMN 4120</td>
<td>Literary Representations of German History</td>
<td></td>
</tr>
<tr>
<td>GRMN 469</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>GRMN 481</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>GRMN 4901</td>
<td>Special Problems in German</td>
<td></td>
</tr>
<tr>
<td>GRMN 4902</td>
<td>Special Problems in German</td>
<td></td>
</tr>
<tr>
<td>GRMN 4904</td>
<td>Advanced Intercultural Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following: 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRMN 301</td>
<td>Introduction to German Literature</td>
<td></td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td></td>
</tr>
<tr>
<td>GRMN 302</td>
<td>Conversation and Composition</td>
<td></td>
</tr>
<tr>
<td>GRMN 3026</td>
<td>German Stylistics</td>
<td></td>
</tr>
<tr>
<td>GRMN 369</td>
<td>German Business and Technology: Structure, Communication and Correspondence</td>
<td></td>
</tr>
<tr>
<td>GRMN 3691</td>
<td>German Business and Technology: Communication</td>
<td></td>
</tr>
<tr>
<td>GRMN 381</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>GRMN 3901</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>GRMN 406</td>
<td>Advanced Business German I</td>
<td></td>
</tr>
<tr>
<td>GRMN 412</td>
<td>Advanced Stylistics: Grammar and Discourse</td>
<td></td>
</tr>
<tr>
<td>GRMN 469</td>
<td>German Internship</td>
<td></td>
</tr>
<tr>
<td>GRMN 4691</td>
<td>Berlin: The Capital in the 20th Century</td>
<td></td>
</tr>
<tr>
<td>GRMN 4695</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>GRMN 481</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>GRMN 4901</td>
<td>Special Problems in German</td>
<td></td>
</tr>
<tr>
<td>GRMN 4902</td>
<td>Special Problems in German</td>
<td></td>
</tr>
<tr>
<td>GRMN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

ML Electives 6

15

Free Electives
International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS - IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian; Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
 d. transnational problems of the environment, terrorism, health, and migration; among other issues.
2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.
3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members
2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)
3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.
4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.
5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.
6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements. BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - Japanese

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study...
in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1712 Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Integral Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CS 1371 Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1711 Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Differential Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& MATH 15:and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tech Requirement ^7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Approved Cluster ^1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ALIS Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JAPN 3692 Business Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3693 Japan Today</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3813 Special Topics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4165 Critical Readings in Japanese Culture and Arts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4173 Japanese Culture and Society through Anime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4183 Japanese Culture and Society through Songs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4163 Introduction to Japanese Linguistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4743 Japanese Society and Politics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4750 Japanese Discourse and Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4780 Japanese Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JAPN 3691 Technical and Scientific Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3692 Business Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3813 Special Topics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4183 Japanese Culture and Society through Songs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4543 Advanced Japanese for NLP Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4695 Japanese Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JAPN 3691 Technical and Scientific Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3692 Business Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3813 Special Topics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4183 Japanese Culture and Society through Songs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4543 Advanced Japanese for NLP Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4695 Japanese Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4743 Japanese Society and Politics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4750 Japanese Discourse and Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>JAPN 3001 Advanced Japanese I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3691 Technical and Scientific Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3692 Business Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3693 Japan Today</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 3813 Special Topics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4113 Advanced reading and Listening in Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4123 Technical and Business Japanese Translation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4163 Introduction to Japanese Linguistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4173 Japanese Culture and Society through Anime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4183 Japanese Culture and Society through Songs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4213 Designing Websites in Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4233 CALI Pedagogy for Japanese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4235 3D RPG Development for Japanese Instruction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4695 Japanese Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4743 Japanese Society and Politics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4750 Japanese Discourse and Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4780 Japanese Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAPN 4500 Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ML Electives ^6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>122</td>
</tr>
</tbody>
</table>

1 Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
2 Courses related to Societies/Cultures thread
3 Courses related to Industry/Technology thread

^7 Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.

^1 Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.

^2 Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.

^3 Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS - IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS/IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
 d. transnational problems of the environment, terrorism, health, and migration; among other issues.

2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members
2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)
3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.
4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.
5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.
6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - Korean

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech,
graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

Select one of the following: 4,8

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOR 3691</td>
<td>Business Korean</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3692</td>
<td>Current Issues and Technology in Korea</td>
<td></td>
</tr>
<tr>
<td>KOR 3813</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>KOR 4060</td>
<td>Media and Public Culture</td>
<td></td>
</tr>
<tr>
<td>KOR 4695</td>
<td>Korean Internship</td>
<td></td>
</tr>
<tr>
<td>KOR 4699</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>KOR 4813</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>KOR 4901</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>KOR 4902</td>
<td>Special Problems</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following: 5,8

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOR 3001</td>
<td>Advanced Korean I</td>
<td></td>
</tr>
<tr>
<td>KOR 3002</td>
<td>Advanced Korean II</td>
<td></td>
</tr>
<tr>
<td>KOR 3813</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>KOR 4002</td>
<td>Selected Readings Of Modern Korean</td>
<td></td>
</tr>
<tr>
<td>KOR 4813</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>KOR 4901</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>KOR 4902</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>KOR 4500</td>
<td>Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ML Electives</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Free Electives

Free Electives

Total Credit Hours 119

1. Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
2. Courses related to Societies/Cultures thread
3. Courses related to Industry/Technology thread
4. Courses related to Arts/Media thread
5. Courses related to Advanced Language Acquisition thread
6. Must be KOR 3000/4000 level course
7. ARCH 4220, BC 3630, BMED 2400, CEE 1770, CHEM 1315, CP 4510, CS 1301, CS 1315, CS 1316, CS 1331, CS 1332, CS 4235, EAS 4430, EAS 4610, ECE 2030, ID 3103, ID 4103, LMC 3402, LMC 3410, ME 1770, ME 2016, MGT 2210, MGT 4051, MGT 4058, MGT 4052, MUSI 4630, PHYS 3266
8. Up to two KOR 34XX courses may be counted in total for the ALIS-KOR major requirements.

International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS-IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.
In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
 d. transnational problems of the environment, terrorism, health, and migration; among other issues.

2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization, and questions of natural resource sustainability.

3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members

2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)

3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.

4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.

5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.

6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - Russian

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including social and technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
</tbody>
</table>
 Bachelor of Science in Applied Languages and Intercultural Studies - Russian

or CS 1371 Computing for Engineers

Core C - Humanities
Any HUM (p. 93) 6

Core D - Science, Math, & Technology
Lab Science 4
Lab Science 4
MATH 1711 Finite Mathematics 8
or MATH 15 Differential Calculus
& MATH 15 and Introduction to Linear Algebra 4

Core E - Social Sciences
Select one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
Any SS (p. 97) 9

Core F - Courses Related to Major
Tech Requirement 7
Approved Cluster 1
ALIS Major Requirements
Select one of the following: 2
RUSS 3695 Contemporary Russia
RUSS 4335 Technology, Society, and Culture in the Soviet Union and Russia
RUSS 4360 Russian Culture through the Prism of Song
RUSS 4695 Russian Internship
Select one of the following: 3
RUSS 3692 Advanced Reading and Composition for Business, Science and Technology
RUSS 3695 Contemporary Russia
RUSS 4335 Technology, Society, and Culture in the Soviet Union and Russia
RUSS 4340 Invention of Business Discourse in Russia (1990-)
RUSS 4695 Russian Internship
Select one of the following: 4
RUSS 3222 The Russian Twentieth Century in Literature and Film
RUSS 4320 Nineteenth-Century Russian Writers
RUSS 4335 Technology, Society, and Culture in the Soviet Union and Russia
RUSS 4360 Russian Culture through the Prism of Song
Select two of the following: 5
RUSS 3001 Advanced Russian I
RUSS 3002 Advanced Russian II
RUSS 3691 Intensive Advanced Russian
RUSS 3692 Advanced Reading and Composition for Business, Science and Technology
RUSS 3695 Contemporary Russia
RUSS 4320 Nineteenth-Century Russian Writers
RUSS 4335 Technology, Society, and Culture in the Soviet Union and Russia

Free Electives
Free Electives 26

Total Credit Hours 122

1. Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
2. Courses related to Societies/Cultures thread
3. Courses related to Industry/Technology thread
4. Courses related to Arts/Media thread
5. Courses related to Advanced Language Acquisition thread
6. Must be RUSS 3000/4000 level course
7. Students may also take MATH 1551 and MATH 1554 or MATH 1551 and MATH 1564

International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS - IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with ALIS degree advisors):

1. One course (p. 86) focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics; and
d. transnational problems of the environment, terrorism, health, and migration; among other issues.

2. One course (p. 86) that provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. One course (p. 86) that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500/INTS 4500 (p. 86) course)

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members

2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)

3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.

4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.

5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.

6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Languages and Intercultural Studies - Spanish

The School of Modern Languages offers a Bachelor of Science degree in Applied Languages and Intercultural Studies, with separate language concentrations in Chinese, French, German, Japanese, Korean, Russian, and Spanish. The ALIS degree program delivers foreign language study in the many contexts in which other languages are spoken (including American Council of the Teaching of Foreign Languages (ACTFL) technical communication, cultural perspectives, industry, arts and literature, media and science) that will provide students with the competitive edge needed to meet 21st century language requirements of the global marketplace. Since this degree couples language and cultural development with studies in another discipline at Georgia Tech, graduates are expected to join the workforce in many different camps: international trade, management, operations and logistics, journalism, advertising and publicity, local and national government, not-for-profit entities, medicine, media, virtual world development, website design, among others. Students in this program take 33 credit hours of advanced language study in the areas of Societies and Cultures, Industry and Technology, Arts and Media, and Advanced Language Acquisition. In addition, students must complete a 15 credit hour concentration in an approved cluster or minor program. A total of 12 credit hours in the language or cluster areas must be completed abroad.

Degree Information (http://www.modlangs.gatech.edu/degrees)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues

Any SS (p. 97) 9

Core F - Courses Related to Major
Tech Requirement 7
Approved Cluster 15

ALIS Major Requirements
Select one of the following: 2

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 3050 Introduction to Reading Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3064 Medical Spanish</td>
</tr>
<tr>
<td>SPAN 3101 Spanish Conversation I</td>
</tr>
<tr>
<td>SPAN 3122 Cultural History of Spain II: Nineteenth and Twentieth Century Spain</td>
</tr>
<tr>
<td>SPAN 3211 Spain Today</td>
</tr>
<tr>
<td>SPAN 3235 Latin America Today</td>
</tr>
<tr>
<td>SPAN 3241 The Individual and the Family in Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3242 Society in Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3260 Identity in Hispanic American Literature</td>
</tr>
<tr>
<td>SPAN 3500 Science Fiction in Latin America</td>
</tr>
<tr>
<td>SPAN 3590 Issues of Sustainable Development in the Andean Region</td>
</tr>
<tr>
<td>SPAN 3690 Commerce and Sustainable Communities</td>
</tr>
<tr>
<td>SPAN 3691 Business Communication and Correspondence in the Hispanic</td>
</tr>
<tr>
<td>SPAN 3692 Business and Culture in the Hispanic World</td>
</tr>
<tr>
<td>SPAN 3694 Business and Culture in the Hispanic World: Seminar Abroad</td>
</tr>
<tr>
<td>SPAN 3697 Spanish for Health Care Professionals</td>
</tr>
<tr>
<td>SPAN 3698 Health Care Industry in Spain</td>
</tr>
<tr>
<td>SPAN 4101 Advanced Communication Workshop</td>
</tr>
<tr>
<td>SPAN 4150 Learning in the Hispanic Community</td>
</tr>
<tr>
<td>SPAN 4160 U.S. Spanish: Language and Cultures</td>
</tr>
<tr>
<td>SPAN 4165 Bilingualism in the Spanish Speaking World</td>
</tr>
<tr>
<td>SPAN 4220 Nation and Narration in Latin America</td>
</tr>
<tr>
<td>SPAN 4251 Hispanic Community Internship</td>
</tr>
<tr>
<td>SPAN 4255 Hispanic Drama Workshop</td>
</tr>
<tr>
<td>SPAN 4350 Ibero-American Cities</td>
</tr>
<tr>
<td>SPAN 4699 Undergraduate Research</td>
</tr>
<tr>
<td>SPAN 4813 Special Topics</td>
</tr>
<tr>
<td>SPAN 4901 Special Problems in Spanish</td>
</tr>
<tr>
<td>SPAN 4902 Special Problems in Spanish</td>
</tr>
</tbody>
</table>

Select one of the following: 4

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 3050 Introduction to Reading Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3122 Cultural History of Spain II: Nineteenth and Twentieth Century Spain</td>
</tr>
<tr>
<td>SPAN 3211 Spain Today</td>
</tr>
<tr>
<td>SPAN 3235 Latin America Today</td>
</tr>
<tr>
<td>SPAN 3241 The Individual and the Family in Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3242 Society in Hispanic Literature</td>
</tr>
<tr>
<td>SPAN 3260 Identity in Hispanic American Literature</td>
</tr>
<tr>
<td>SPAN 3500 Science Fiction in Latin America</td>
</tr>
<tr>
<td>SPAN 4065 Spanish Linguistics</td>
</tr>
<tr>
<td>SPAN 4101 Advanced Communication Workshop</td>
</tr>
<tr>
<td>SPAN 4165 Bilingualism in the Spanish Speaking World</td>
</tr>
<tr>
<td>SPAN 4220 Nation and Narration in Latin America</td>
</tr>
<tr>
<td>SPAN 4251 Hispanic Community Internship</td>
</tr>
<tr>
<td>SPAN 4255 Hispanic Drama Workshop</td>
</tr>
<tr>
<td>SPAN 4699 Undergraduate Research</td>
</tr>
<tr>
<td>SPAN 4813 Special Topics</td>
</tr>
<tr>
<td>SPAN 4901 Special Problems in Spanish</td>
</tr>
<tr>
<td>SPAN 4902 Special Problems in Spanish</td>
</tr>
</tbody>
</table>

Select two of the following: 5

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 3061 Spanish for Business I: Fundamentals</td>
</tr>
<tr>
<td>SPAN 3064 Medical Spanish</td>
</tr>
<tr>
<td>SPAN 3590 Issues of Sustainable Development in the Andean Region</td>
</tr>
<tr>
<td>SPAN 3690 Commerce and Sustainable Communities</td>
</tr>
<tr>
<td>SPAN 3691 Business Communication and Correspondence in the Hispanic</td>
</tr>
<tr>
<td>SPAN 3692 Business and Culture in the Hispanic World</td>
</tr>
<tr>
<td>SPAN 3693 Hispanic Science and Technology</td>
</tr>
<tr>
<td>SPAN 3694 Business and Culture in the Hispanic World: Seminar Abroad</td>
</tr>
<tr>
<td>SPAN 3697 Spanish for Health Care Professionals</td>
</tr>
<tr>
<td>SPAN 4061 Spanish for Science and Technology I: Fundamentals</td>
</tr>
<tr>
<td>SPAN 4062 Spanish for Science and Technology II: Applications</td>
</tr>
<tr>
<td>SPAN 4251 Hispanic Community Internship</td>
</tr>
<tr>
<td>SPAN 4255 Hispanic Drama Workshop</td>
</tr>
<tr>
<td>SPAN 4350 Ibero-American Cities</td>
</tr>
<tr>
<td>SPAN 4695 Spanish Internship</td>
</tr>
<tr>
<td>SPAN 4699 Undergraduate Research</td>
</tr>
<tr>
<td>SPAN 4813 Special Topics</td>
</tr>
<tr>
<td>SPAN 4901 Special Problems in Spanish</td>
</tr>
<tr>
<td>SPAN 4902 Special Problems in Spanish</td>
</tr>
<tr>
<td>SPAN 4500 Advanced Intercultural Seminar</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 3061 Spanish for Business I: Fundamentals</td>
</tr>
<tr>
<td>SPAN 3064 Medical Spanish</td>
</tr>
<tr>
<td>SPAN 3590 Issues of Sustainable Development in the Andean Region</td>
</tr>
<tr>
<td>SPAN 3690 Commerce and Sustainable Communities</td>
</tr>
<tr>
<td>SPAN 3691 Business Communication and Correspondence in the Hispanic</td>
</tr>
<tr>
<td>SPAN 3692 Business and Culture in the Hispanic World</td>
</tr>
<tr>
<td>SPAN 3693 Hispanic Science and Technology</td>
</tr>
<tr>
<td>SPAN 3694 Business and Culture in the Hispanic World: Seminar Abroad</td>
</tr>
<tr>
<td>SPAN 3697 Spanish for Health Care Professionals</td>
</tr>
<tr>
<td>SPAN 4061 Spanish for Science and Technology I: Fundamentals</td>
</tr>
<tr>
<td>SPAN 4062 Spanish for Science and Technology II: Applications</td>
</tr>
<tr>
<td>SPAN 4251 Hispanic Community Internship</td>
</tr>
<tr>
<td>SPAN 4255 Hispanic Drama Workshop</td>
</tr>
<tr>
<td>SPAN 4350 Ibero-American Cities</td>
</tr>
<tr>
<td>SPAN 4695 Spanish Internship</td>
</tr>
<tr>
<td>SPAN 4699 Undergraduate Research</td>
</tr>
<tr>
<td>SPAN 4813 Special Topics</td>
</tr>
<tr>
<td>SPAN 4901 Special Problems in Spanish</td>
</tr>
<tr>
<td>SPAN 4902 Special Problems in Spanish</td>
</tr>
</tbody>
</table>
International Plan

The degree requirements for the Applied Languages and Intercultural Studies (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (ALIS - IP) are basically the same as for the ALIS degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, and Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. ALIS-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set ALIS majors apart from other applicants with international experience in a global context. (satisfied by the CHIN 4500/FREN 4500/GRMN 4500/JAPN 4500/KOR 4500/RUSS 4500/SPAN 4500 course)

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours) with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.

Bachelor of Science in Applied Mathematics - General

<table>
<thead>
<tr>
<th>ML Electives</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>15</td>
</tr>
<tr>
<td>Free Electives</td>
<td>26</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>122</td>
</tr>
</tbody>
</table>

1. Designed for coursework toward certificates, minors, additional degrees, or study-abroad programs. Please consult with advisor on course selection.
2. Courses related to Societies/Cultures thread
3. Courses related to Industry/Technology thread
4. Courses related to Arts/Media thread
5. Courses related to Advanced Language Acquisition thread
6. Must be SPAN 3000/4000 level course
7. AE 1770, ARCH 4220, BC 3630, BMED 2400, CEE 1770, CHEM 1315, CP 4510, CS 1301, CS 1315, CS 1316, CS 1331, CS 1332, CS 4235, EAS 4430, EAS 4610, ECE 2030, ID 3103, ID 4103, LMC 3402, LMC 3410, ME 1770, ME 2016, MGT 2210, MGT 4051, MGT 4058, MGT 4052, MUSI 4630, PHYS 3266

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS/MS Applied Languages and Intercultural Studies

Eligibility requirements:

1. Recommendation of two Modern Languages faculty members
2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)
3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.
4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.
5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.
6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours) with 6 credit hours being shared = 146 credit hours. Students may double count a 6000-level elective (3 hours) and 6000-level Intercultural Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3 credits of this requirement will be completed at undergraduate level), of which 18 or more must be in the target language, while one advisor-approved course not in the target language is allowed (3 credit hours of graduate level coursework taken at the undergraduate level will satisfy both BSALIS ML elective and a MSALIS elective requirement). BS/MS students must also complete Intercultural Seminar (6500) that will satisfy both the undergraduate and graduate seminar requirement.
Bachelor of Science in Applied Physics - Business Option

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics.

The degree program in applied physics may be better suited for entry into industry or government upon graduation, preparation for further professional training (medicine, law, dentistry, or business), or preparation for graduate study in some other discipline. The applied physics program differs from the traditional one in that a few courses intended primarily as preparation for graduate study in physics are replaced by courses oriented toward the applications of physics.

Each of the baccalaureate programs contains the following: a) courses needed to meet general institutional degree requirements; b) a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei; c) technical electives that enable the student to explore areas of his or her choice in greater depth; d) courses involving undergraduate research, and e) free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective.

Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit. A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor’s degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

Undergraduate Admissions (http://www.admission.gatech.edu)
Code	Title	Credit Hours

Wellness
- APPH 1040 | Scientific Foundations of Health | 2
- or APPH 10 | The Science of Physical Activity and Health |

Core A - Essential Skills
- ENGL 1101 | English Composition I | 3
- ENGL 1102 | English Composition II | 3
- MATH 1552 | Integral Calculus | 4

Core B - Institutional Options
- CS 1301 | Introduction to Computing | 3
- or CS 1371 | Computing for Engineers |

Core C - Humanities
- Any HUM (p. 93) | 6

Core D - Science, Math, & Technology
- PHYS 2211 | Introductory Physics I | 4
- PHYS 2212 | Introductory Physics II | 4
- MATH 1551 | Differential Calculus | 2
- MATH 1553 | Introduction to Linear Algebra | 2
- or MATH 155 | Linear Algebra |
- or MATH 156 | Linear Algebra with Abstract Vector Spaces |

Core E - Social Sciences
Choose one of the following: | 3
- HIST 2111 | The United States to 1877
- HIST 2112 | The United States since 1877
- INTA 1200 | American Government in Comparative Perspective
- POL 1101 | Government of the United States
- PUBP 3000 | American Constitutional Issues
- ECON 2106 | Principles of Microeconomics | 3
- Any SS (p. 97) | 6

Core F - Courses Related to Major
- MATH 2401 | Calculus III | 4
- MATH 2403 | Differential Equations | 4
- CHEM 1310 | General Chemistry | 4
- or CHEM 12 | Chemical Principles I |
- PHYS 2213 | Introduction to Modern Physics | 3
- PHYS 3201 | Classical Mechanics I | 3

Upper-Level Physics
- PHYS 3122 | Electrostatics and Magnetostatics | 3
- PHYS 3123 | Electrodynamics | 3
- PHYS 3141 | Thermodynamics | 3
- PHYS 3143 | Quantum Mechanics I | 3
- PHYS 3211 | Electronics I | 5
- PHYS 3266 | Computational Physics | 4
- PHYS 4206 | Electronics II | 5
- PHYS 4321 | Advanced Laboratory I | 3
- PHYS 4601 | Senior Seminar I | 1
- PHYS 4602 | Senior Seminar II | 1

Physics or Technical Electives
Any PHYS or Technical Electives | 2, 3, 4, 5 |

Business Option

Total Credit Hours
122

Student must have 2.0 in all PHYS classes 3000-level or higher.
Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

1. If PHYS 2231 is taken, extra hour goes toward Free Electives
2. BIOL 4478, CHEM 3411, CHEM 3412, CHEM 3511, EAS 2750, EAS 4300, EAS 4430, ECE 4501, MATH 2106 MATH 3215, MATH 3235, MATH 3420, MATH 4347, MATH 4348, MATH 4581, NRE 3301, NRE 4610
3. Minimum of one class in PHYS 3211, PHYS 3226, PHYS 4322
4. Maximum of six credit hours below 3000-level
5. Maximum of nine credit hours PHYS 2699 or PHYS 4699

Bachelor of Science in Applied Physics - General

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics.

The degree program in applied physics may be better suited for entry into industry or government upon graduation, preparation for further professional training (medicine, law, dentistry, or business), or preparation for graduate study in some other discipline. The applied physics program differs from the traditional one in that a few courses intended primarily...
as preparation for graduate study in physics are replaced by courses oriented toward the applications of physics.

Each of the baccalaureate programs contains the following: a) courses needed to meet general institutional degree requirements; b) a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei; c) technical electives that enable the student to explore areas of his or her choice in greater depth; d) courses involving undergraduate research, and e) free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective.

Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit. A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

Undergraduate Admissions (http://www.admission.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

| Any HUM (p. 93) | 6 |

Core D - Science, Math, & Technology

PHYS 2211	Introductory Physics I	4
PHYS 2212	Introductory Physics II	4
MATH 1551	Differential Calculus	2
MATH 1553	Introduction to Linear Algebra	2
or MATH 1554	Linear Algebra	
or MATH 1555	Linear Algebra with Abstract Vector Spaces	

Core E - Social Sciences

<table>
<thead>
<tr>
<th>Choose one of the following:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>9</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

MATH 2401 Calculus III	4
MATH 2403 Differential Equations	4
CHEM 1310 General Chemistry	4
or CHEM 1210 Chemical Principles I	
PHYS 2213 Introduction to Modern Physics	3
PHYS 3201 Classical Mechanics I	3

Upper-Level Physics

PHYS 3122 Electrostatics and Magnetostatics	3
PHYS 3123 Electrodynamics	3
PHYS 3141 Thermodynamics	3
PHYS 3143 Quantum Mechanics I	3
PHYS 3211 Electronics I	5
PHYS 3266 Computational Physics	4
PHYS 4206 Electronics II	5
PHYS 4321 Advanced Laboratory I	3
PHYS 4601 Senior Seminar I	1
PHYS 4602 Senior Seminar II	1

Physics or Technical Electives

| Any PHYS or Technical Electives 2,3,4,5 | 14 |

Free Electives

| Free Electives | 14 |

Total Credit Hours 122

Student must have 2.0 in all PHYS classes 3000-level or higher

Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

1 If PHYS 2231 is taken, extra hour goes toward Free Electives
2 BIOL 4478, CHEM 3411, CHEM 3412, CHEM 3511, EAS 2750, EAS 4300, EAS 4430, ECE 4501, MATH 2106, MATH 3215, MATH 3235, MATH 4320, MATH 4347, MATH 4348, MATH 4581, NRE 3301, NRE 4610
3 Minimum of one class in PHYS 3211, PHYS 3226, PHYS 4322
4 Maximum of six credit hours below 3000-level
5 Maximum of nine credit hours PHYS 2699 or PHYS 4699
6 If PHYS 2232 is taken, extra hour goes toward Free Electives

Bachelor of Science in Applied Physics

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics.
The degree program in applied physics may be better suited for entry into industry or government upon graduation, preparation for further professional training (medicine, law, dentistry, or business), or preparation for graduate study in some other discipline. The applied physics program differs from the traditional one in that a few courses intended primarily as preparation for graduate study in physics are replaced by courses oriented toward the applications of physics.

Each of the baccalaureate programs contains the following: a) courses needed to meet general institutional degree requirements; b) a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei; c) technical electives that enable the student to explore areas of his or her choice in greater depth; d) courses involving undergraduate research, and e) free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective.

Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

Undergraduate Admissions (http://www.admission.gatech.edu)

- Bachelor of Science in Applied Physics - General (p. 195)
- Bachelor of Science in Applied Physics - Business Option (p. 194)

Bachelor of Science in Architecture

The Bachelor of Science in Architecture (B.S. Arch) offers a rigorous and distinguished architectural education profile for our students around technology in all areas – design, history, theory, and communication. It is defined by a knowledge of how to think about and apply technology in architecture. Our program offers flexibility in the studio design sequence to allow coordinated interdisciplinary work with other schools at Georgia Tech. We build our academic foundation on studio classes, history and theory, and a deliberate blend of technology and design. We offer incubator workshops to all our students, from Freshmen through Seniors, which allow them to follow their intellectual passions and hone in-demand skills. Our students graduate with a broad-based undergraduate education grounded in design, science, and technology.

The Bachelor of Science in Architecture program prepares students for graduate-level studies in architecture, for graduate study in related fields, or a variety of careers related to architecture, the building industry, or government service.

Grade Requirements

Students must pass all architecture undergraduate studios with a grade of C or above in order to move forward to the next studio in the sequence. ARCH 2011, ARCH 2012. Each sequence of design studio courses must be started in the fall semester.

A maximum of 9 credit hours may be taken on a pass/fail basis. Only courses taken as free electives within the undergraduate curriculum are eligible for pass/fail credit. See Institute regulations regarding pass/fail courses (p. 159).

Students who complete both the Bachelor of Science in Architecture (BS Arch) and Master of Architecture (M.Arch.) in the Georgia Tech School of Architecture may apply up to 6 credit hours of graduate coursework toward both degrees. In order to qualify for this option, the student must complete the undergraduate degree with a cumulative grade-point average of 3.5 or higher and enter the Masters program in the following fall term.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative</td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 1016</td>
<td>Foundation Studio 1</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 1017</td>
<td>Architecture Design Studio 1</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 1020</td>
<td>Media + Modeling 1</td>
<td>3</td>
</tr>
</tbody>
</table>
Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 1060</td>
<td>Introduction to Design and the Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2111</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2016</td>
<td>Architecture Design Studio 2</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2017</td>
<td>Architecture Design Studio 3</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2020</td>
<td>Media + Modeling 2</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2112</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2211</td>
<td>Construction Technology and Design Integration I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 3016</td>
<td>Architecture Design Studio 4</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 3017</td>
<td>Architecture Design Studio 5</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 3231</td>
<td>Environmental Systems and Design Integration I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4015</td>
<td>Structures 1</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4016</td>
<td>Architecture Design Studio 6</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4017</td>
<td>Architecture Design Studio 7</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4803</td>
<td>Special Topics (Design Strategies)</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Credit Hours 124

Pass-fail only allowed for Free Electives.

1. No ARCH courses allowed.
2. If PHYS 2231 is taken, excess hour applies to Free Electives.
3. C minimum or higher

International Plan

The International Plan (IP) in the School of Architecture is a challenging and coherent academic program for undergraduate students who will develop an introductory level of global competence within the study of architecture. The International Plan is an intensive degree-long program designed to prepare students with the ability to:

1. assimilate comfortably in a constantly evolving international context within the profession of architecture,
2. value how architecture is practiced in different global contexts,
3. function effectively in a multi-national academic and work environment, and
4. understand the complexity of the global economy and the importance of developing a sensibility to international relations.

While many students gain some exposure to these aspects of today’s world through the patchwork of traditional international opportunities such as study abroad and international internships, IP is designed to develop a deeper level of competency in these areas within the study of architecture.

The requirements of IP are:

1. Proficiency in a Foreign Language
2. Globally Focused Courses
3. International Experience, and
4. A Capstone Course

IP students in the School of Architecture can fulfill the International Experience requirement of the International Plan by participation in a university-approved international program with the approval of the School of Architecture.

Undergraduate students in the School of Architecture must hold a minimum 2.5 GPA at the time of application to be eligible for the International Plan. Students must complete each architectural design studio with a grade of C or above in order to move forward in the sequence and maintain eligibility for IP. ARCH 2111, ARCH 2012 Each sequence of design studio courses must be started in the fall semester. Students will not be allowed to study abroad until they have completed the first four foundational studios.

For more information on IP, visit www.arch.gatech.edu/international-education (http://www.arch.gatech.edu/international-education).
MASTER OF SCIENCE IN ARCHITECTURE - ADVANCED PRODUCTION

The Master of Science in Architecture with a concentration in Advanced Production focuses on integrating advanced design, computation and manufacturing technologies into workflows for the production of experimental spatial systems, material assemblies and buildings. Coursework for this concentration incorporates emerging design technologies including robotics and automation, Augmented Reality (AR) / Virtual Reality (VR), Small Unmanned Aerial Systems (SuAS; aka “Drones”), additive manufacturing (3d-printing), subtractive computer numerical control (CNC) manufacturing processes, parametric modelling and production logistics. Graduates from this program will be prepared to leverage expertise in advanced digital design and production as consultants to or embedded within progressive architectural firms, digital manufacturing operations and advanced technology start-ups. Additionally, this concentration positions graduates to further pursue research through academic faculty positions or as potential PhD candidates.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses:</td>
<td></td>
</tr>
<tr>
<td>ARCH 8803</td>
<td>Advanced Productions</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6511</td>
<td>Robotic Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6506</td>
<td>Construction Materials, Systems, and Fabrications</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6507</td>
<td>Parametric Modeling and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6502</td>
<td>Scripting for Architecture and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6512</td>
<td>Research Colloquium</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6071</td>
<td>Architecture Design and Research Studio I</td>
<td>6</td>
</tr>
<tr>
<td>or ARCH 6072</td>
<td>Architectural Design and Research Studio 2</td>
<td></td>
</tr>
<tr>
<td>ARCH 8833</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>ARCH 7000</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capstone:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electives:</td>
<td></td>
</tr>
<tr>
<td>ARCH 6505</td>
<td>Geometric Constructs in Digital Space</td>
<td></td>
</tr>
<tr>
<td>ARCH 6426</td>
<td>3D Modeling in Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 6427</td>
<td>Advanced Modeling and Animation in Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 6474</td>
<td>Architecture Modeling & Media 3</td>
<td></td>
</tr>
<tr>
<td>ARCH 6501</td>
<td>Analog and Digital Design Computation</td>
<td></td>
</tr>
<tr>
<td>ARCH 8833</td>
<td>Building Systems and Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Independent Study focused on Advanced Productions guided by Faculty
MASTER OF SCIENCE IN ARCHITECTURE - BUILDING INFORMATION SYSTEMS

The Master of Science in Architecture with a concentration in Building Information Systems focuses on the applications of computational data sciences to the design, construction and operations building life cycle. This concentration provides a specific track for the School’s industry leading research in Building Information Modeling (BIM), Design Systems and building industry focused supply chain integration. The faculty have identified a specific, high demand career track for graduates of this program in the expansion of these fields as the design and construction industry becomes increasingly data and systems driven. Graduates from this program are prepared for industry positions such as Specialist BIM Consultant, BIM Software Developer or Product Manager, or building industry focused Data Architect, System Designer or System Integrator. Additionally, the concentration prepares students for specialized computation-focused PhD studies that can provide graduates with competitive advantage in the pursuit of academic positions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 6513</td>
<td>Building Systems & Data</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6503</td>
<td>Building Information Modeling - Concepts and Applications</td>
<td>3</td>
</tr>
<tr>
<td>COA 8676</td>
<td>Design and Engineering Databases</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6502</td>
<td>Scripting for Architecture and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6501</td>
<td>Analog and Digital Design Computation</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6512</td>
<td>Research Colloquium</td>
<td>3</td>
</tr>
<tr>
<td>Capstone:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6071</td>
<td>Architecture Design and Research Studio I¹</td>
<td>1</td>
</tr>
<tr>
<td>or ARCH 6072</td>
<td>Architectural Design and Research Studio 2</td>
<td></td>
</tr>
<tr>
<td>ARCH 8833</td>
<td>Special Topics I¹</td>
<td></td>
</tr>
<tr>
<td>ARCH 7000</td>
<td>Master’s Thesis</td>
<td></td>
</tr>
<tr>
<td>Electives:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6228</td>
<td>Analytical Investigations in Urban Design</td>
<td></td>
</tr>
<tr>
<td>ARCH 6229</td>
<td>Construction Technology and Design Integration I</td>
<td></td>
</tr>
<tr>
<td>ARCH 6210</td>
<td>Architectonics</td>
<td></td>
</tr>
<tr>
<td>COA 8685</td>
<td>Building Performance Simulation</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 30

¹ Independent Study focused on Building Information Systems guided by Faculty
MASTER OF SCIENCE IN ARCHITECTURE - DESIGN COMPUTATION

The Master of Science in Architecture with a concentration in Design Computation explores the theoretical and practical basis of design as a computational premise. The possibility of design is viewed through the lens of history and theoretical foundations of fields as diverse as mathematics, logic, linguistics and cybernetics. The School of Architecture is one of the leading institutions in the study of Shape Grammars – an area of study that views architectural drawing as a formal logic of geometric shapes. The Shape Computation Lab within the School of Architecture is a leader in the theory of design computation as well as its applications to practice. Students graduating from this concentration are prepared to pursue a professional career in architecture or advanced studies and eventual academic careers at the intersection of the fields of design, computer science and mathematics.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 6508</td>
<td>Shape Grammars</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6501</td>
<td>Analog and Digital Design Computation</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6513</td>
<td>Building Systems & Data</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6502</td>
<td>Scripting for Architecture and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6210</td>
<td>Architectonics</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6512</td>
<td>Research Colloquium</td>
<td>3</td>
</tr>
</tbody>
</table>

Capstone:
- ARCH 6071 Architecture Design and Research Studio I
 or ARCH 6072 Architectural Design and Research Studio 2
- ARCH 8833 Special Topics
- ARCH 7000 Master’s Thesis

Electives: 6
- ARCH 6509 Computation, Creativity and Design Cognition
- ARCH 6426 3D Modeling in Architecture
- ARCH 6474 Architecture Modeling & Media 3
- ARCH 6228 Analytical Investigations in Urban Design
- ARCH 6507 Parametric Modeling and Design
- ARCH 6505 Geometric Constructs in Digital Space

Total Credit Hours 30

1 Independent Study focused on Design Computation guided by Faculty
MASTER OF SCIENCE IN ARCHITECTURE - HEALTH & DESIGN

The Master of Science Architecture with a concentration in Design and Health is designed for practicing architects, industrial designers, systems engineers, nurses, occupational therapists, clinicians, construction professionals, and health administrators who wish to gain additional expertise in healthcare design. Whatever their career path, graduates will be prepared to serve as consultants or project managers on healthcare design projects in consulting firms, healthcare organizations, and manufacturers; help conduct quality improvement and other healthcare projects; and other leadership roles.

This program is a full-time, post-professional program. It is a research-based program that requires a minimum of 30 credit hours. The objective is to provide students with the theoretical, technical and applied knowledge and skills to practice within a range of health-related disciplines.

The program offers students major concentrations in one of three clusters:

- Design for Healthy Aging in the Community
- Rehabilitation and Assistive Technology Design
- Design in Healthcare Environments

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 6271</td>
<td>Healthcare Design of the Future</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 8843</td>
<td>Universal Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 8803</td>
<td>Advanced Planning Methods</td>
<td>3</td>
</tr>
<tr>
<td>COA 8630</td>
<td>Theories of Architecture, Space and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6243</td>
<td>Evidence-Based Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6268</td>
<td>Advanced Architecture, Culture and Behavior:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Theories, Models and Methods</td>
<td></td>
</tr>
</tbody>
</table>

Capstone:

- ARCH 6071 Architecture Design and Research Studio I
- or ARCH 6072 Architectural Design and Research Studio 2
- ARCH 8833 Special Topics in Health and Design
- ARCH 7000 Master’s Thesis

Electives:

- Faculty Guided Electives

Total Credit Hours 30

1 Independent Study guided by Faculty
MASTER OF SCIENCE IN ARCHITECTURE - HIGH PERFORMANCE BUILDING

The Master of Science in Architecture with a concentration in High Performance Buildings is focused around the use of building physics and building technology for sustainable architectural design. Emphasis is placed on the analysis of the energy performance and environmental impacts of buildings, as well as on the integration of these metrics in the development of innovative architecture. The program is founded on a first-principles approach to building physics, envelope design, modeling and analysis, life-cycle assessment, applied simulation, AEC Integration, and critical ecological thinking.

The program is structured so that students with a professional degree in architecture, architectural engineering, or mechanical engineering can complete the MS degree in one year.

The program has been developed to address the need for architecture firms and integrated practices to have “in-house” experts on building technology to judge the impact of architectural design decisions on building performance at the early stages of design. These green building practitioners will be able to oversee the engineering and detailing of the building at later stages of the design process to ensure that performance targets are documented and fulfilled. Graduates of the program will be able to co-engineer and integrate novel building technologies into buildings.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 6226</td>
<td>Green Construction</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6242</td>
<td>Building Physics Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6532</td>
<td>Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6209</td>
<td>Building Enclosure: A Tectonic Element</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6731</td>
<td>Zero Energy House</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6241</td>
<td>Building Simulation in Design Practice</td>
<td>3</td>
</tr>
<tr>
<td>Capstone:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6071 Architecture Design and Research Studio</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>or ARCH 6072 Architectural Design and Research Studio 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 8833</td>
<td>Special Topics in Architectural Technology</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 7000</td>
<td>Master’s Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Electives:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faculty Guided Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours 30

1 Independent Study guided by Faculty

Bachelor of Science in Biochemistry - Business Option

The Bachelor of Science in Biochemistry degree program consists of a combination of requirements and electives that ensure a strong foundation in the chemical and biological sciences while providing the flexibility to tailor the curriculum to satisfy specific interests or career goals. This program may be of interest to students who plan careers in research, teaching, or in a life/health science profession (medicine, pharmacy, dentistry). The judicious use of free electives also enables the student to achieve considerable knowledge of other disciplines at Georgia Tech, such as chemical and biomolecular engineering, bioinformatics (computing), biomedical engineering, and biology. The biochemistry curriculum enables majors who are interested in medical, dental, or law school to meet admission requirements of these schools. Successful completion of the Pre-Health Science Option is noted on the student’s transcript.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>& 1107L</td>
<td>Biological Principles Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2214</td>
<td>Quantitative Chemical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 23 organic and Bioorganic Chemistry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEM 3211 Analytical Chemistry 5
CHEM 3371 Organic Chemistry Laboratory 2
CHEM 3411 Physical Chemistry I 3
CHEM 4511 Biochemistry I 3
CHEM 4512 Biochemistry II 3
CHEM 4521 Biophysical Chemistry 3
CHEM 4581 Biochemistry Laboratory I 3
CHEM 4582 Biochemistry Laboratory II 3
CHEM 4601 Chemistry Seminar 2

Biology Electives
BIOS 2600 Genetics 3
BIOS 3450 Cell and Molecular Biology 3
Select one of the following: 3
- BIOS 3380 Microbiology
- BIOS 3450 Cell and Molecular Biology
- BIOS 4015 Cancer Biology and Biotechnology
- BIOS 4340 Medical Microbiology
- BIOS 4400 Human Neuroanatomy
- BIOS 4401 Experimental Design and Statistical Methods in Biological Sciences
- BIOS 4418 Microbial Physiology
- BIOS 4464 Developmental Biology
- BIOS 4570 Immunology
- BIOS 4607 Molecular Biology of Microbes: Disease, Nature, and Biotechnology
- BIOS 4668 Eukaryotic Molecular Genetics
- CHEM 4765 Drug Design, Development, and Delivery

Business Option
ACCT 2101 Accounting I: Financial Accounting 3
or MGT 3000 Accounting for Decision Making
MGT 3011 Organizational Behavior 3
or MGT 315 Principles of Management
or PSYC 22 Industrial/Organizational Psychology
Select two of the following: 6
- MGT 3062 Financial Management
- MGT 3078 Finance and Investments
- MGT 3300 Marketing Management I
- MGT 3660 International Business
- MGT 4015 Advanced Managerial Accounting
- MGT 4026 Financial Reporting and Analysis I
- MGT 4028 Financial Analysis and Reporting of Technology Firms
- MGT 4030 International Accounting
- MGT 4190 Strategic Quality Management and Competitiveness
- MGT 4191 The Entrepreneurship Forum
- MGT 4192 Impact Speaker Series Forum
- MGT 4193 Servant Leadership, Values & Systems
- MGT 4194 Social Enterprise and Entrepreneurship
- MGT 4303 Personal Selling and Sales Management
- MGT 4304 Strategic Brand Management
- MGT 4307 Strategic Marketing
- MGT 4335 International Marketing
- MGT 4610 Law, Management, and Economics
- MGT 4670 Entrepreneurship

Free Electives
Free Electives 1
Total Credit Hours 122
Pass-fail only allowed for Free Electives.

International Plan
The BS in Chemistry (International Plan) and BS in Biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete in a supervised research experience with a faculty member in chemistry and biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Chemistry Website (http://www.chemistry.gatech.edu)

Research Option
The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To pursue the Research Option in the School of Chemistry and Biochemistry, students should obtain a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 315</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 22</td>
<td>Industrial/Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4015</td>
<td>Advanced Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4026</td>
<td>Financial Reporting and Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4028</td>
<td>Financial Analysis and Reporting of Technology Firms</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4030</td>
<td>International Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4190</td>
<td>Strategic Quality Management and Competitiveness</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4191</td>
<td>The Entrepreneurship Forum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4192</td>
<td>Impact Speaker Series Forum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4193</td>
<td>Servant Leadership, Values & Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4194</td>
<td>Social Enterprise and Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4303</td>
<td>Personal Selling and Sales Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4304</td>
<td>Strategic Brand Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4307</td>
<td>Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4335</td>
<td>International Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following research options: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4699</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

(complete during the first or second semester of research)
LMC 4702 Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)

Total Credit Hours 11

1 supervised research with faculty over three or more semesters
2 approval of proposal on project by a committee of two or more faculty
3 submission of an approved thesis

Successful completion of the Research Option is noted on the student’s transcript. Students completing this option often pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Chemistry Website (http://www.chemistry.gatech.edu)

Bachelor of Science in Biochemistry - General

The Bachelor of Science in Biochemistry degree program consists of a combination of requirements and electives that ensure a strong foundation in the chemical and biological sciences while providing the flexibility to tailor the curriculum to satisfy specific interests or career goals. This program may be of interest to students who plan careers in research, teaching, or in a life/health science profession (medicine, pharmacy, dentistry). The judicious use of free electives also enables the student to achieve considerable knowledge of other disciplines at Georgia Tech, such as chemical and biomolecular engineering, bioinformatics (computing), biomedical engineering, and biology. The biochemistry curriculum enables majors who are interested in medical, dental, or law school to meet admission requirements of these schools. Successful completion of the Pre-Health Science Option is noted on the student’s transcript.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CS 1371 Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 2212 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 1553 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 1211K Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 1212K Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 2380 Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 2551 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BIOS 1107 Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BIOS 1107L and Biological Principles Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 2600 Genetics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOS 3450 Cell and Molecular Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOS 3380 Microbiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 3450 Cell and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4015 Cancer Biology and Biotechnology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4340 Medical Microbiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4401 Experimental Design and Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or BIOS 4418 Experimental Design and Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4418 Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4464 Developmental Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4570 Immunology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4607 Molecular Biology of Microbes: Disease, Nature,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or Biotechnology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS 4668 Eukaryotic Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 4765 Drug Design, Development, and Delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>13</td>
</tr>
</tbody>
</table>

Total Credit Hours 122

1 VIP courses may be used only as free electives.
2 Courses may be applied toward completion of a minor.
International Plan
The BS in Chemistry (International Plan) and BS in Biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete in a supervised research experience with a faculty member in chemistry and biochemistry at the host institution. Upon successful completion of the degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Chemistry Website (http://www.chemistry.gatech.edu)

Research Option
The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research program under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To pursue the Research Option in the School of Chemistry and Biochemistry, students should obtain a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following research options:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CHEM 4698/4699 Undergraduate Research Assistantship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 4701 Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LMC 4702 Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Successful completion of the Research Option is noted on the student's transcript. Students completing this option often pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Chemistry Website (http://www.chemistry.gatech.edu)

Bachelor of Science in Biochemistry - Pre-Health Option
The Bachelor of Science in Biochemistry degree program consists of a combination of requirements and electives that ensure a strong foundation in the chemical and biological sciences while providing the flexibility to tailor the curriculum to satisfy specific interests or career goals. This program may be of interest to students who plan careers in research, teaching, or in a life/health science profession (medicine, pharmacy, dentistry). The judicious use of free electives also enables the student to achieve considerable knowledge of other disciplines at Georgia Tech, such as chemical and biomolecular engineering, bioinformatics (computing), biomedical engineering, and biology. The biochemistry curriculum enables majors who are interested in medical, dental, or law school to meet admission requirements of these schools.

Successful completion of the Pre-Health Science Option is noted on the student's transcript.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or CS 1371 Computing for Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHYS 2212 Introductory Physics II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 1553 Introduction to Linear Algebra</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
Any SS (p. 97) 1

Core F - Courses Related to Major
CHEM 1211K Chemical Principles I 4
CHEM 1212K Chemical Principles II 4
CHEM 2380 Synthesis Laboratory I 2
BIOS 1107 Biological Principles 4
& 1107L Biological Principles Laboratory
BIOS 1108 Organismal Biology 4
& 1108L Organismal Biology Laboratory

Major Requirements
CHEM 2214 Quantitative Chemical Analysis 4
CHEM 2311 Organic Chemistry I 3
CHEM 2312 Organic Chemistry II 3
or CHEM 2312 Organic and Bioorganic Chemistry
CHEM 3211 Analytical Chemistry 5
CHEM 3371 Organic Chemistry Laboratory 2
CHEM 3411 Physical Chemistry I 3
CHEM 4511 Biochemistry I 3
CHEM 4512 Biochemistry II 3
CHEM 4581 Biochemistry Laboratory I 3
CHEM 4582 Biochemistry Laboratory II 3
CHEM 4601 Chemistry Seminar 2

Pre-Health Electives 4
Select 12 credits from the following:
BIOS 3753 Fundamentals of Human Anatomy
BIOS 3754 Laboratory in Human Anatomy
BIOS 3755 Human Physiology
BIOS 3756 Physiology Laboratory
BIOS 4400 Human Neuroanatomy
BIOS 2600 Genetics
BIOS 2601 Genetics Laboratory
BIOS 3380 Microbiology
BIOS 3381 Microbiology Lab
BIOS 3450 Cell and Molecular Biology
BIOS 3451 Cell and Molecular Biology Lab
BIOS 4015 Cancer Biology and Biotechnology
BIOS 4340 Medical Microbiology
BIOS 4401 Experimental Design and Statistical Methods in Biological Sciences
BIOS 4464 Developmental Biology
BIOS 4545 Genetics of Complex Human Traits and Diseases
BIOS 4570 Immunology
BIOS 4744 Microbial Symbiosis & Microbiomes
BMED 3100 Systems Physiology
BMED 3600 Physiology of Cellular and Molecular Systems
CHEM 4521 Biophysical Chemistry
CHEM 4765 Drug Design, Development, and Delivery

Free Electives 1, 3, 4 13

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

1. It is suggested that students select pre-health preparation courses (SOC and PSYC).
2. It is suggested that students select pre-health preparation courses (BIOS, HTS, LMC, PSYC).
3. VIP courses may be used only as free electives.
4. Courses may be applied toward completion of a minor.
5. MATH 1554 (http://catalog.gatech.edu/search/?P=MATH%201554) or MATH 1564 (http://catalog.gatech.edu/search/?P=MATH%201564) may be used in place of MATH 1553 (http://catalog.gatech.edu/search/?P=MATH%201553).

International Plan
The BS in Chemistry (International Plan) and BS in Biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate in research abroad experience (usually in the junior year). While abroad, students are required to complete in a supervised research experience with a faculty member in chemistry and biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, an "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Research Option
The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To pursue the Research Option in the School of Chemistry and Biochemistry, students should obtain a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

Chemistry Website (http://www.chemistry.gatech.edu)
Bachelor of Science in Biochemistry

The Bachelor of Science in Biochemistry degree program consists of a combination of requirements and electives that ensure a strong foundation in the chemical and biological sciences while providing the flexibility to tailor the curriculum to satisfy specific interests or career goals. This program may be of interest to students who plan careers in research, teaching, or in a life/health science profession (medicine, pharmacy, dentistry). The judicious use of free electives also enables the student to achieve considerable knowledge of other disciplines (e.g., physics, computer science, biology, and computer science). The biochemistry curriculum enables majors who are interested in medical, dental, or law school to meet admission requirements of these schools.

International Plan

The BS in Chemistry (International Plan) and BS in Biochemistry (International Plan) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Students participating in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanotechnology, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To pursue the Research Option in the School of Chemistry and Biochemistry, students should visit: www.internationalplan.gatech.edu.

Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4698/4699</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours: 11

1. Supervised research with faculty over three or more semesters
2. Approval of proposal on project by a committee of two or more faculty
3. Submission of an approved thesis

Successful completion of the Research Option is noted on the student's transcript. Students completing this option often pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Biology - Business Option

The undergraduate curriculum for the Bachelor of Science in Biology degree is designed to prepare students for employment in academia,
government, or industry; for graduate studies in the biological sciences or science teaching; or for admission to medical, dental, or veterinary schools. The theme of the curriculum is systems biology, employing a systems approach in solving biological problems. All students participate in research through undergraduate research courses. The School also offers the International Plan, Business Option, a minor in biology, and several certificates.

Biology Undergraduate Programs (http://www.biology.gatech.edu/undergraduate-program)

Effective Spring 2020: The School of Biological Sciences has transitioned all undergraduate Biology (BIOL) and Applied Physiology (APPH) courses to Biological Sciences (BIOS) to reflect the merger of the two Schools. Courses under the BIOL- and APPH- may still apply to these requirements. Students should consult with advisors to determine which requirements have been met.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Calculus for Life Sciences</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td>HUM (p. 93)</td>
<td>Any HUM</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>Any SS</td>
<td>6</td>
</tr>
<tr>
<td>BIOS 1207 & 1207L</td>
<td>Biological Principles for Majors and Biological Principles Project Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

CHEM 2312 Organic Chemistry II
or CHEM 23 Organic and Bioorganic Chemistry

Major Requirements

BIOS 1208 & 1208L	Organismal Biology for Majors and Organismal Biology Project Laboratory	4
BIOS 2300	Ecology	3
or BIOS 231 Problems in Ecology		
BIOS 3450	Cell and Molecular Biology	3
BIOS 2600	Genetics	3
or BIOS 261 Integrative Genetics		
Biology Lab 1	2	
BIOS 3600	Evolutionary Biology	3
BIOS 4460	Behavioral Biology	1

Select one of the following:

BIOS 4590 Independent Research Project	3
BIOS 4690 Independent Research Project	3
BIOS 4691 Research Thesis	3

Non-Biology Courses

| CHEM 2380 | Synthesis Laboratory I | 2 |

Select one from the following:

BIOS 2400 Math Models in Biology	3
BIOS 4150 Genomics and Applied Bioinformatics	3
BIOS 4401 Experimental Design and Statistical Methods in Biological Sciences	

Biology Electives

| Biology Electives at 3000-level or higher 2 | 15 |

Business Option

| ACCT 2101 Accounting I: Financial Accounting or MGT 3000 Accounting for Decision Making | 3 |

Select one from the following:

MGT 3101 Organizational Behavior	3
MGT 3150 Principles of Management	3
PSYC 2220 Industrial/Organizational Psychology	3

Select two from the following:

MGT 3062 Financial Management	6
MGT 3078 Finance and Investments	6
MGT 3300 Marketing Management I	6
MGT 3660 International Business	6
MGT 4015 Advanced Managerial Accounting	6
MGT 4026 Financial Reporting and Analysis I	6
MGT 4028 Financial Analysis and Reporting of Technology Firms	6
MGT 4030 International Accounting	6
MGT 4190 Strategic Quality Management and Competitiveness	6
MGT 4191 The Entrepreneurship Forum	6
MGT 4192 Impact Speaker Series Forum	6
MGT 4193 Servant Leadership, Values & Systems	6
MGT 4194 Social Enterprise and Entrepreneurship	6
MGT 4303 Personal Selling and Sales Management	6
MGT 4304 Strategic Brand Management	6
MGT 4307 Strategic Marketing	6
MGT 4335 International Marketing	6
International Plan

Georgia Tech’s International Plan, through the Office of International Education (www.oie.gatech.edu/ (http://www.oie.gatech.edu/)), involves two study abroad experiences and coursework in global studies. The plan offers a challenging and coherent academic program for students to develop global competence within the context of a Biology degree. The requirements include: language proficiency equivalent to two years of college coursework (twelve hrs), one course in international relations (three hrs), global economy (three hrs), focused study of a region (three hrs), an integrative course synthesizing the international experience (three hrs), and two semesters (minimum of 26 weeks) in residence abroad. Georgia Tech biology courses are taught in Australia/New Zealand (www.oie.gatech.edu/sa/programs/ (http://www.oie.gatech.edu/sa/programs/)) as part of the Study Abroad program. In addition, many biology courses are available through Georgia Tech partner universities abroad (www.oie.gatech.edu/sa/programs/ (http://www.oie.gatech.edu/sa/programs/)). Some of these universities teach biology courses in English, such as Hong Kong University, Tokyo Technological University, University of Victoria (New Zealand), National University of Singapore, University of Strathclyde (Scotland), and Bilkent University (Turkey). Successful completion of this plan earns students an international designation on their Georgia Tech transcripts.

BS/MS Programs

The School of Biological Sciences offers two 5-year BS/MS programs:

- BS in Biology/MS in Biology (http://biosci.gatech.edu/undergrad/5-year-bsms-program-bsbiomsbio-0)

- BS in Biology/MS in Bioinformatics (http://biosci.gatech.edu/undergrad/5-year-bsms-program-bsbiolmsinf-0)

Bachelor of Science in Biology - General

The undergraduate curriculum for the Bachelor of Science in Biology degree is designed to prepare students for employment in academia, government, or industry; for graduate studies in the biological sciences or science teaching; or for admission to medical, dental, or veterinary schools. The theme of the curriculum is systems biology, employing a systems approach in solving biological problems. All students participate in research through undergraduate research courses. The School also offers the International Plan, Business Option, a minor in biology, and several certificates.

Biology Undergraduate Programs (http://www.biology.gatech.edu/undergraduate-program)

Effective Spring 2020: The School of Biological Sciences has transitioned all undergraduate Biology (BIOL) and Applied Physiology (APPH) courses to Biological Sciences (BIOS) to reflect the merger of the two Schools. Courses under the BIOL- and APPH- may still apply to these requirements. Students should consult with advisors to determine which requirements have been met.

Code Title Credit Hours

Wellness

APPH 1040 Scientific Foundations of Health 2
or APPH 10 The Science of Physical Activity and Health

<table>
<thead>
<tr>
<th>Core A - Essential Skills</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Calculus for Life Sciences</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core B - Institutional Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>CS 1371 Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core C - Humanities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 1207 Biological Principles for Majors & 1207L and Biological Principles Project Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1211K Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 23 Organic and Bioorganic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 1208 Organismal Biology for Majors & 1208L and Organismal Biology Project Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 2300 Ecology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOS 231 Problems in Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOS 3450 Cell and Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 2600 Genetics</td>
<td>3</td>
</tr>
<tr>
<td>or BIOS 261 Integrative Genetics</td>
<td></td>
</tr>
<tr>
<td>Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>BIOS 3600 Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 4460 Behavioral Biology</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following:	3
BIOS 4590 Independent Research Project	
BIOS 4690 Independent Research Project	
BIOS 4691 Research Thesis	

<table>
<thead>
<tr>
<th>Non-Biology Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2380 Synthesis Laboratory I</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following:	3
BIOS 2400 Math Models in Biology	
BIOS 4150 Genomics and Applied Bioinformatics	
BIOS 4401 Experimental Design and Statistical Methods in Biological Sciences	

<table>
<thead>
<tr>
<th>Biology Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Electives 3000-level or higher</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

Total Credit Hours 122

1 Students must complete two of following three lab options:
 - BIOS 2301, BIOS 2311, BIOS 2601, BIOS 2611, BIOS 3451

2 Students are required to complete 21 credit hours of Biology electives defined as follows:
 - 12 "depth" credit hours must be courses with a "BIOS" prefix, excluding BIOS 4694-BIOS 4699. Biology Elective courses that are cross-listed with other departments are included in these 12 depth credit hours.
 - The remaining 9 "breadth" credit hours can be selected from: other BIOL 3000-level and higher courses, BIOS 4695, BIOS 4697, BIOS 4699, VIP courses with a Biological Sciences instructor, and the list of approved courses offered in the other departments (MATH 2000-level and higher courses and APH, BMED, CHEM, EAS, PHYS, PSYC 3000-level and higher courses; EXCEPT for the following: BMED 4699, BMED 4900-BMED 4903, CHEM 4601, CHEM 4699, CHEM 4901-CHEM 4903, EAS 4651, EAS 4699, EAS 4900, MATH 2699, MATH 4080, MATH 4090, MATH 4609, MATH 4999, PHYS 4601, PHYS 4602, PHYS 4699, PSYC 4600, PSYC 4601, PSYC 4699, PSYC 4900-PSYC 4910.)

3 Minimum grade of C required.

International Plan

Georgia Tech's International Plan, through the Office of International Education (http://www.oie.gatech.edu/), involves two study abroad experiences and coursework in global studies. The plan offers a challenging and coherent academic program for students to develop global competence within the context of a Biology degree. The requirements include: language proficiency equivalent to two years of college coursework (twelve hrs), one course in international relations (three hrs), global economy (three hrs), focused study of a region (three hrs), an integrative course synthesizing the international experience (three hrs), and two semesters (minimum of 26 weeks) in residence abroad. Georgia Tech biology courses are taught in the following foreign countries: China (Hong Kong University, Shandong University, and Tsinghua University), Australia/New Zealand (University of Auckland, University of Otago, and Victoria University), France (Paris IV, Sorbonne University, and the University of Orleans), Germany (Technical University of Braunschweig, Technical University of Munich, and Technical University of Berlin), Greece (University of Athens), India (Indian Institute of Science, Bangalore), Japan (University of Tokyo), Korea (Korea National University of Science and Technology), Italy (Università degli Studi di Roma Tre), Switzerland (University of Basel), United Kingdom (University of Oxford), and United States (Stanford University, University of Pennsylvania, and University of Michigan). Some of these universities teach biology courses in English, such as Hong Kong University, Tokyo Technological University, University of Victoria (New Zealand), National University of Singapore, University of Strathclyde (Scotland), and Bilkent University (Turkey). Successful completion of this plan earns students an international designation on their Georgia Tech degree.

Research Option

This Research Option enables students to complete nine credit hours of supervised research with a Biology faculty member over multiple semesters. With faculty guidance, students write a brief proposal, perform independent, original research, and write a thesis about their work. The thesis is evaluated by two Biology Faculty
members. The first six credit hours of the research option are taken as BIOL 2699/BIOL 4699 (research for credit) or BIOL 2698/BIOL 4698 (research for pay). Students then take either BIOL 4690 or BIOL 4910 in their final semester and two, one credit-hour writing courses, LMC 4701 and LMC 4702. These writing courses can be counted as Biology electives for Research Option students. Note that LMC 4701 should be taken in the semester prior to enrolling in BIOL 4910/BIOL 4690. The student’s research is presented in BIOL 4460.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
<tr>
<td>BIOL</td>
<td>Undergraduate Research Assistantship</td>
<td>6</td>
</tr>
</tbody>
</table>

In the final semester of study, select the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4690</td>
<td>Independent Research Project</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 491</td>
<td>Honors Undergraduate Research Thesis</td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>2</td>
</tr>
<tr>
<td>& LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 11

1 These writing courses can be counted as Biology electives for Research Option students. Note that LMC 4701 should be taken in the semester prior to enrolling in BIOL 4910/BIOL 4690.

Successful completion of this option earns students a “Research Option in Biology” designation on their Georgia Tech transcripts.

BS/MS Programs

The School of Biological Sciences offers two 5-year BS/MS programs:

- BS in Biology/MS in Biology (http://biosci.gatech.edu/undergrad/5-year-bsms-program-bsbiomssbio-0)
- BS in Biology/MS in Bioinformatics (http://biosci.gatech.edu/undergrad/5-year-bsms-program-bsbiolmsbinf-0)

Bachelor of Science in Biology

The undergraduate curriculum for the Bachelor of Science in Biology degree is designed to prepare students for employment in academia, government, or industry; for graduate studies in the biological sciences or science teaching; or for admission to medical, dental, or veterinary schools. The theme of the curriculum is systems biology, employing a systems approach in solving biological problems. All students participate in research through undergraduate research courses. The School also offers the International Plan, Business Option, a minor in biology, and several certificates.

Biology Undergraduate Programs (http://www.biology.gatech.edu/undergraduate-program)

- Bachelor of Science in Biology - General (p. 210)
- Bachelor of Science in Biology - Business Option (p. 208)

Bachelor of Science in Biomedical Engineering

The true integration of the life sciences and engineering is essential in educating a substantial percentage of the next generation of biomedical engineers in order to benefit from the biological revolution and its applications to medicine. This degree program attracts outstanding students who wish to have that integration in their undergraduate education, so that they may be equipped with the tools to be leaders in this field in the 21st Century.

The curriculum includes a solid foundation in fundamental engineering, mathematics, and sciences - biology, chemistry, and physics - as well as grounding in humanities, social sciences, and communication skills. A unique aspect of the curriculum is the incorporation of problem-based learning (PBL) methodologies to foster development of both self-directed learning skills and problem-solving skills in a team-based environment.

Program Educational Objectives

The program strives to produce graduates who are expected to demonstrate the following during the first few years after graduation:

1. mathematics, science, and engineering fundamentals expertise at the interface of engineering and the life sciences which enables them to take leadership roles in the field of biomedical engineering;
2. an ability to use their multidisciplinary background to foster communication across professional and disciplinary boundaries with the highest professional and ethical standards; and
3. the ability to recognize the limits of their knowledge and initiate self-directed learning opportunities to be able to continue to identify and create professional opportunities for themselves in the field of biomedical engineering.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I v3</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II v4</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

or MATH 1551 Linear Algebra

or MATH 1551 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
</tbody>
</table>
Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 1000</td>
<td>Introduction to Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BMED 2110</td>
<td>Conservation Prin in BME</td>
<td>2</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 121K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 2250</td>
<td>Problems in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BMED 2310</td>
<td>Intro to Biomedical Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3110</td>
<td>Quantitative Engineering Physiology Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>BMED 3310</td>
<td>Biotransport</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3400</td>
<td>Introduction to Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>BMED 3520</td>
<td>Biomedical Systems and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3600</td>
<td>Physiology of Cellular and Molecular Systems</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3610</td>
<td>Quantitative Engineering Physiology Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>BMED 4602</td>
<td>Capstone Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering and Science Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1315</td>
<td>Survey of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or ISYE 377</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or BMED 24</td>
<td>Introduction to Bioengineering Statistics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

BMED Depth Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED Depth Electives</td>
<td>BMED Depth Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

BMED Breadth Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED Breadth Electives</td>
<td>BMED Breadth Electives</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours

| | 128 |

Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

Students must average a 2.0 for all BMED coursework required by name and number (includes BMED 1000 and BMED 2110)

1. Student must earn a 2.0 average in MATH 1551, MATH 1552, MATH 1553, MATH 2551, and MATH 2552.
2. Minimum grade of C required.
3. If PHYS 2231 is taken, extra hour goes to Free Electives.
4. If PHYS 2232 is taken, extra hour goes to Free Electives.
5. BMED 2699, any 3000- or 4000-level BMED course. Maximum of six credit hours of undergraduate research.

6. Breadth Electives can be satisfied with a minor, certificate, or other coursework. Please consult with advisor on course selection.

Cooperative Plan

The Georgia Tech Undergrad Co-op Program is a five-year, academic program designed to complement a student’s formal education with paid practical work experience directly related to the student’s academic major. It is available in all engineering majors, as well as in many majors in other colleges at Georgia Tech.

Co-ops alternate semesters of on-campus study with semesters of full-time employment through their junior year, then continue in school through their senior year. Co-ops are classified as full-time students during each term, regardless of whether they are attending classes on campus or working full-time at an employer location. Most undergrad Co-op students begin the program as freshmen or sophomores. With more than 2,700 students participating, Georgia Tech’s program is currently the largest optional co-op program in the United States and has perennially been listed in U.S. News & World Report as one of the "Top Ten" co-op programs in America.

As an integral part of the overall education experience, the co-op program allows students to take on increasing levels of responsibility and to use their job knowledge and classroom learning to make meaningful contributions to the organizations in which they work. Many co-op graduates are hired by their co-op employer, and more than 700 companies or government organizations throughout the United States and abroad currently employ Georgia Tech Undergraduate Co-op Program students.

To learn more about Biomedical Engineering Co-op opportunities at Georgia Tech, contact Rob Rogers. Rob is a Development Co-op Advisor with the Georgia Tech Center for Career Discovery and Development, and the point person for BME students. Rob is located in the Bill Moore Student Success Center, 1st Floor. His phone number is (404) 894-1348

International Plan

The International Plan is a challenging and coherent academic program for undergraduates that develops global competence within the context of a student’s major. It is a degree-long program that integrates international studies and experiences into any participating major at Georgia Tech. It helps to prepare Georgia Tech graduates professionally and personally for successful lives in the twenty-first century.

The International Plan is not intended to replace current international programs; it supplements them. Existing study abroad opportunities continue to be offered. It is also not intended to be an add-on to the current degree programs. It is intended to be another curriculum path to earn a degree in which international competence is integrated into the program of study. The Plan can be completed within the normal timeframe of four years of undergraduate study.

The overarching model for the International Plan has four components:

1. International coursework: Three courses to include one from each of the following categories:
 a. International relations
 b. Global economics
 c. A course about a specific country or region

2. International experience: Two terms abroad (not less than 26 weeks) engaged in any combination of study abroad, research, or internship
3. Second language proficiency: All students in the program are expected to reach at least the proficiency level equivalent to two years of college-level language study. Students who use the language to study, conduct research, or participate in an internship during their international experience are expected to attain a higher level of proficiency. Language proficiency is determined by testing (not course credits).

4. Culminating course: A capstone course in the major designed to tie the international studies and experiences together with the student’s major. The senior design project (i.e. BMED) will be used to satisfy this requirement. The design project must incorporate a significant element of the international experience (e.g., foreign client, location of work, project customers, motivation, regulatory issues, etc).

Completion of the International Plan is recognized by a designation on the student’s diploma indicating completion of the degree with global competence.

For additional information about the International Plan visit www.oie.gatech.edu/internationalplan (http://www.internationalplan.gatech.edu).

Research Option

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in biomedical engineering. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. Students who complete this option receive a designation on their transcript.

Students may be able to satisfy the additional requirements imposed for the Research Option designation through appropriate choices of electives without additional credit hours to complete the degree. The Research Option designation may be pursued separately, or in combination with the Cooperative Plan and/or the International Plan.

Research Option Requirements

1. Complete at least nine credit hours of undergraduate research (i.e. BMED 2698, BMED 2699, BMED 4698, or BMED 4699) spanning typically at least three terms. The research may be for either pay or credit, and at least six credit hours must be on the same research project, broadly defined.

2. Take the course LMC 4701, typically in the second semester of research. The research proposal outlining the research topic and project for the thesis will be written for this course. The proposal must be approved by a faculty advisor and one other faculty member.

3. Take the course LMC 4702 during the thesis-writing semester. The thesis documenting the results of the research will be written as part of this course. It must be approved by two faculty members and will be archived in the Georgia Tech Library.

The B.S. in Building Construction is deactivated. Please contact the academic department for questions.

Bachelor of Science in Business Administration - Accounting

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a “change of major” meeting. Contact the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.
Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 2106</td>
<td>Legal, Social, Ethical Aspects of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250</td>
<td>Management Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2255</td>
<td>Quantitative Analysis for Business</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3102</td>
<td>Managing Human Resources within a Regulatory Environment</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3501</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3599</td>
<td>Career Development Workshop</td>
<td>1</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3659</td>
<td>Foundations of Strategy</td>
<td>3</td>
</tr>
</tbody>
</table>

Accounting Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 4015</td>
<td>Advanced Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4028</td>
<td>Financial Analysis and Reporting of Technology Firms</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4030</td>
<td>International Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4043</td>
<td>Advanced Financial Reporting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4045</td>
<td>Seminar in Advanced Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4047</td>
<td>Ethics & Accounting</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-MGT Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 4910</td>
<td>Advanced Managerial Accounting</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 4015</td>
<td>Advanced Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4028</td>
<td>Financial Analysis and Reporting of Technology Firms</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4030</td>
<td>International Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4043</td>
<td>Advanced Financial Reporting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4045</td>
<td>Seminar in Advanced Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4047</td>
<td>Ethics & Accounting</td>
<td>3</td>
</tr>
</tbody>
</table>

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world
language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Business Administration - Finance

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a "change of major" meeting. Contact the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus & MATH 1553 and Introduction to Linear Algebra or MATH 17 Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS</td>
<td>(p. 97)</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2102</td>
<td>Accounting II: Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2106</td>
<td>Legal, Social, Ethical Aspects of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250</td>
<td>Management Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>
International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Business Administration - General Management

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a "change of major" meeting. Contact the College of Business Undergraduate Programs Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Bachelor of Arts in Management

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3102</td>
<td>Managing Human Resources within a Regulatory Environment</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3501</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3599</td>
<td>Career Development Workshop</td>
<td>1</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3659</td>
<td>Foundations of Strategy</td>
<td>3</td>
</tr>
</tbody>
</table>

Finance Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3076</td>
<td>Investments</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3079</td>
<td>Management of Financial Institutions</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4070</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4067</td>
<td>Financial Markets: Trading and Structure</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following: ³,⁴

- MGT 3075 Security Valuation
- MGT 3082 Fundamentals of Real Estate Development
- MGT 3084 Derivative Securities
- MGT 4026 Financial Reporting and Analysis I
- MGT 4066 Corporate Restructuring
- MGT 4068 Fixed Income
- MGT 4072 Entrepreneurial Finance

Non-MGT Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-MGT Electives</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Credit Hours

- Pass-fail only allowed for Free Electives.
- Any courses except for MGT or ACCT.
- Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.
- Minimum grade of C required.
- Consult your Academic Advisor for approval to use one Special Problems MGT 4910 course (3 credit hours) for a concentration elective. Course must be taught by a College of Business Finance faculty member.

Finance Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3076</td>
<td>Investments</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3079</td>
<td>Management of Financial Institutions</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4070</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4067</td>
<td>Financial Markets: Trading and Structure</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following: ³,⁴

- MGT 3075 Security Valuation
- MGT 3082 Fundamentals of Real Estate Development
- MGT 3084 Derivative Securities
- MGT 4026 Financial Reporting and Analysis I
- MGT 4066 Corporate Restructuring
- MGT 4068 Fixed Income
- MGT 4072 Entrepreneurial Finance

Non-MGT Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-MGT Electives</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Credit Hours

- Pass-fail only allowed for Free Electives.
- Any courses except for MGT or ACCT.
- Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.
- Minimum grade of C required.
- Consult your Academic Advisor for approval to use one Special Problems MGT 4910 course (3 credit hours) for a concentration elective. Course must be taught by a College of Business Finance faculty member.
The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1712</td>
<td>Mathematics for Management II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>& MATH 1553 and Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 1712</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2102</td>
<td>Accounting II: Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2106</td>
<td>Legal, Social, Ethical Aspects of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250</td>
<td>Management Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2255</td>
<td>Quantitative Analysis for Business</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3102</td>
<td>Managing Human Resources within a Regulatory Environment</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3501</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3599</td>
<td>Career Development Workshop</td>
<td>1</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3659</td>
<td>Foundations of Strategy</td>
<td>3</td>
</tr>
</tbody>
</table>

General Management Concentration

Select six of the following: 1, 2, 3, 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3075</td>
<td>Security Valuation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3076</td>
<td>Investments</td>
<td></td>
</tr>
<tr>
<td>MGT 3079</td>
<td>Management of Financial Institutions</td>
<td></td>
</tr>
<tr>
<td>MGT 3082</td>
<td>Fundamentals of Real Estate Development</td>
<td></td>
</tr>
<tr>
<td>MGT 3084</td>
<td>Derivative Securities</td>
<td></td>
</tr>
<tr>
<td>MGT 3103</td>
<td>Leadership in a Changing Environment</td>
<td></td>
</tr>
<tr>
<td>MGT 3310</td>
<td>Marketing Research: Qualitative Aspects</td>
<td></td>
</tr>
<tr>
<td>MGT 3510</td>
<td>Management of Technology</td>
<td></td>
</tr>
<tr>
<td>MGT 3605</td>
<td>Principles of Commerical Law</td>
<td></td>
</tr>
<tr>
<td>MGT 3606</td>
<td>International Business Law</td>
<td></td>
</tr>
<tr>
<td>MGT 3607</td>
<td>Business Ethics</td>
<td></td>
</tr>
<tr>
<td>MGT 3608</td>
<td>Technology Law and Ethics</td>
<td></td>
</tr>
<tr>
<td>MGT 3609</td>
<td>Legal Aspects of Real Estate</td>
<td></td>
</tr>
<tr>
<td>MGT 3661</td>
<td>Advanced Concepts in International Business</td>
<td></td>
</tr>
<tr>
<td>MGT 3662</td>
<td>Management in the Healthcare Sector</td>
<td></td>
</tr>
<tr>
<td>MGT 3663</td>
<td>Technology Strategy</td>
<td></td>
</tr>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td></td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td>3</td>
</tr>
</tbody>
</table>
Courses selected from the following clusters:

• Strategy and Innovation
• Operations and Supply Chain Management
• Marketing
• Leadership and Organizational Change
• Information Technology Management
• General Management
• Finance
• Accounting
• International HR
• Law for Entrepreneurs

The International Plan is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mg.t.gatech.edu).

Bachelor of Science in Business Administration - Information Technology Management

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

• Accounting
• Finance
• General Management
• Information Technology Management
• Leadership and Organizational Change
• Marketing
• Operations and Supply Chain Management
• Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a “change of major” meeting. Contact the College of Business Undergraduate Program Office (http://mg.t.gatech.edu/programs/under) for dates and times of upcoming meetings.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and
Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Mathematics for Management II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>& MATH 1553</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2102</td>
<td>Accounting II: Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>MGT 2106</td>
<td>Legal, Social, Ethical Aspects of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250</td>
<td>Management Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2255</td>
<td>Quantitative Analysis for Business</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IT Management Concentration</td>
<td></td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MGT 3745</td>
<td>Business Programming</td>
<td></td>
</tr>
<tr>
<td>MGT 4052</td>
<td>Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>MGT 4058</td>
<td>Database Management Systems</td>
<td></td>
</tr>
<tr>
<td>MGT 4450</td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MGT 3103</td>
<td>Leadership in a Changing Environment</td>
<td></td>
</tr>
<tr>
<td>MGT 3310</td>
<td>Marketing Research: Qualitative Aspects</td>
<td></td>
</tr>
<tr>
<td>MGT 3663</td>
<td>Technology Strategy</td>
<td></td>
</tr>
<tr>
<td>MGT 3742</td>
<td>Spreadsheet Modeling for Business Decision</td>
<td></td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td></td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology</td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MGT 4041</td>
<td>Auditing and Financial Control Systems</td>
<td></td>
</tr>
<tr>
<td>MGT 4050</td>
<td>Business Analytics</td>
<td></td>
</tr>
<tr>
<td>MGT 4053</td>
<td>Business Data Communications</td>
<td></td>
</tr>
<tr>
<td>MGT 4056</td>
<td>Electronic Commerce</td>
<td></td>
</tr>
<tr>
<td>MGT 4057</td>
<td>Business Process Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>MGT 4102</td>
<td>Management Consulting</td>
<td></td>
</tr>
<tr>
<td>MGT 4119</td>
<td>Leading Teams in Organizations</td>
<td></td>
</tr>
<tr>
<td>MGT 4193</td>
<td>Servant Leadership, Values & Systems</td>
<td></td>
</tr>
<tr>
<td>MGT 4311</td>
<td>Digital Marketing</td>
<td></td>
</tr>
<tr>
<td>MGT 4341</td>
<td>Management of Healthcare Operations</td>
<td></td>
</tr>
<tr>
<td>MGT 4352</td>
<td>Operations Planning and Control</td>
<td></td>
</tr>
<tr>
<td>MGT 4360</td>
<td>Global Operations and Logistics</td>
<td></td>
</tr>
<tr>
<td>MGT 4366</td>
<td>Service Operations Management</td>
<td></td>
</tr>
<tr>
<td>MGT 4670</td>
<td>Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>MGT 4725</td>
<td>Information Security Strategies and Policy</td>
<td></td>
</tr>
<tr>
<td>MGT 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Special Topics in Industrial Management</td>
<td></td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
<td></td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-MGT Electives</td>
<td></td>
</tr>
<tr>
<td>Non-MGT Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
</tbody>
</table>
Pass-fail only allowed for Free Electives.

1 MGT 4803 (https://gatech-curr.courseleaf.com/search/?P=MGT %204803) must have a title of 'Data Visualization for Business' or 'Social and Digital Analytics'.
2 Any courses except for MGT or ACCT.
3 Minimum grade of C required.
4 Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.
5 Students may apply unused Group A elective courses toward Group B electives.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate’s ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Business Administration - Leadership and Organizational Change

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
- Operations and Supply Chain Management
- Strategy and Innovation

The new BS Business Administration degree replaces the BS Management degree previously offered by the College of Business. Starting summer 2011, all new freshmen and transfer students will be admitted to the B.S. Business Administration (BSBA) degree as the B.S. Management (BSM) degree will no longer be offered to new students. Current Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BSBA degree, as the BSM degree will no longer be available to new change of major students. Current BSM students can change their majors to BSBA, but are not required to change majors.

Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a "change of major" meeting. Contact the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Mathematics for Management II</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Core D - Science, Math, & Technology

Lab Science 4
MATH 1551 Differential Calculus 4
MATH 1553 and Introduction to Linear Algebra
or MATH 17 Finite Mathematics 4

Core E - Social Sciences

Select one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
ECON 2105 Principles of Macroeconomics 3
ECON 2106 Principles of Microeconomics 3
Any SS (p. 97) 3

Core F - Courses Related to Major

ACCT 2101 Accounting I: Financial Accounting 3
ACCT 2102 Accounting II: Managerial Accounting 3
MGT 2106 Legal, Social, Ethical Aspects of Business 3
MGT 2210 Information Systems and Digital Transformation 3
MGT 2250 Management Statistics 3
MGT 2255 Quantitative Analysis for Business 3

Major Requirements

LMC 3403 Technical Communication, Theory and Practice 3
MGT 3062 Financial Management 3
MGT 3101 Organizational Behavior 3
MGT 3102 Managing Human Resources within a Regulatory Environment 3
MGT 3300 Marketing Management I 3
MGT 3501 Operations Management 3
MGT 3599 Career Development Workshop 1
MGT 3660 International Business 3
MGT 3659 Foundations of Strategy 3

Leadership and Organizational Change Concentration

Select four of the following: 1-3 12
MGT 3103 Leadership in a Changing Environment
MGT 3118 Cross-cultural Management
MGT 3607 Business Ethics
MGT 4102 Management Consulting
MGT 4117 Global Workforce Management
MGT 4119 Leading Teams in Organizations
MGT 4803 Special Topics

Select two of the following: 2-3 6
MGT 3744 Managing Product, Service & Technology Development
MGT 4116 The Role of Gender, Race and Ethnicity in Organizational Behavior
MGT 4192 Impact Speaker Series Forum
MGT 4193 Servant Leadership, Values & Systems
MGT 4194 Social Enterprise and Entrepreneurship
MGT 4670 Entrepreneurship
MGT 4803 Special Topics

Non-MGT Electives

Non-MGT Electives 4 6
Free Electives
Free Electives 5 10

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

1 MGT 4803 must have a title of Innovation and Entrepreneurial Behavior, or Leadership: Managing Professionals, or Motivation and Rewards or Strategic Management of Human Assets.
2 MGT 4803 must have a title of Employment, Benefits, and Compensation Law.
3 Minimum grade of C required.
4 Any courses except for MGT or ACCT.
5 Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate's ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Business Administration - Marketing

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
- Leadership and Organizational Change
- Marketing
Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a "change of major" meeting. Contact the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be offered to new students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Mathematics for Management II</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
</tbody>
</table>

| Core C - Humanities |
|---------------------|-----------------|
| Any HUM (p. 93) | 6 |

| Core D - Science, Math, & Technology |
|-------------------------------------|----------|
| Lab Science | 4 |
| Mat Science | 4 |
| MATH 1551 | Differential Calculus |
| & MATH 1553 and Introduction to Linear Algebra | 4 |
| or MATH 17 | Finite Mathematics |

| Core E - Social Sciences |
|-------------------------|----------|
| Select one of the following: | 3 |
| HIST 2111 | The United States to 1877 |
| HIST 2112 | The United States since 1877 |
| INTA 1200 | American Government in Comparative Perspective |
| POL 1101 | Government of the United States |
| PUBP 3000 | American Constitutional Issues |
| ECON 2105 | Principles of Macroeconomics |
| ECON 2106 | Principles of Microeconomics |
| Any SS (p. 97) | 3 |

| Core F - Courses Related to Major |
|----------------------------------|----------|
| ACCT 2101 | Accounting I: Financial Accounting |
| ACCT 2102 | Accounting II: Managerial Accounting |
| MGT 2106 | Legal, Social, Ethical Aspects of Business |
| MGT 2210 | Information Systems and Digital Transformation |
| MGT 2250 | Management Statistics |
| MGT 2255 | Quantitative Analysis for Business |

| Major Requirements |
|---------------------|----------|
| LMC 3403 | Technical Communication, Theory and Practice |
| MGT 3062 | Financial Management |
| MGT 3101 | Organizational Behavior |
| MGT 3102 | Managing Human Resources within a Regulatory Environment |
| MGT 3300 | Marketing Management I |
| MGT 3501 | Operations Management |
| MGT 3599 | Career Development Workshop |
| MGT 3660 | International Business |
| MGT 3659 | Foundations of Strategy |

| Marketing Concentration |
|-------------------------|----------|
| MGT 3310 | Marketing Research: Qualitative Aspects |
| Select five of the following: | 15 |
| MGT 4303 | Personal Selling and Sales Management |
| MGT 4304 | Strategic Brand Management |
| MGT 4308 | Advertising & Promotion: Integrated Marketing Communications |
| MGT 4309 | Services Marketing |
| MGT 4311 | Digital Marketing |
| MGT 4331 | Consumer Behavior |
| MGT 4335 | International Marketing |
| MGT 4803 | Special Topics in Industrial Management |

Non-MGT Electives

| Non-MGT Electives | 6 |
Pass-fail only allowed for Free Electives.

1. MGT 4803 must have title of Pricing Strategy & Analytics or Marketing Practicum.
2. Any courses except for MGT or ACCT.
3. Minimum grade of C required.
4. Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.
5. Consult your Academic Advisor for approval to use one Special Problems MGT 4910 course (3 credit hours) for a concentration elective. Course must be taught by a College of Business Marketing faculty member.
6. Scheller College of Business recommends students complete MGT 4058. It can be used to fulfill free elective requirements.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate's ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Program Office (http://mgt.gatech.edu/programs/undergraduate) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Students who submit change of major forms before January 17, 2011 will have the BS Management degree. BS Management students may choose to stay in the BSM degree or may change into the BSBA degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 17</td>
<td>Mathematics for Management II</td>
<td></td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
</tr>
<tr>
<td>Lab Science</td>
</tr>
<tr>
<td>MATH 1551 Differential Calculus</td>
</tr>
<tr>
<td>& MATH 1553 and Introduction to Linear Algebra</td>
</tr>
<tr>
<td>or MATH 171 Finite Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative Perspective</td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
</tr>
<tr>
<td>ECON 2105 Principles of Macroeconomics</td>
</tr>
<tr>
<td>ECON 2106 Principles of Microeconomics</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101 Accounting I: Financial Accounting</td>
</tr>
<tr>
<td>ACCT 2102 Accounting II: Managerial Accounting</td>
</tr>
<tr>
<td>MGT 2106 Legal, Social, Ethical Aspects of Business</td>
</tr>
<tr>
<td>MGT 2210 Information Systems and Digital Transformation</td>
</tr>
<tr>
<td>MGT 2250 Management Statistics</td>
</tr>
<tr>
<td>MGT 2255 Quantitative Analysis for Business</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3403 Technical Communication, Theory and Practice</td>
</tr>
<tr>
<td>MGT 3062 Financial Management</td>
</tr>
<tr>
<td>MGT 3101 Organizational Behavior</td>
</tr>
<tr>
<td>MGT 3102 Managing Human Resources within a Regulatory Environment</td>
</tr>
<tr>
<td>MGT 3300 Marketing Management I</td>
</tr>
<tr>
<td>MGT 3501 Operations Management</td>
</tr>
<tr>
<td>MGT 3599 Career Development Workshop</td>
</tr>
<tr>
<td>MGT 3660 International Business</td>
</tr>
<tr>
<td>MGT 3659 Foundations of Strategy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations and Supply Chain Management Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select four of the following:</td>
</tr>
<tr>
<td>MGT 3510 Management of Technology</td>
</tr>
<tr>
<td>MGT 3744 Managing Product, Service & Technology Development</td>
</tr>
<tr>
<td>MGT 4352 Operations Planning and Control</td>
</tr>
<tr>
<td>MGT 4353 Operations Strategy</td>
</tr>
<tr>
<td>MGT 4360 Global Operations and Logistics</td>
</tr>
<tr>
<td>MGT 4366 Service Operations Management</td>
</tr>
<tr>
<td>MGT 4401 Supply Chain Modeling</td>
</tr>
<tr>
<td>Select two of the following:</td>
</tr>
<tr>
<td>MGT 3743 Analysis of Emerging Technologies</td>
</tr>
<tr>
<td>MGT 4056 Electronic Commerce</td>
</tr>
<tr>
<td>MGT 4057 Business Process Analysis and Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-MGT Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-MGT Electives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives.

1 MGT 4803 must have title of Management of Healthcare Operations.

2 Any courses except for MGT or ACCT.

3 Minimum grade of C required.

4 Maximum 3 credit hours of internship; Maximum 9 credit hours of undergraduate research; Maximum 3 credit hours of Special Problems/Independent Study.

5 Consult your Academic Advisor for approval to use one Special Problems MGT 4910 course (3 credit hours) for a concentration elective. Course must be taught by a College of Business Operations faculty member.

International Plan

The International Plan (http://www.internationalplan.gatech.edu) degree option is available to all College of Business undergraduate students. This option has been specifically designed to increase the international competence of our students through foreign language instruction, selected international courses, overseas residential experience, and a capstone, culminating course. This international competence is characterized by a graduate's ability to communicate in a second world language, discuss substantively the major international socioeconomic processes, assimilate into foreign lifestyles and work environments, and communicate with confidence the specifics of management and business in a global context. Given the ever-increasing pace of globalization of business, this option should help students prepare for the business world of the future. All College of Business students should seek advising through the College of Business Undergraduate Programs Office (http://mgt.gatech.edu).

Bachelor of Science in Business Administration

Students with a broad interest in business and management activities and operating problems would profit from the Bachelor of Science in Business Administration degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytical and conceptual tools for analyzing complicated problems. It prepares the student for business and managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students must complete a concentration of electives in one of the following areas:

- Accounting
- Finance
- General Management
- Information Technology Management
Change of Major Policy

The College of Business requires a 2.3 cumulative GPA for any non-College of Business students requesting a change of major to Business Administration if the student has completed sixty credits (junior standing) or more. There is no GPA requirement for freshmen and sophomores (less than sixty credits) requesting a major change. This policy was approved by the College of Business faculty in April 2007. All students seeking a major change to Business Administration must attend a "change of major" meeting. Contact the College of Business Undergraduate Program Office (http://mgmt.gatech.edu/programs/under) for dates and times of upcoming meetings.

Current Georgia Tech students who submit change of major forms to join the College of Business after January 17, 2011 will have the BS Business Administration degree, as the BS Management degree will no longer be available to new change of major students. Current BS Management students may choose to stay in the BSM degree. Once a student changes majors to BSBA, he or she cannot return to the BSM degree.

The BSBA and BSM degrees have different degree requirements. Students joining the BSBA degree must complete all BSBA degree requirements, including one of the newly approved management concentrations and several other courses not currently required of all BSM students. Current BSM students MUST attend a change of major meeting to change their majors to BSBA so they understand the requirements of the new degree which are different than the BSM requirements.

Current BSM students who decide to continue pursuing the BSM degree should review previous Georgia Tech catalogs and the College of Business website to see the BSM requirements.

- Bachelor of Science in Business Administration - Leadership and Organizational Change (p. 221)
- Bachelor of Science in Business Administration - Marketing (p. 222)
- Bachelor of Science in Business Administration - Operations and Supply Chain Management (p. 224)
- Bachelor of Science in Business Administration - Strategy and Innovation (p. 175)

Bachelor of Science in Chemical and Biomolecular Engineering - Biotechnology Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I 1</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or MATH 1554 Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or MATH 1556 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>Any SS</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 1107 & 1107L</td>
<td>Biological Principles and Biological Principles Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHBE 2100</td>
<td>Chemical Process Principles</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science in Chemical and Biomolecular Engineering - Standard Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td>APPH 1040 Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1552 Integral Calculus 3</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td>CS 1371 Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 2212 Introductory Physics II 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1551 Differential Calculus 3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 1553 Introduction to Linear Algebra 3</td>
<td>2</td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 2100 Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td>BIOS 1107 Biological Principles & 1107L and Biological Principles Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 1211K Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 2380 Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 2551 Multivariable Calculus 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 2552 Differential Equations 3</td>
<td>4</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>CHBE 2100 Chemical Process Principles 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 2120 Numerical Methods in Chemical Engineering 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 2130 Chemical Engineering Thermodynamics I 3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHBE 3130 Chemical Engineering Thermodynamics II 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 3200 Transport Process I 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 3210 Transport Processes II 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 3225 Separations Processes 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 4200 Transport Phenomena/Unit Operations Laboratory 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 4300 Kinetics and Reactor Design 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 4411 Process Dynamics and Control 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHBE 4412 Process Dynamics and Control Laboratory 3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives, Humanities electives, and undesignated Social Sciences electives.

1 If PHYS 2231 is taken, extra hour goes to Free Electives.
2 If PHYS 2232 is taken, extra hour goes to Free Electives.
3 Minimum grade of C required
4 PHYS 2XXX (AP credit) not allowed.
5 ChBE Elective must be chosen from the following: CHBE 4020, CHBE 4200, CHBE 4310, CHBE 4535, CHBE 4752, CHBE 4757, CHBE 4760, CHBE 4763, CHBE 4764, CHBE 4765, CHBE 4770, CHBE 4775, CHBE 4776, CHBE 4791, CHBE 4793, CHBE 4794, or any ChBE 6000-level or higher. Special Topics or Special Problems must be approved by the ChBE Academic Committee.
6 Biotechnology Elective must be chosen from the following: BMED 3510, BMED 4477, BMED 4699, BMED 4751, BMED 4783, BMED 4784, BMED 4699, CHBE 4757, CHBE 4760, CHBE 4765, CHBE 4760, CHBE 4765, CHBE 4779. Special Topics or Special Problems must be approved by ChBE Academic Committee.
Bachelor of Science in Chemical and Biomolecular Engineering - Standard Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBE 4510</td>
<td>Process and Product Design And Economics</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 4515</td>
<td>Chemical Process Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 4520</td>
<td>Chemical Engineering Capstone Design Project</td>
<td>2</td>
</tr>
</tbody>
</table>

CHBE Electives

CHBE Electives 4 6

Engineering Electives

2000-level Engineering Elective or higher 5 3
3000-level Engineering Elective or higher 5 3

Other Engineering and Science Requirements

CHEM 1212K Chemical Principles II 4
CHEM 2311 Organic Chemistry I 3
CHEM 2312 Organic Chemistry II 3
MSE 2001 Principles and Applications of Engineering Materials 3

Select two of the following: 6

- CHEM 3111 Inorganic Chemistry
- CHEM 3281 Instrumental Analysis for Engineers
- CHEM 3412 Physical Chemistry II
- CHEM 3511 Survey of Biochemistry
- CHEM 4311 Advanced Organic Chemistry
- CHEM 4341 Applied Spectroscopy
- CHEM 4511 Biochemistry I

Free Electives

Free Electives 3

Total Credit Hours 132

Pass-fail only allowed for Free Electives, Humanities electives, and undesignated Social Sciences electives.

1. If PHYS 2231 (http://catalog.gatech.edu/search/?P=PHYS%202231) is taken, extra hour goes to Free Electives.
2. If PHYS 2232 (http://catalog.gatech.edu/search/?P=PHYS%202232) is taken, extra hour goes to Free Electives.
3. Minimum grade of C required
4. CHBE Electives must be chosen from the following list: CHBE 4020 (http://catalog.gatech.edu/search/?P=CHBE%204020), CHBE 4310 (http://catalog.gatech.edu/search/?P=CHBE%204310), CHBE 4535 (http://catalog.gatech.edu/search/?P=CHBE%204535), CHBE 4752 (http://catalog.gatech.edu/search/?P=CHBE%204752), CHBE 4757 (http://catalog.gatech.edu/search/?P=CHBE%204757), CHBE 4760 (http://catalog.gatech.edu/search/?P=CHBE%204760), CHBE 4763 (http://catalog.gatech.edu/search/?P=CHBE%204763), CHBE 4764 (http://catalog.gatech.edu/search/?P=CHBE%204764), CHBE 4765 (http://catalog.gatech.edu/search/?P=CHBE%204765), CHBE 4770 (http://catalog.gatech.edu/search/?P=CHBE%204770), CHBE 4775 (http://catalog.gatech.edu/search/?P=CHBE%204775), CHBE 4776 (http://catalog.gatech.edu/search/?P=CHBE%204776), CHBE 4791 (http://catalog.gatech.edu/search/?P=CHBE%204791), CHBE 4793 (http://catalog.gatech.edu/search/?P=CHBE%204793), CHBE 4794 (http://catalog.gatech.edu/search/?P=CHBE%204794), or any 6000-level CHBE course or higher. Special Topics or Special Problems courses must be approved by ChBE Academic Committee.
Students should consult with their advisor regarding Engineering Elective options. Engineering Electives must be chosen from the following list: AE 2020 (http://catalog.gatech.edu/search/?P=AE %202020), AE 2120 (http://catalog.gatech.edu/search/?P=AE %202120), AE 4451 (http://catalog.gatech.edu/search/?P=AE %204451), AE 4461 (http://catalog.gatech.edu/search/?P=AE %204461), AE 4883 (http://catalog.gatech.edu/search/?P=AE %204883), BMED 2400 (http://catalog.gatech.edu/search/?P=BMED %202400), BMED 3400 (http://catalog.gatech.edu/search/?P=BMED %203400), BMED 3510 (http://catalog.gatech.edu/search/?P=BMED %203510), BMED 4477 (http://catalog.gatech.edu/search/?P=BMED %204477), BMED 4751 (http://catalog.gatech.edu/search/?P=BMED %204751), BMED 4784 (http://catalog.gatech.edu/search/?P=BMED %204784), CEE 2040 (http://catalog.gatech.edu/search/?P=CEE %202040), CEE 2300 (http://catalog.gatech.edu/search/?P=CEE %202300), CEE 4300 (http://catalog.gatech.edu/search/?P=CEE %204300), CEE 4330 (http://catalog.gatech.edu/search/?P=CEE %204330), CEE 4620 (http://catalog.gatech.edu/search/?P=CEE %204620), CHBE 4020 (http://catalog.gatech.edu/search/?P=CHBE %204020), CHBE 4310 (http://catalog.gatech.edu/search/?P=CHBE %204310), CHBE 4535 (http://catalog.gatech.edu/search/?P=CHBE %204535), CHBE 4752 (http://catalog.gatech.edu/search/?P=CHBE %204752), CHBE 4757 (http://catalog.gatech.edu/search/?P=CHBE %204757), CHBE 4763 (http://catalog.gatech.edu/search/?P=CHBE %204763), CHBE 4764 (http://catalog.gatech.edu/search/?P=CHBE %204764), CHBE 4765 (http://catalog.gatech.edu/search/?P=CHBE %204765), CHBE 4770 (http://catalog.gatech.edu/search/?P=CHBE %204770), CHBE 4775 (http://catalog.gatech.edu/search/?P=CHBE %204775), CHBE 4776 (http://catalog.gatech.edu/search/?P=CHBE %204776), CHBE 4791 (http://catalog.gatech.edu/search/?P=CHBE %204791), CHBE 4793 (http://catalog.gatech.edu/search/?P=CHBE %204793) CHBE 4794 (http://catalog.gatech.edu/search/?P=CHBE %204794), CHBE 4799, CHBE 6210 (http://catalog.gatech.edu/search/?P=CHBE %206210), CHBE 6794 (http://catalog.gatech.edu/search/?P=CHBE %206794), COE 2001 (http://catalog.gatech.edu/search/?P=COE %202001), COE 3001 (http://catalog.gatech.edu/search/?P=COE %203001), COE 3002 (http://catalog.gatech.edu/search/?P=COE %203002), ECE 2025 (http://catalog.gatech.edu/search/?P=ECE %202025), ECE 2030 (http://catalog.gatech.edu/search/?P=ECE %202030), ECE 2040 (http://catalog.gatech.edu/search/?P=ECE %202040), ECE 3025 (http://catalog.gatech.edu/search/?P=ECE %203025), ECE 3040 (http://catalog.gatech.edu/search/?P=ECE %203040), ECE 3065 (http://catalog.gatech.edu/search/?P=ECE %203065), ECE 3071 (http://catalog.gatech.edu/search/?P=ECE %203071), ECE 3080 (http://catalog.gatech.edu/search/?P=ECE %203080), ECE 3710 (http://catalog.gatech.edu/search/?P=ECE %203710), ECE 3741 (http://catalog.gatech.edu/search/?P=ECE %203741), ISYE 2027 (http://catalog.gatech.edu/search/?P=ISYE %202027), ISYE 2028 (http://catalog.gatech.edu/search/?P=ISYE %202028), ISYE 3025 (http://catalog.gatech.edu/search/?P=ISYE %203025), ISYE 3039 (http://catalog.gatech.edu/search/?P=ISYE %203039), ISYE 3133 (http://catalog.gatech.edu/search/?P=ISYE %203133), ISYE 3232 (http://catalog.gatech.edu/search/?P=ISYE %203232), ME 2202 (http://catalog.gatech.edu/search/?P=ME %202202), ME 3057 (http://catalog.gatech.edu/search/?P=ME %203057), ME 4011 (http://catalog.gatech.edu/search/?P=ME %204011), MSE 2021 (http://catalog.gatech.edu/search/?P=MSE %202021), MSE 3002 (http://catalog.gatech.edu/search/?P=MSE %203002), MSE 3003, MSE 4751 (http://catalog.gatech.edu/search/?P=MSE%204751), NRE 3301 (http://catalog.gatech.edu/search/?P=NRE%203301), NRE 4328 (http://catalog.gatech.edu/search/?P=NRE%204328), NRE 4610 (http://catalog.gatech.edu/search/?P=NRE%204610) or NRE 6501 (http://catalog.gatech.edu/search/?P=NRE%206501). Special Topics or Special Problems courses must be approved by ChBE Academic Committee.

Bachelor of Science in Chemistry - Biochemistry Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

Code	**Title**
APPH 1040 | Scientific Foundations of Health |
** or APPH 10 The Science of Physical Activity and Health **

Credit Hours

<table>
<thead>
<tr>
<th>Wellness</th>
<th>Core A - Essential Skills</th>
<th>Core B - Institutional Options</th>
<th>Core C - Humanities</th>
<th>Core D - Science, Math, & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

APPH 1040 | **ENGL 1101** | **CS 1301** |

ENGL 1102 | **MATH 1552** | **or CS 1315** |

MATH 1552 | **Integral Calculus** | **Introduction to Media Computation** |

Core B - Institutional Options

| **CS 1301** | **Introduction to Computing** |

or CS 1371 Computing for Engineers |

Core C - Humanities

Any HUM (p. 93) |

Core D - Science, Math, & Technology

| **PHYS 2211** | **PHYS 2212** |

| **Introductory Physics I** | **Introductory Physics II** |

| **MATH 1551** | **MATH 1553** |

| **Differential Calculus** | **Introduction to Linear Algebra** |

| 4 | 2 |
Core E - Social Sciences
Select one of the following:

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Total Credit Hours 9

Core F - Courses Related to Major
Chemical Principles I 4
CheM 1211K
CheM 1212K
CheM 2380
MATH 2554 Multivariable Calculus 4
BIOS 1107 Biological Principles & 1107L and Biological Principles Laboratory 4

Major Requirements
Chemical Principles II 4
CheM 2311 Organic Chemistry I 3
CheM 2312 Organic Chemistry II 3
CheM 2313 Organic and Bioorganic Chemistry
CheM 2601 Professional Skills for Chemists and Biochemists 1
CheM 3111 Inorganic Chemistry 3
CheM 3211 Analytical Chemistry 5
CheM 3380 Synthesis Laboratory I 3
CheM 3411 Physical Chemistry I 3
CheM 3412 Physical Chemistry II 3
CheM 3481 Physical Chemistry Laboratory I 2

Biochemistry Option
Biochemistry I 3
CheM 4511
Biochemistry II 3
CheM 4512
Biochemistry Laboratory I 3
CheM 4581
Biochemistry Seminar 2
Biochemistry Lab Elective 1,2 3

Select one of the following: 3
CheM 4521 Biophysical Chemistry
CheM 4582 Biochemistry Laboratory II
CheM 4765 Drug Design, Development, and Delivery
BIOS 3380 Microbiology
BIOS 3450 Cell and Molecular Biology
BIOS 4340 Medical Microbiology
BIOS 4418 Microbial Physiology
BIOS 4401 Experimental Design and Statistical Methods in Biological Sciences
BIOS 4464 Developmental Biology
BIOS 4570 Immunology
BIOS 4668 Eukaryotic Molecular Genetics

Free Electives
Free Electives 2,3 12

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

1 BIOS 3450 & BIOS 3451, OR BIOS 3380 & BIOS 3381, OR CHEM 4582. If four credit hours are totaled, extra counts toward Free Electives.
2 Courses may be applied toward completion of a minor.
3 VIP courses may be used only as free electives.
4 MATH 1554 (http://catalog.gatech.edu/search/?P=MATH%201554) or MATH 1564 (http://catalog.gatech.edu/search/?P=MATH%201564) may be used in place of MATH 1553 (http://catalog.gatech.edu/search/?P=MATH%201553).

International Plan
The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Research Option
The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4698/4699</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours 11
Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Business Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>& 1107L</td>
<td>Biological Principles Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 3000</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 315 Principles of Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or PSYC 22: Industrial/Organizational Psychology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
</tbody>
</table>

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Business Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>& 1107L</td>
<td>Biological Principles Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2214</td>
<td>Quantitative Chemical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 230</td>
<td>Organic and Bioorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2601</td>
<td>Professional Skills for Chemists and Biochemists</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 3111</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3211</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3380</td>
<td>Synthesis Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3412</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481</td>
<td>Physical Chemistry Laboratory I</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Major Required

Research Experience 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4695</td>
<td>Undergraduate Internship (Undergraduate Internship for Academic Credit)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3511</td>
<td>Survey of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 45</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 45</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4000</td>
<td>or 6000-level 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Business Option

Select two of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
</tbody>
</table>
International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in the department and apply to understand their majors in a global perspective. Students in this program often participate in a variety of experiential programs, such as international internships, study abroad, and service learning opportunities.

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research program under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>LMC</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours: 11

1. Supervised research with a chemistry or biochemistry faculty over three or more semesters
2. Approval of the proposal by a committee of two or more faculty
3. Submission of an approved thesis

Successful completion of the Research Option is noted on the student's transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - General

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists.
Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM(p.93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Any SS (p. 97) 9

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>& 1107L</td>
<td>and Biological Principles Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2214</td>
<td>Quantitative Chemical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 2313</td>
<td>Organic and Bioorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 2601</td>
<td>Professional Skills for Chemists and Biochemists</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 3111</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3211</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
</tbody>
</table>

Additional Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3380</td>
<td>Synthesis Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3412</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481</td>
<td>Physical Chemistry Laboratory I</td>
<td>2</td>
</tr>
</tbody>
</table>

International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu.

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological,
inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanotechnology, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

Select one of the following Research Options: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>4698/4699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours 11

1 supervised research with a chemistry or biochemistry faculty over three or more semesters
2 approval of this proposal on project by a committee of two or more faculty
3 submission of an approved thesis

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Materials Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4701 Undergraduate Research Proposal Writing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHEM 4698/4699 Undergraduate Research Assistantship</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LMC 4702 Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Materials Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4701 Undergraduate Research Proposal Writing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHEM 4698/4699 Undergraduate Research Assistantship</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LMC 4702 Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.
Materials Option

Research Experience

- COOP 4000 Co-op Work Assignment
- CHEM 4694 Intern Assistantship (Undergraduate Internship for Pay)
- CHEM 4695 Undergraduate Internship (Undergraduate Internship for Academic Credit)
- CHEM 4698 Undergraduate Research Assistantship
- CHEM 4699 Undergraduate Research
- INTN 4000 Professional Internship
- CHEM 3511 Survey of Biochemistry
 or CHEM 45 Biochemistry I
 or CHEM 45 Biochemistry II
- MSE 2001 Principles and Applications of Engineering Materials

Select three of the following: 1,3
- MSE 2021 Materials Characterization
- MSE 3001 Chemical Thermodynamics of Materials
- MSE 3002 Structural Transformations in Metallic, Ceramic, and Polymeric Systems
- MSE 3003 Mech Behavior-Materials
- MSE 3012 Thermal and Transport Properties of Materials
- MSE 3015 Electrical, Optical and Magnetic Properties
- MSE 3021 Materials Laboratory I
- MSE 4002 Ceramic Materials: Properties, Processing, Applications
- MSE 4010 Environmental Degradation
- MSE 4020 Design with Materials I
- MSE 4022 Materials Laboratory II
- MSE 4325 Thin Film Materials Science
- MSE 4751 Introduction to Biomaterials

Free Electives

- Free Electives 3,4

Total Credit Hours

122

Pass-fail only allowed for Free Electives.

1. Six of the nine credits must be 3000-level or higher. Special Topics also allowed with departmental approval.
2. If CHEM 4694, CHEM 4698, COOP 4000, or INTN 4000 are selected, then 2 hours of free electives must be taken.
3. Courses may be applied toward completion of a minor.
4. VIP courses may be used only as free electives.
5. MATH 1554 (http://catalog.gatech.edu/search/?P=MATH%201554) or MATH 1564 (http://catalog.gatech.edu/search/?P=MATH%201564) may be used in place of MATH 1553 (http://catalog.gatech.edu/search/?P=MATH%201553).

International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following Research Options:</td>
<td>9</td>
</tr>
<tr>
<td>CHEM</td>
<td>Undergraduate Research Assistantship</td>
<td></td>
</tr>
<tr>
<td>4698/4699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(complete during the first or second semester of research)</td>
<td></td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (take during the term in which students complete their thesis)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours

11

1. supervised research with a chemistry or biochemistry faculty over three or more semesters
2. approval of this proposal on project by a committee of two or more faculty
3. submission of an approved thesis

Successful completion of the Research Option is noted on the student's transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Polymer Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility
of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

- ENGL 1101 English Composition I 3
- ENGL 1102 English Composition II 3
- MATH 1552 Integral Calculus 4

Core B - Institutional Options

- CS 1301 Introduction to Computing 3
 or CS 1315 Introduction to Media Computation 3
 or CS 1371 Computing for Engineers 3

Core C - Humanities

- Any HUM (p. 93) 6

Core D - Science, Math, & Technology

- PHYS 2211 Introductory Physics I 4
- PHYS 2212 Introductory Physics II 4
- MATH 1551 Differential Calculus 2
- MATH 1553 Introduction to Linear Algebra 2

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877 3
- HIST 2112 The United States since 1877 3
- INTA 1200 American Government in Comparative Perspective 3
- POL 1101 Government of the United States 3
- PUBP 3000 American Constitutional Issues 3

Any SS (p. 97) 9

Core F - Courses Related to Major

- CHEM 1211K Chemical Principles I 4
- CHEM 1212K Chemical Principles II 4
- CHEM 2380 Synthesis Laboratory I 2
- MATH 2551 Multivariable Calculus 4
- BIOL 1510 Biological Principles 4

Major Requirements

- CHEM 2214 Quantitative Chemical Analysis 4
- CHEM 2311 Organic Chemistry I 3
- CHEM 2312 Organic Chemistry II 3
- or CHEM 230 Bioorganic Chemistry 3
- CHEM 3111 Inorganic Chemistry 3
- CHEM 3211 Analytical Chemistry 5
- CHEM 3380 Synthesis Laboratory II 3
- CHEM 3411 Physical Chemistry I 3
- CHEM 3412 Physical Chemistry II 3
- CHEM 3481 Physical Chemistry Laboratory I 2

Polymer Option

Research Experience 2

- COOP 4000 Co-op Work Assignment 1
- CHEM 4694 Intern Assistantship (Undergraduate Internship for Pay) 1
- CHEM 4695 Undergraduate Internship (Undergraduate Internship for Academic Credit) 1
- CHEM 4698 Undergraduate Research Assistantship 1
- CHEM 4699 Undergraduate Research 1
- INTN 4000 Professional Internship 1

Select one of the following: 3

- CHEM 3482 Physical Chemistry Laboratory II 3
- CHEM 4311 Advanced Organic Chemistry 3
- CHEM 4341 Applied Spectroscopy 3
- CHEM 4401 Molecular Spectroscopy 3
- CHEM 4452 Chemistry of the Solid State 3
- CHEM 4511 Biochemistry I 3
- CHEM 4512 Biochemistry II 3
- CHEM 4521 Biophysical Chemistry 3
- CHEM 4581 Biochemistry Laboratory I 3
- CHEM 4601 Chemistry Seminar 3

Free Electives

Free Electives 13

Total Credit Hours 122

Pass-fail only allowed for Free Electives.
International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, an "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu.

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanochemistry, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu. Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Undergraduate Research Thesis Writing (take one during the term in which students complete their thesis)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 11

1 supervised research with a chemistry or biochemistry faculty over three or more semesters
2 approval of this proposal on project by a committee of two or more faculty
3 submission of an approved thesis

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry - Polymers and Materials Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CS 1371 Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 2212 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 1553 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 1211K Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 1212K Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 2380 Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 2551 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BIOS 1107 Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>and Biological Principles Laboratory</td>
<td></td>
</tr>
</tbody>
</table>
Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2601</td>
<td>Professional Skills for Chemists and Biochemists</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 2214</td>
<td>Quantitative Chemical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 2313</td>
<td>Organic and Bioorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 3111</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3211</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3380</td>
<td>Synthesis Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3412</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481</td>
<td>Physical Chemistry Laboratory I</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Major Requirements

Research Experience

- CHEM 4695 Undergraduate Internship (Undergraduate Internship for Academic Credit)
- CHEM 4699 Undergraduate Research

Materials and Polymers Courses

- MSE 2001 Principles and Applications of Engineering Materials
- CHEM/MSE 4775 Polymer Science and Engineering I: Formation and Properties

Select Polymers Interest or Inorganic Materials Interest:

Polymers interest (select 6 credits):
- MSE 4025 Fiber Product Manufacturing
- MSE 4335 Soft Nano and Bio Materials
- MSE 4751 Introduction to Biomaterials
- MSE 4793 Composite Materials and Processing
- CHEM/MSE 6750 Preparation and Reaction of Polymers
- CHEM 6751 Enzymology and Metabolism
- CHEM/MSE 6752 Polymer Characterization

Materials interest:
- MSE 2021 Materials Characterization

Materials Interest select one additional course:
- MSE 3015 Electrical, Optical and Magnetic Properties
- MSE 4010 Environmental Degradation
- MSE 4325 Thin Film Materials Science
- MSE 4330 Fundamentals of Nanomaterials and Nanostructures

Free Electives

- Free Electives 2.3 11-12

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

2 Courses may be applied toward completion of a minor.
3 VIP courses may be used only as free electives.

Bachelor of Science in Chemistry - Pre-Health Option

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the School prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

- Any HUM (p. 93) 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

4 MATH 1554 (http://catalog.gatech.edu/search/?P=MATH%201554) or MATH 1564 (http://catalog.gatech.edu/search/?P=MATH%201564) may be used in place of MATH 1553 (http://catalog.gatech.edu/search/?P=MATH%201553).
Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues
- Any SS (p. 97) 9

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1108</td>
<td>Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1107L</td>
<td>Biological Principles Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOS 1108L</td>
<td>Organismal Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2214</td>
<td>Quantitative Chemical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2312</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 2312</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2601</td>
<td>Professional Skills for Chemists and Biochemists</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 3111</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3211</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3412</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3511</td>
<td>Survey of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 45</td>
<td>Biochemistry I</td>
<td></td>
</tr>
</tbody>
</table>

Pre-Health Option

<table>
<thead>
<tr>
<th>Lab Electives: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3380Synthesis Laboratory II</td>
</tr>
<tr>
<td>CHEM 3481 Physical Chemistry Laboratory I</td>
</tr>
<tr>
<td>CHEM 4695 Undergraduate Internship (Undergraduate Internship for Academic Credit)</td>
</tr>
<tr>
<td>CHEM 4699 Undergraduate Research</td>
</tr>
<tr>
<td>CHEM 4694 Intern Assistantship (Undergraduate Internship for Pay)</td>
</tr>
<tr>
<td>CHEM 4698 Undergraduate Research Assistantship</td>
</tr>
</tbody>
</table>

Technical Electives 2,5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 3753</td>
<td>Fundamentals of Human Anatomy</td>
</tr>
<tr>
<td>BIOS 3754</td>
<td>Laboratory in Human Anatomy</td>
</tr>
<tr>
<td>BIOS 3755</td>
<td>Human Physiology</td>
</tr>
<tr>
<td>BIOS 3756</td>
<td>Physiology Laboratory</td>
</tr>
<tr>
<td>BIOS 4400</td>
<td>Human Neuroanatomy</td>
</tr>
<tr>
<td>BIOS 2600</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIOS 2601</td>
<td>Genetics Laboratory</td>
</tr>
<tr>
<td>BIOS 3380</td>
<td>Microbiology</td>
</tr>
<tr>
<td>BIOS 3381</td>
<td>Microbiology Lab</td>
</tr>
<tr>
<td>BIOS 3450</td>
<td>Cell and Molecular Biology</td>
</tr>
<tr>
<td>BIOS 3451</td>
<td>Cell and Molecular Biology Lab</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Free Electives 1,4,5,6,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4015 Cancer Biology and Biotechnology</td>
</tr>
<tr>
<td>BIOS 4340 Medical Microbiology</td>
</tr>
<tr>
<td>BIOS 4464 Developmental Biology</td>
</tr>
<tr>
<td>BIOS 4545 Genetics of Complex Human Traits and Diseases</td>
</tr>
<tr>
<td>BIOS 4570 Immunology</td>
</tr>
<tr>
<td>BIOS 4651 Bioethics</td>
</tr>
<tr>
<td>BMED 3100 Systems Physiology</td>
</tr>
<tr>
<td>BMED 3600 Physiology of Cellular and Molecular Systems</td>
</tr>
<tr>
<td>CHEM 4521 Biophysical Chemistry</td>
</tr>
<tr>
<td>CHEM 4765 Drug Design, Development, and Delivery</td>
</tr>
</tbody>
</table>

Total Credit Hours 122

1. Lab Electives: Select two of three lab courses. The lab elective may be fulfilled with either CHEM 3380 (3 credits) or CHEM 3481 (2 credits) or one of the following [CHEM 4695 (3 credits) or CHEM 4699 (3 credits)] or CHEM 4694 (no credit) or CHEM 4698 (no credit).

2. Research or Internship Experience: Either Undergraduate Research CHEM 4699 (3) or Undergraduate Internship CHEM 4695 (3) are acceptable. If research or an internship is conducted for pay / audit rather than credit (e.g., CHEM 4698 or CHEM 4694), then additional free elective(s) may be substituted to achieve the required earned hours to graduate. The research or internship experience must include a final comprehensive laboratory report. Only one Research or Internship course may be used for the Lab elective requirement. If CHEM 3481 is used, add one free elective.

3. The technical elective requirement may be fulfilled by coursework in Science, Engineering, and Computing at the 3000 level or higher. MATH 2551, MATH 2552, SLS 3110, or SLS 3120 may also be used for a Technical Elective. If a 4 credit hour course is used, one less free elective credit is required.

4. It is suggested students select pre-health preparation courses (SOC or PSYC).

5. It is suggested students select pre-health preparation courses (BIOS, HTS, LMC, PSYC).

6. Courses may be applied toward completion of a minor.

7. VIP courses may be used only as free electives.

8. Courses taken as pass-fail may only be used in free electives.

MATH 1554 (http://catalog.gatech.edu/search/?P=MATH%201554) or MATH 1564 (http://catalog.gatech.edu/search/?P=MATH%201564) may be used in place of MATH 1553 (http://catalog.gatech.edu/search/?P=MATH%201553).

International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful...
completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanotechnology, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.

To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu (http://www.undergradresearch.gatech.edu). Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4698/4699</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (complete during the term in which students complete their thesis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

1 supervised research with a chemistry or biochemistry faculty over three or more semesters
2 approval of this proposal on project by a committee of two or more faculty
3 submission of an approved thesis

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Chemistry

The School of Chemistry and Biochemistry has a vibrant program of study leading to a Bachelor of Science in Chemistry. The flexibility of the curriculum allows students to study fundamental areas of chemistry while tailoring their degree with technical and free electives to produce a well-rounded experience in preparation for a variety of career opportunities. Students may pursue tailored tracks towards the BS in Chemistry, including those allowing specialization in: pre-health science, biochemistry, business, polymers, and materials options. There are also tremendous opportunities to gain valuable research experience in state-of-the-art laboratories. In addition to coursework requirements, students in the program often participate in a variety of experiential programs, including: undergraduate research, Cooperative work, study abroad, summer internship, and serving as an undergraduate teaching assistant.

Faculty in the school are committed to undergraduate education and several have won awards for excellence in teaching. With a faculty to student ratio of approximately 1:6, the school prides itself on the close contact that it maintains with its undergraduate students. The high quality of the curriculum and faculty is part of the reason chemistry graduates receive job offers at the highest salary levels for BS chemists. Graduates of the BS in Chemistry pursue careers such diverse field as forensics, environmental science, nanoscience, biotechnology, pharmaceuticals in industry or governmental organizations; or they may continue their education in the chemical or biological sciences, or in medicine, pharmacy, dentistry, and law. Chemistry, especially with the biochemistry option (or the stand-alone BS in Biochemistry degree) is a superb preparation for medical school.

Chemistry Website (http://www.chemistry.gatech.edu)

- Bachelor of Science in Chemistry - General (p. 232)
- Bachelor of Science in Chemistry - Biochemistry Option (p. 229)
- Bachelor of Science in Chemistry - Business Option (p. 231)
- Bachelor of Science in Chemistry - Polymers and Materials Option (p. 237)
- Bachelor of Science in Chemistry - Pre-health Option (p. 238)

International Plan

The BS in Chemistry (International Plan) and BS in biochemistry (International Plan) are offered to undergraduate students seeking to understand their majors in a global perspective. Students in this program must demonstrate proficiency in a foreign language; complete coursework in a country/regional elective, international relations, and global economics; and participate study or research abroad experience (usually in the junior year). While abroad, students are required to complete a supervised research experience with a faculty member in chemistry or biochemistry at the host institution. Upon successful completion of degree requirements for the International Plan, a "International Plan" designator is indicated on the diploma. If interested in participating in the International Plan as part of the BS in Chemistry or BS in Biochemistry, students should visit: www.internationalplan.gatech.edu (http://www.internationalplan.gatech.edu).

Research Option

The BS in Chemistry (Research Option) and BS in Biochemistry (Research Option) are offered for students who wish to participate in a research problem under the supervision of one of the fifty members of faculty and adjunct faculty in the School. Participants in the Research Option learn how to address a research problem from experiment design and execution to interpretation of results. There is an expectation that undergraduates who contribute to completed studies will be co-authors on submissions to high-quality scholarly journals. Research projects are available in the traditional areas of chemistry (analytical, biological, inorganic, organic, physical, and polymer chemistry) as well as highly interdisciplinary research areas, such as nanotechnology, polymer and materials chemistry, environmental chemistry and sensors, medicinal chemistry, molecular biophysics, and computational chemistry.
To participate in the Research Option in the School of Chemistry and Biochemistry, students should find a research project with a faculty member in the department and apply online via www.undergradresearch.gatech.edu. Successful completion of the Research Option requires the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4698/4699</td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(complete during the first or second semester of research)²</td>
<td></td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(take during the term in which students complete their thesis)³</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 11

1. supervised research with a chemistry or biochemistry faculty over three or more semesters
2. approval of this proposal on project by a committee of two or more faculty
3. submission of an approved thesis

Successful completion of the Research Option is noted on the student’s transcript. Students completing this degree may pursue graduate studies in the chemical or biological sciences or research careers in industrial or governmental laboratories.

Bachelor of Science in Civil Engineering

The four-year curriculum leading to the Bachelor of Science in Civil Engineering (BS CE) enables the graduate to enter professional practice as an engineer or to continue his or her studies in programs leading to advanced degrees in the following broad fields of specialization:

- construction engineering and management,
- environmental engineering,
- environmental hydraulics,
- geotechnical engineering,
- hydrology,
- materials,
- structural engineering and mechanics,
- transportation, and
- water resources planning and management.

The BS CE degree program is designed to offer depth in course material considered essential for all civil engineers, as well as flexibility in selecting elective courses that offer breadth of topic exposure. Civil engineers contribute to society in numerous ways; thus, the School’s philosophy is to provide the student with a range of electives that meet student interests. Civil engineers must not only be technically proficient, but also must be effective in working with people and with professionals in other disciplines.

Program Objectives

Graduates will pursue a diverse range of careers that build on their engineering education. During the initial years of their careers, graduates will:

1. apply technical proficiency in the principles and methods essential to modern civil engineering practice.
2. demonstrate understanding of global, societal, environmental, and sustainability issues related to civil engineering.
3. exhibit effective communication, teamwork, entrepreneurial, and leadership skills.
4. engage in ethical and responsible practice while pursuing professional growth.

Prerequisites and Other Requirements

Although students are not obligated to take the courses during the semester indicated, they must satisfy all prerequisites for a particular course. In addition to campus-wide academic requirements for graduation with a bachelor’s degree, the following are also required for the BS CE degree:

A C or better must have been earned in the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1502</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
</tbody>
</table>

The number of quality points earned in CEE courses taken toward the degree must be at least twice the number of credit hours in those courses. If a course is repeated, the latest grade will be included in applying this rule. No CEE course may be repeated for the purpose of satisfying this rule if the original grade was a C or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus ³</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra ³</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

or MATH 1555 or MATH 1556

Wellness

APPH 1040 Scientific Foundations of Health 2

or APPH 10 The Science of Physical Activity and Health

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus ³</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93)

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I ²,³</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus ³</td>
<td>2</td>
</tr>
</tbody>
</table>

or MATH 1555 or MATH 1556
Bachelor of Science in Civil Engineering

or MATH 156 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences
Select one of the following: 3
- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Select one of the following: 3
- ECON 2100 Economic Analysis and Policy Problems
- ECON 2101 The Global Economy
- ECON 2105 Principles of Macroeconomics
- ECON 2106 Principles of Microeconomics

Any SS (p. 97) 6

Core F - Courses Related to Major
COE 2001 Statics 3 2
MATH 2551 Multivariable Calculus 4
MATH 2552 Differential Equations 4
CHEM 1310 General Chemistry 3 4

Select one of the following: 4
- BIOS 1107 Biological Principles
 & 1107L and Biological Principles Laboratory
- BIOS 1108 Organismal Biology
 & 1108L and Organismal Biology Laboratory
- EAS 2600 Earth Processes

Ethics Requirement (Civil Engineering approved) 1

Major Requirements
CEE 1770 Introduction to Engineering Graphics and Visualization 3
CEE 2040 Dynamics 2
CEE 2300 Environmental Engineering Principles 3
CEE 3000 Civil Engineering Systems 3
CEE 3020 Civil Engineering Materials 3
CEE 3040 Fluid Mechanics 3

Select one of the following: 3
- CEE 3770 Statistics and Applications
- ISYE 3770 Statistics and Applications
- MATH 3670 Probability and Statistics with Applications
CEE 4090 Capstone Design 3

College of Engineering Requirements
COE 3001 Mechanics of Deformable Bodies 3

Select one of the following: 3
- CHBE 2130 Chemical Engineering Thermodynamics I
- ME 3322 Thermodynamics
- MSE 3001 Chemical Thermodynamics of Materials

CE Breadth Electives
Select three of the following: 9
- CEE 3051 Introduction to Structural Engineering
- CEE 4100 Construction Engineering and Management
- CEE 4200 Hydraulic Engineering
- CEE 4300 Environmental Engineering Systems
- CEE 4405 Introduction to Geotechnical Engineering
- CEE 4600 Transportation Planning, Operations, and Design
CEE 4200 Hydraulic Engineering 3
or CEE 4405 Introduction to Geotechnical Engineering

CE Technical Electives
CE Electives 3 18
Approved Electives
Approved Electives 5 6

Total Credit Hours 128

No pass-fail allowed, except for CS 1171.

CEE 4801 not allowed toward degree.

Students must earn a 2.0 average in all CEE courses.

1 Students must complete an Ethics requirement from the following courses: PHIL 3105, PHIL 3109, or PHIL 3127.
2 If PHYS 2231 is taken, extra credit hour goes to Free Electives.
3 Minimum grade of C is required.
4 Any 3000-level or higher CEE course, with the exception of CEE 4801, CEE 8811, and CEE 8812. Maximum of 3 credit hours CEE 4699 and CEE 4900. Only one non-CEE course allowed: COA 4010, CP 4010, CP 4020, CP 4310, and CP 4510.
5 Maximum 3 credit hours CEE 2699 allowed. MATH 1113, PHYS 2802, PHYS 2XXX (AP credit), one-hour MUSI courses, GT 1000, and FREE XXX are not allowed.

Cooperative Plan
Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. The program is the fourth oldest of its kind in the world and the largest optional co-op program in the country.

Students alternate between work assignments and classroom studies until they complete four or five semesters of work. Co-op students with a civil engineering major complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as freshmen or sophomores and are classified as full-time students regardless of whether they are attending classes on campus or are full time at an employer’s location.

Students who participate in the program have the opportunity to develop career interests, become more confident in their career choices, and develop human relations skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation.

The Georgia Tech Internship Program is for civil engineering students who do not participate in the Cooperative Program, but want some career-related experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work experiences. Students must have completed at least 30 hours of coursework at Georgia Tech before they can participate in the program. For more details, visit www.gtip.gatech.edu/ (http://www.gtip.gatech.edu).

In addition, there is the Work Abroad Program (www.workabroad.gatech.edu (http://www.workabroad.gatech.edu)), which complements a student’s formal education with paid international
work experience directly related to civil engineering. Participating students typically are juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of needed skills. This program satisfies requirements for the International Plan, which is available to civil engineering students.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

International Plan

The International Plan is a challenging and coherent academic program for undergraduates that develops global competence within the context of a student’s major. It is a degree-long program that integrates international studies and experiences into any participating major at Georgia Tech. It helps to prepare Georgia Tech graduates professionally and personally for successful lives in the twenty-first century.

The International Plan is not intended to replace current international programs; it supplements them. Existing study abroad opportunities continue to be offered. It is also not intended to be an add-on to the current degree programs. It is intended to be another curriculum path to earn a degree in which international competence is integrated into the program of study. The plan can be completed within the normal timeframe of four years of undergraduate study.

The overarching model for the International Plan has four components:

1. **International coursework**: Three courses to include one from each of the following categories:
 a. International relations
 b. Global economics
 c. A course about a specific country or region
2. **International experience**: Two terms abroad (not less than 26 weeks) engaged in any combination of study abroad, research, or internship
3. **Second language proficiency**: All students in the program are expected to reach at least the proficiency level equivalent to two years of college-level language study. Students who use the language to study, conduct research, or participate in an internship during their international experience are expected to attain a higher level of proficiency. Language proficiency is determined by testing (not course credits).
4. **Culminating course**: A capstone course in the major designed to tie the international studies and experiences together with the student’s major

Completion of the International Plan is recognized by a designation on the student’s diploma indicating completion of the degree with global competence.

For additional information about the International Plan visit www.oie.gatech.edu/internationalplan (http://www.internationalplan.gatech.edu).

Research Option

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in civil engineering. In order to graduate with a BSC.E – Research Option degree, the students must:

Complete at least nine units of undergraduate research (over at least two, preferably three terms). Research may be for either pay (CEE 2698 or CEE 4698) or credit (CEE 2699 or CEE 4699). Research for credit may be used towards the BS CE approved elective requirements.

Write an undergraduate thesis/report of research on their findings. This is usually done during the graduating term. The thesis will be published in the Georgia Tech Library.

Take two 1-hour classes: LMC 4701 (typically taken during the first or second semester of research) and LMC 4702 (taken during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be completed in LMC 4701 which serves as a prerequisite for LMC 4702. Completion of Research Option is noted on the student’s transcript.

Joint BS/MS Degree Program - Civil Engineering

The joint BS/MS program is designed to attract the best-of-the-best undergraduate students and is especially intended for students who demonstrate an interest in, and ability for, additional education beyond the bachelor’s degree.

Students will be eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech and appropriate progress in their degree program. As a practical matter, students should apply for the program at least three semesters prior to graduation in order to take graduate-level courses prior to receiving their BS degree. Students must have a Georgia Tech GPA of 3.5 or higher for admission into the BS/MS Program in Civil Engineering.

This program is available only to those completing a Bachelor’s degree with the School of Civil and Environmental Engineering

Students in the joint BS/MS program remain undergraduates until they meet the requirements for the bachelor’s degree, at which point they will receive the BSCE or BSEnvE degree. Their status will then be changed to graduate status. Graduate school application fees and the GRE requirements are waived.

Once admitted, a GPA of at least 3.0 must be maintained to remain in the program. Additionally, students in the BS/MS program are eligible to use the Graduate Course Option (p. 107) even if their cumulative grade-point average is below 3.5 at the time they complete their bachelor’s degree.

Bachelor of Science in Computational Media - Intelligence-Film & Media Studies

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely...
positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:

- Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
- Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
- Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Major Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>Junior Design Options (Capstone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Intelligence Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>or PSYC 3085</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 4495</td>
<td>Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 4635</td>
<td>Knowledge-Based Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 4649</td>
<td>Robot Intellie Planning</td>
<td></td>
</tr>
<tr>
<td>CS 4646</td>
<td>Machine Learning for Trading</td>
<td></td>
</tr>
<tr>
<td>CS 4650</td>
<td>Natural Language Understanding</td>
<td></td>
</tr>
<tr>
<td>CS 4731</td>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>Film & Media Studies Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4813</td>
<td>Special Topics (Media/Design Capstone)</td>
<td>3</td>
</tr>
<tr>
<td>Film and Media Making course</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LMC 4720</td>
<td>Interactive Narrative</td>
<td>3</td>
</tr>
<tr>
<td>Any LMC 27XX course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any LMC 37XX course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film and Media Studies courses</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
</tbody>
</table>

244 Bachelor of Science in Computational Media - Intelligence-Film & Media Studies
Undergraduate Research Proposal Writing

Undergraduate Research Thesis Writing

LMC (in addition to the basic humanities requirement). Students will also:

- take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Research</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)

Graduate Cooperative Plan (p. 83)
• computational principles;
• the representation and manipulation of digital media, including graphics and sound;
• software design;
• visual and interactive design;
• digital arts; and
• media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:

• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core A - Essential Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
</tr>
<tr>
<td>ENGL 1102</td>
</tr>
<tr>
<td>MATH 1552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core B - Institutional Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
</tr>
<tr>
<td>or CS 1315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core C - Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
</tr>
<tr>
<td>Any LMC HUM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
</tr>
<tr>
<td>MATH 1551</td>
</tr>
<tr>
<td>MATH 1554</td>
</tr>
<tr>
<td>or MATH 1554</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>HIST 2111</td>
</tr>
<tr>
<td>HIST 2112</td>
</tr>
<tr>
<td>INTA 1200</td>
</tr>
<tr>
<td>POL 1101</td>
</tr>
<tr>
<td>PUBP 3000</td>
</tr>
<tr>
<td>PSYC 1101</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
</tr>
<tr>
<td>CS 1332</td>
</tr>
<tr>
<td>CS 2050</td>
</tr>
<tr>
<td>CS 2340</td>
</tr>
<tr>
<td>LMC 2700</td>
</tr>
<tr>
<td>MATH 2550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110</td>
</tr>
<tr>
<td>CS 4001</td>
</tr>
<tr>
<td>or CS 4726</td>
</tr>
<tr>
<td>or SLS 311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Design Options (Capstone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Design Option 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intelligence Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3510</td>
</tr>
<tr>
<td>CS 3600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computational Complexity (select one):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4510</td>
</tr>
<tr>
<td>CS 3240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emodied Intelligence (select one):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3630</td>
</tr>
<tr>
<td>CS 3790</td>
</tr>
<tr>
<td>PSYC 3040</td>
</tr>
<tr>
<td>Approaches to Intelligence (select two):</td>
</tr>
<tr>
<td>CS 4495</td>
</tr>
<tr>
<td>CS 4635</td>
</tr>
<tr>
<td>CS 4641</td>
</tr>
<tr>
<td>CS 4646</td>
</tr>
<tr>
<td>CS 4649</td>
</tr>
<tr>
<td>CS 4650</td>
</tr>
<tr>
<td>CS 4731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Games Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2410</td>
</tr>
<tr>
<td>LMC 4710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design course (select one):</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2730</td>
</tr>
<tr>
<td>LMC 3710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game Design courses (select three):</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4720</td>
</tr>
<tr>
<td>LMC 4725</td>
</tr>
<tr>
<td>LMC 4730</td>
</tr>
<tr>
<td>LMC 4731</td>
</tr>
<tr>
<td>LMC 3710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CM or Media Courses (select three):</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2400</td>
</tr>
<tr>
<td>LMC 2500</td>
</tr>
<tr>
<td>LMC 3206</td>
</tr>
<tr>
<td>LMC 3314</td>
</tr>
<tr>
<td>LMC 3406</td>
</tr>
</tbody>
</table>
Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)
Graduate Cooperative Plan (p. 83)

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student's major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours: 11

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - Intelligence-Interaction Design

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
• software design;
• visual and interactive design;
• digital arts; and
• media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:

• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td>Any Liberal Arts</td>
<td>3</td>
</tr>
<tr>
<td>Any LMC HUM</td>
<td>Any Liberal Arts (LMC)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>Any Social Sciences</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td></td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Major Requirement</td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junior Design Options (Capstone)</td>
<td></td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Intelligence Requirements</td>
<td></td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td>Embodied Intelligence (select one):</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interaction Design Requirements</td>
<td></td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4813</td>
<td>Special Topics (Media/Design Capstone)</td>
<td>3</td>
</tr>
<tr>
<td>Design course:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>Design and Culture courses:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>CM or LMC courses</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3853</td>
<td>Special Topics in Film</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Research Proposal Writing
Undergraduate Research Thesis Writing

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)
Graduate Cooperative Plan (p. 83)

International Plan
The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option
The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media
Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - Media-Film & Media Studies
The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
• digital arts; and
• media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:

• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Any LMC HUM</td>
<td>Status: (p. 97)</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>Status: (p. 97)</td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1554 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>Status: (p. 97)</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>Status: (p. 97)</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Pass Fail is allowed for courses in core areas C, D, E and Free.
Minimum grade of C required.

Junior Design Options are as follows (students must pick one option and may not change):
- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - CS 4980 or LMC 4699 (4 credit hours), LMC 4701, LMC 4702.
- Option 3 - ECE VIP courses and LMC 3403.

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least four semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + VIP 4 (3 credit hours) = 8 hours of VIP credit. VIP 4 must be taken after 90 credit hours at the 4000 level and be on the same project as 2 of VIP 1-3s.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)
Graduate Cooperative Plan (p. 83)

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undergraduate Research</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - Media-Games

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:
• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core A - Essential Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
</tr>
<tr>
<td>ENGL 1102</td>
</tr>
<tr>
<td>MATH 1552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core B - Institutional Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core C - Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
</tr>
<tr>
<td>Any LMC HUM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
</tr>
<tr>
<td>MATH 1551</td>
</tr>
<tr>
<td>MATH 1554</td>
</tr>
<tr>
<td>or MATH 1554</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>HIST 2111</td>
</tr>
<tr>
<td>HIST 2112</td>
</tr>
<tr>
<td>INTA 1200</td>
</tr>
<tr>
<td>POL 1101</td>
</tr>
<tr>
<td>PUBP 3000</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
</tr>
<tr>
<td>CS 1332</td>
</tr>
<tr>
<td>CS 2050</td>
</tr>
<tr>
<td>CS 2340</td>
</tr>
<tr>
<td>LMC 2700</td>
</tr>
<tr>
<td>MATH 2550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2261</td>
</tr>
<tr>
<td>CS 4001</td>
</tr>
</tbody>
</table>

or CS 4726 Privacy, Technology, Policy, and Law
or SLS 3110 Technology and Sustainable Community Development

Junior Design Options (Capstone)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Media Technology (select two):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4455</td>
</tr>
<tr>
<td>CS 4460</td>
</tr>
<tr>
<td>CS 4464</td>
</tr>
<tr>
<td>CS 4475</td>
</tr>
<tr>
<td>CS 4480</td>
</tr>
<tr>
<td>CS 4496</td>
</tr>
<tr>
<td>CS 4590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Games Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2410</td>
</tr>
<tr>
<td>LMC 4710</td>
</tr>
<tr>
<td>CS 3600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2730</td>
</tr>
<tr>
<td>LMC 3710</td>
</tr>
</tbody>
</table>

| Total Credit Hours | 122 |

Pass Fail is allowed for courses in core areas C, D, E and Free.
Minimum grade of C required.

Junior Design Options are as follows (students must pick one option and may not change):
- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - CS 4980 or LMC 4699 (4 credit hours), LMC 4701, LMC 4702.
- Option 3 - ECE VIP courses and LMC 3403.

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least four semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + VIP 4 (3 credit hours) = 8 hours of VIP credit. VIP 4 must be taken after 90 credit hours at the 4000 level and be on the same project as 2 of VIP 1-3s.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)

Graduate Cooperative Plan (p. 83)

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG</td>
<td>Undergraduate Research</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours 11

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - Media-Interaction Design

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:
• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Any LMC HUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>CM or LMC Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4813</td>
<td>Special Topics (Media/Design Capstone)</td>
<td>3</td>
</tr>
<tr>
<td>Design course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>Any LMC 27XX, 37XX, 47XX, 325X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>

Pass Fail is allowed for courses in core areas C, D, E and Free.
Minimum grade of C required.

Junior Design Options are as follows (students must pick one option and may not change):

1. Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
2. Option 2 - CS 4980 or LMC 4699 (4 credit hours), LMC 4701, LMC 4702.
3. Option 3 - ECE VIP courses and LMC 3403.

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least four semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + VIP 4 (3 credit hours) = 8 hours of VIP credit. VIP 4 must be taken after 90 credit hours at the 4000 level and be on the same project as 2 of VIP 1-3s.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further information.

Undergraduate Cooperative Plan (p. 83)

Graduate Cooperative Plan (p. 83)

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Research</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards the 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - People-Film & Media Studies

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical, critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:
• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Any LMC HUM</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 1554 Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 156 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC 1101 General Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 1331 Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 1332 Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 2050 Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 2340 Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 2700 Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2550 Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 2261 Media Device Architectures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 2261 Junior Design Option (Capstone)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>People Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC 2015 Research Methods</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Social/Behavioral Science (select one):</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSYC 2210 Social Psychology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC 2760 Human Language Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC 3040 Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human-Centered Technology (select two):</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CS 3750 Human Computer Interface Design and Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 3790 Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4660 Introduction to Educational Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4745 Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 4460 Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4470 Introduction to User Interface Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4605 Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4625 Intelligent and Interactive Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Film & Media Studies Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2400 Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 4813 Special Topics (Media/Design Capstone)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Film and Media Making course:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 4720 Interactive Narrative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 325X Any LMC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Film and Media Studies courses:</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>LMC 2400 Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2500 Introduction to Film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3206 Communication and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3314 Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3352 Film and/as Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3362</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3402 Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3406 Video Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3833</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3853 Special Topics in Film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3863</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM or Media Courses</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Any LMC 2XXX, 3XXX, 4XXX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>122</td>
</tr>
</tbody>
</table>
Minimum grade of C required.

Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - CS 4980 or LMC 4699 (4 credit hours), LMC 4701, LMC 4702.
- Option 3 - ECE VIP courses and LMC 3403.

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least four semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + VIP 4 (3 credit hours) = 8 hours of VIP credit. VIP 4 must be taken after 90 credit hours at the 4000 level and be on the same project as 2 of VIP 1-3s.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further information.

Undergraduate Cooperative Plan (p. 83)
Graduate Cooperative Plan (p. 83)

International Plan
The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option
The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Research</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LMC 4701 Undergraduate Research Proposal Writing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LMC 4702 Undergraduate Research Thesis Writing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media
Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media - People-Games
The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical-critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:
• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.
• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.
• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Any LMC HUM</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 1554 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>CM or Media Courses</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td></td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>CS 2261</td>
<td>Media Device Architectures</td>
<td>4</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 4726 Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or SLS 311 Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>CS 3750</td>
<td>Human Computer Interface Design and Evaluation</td>
<td></td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 4660</td>
<td>Introduction to Educational Technology</td>
<td></td>
</tr>
<tr>
<td>CS 4745</td>
<td>Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td>3</td>
</tr>
<tr>
<td>CS 4470</td>
<td>Introduction to User Interface Software</td>
<td></td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4625</td>
<td>Intelligent and Interactive Systems</td>
<td></td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4710</td>
<td>Game Studio</td>
<td>3</td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td></td>
</tr>
<tr>
<td>LMC 4720</td>
<td>Interactive Narrative</td>
<td></td>
</tr>
<tr>
<td>LMC 4725</td>
<td>Games Design as a Cultural Practice</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>LMC 4731</td>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>LMC 4700</td>
<td>Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3853</td>
<td>Special Topics in Film</td>
<td></td>
</tr>
<tr>
<td>Any LMC 27XX, 37XX, 47XX, 325X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pass Fail is allowed for courses in core areas C, D, E and Free.
Minimum grade of C required.

Junior Design Options are as follows (students must pick one option and may not change):
- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - CS 4980 or LMC 4699 (4 credit hours), LMC 4701, LMC 4702.
- Option 3 - ECE VIP courses and LMC 3403.

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least four semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + VIP 4 (3 credit hours) = 8 hours of VIP credit. VIP 4 must be taken after 90 credit hours at the 4000 level and be on the same project as 2 of VIP 1-3s.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs.

See links below for further Information.

Undergraduate Cooperative Plan (p. 83)

Graduate Cooperative Plan (p. 83)

International Plan

The Computational Media (CM) International Plan follows the Institute model to develop a global competence within the student’s major program of study. It thus integrates international studies and experiences with work in all aspects of the computer as a medium, preparing graduates to plan, create, and critique new digital media forms within an international professional environment.

As in the basic CM program, students following the International Plan will take credit 36 hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). Students will also:

1. take three international courses, including one from each of the following categories: International Relations, Global Economics, and a course on a specific country or region;
2. spend two terms abroad engaged in any combination of study abroad, research, or internship;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and
4. complete a CM capstone course that links international studies with the major.

Research Option

The CM Research Plan follows the Institute model to allow students to incorporate research experiences into the major program of study. Students will complete nine hours of credit research work on various aspects of the computer as a medium, working in such areas as computational principles, the representation and manipulation of digital media, software design, visual and interactive design, digital art, and media theory and history.

As in the basic CM program, students following the Research Plan will take 36 credit hours of courses in CS and 30 credit hours of courses in LMC (in addition to the basic humanities requirement). CM students can complete the Research Option with nine CS or LMC research hours. Students cannot have a mix of both count towards the Research Option. The breakdown of hours is as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undergraduate Research Proposal Writing</td>
<td>9</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

BS/MS Computational Media and Digital Media

Students who want to pursue the five-year BS/MS combination in CM and DM must apply to the school of LMC after completing at least 75 hours of work towards the CM degree. Applicants should have a cumulative GPA of at least 3.5. This GPA must be maintained for the student to take graduate level courses. Students must start the program in the Fall to be on track with other MS students.

Students admitted to the program will take a total of twelve credit hours of graduate course work during their final undergraduate year; six credit hours of that work, in DM courses, will count towards two 4000 level LMC courses (6 hours) and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During their fifth year, students will take a total of 24 credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside of the DM program.

Bachelor of Science in Computational Media

The Bachelor of Science in Computational Media is a collaborative effort by the College of Computing and the School of Literature, Media, and Communication (LMC). The program offers a thorough education in all aspects of the computer as a medium: the technical, the historical, critical, and the applied. Program graduates will have both significant hands-on and theoretical knowledge of computing and an understanding of visual design and the history of media. Graduates will be uniquely positioned to plan, create, and critique new digital media forms for entertainment, education, and business communication.

The program requires 36 credit hours of courses in computer science and 30 credit hours of courses in LMC (in addition to the humanities requirement). A substantial number of required courses in each unit ensures that every student has basic competence in:

- computational principles;
- the representation and manipulation of digital media, including graphics and sound;
- software design;
- visual and interactive design;
- digital arts; and
- media theory and history.

After completing required courses, students specialize in a specific area of media computing. Typical specialty areas include:
• Interactive games design: This is one of the fastest growing areas of digital media production and is already a $7 billion industry.

• Special effects: As special effects become more complex and focused on computer-generated imagery, employment in this area will increasingly require expertise in both media and computer science.

• Culturally informed program design: As programming work is increasingly outsourced to nations offering lower labor costs, programming that adds value through a sophisticated response to the needs of specific corporate and group cultures will offer job security to American programmers.

Depending on their coursework within the BS program, students will also be qualified to enter graduate studies in computer science, digital arts, digital media studies, and human-computer interface.

• Bachelor of Science in Computational Media - Intelligence - Film & Media Studies (p. 243)
• Bachelor of Science in Computational Media - Intelligence - Games (p. 245)
• Bachelor of Science in Computational Media - Intelligence - Interaction Design (p. 247)
• Bachelor of Science in Computational Media - Media - Film & Media Studies (p. 249)
• Bachelor of Science in Computational Media - Media - Games (p. 251)
• Bachelor of Science in Computational Media - Media - Interaction Design (p. 253)
• Bachelor of Science in Computational Media - People - Film & Media Studies (p. 255)
• Bachelor of Science in Computational Media - People - Games (p. 257)
• Bachelor of Science in Computational Media - People - Interaction Design (http://www.catalog.gatech.edu/programs/computational-media-people-interaction-design-bs)

Bachelor of Science in Computer Engineering

The School of Electrical and Computer Engineering offers two undergraduate degree programs: electrical engineering (EE) and computer engineering (CmpE). Both programs include elective hours, enabling students to individually tailor their programs to provide emphasis in a particular specialization or exposure to a broad range of subjects. Engineering analysis and design concepts are integrated throughout both programs, culminating in a common major design experience involving a broad range of issues including economic and societal considerations.

The field of computer engineering is centered in digital design, computer architecture, computer networks and internetworking, and computer applications. The BS CmpE program offers elective courses in a wide variety of specializations, including computer architecture; embedded systems and software; design tools, test, and verification; computer networks and internetworking; distributed systems and software; and VLSI design. Additionally, students may elect to take advanced courses in other EE specializations, computer science, or programs, such as mathematics, physics, or management. As an alternative to the BS CmpE degree, students may choose a computer engineering specialization within the BS EE degree program.

Program Objectives

The School of Electrical and Computer Engineering has established the following student educational objectives for its undergraduate programs:

A. Graduates will be successful in the professional practice of engineering or other related fields. They will obtain employment appropriate to their background, interests, and education and will advance in their career field.

B. Graduates will engage in life-long learning; e.g., advanced education/degrees, professional development activities, and/or other career-appropriate options.

C. Graduates who are employed within engineering fields will demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current engineering techniques, skills, and tools.

D. As appropriate to their professional or educational positions, graduates will
 i. effectively communicate technical information in multiple formats,
 ii. function effectively on teams, and
 iii. develop and apply electrical/computer engineering solutions within global, societal, and environmental contexts.

Additional information about program assessment (http://www.ece.gatech.edu/academics/accreditation.html) for all of the School’s programs is available on the ECE website.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>5.2</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Choose one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
</tbody>
</table>
ECON 2105 Principles of Macroeconomics

ECON 2106 Principles of Microeconomics

Any SS (p. 97) 6

Core F - Courses Related to Major

ECE 2020 Digital System Design 3 3
MATH 2551 Multivariable Calculus 3 4
MATH 2552 Differential Equations 3 4
CHEM 1310 General Chemistry 4
or CHEM 12 Chemical Principles I

Science Elective 4 3
Ethics 5

Probability/Statistics 9
Professional Communications 10

Major Requirements

ECE 2026 Introduction to Signal Processing 3 3
ECE 2031 Digital Design Laboratory 3 2
ECE 2035 Programming for Hardware/Software Systems 3 4
ECE 2036 Engineering Software Design 3 4
ECE 2040 Circuit Analysis 3 3
ECE 3020 Mathematical Foundations of Computer Engineering 3
ECE 3030 Physical Foundations of Computer Engineering 3

ECE 3057 Architecture, Systems, Concurrency and Energy in Computation 3
ECE 4011 ECE C Ulminating Design Project I 3 2
ECE 4012 ECE C Ulminating Design Project II 3

Non-ECE Engineering Electives

Electives 3,8 5

CMPE Upper Level Electives

ECE/CS 3-4000-Level Electives 6,11 22

Approved Electives

Approved Electives 7 12

Total Credit Hours 132

Pass-fail only allowed for Humanities Electives, Social Sciences Electives, Science Electives, and Free Elective courses.

Courses that are cross-listed with ECE must be taken under the ECE number.

1 Students must complete an Ethics requirement. See below for allowable Ethics courses.
2 If PHYS 2231 is taken, extra hours go to Free Electives.
3 Minimum grade of C required.
4 Science Elective must be chosen from the following list: APPH 3751, BIOL 1510, BIOL 1520, BIOL 3751, CHEM 121K, CHEM 1315, EAS 1600, EAS 1601, EAS 2600, PHYS 2021, PHYS 2022, or PHYS 2213.
5 Students must complete one Ethics course during their program. For a complete list of Ethics courses, please see: http://www.catalog.gatech.edu/students/ugrad/core/ ethics.php
6 ECE 3005, ECE 3710, ECE 3741,ECE 4699, CS 4699, ECE 3900-level, CS 3900-level, ECE 4900-level, CS 4900-level, CS 3800-level, and CS 4800-level not allowed.
7 The following courses are not allowed: ECE 3710, ECE 3741, HPS 1XXX, LMC 2661, LMC 2662, LMC 3661, LMC 3662, MATH 1113, MUSI 1008, MUSI 1009, MUSI 2008, MUSI 2009, MUSI 3008, MUSI 3009, MUSI 4008, and MUSI 4009, PHYS 2XXX (AP Credit). Maximum of six credit hours of Special Problems.
8 Course must be 2000-level or higher and 2 credit hours or more.
9 BMED 2400, COE 3002, ISYE 2027, ISYE 2028, CHBE 2120, ME 2016, ME 2110, not allowed. 2800-, 2900-, 3900-, or 4900-level classes not allowed. Engineering courses outside of ECE must be 2000-level or higher and 2 credit hours or more.
10 CEE 3770 or ISYE 3770 or MATH 3670 or ECE 3077 (Must be taken on Letter/Grade basis)
11 9 credit hours must be 4000-level and each 4000-level course must have a 3000- or 4000-level ECE/CS course as a prerequisite.

Cooperative Plan

The Georgia Tech Undergraduate Cooperative Education Program allows students to combine classroom study with paid practical work experience directly related to the academic major. Co-ops alternate semesters of on-campus study with semesters of full-time employment, normally beginning the program as freshmen or sophomores. Over 30 percent of ECE undergraduates participate in the co-op program.

The degree requirements for students in the co-op program are the same as those for other students in the major. The Cooperative Plan designation may be pursued separately or in combination with the International Plan and/or the Research Option.

Begun in 1912, Georgia Tech’s program is currently the largest optional co-op program in the United States and has perennially been listed in U.S. News & World Report as one of the top ten co-op programs in America. As an integral part of the overall education experience, the co-op program allows students to take on increasing levels of responsibility and to use their job knowledge and classroom learning to make meaningful contributions to the organizations in which they work. Many co-op graduates are hired by their co-op employer, and more than 700 companies or government organizations throughout the United States and abroad currently employ Georgia Tech Undergrad Co-op Program students.

Because the School of ECE in Atlanta offers a wide range of electives and almost all required courses every term, including summer, co-op students have substantial flexibility in completing their degree requirements. Many students continue their co-op work assignments through the senior year. Additionally, co-op students working in the Atlanta area may be able to take certain ECE courses, particularly laboratories offered in the evening, during the work term.

In addition to the co-op program, the Center for Career Discovery and Development also offers the Undergraduate Professional Internship and Work Abroad programs. These programs also provide opportunities for students to gain practical work experience, without the long-term commitment of the co-op program.

Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu)
International Plan

The International Plan is intended for students who seek an intensive international experience integrated into their undergraduate studies in computer engineering. The International Plan develops global competence through a combination of coursework, language study, and residential overseas experience. Students who complete this option receive a designation on their transcript and diploma.

The computer engineering aspects of the BS CmpE - International Plan degree requirements are identical to those for the regular BS CmpE. Please refer to the BS CmpE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the International Plan designation through appropriate choices of electives without additional credit hours to complete the degree. The International Plan designation may be pursued separately, or in combination with the Cooperative Plan and/or the Research Option.

The School of Electrical and Computer Engineering offers a junior-year program at the Georgia Tech-Lorraine campus in Metz, France, that is designed to facilitate participation in the International Plan. However, computer engineering majors are not restricted to this option and may complete any allowable courses, languages, and overseas experiences that satisfy the International Plan requirements.

Research Option

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in computer engineering. This option includes three or four semesters of structured research and provides an open evaluation of a student’s research capabilities, viewable by the public via a required Web-based research portfolio. Students who complete this option receive a designation on their transcript.

The computer engineering aspects of the BS CmpE-Research Option degree requirements are identical to those for the regular BS CmpE. Please refer to the BS CmpE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the Research Option designation through appropriate choices of electives without additional credit hours to complete the degree. The Research Option designation may be pursued separately, or in combination with the Cooperative Plan and/or the International Plan.

The School of Electrical and Computer Engineering (ECE) offers a two-semester Undergraduate Research Opportunity Program (UROP), which may be completed to provide a less-intensive research experience or as the initial phase of the Research Option. Contact the ECE Academic Office for additional information about the Research Option, including specific Institute and ECE requirements, and assistance in planning your schedule to allow participation in this program.

BS/MS Electrical and Computer Engineering

This program allows highly qualified students to receive the Bachelor of Science in either Electrical Engineering or Computer Engineering and a master’s degree in Electrical and Computer Engineering. The joint BS/MS degree program affords undergraduate electrical or computer engineering majors the opportunity to broaden their studies and improve their career prospects.

Eligible Georgia Tech undergraduates normally apply for this program during their junior year. Contact the Electrical and Computer Engineering Graduate Affairs Office for program information, eligibility requirements, and applications.

BS/MS Information (5 Year) (http://www.ece.gatech.edu/internal/students/bsms_prog)

Dual BS in Computer Engineering

Georgia Tech & Korea Advanced Institute of Science & Tech

Students may pursue the BSEE degree from the Korea Advanced Institute of Science and Technology (KAIST) as they earn the BSEE or BSCmpE from Georgia Tech. KAIST offers one of the top engineering programs in Korea and the Far East. All lectures at KAIST are given in English to better serve a growing number of students from overseas. While earning their dual degrees, students spend two years each at both Georgia Tech and KAIST.

Bachelor of Science in Computer Science - Thread: Devices & Information Internetworks

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>1</td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Any HUM (p. 93) 2. PHYS 2211 Introductory Physics I
Lab Science^2 4
MATH 1551 Differential Calculus 2
MATH 1554 Linear Algebra^5 4
or MATH 1564 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences
Select one of the following: 3
- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government inComparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues
Any SS (p. 97) 9

Core F - Courses Related to Major
Lab Science^2 4
- CS 1100 Freshman Leap Seminar 1
- CS 1331 Introduction to Object Oriented Programming 3
- CS 1332 Data Structures and Algorithms for Applications 3
- CS 2050 Introduction to Discrete Mathematics for Computer Science 3
or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science
- MATH 2550 Introduction to Multivariable Calculus 5

Major Requirements
- CS 2340 Objects and Design 1 3
- CS 4001 Computing, Society, and Professionalism 1 3
or CS 4002 Robots and Society
or CS 4726 Privacy, Technology, Policy, and Law
or SLS 3110 Technology and Sustainable Community Development
- MATH 2550 Introduction to Multivariable Calculus 5

Junior Design Options (Capstone)
Junior Design Option^1,4 6

Concentration
- CS 2110 Computer Organization and Programming 1 4
- CS 2200 Computer Systems and Networks 1 4
- CS 3251 Computer Networking I^1 3
- CS 3510 Design and Analysis of Algorithms 1 3
or CS 3511 Design and Analysis of Algorithms, Honors
- ECE 2031 Digital Design Laboratory 1 2
Select one for Building Devices: 1 4
- CS 3651 Prototyping Intelligence Appliances
- ECE 4180 Embedded Systems Design
Select one for Devices in the Real World: 1,3 3
- CS 3630 Introduction to Perception and Robotics
- CS 4261 Mobile Applications and Services for Converged Networks
- CS 4605 Mobile and Ubiquitous Computing
- CS 4476 Introduction to Computer Vision
Select one for Introduction to Information Management: 1 3
- CS 4235 Introduction to Information Security
- CS 4400 Introduction to Database Systems
Select one of the following for Advanced Information Management: 1,3 3

Other Required Courses
- MATH 3012 Applied Combinatorics 3
Select one of the following: 3
- MATH 3215 Introduction to Probability and Statistics
- MATH 3670 Probability and Statistics with Applications
- CEE 3770 Statistics and Applications
Undergraduate Research Assistantship (Junior and Senior)

E. Efforts will be made to work with interested students on projects. The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)

Two credit hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with MATH 3403 (3 hours) + 9 hours OR CS 4699-9IP (6 hours), MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have

Bachelor of Science in Computer Science • Thread: Devices & Information Internetworks
a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Intelligence

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing¹</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I¹²</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1556</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

PUBP 3000 American Constitutional Issues
PSYC 1101 General Psychology
Any SS (p. 97)

Core F - Courses Related to Major

Lab Science² | 4
CS 1100 Freshman Leap Seminar | 1
CS 1331 Introduction to Object Oriented Programming¹ | 3
CS 1332 Data Structures and Algorithms for Applications¹ | 3
CS 2050 Introduction to Discrete Mathematics for Computer Science¹ | 3
or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science | 3
MATH 2550 Introduction to Multivariable Calculus⁶ | 2

Major Requirements

CS 2340 Objects and Design¹ | 3
CS 4001 Computing, Society, and Professionalism¹ | 3
or CS 4002 Robots and Society | 3
or CS 4726 Privacy, Technology, Policy, and Law | 3
or SLS 311 Technology and Sustainable Community Development | 3

Junior Design Options (Capstone)

Junior Design Option⁵ | 6

Concentration

CS 2110 Computer Organization and Programming¹ | 4
CS 2200 Computer Systems and Networks¹ | 4
CS 3251 Computer Networking¹ | 3
CS 3510 Design and Analysis of Algorithms¹ | 3
or CS 3511 Design and Analysis of Algorithms, Honors | 3
CS 3600 Introduction to Artificial Intelligence¹ | 3
ECE 2031 Digital Design Laboratory¹ | 2
Select one of the following for Building Devices:¹ | 4
CS 3651 Prototyping Intelligence Appliances | 4
ECE 4180 Embedded Systems Design | 4
Select one of the following for Devices in the Real World:¹,³,⁴ | 3
CS 3630 Introduction to Perception and Robotics | 3
CS 4261 Mobile Applications and Services for Converged Networks | 3
CS 4605 Mobile and Ubiquitous Computing | 3
CS 4476 Introduction to Computer Vision | 3
Select one of the following for Approaches to Intelligence:¹ | 3
CS 3240 Languages and Computation | 3
CS 4510 Automata and Complexity Theory | 3
Select one of the following for Embodied Intelligence:¹,³ | 3
CS 3630 Introduction to Perception and Robotics | 3
CS 3790 Introduction to Cognitive Science | 3
CS 3040 Sensation and Perception | 3
Select two of the following for Approaches to Intelligence:¹,⁴ | 6
CS 4476 Introduction to Computer Vision | 6
CS 4635 Knowledge-Based Artificial Intelligence | 6
CS 4641 Machine Learning | 6
CS 4646 Machine Learning for Trading | 6
CS 4649 Robot Intelli Planning | 6
CS 4650 Natural Language Understanding | 6
International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Research for Credit</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699 Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699 Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980 Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research for Pay (Audit only)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698 Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698 Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)
Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Media

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1556</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 | The United States to 1877 |
- HIST 2112 | The United States since 1877 |
- INTA 1200 | American Government in Comparative Perspective |
- POL 1101 | Government of the United States |
- PUBP 3000 | American Constitutional Issues |

Any SS (p. 97) 9

Core F - Courses Related to Major

Lab Science 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

Junior Design Option 1,3 6

Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking</td>
<td>3</td>
</tr>
<tr>
<td>CS 3451</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following for Building Devices: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3651</td>
<td>Prototyping Intelligence Appliances</td>
<td></td>
</tr>
<tr>
<td>ECE 4180</td>
<td>Embedded Intelligence Appliances</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following for Devices in the Real World: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td>3</td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for Converged Networks</td>
<td></td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following for Algorithm Fundamentals: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following for Media Technologies: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4455</td>
<td>Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4464</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 4475</td>
<td>Computational Photography</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in Computer Science - Thread: Devices & Media

CS 4480 Digital Video Special Effects
CS 4496 Computer Animation
CS 4590 Principles and Applications of Computer Audio

Other Required Courses
- MATH 3012 Applied Combinatorics 3
- Select one of the following:
 - MATH 3211 Introduction to Probability and Statistics
 - MATH 3670 Probability and Statistics with Applications
 - CEE 3770 Statistics and Applications
 - ISYE 3770 Statistics and Applications or ISYE 2027 & ISYE 2028 Probability with Applications and Basic Statistical Methods

Free Electives
- Free Electives 13
- Total Credit Hours 126

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option
 - Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours or CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:
1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)
BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & People

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code (p. 93)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 2211</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 156</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3651</td>
<td>Prototyping Intelligence Appliances</td>
<td></td>
</tr>
<tr>
<td>ECE 4180</td>
<td>Embedded Systems Design</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Building Devices:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for Converged Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Algorithm Fundamentals:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
<td></td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Social/Behavioral Science for Computing:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>CS 3750</td>
<td>Human Computer Interface Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following for Human-Centered Technology:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
</tbody>
</table>

Georgia Institute of Technology
Bachelor of Science in Computer Science - Thread: Devices & People

CS 3790 Introduction to Cognitive Science
CS 4660 Introduction to Educational Technology
CS 4460 Introduction to Information Visualization
CS 4470 Introduction to User Interface Software
CS 4605 Mobile and Ubiquitous Computing
CS 4472 Design of Online Communities
CS 4745 Information and Communication Technologies and Global Development

Other Required Courses

MATH 3012 Applied Combinatorics 3
Select one of the following: 3
MATH 3215 Introduction to Probability and Statistics
MATH 3670 Probability and Statistics with Applications
CEE 3770 Statistics and Applications
ISYE 3770 Statistics and Applications
or ISYE Z Probability with Applications
& ISYE 21 Basic Statistical Methods

Free Electives
Free Electives 6
Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 If CS 4605 is successfully completed, both requirements are fulfilled, and three credits are added to Free Electives.
4 Junior Design Options are as follows (students must pick one option and may not change):
 • Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 • Option 2 - ECE VIP courses and LMC 3403.
 • Option 3 - Satisfy Georgia Tech Research Option.
 • Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours.

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

• Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)

• Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.
A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done during the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1564</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Any SS (p. 97)

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>4</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

MATH 2550 | Introduction to Multivariable Calculus | 2 |

Major Requirements

Select one of the following for Building Devices:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following for Devices in the Real World:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3651</td>
<td>Prototyping Intelligence Appliances</td>
<td>3</td>
</tr>
<tr>
<td>ECE 4180</td>
<td>Embedded Systems Design</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following for Devices in the Real World:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td>2</td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for Converged Networks</td>
<td>3</td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
</tbody>
</table>
Select one of the following for Systems Software Tools: 1
- CS 3300 Introduction to Software Engineering
- CS 4240 Compilers, Interpreters, and Program Analyzers

Select one of the following for Advanced Systems Architectures: 1
- CS 4210 Advanced Operating Systems
- CS 4220 Programming Embedded Systems
- CS 4290 Advanced Computer Organization

Other Required Courses
- MATH 3012 Applied Combinatorics 3
- MATH 3215 Introduction to Probability and Statistics
- MATH 3670 Probability and Statistics with Applications
- CEE 3770 Statistics and Applications
- ISYE 3770 Statistics and Applications
 or ISYE 2027 Probability with Applications
 & ISYE 2028 Basic Statistical Methods

Free Electives
- Free Electives 10

Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 9 credit hours) + LMC 3403 = 8 hours of VIP credit.

Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
 - Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.
A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Theory

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Theory

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Devices & Theory

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.
Bachelor of Science in Computer Science - Thread: Devices & Theory

CS 3630 Introduction to Perception and Robotics
CS 4261 Mobile Applications and Services for Converged Networks
CS 4605 Mobile and Ubiquitous Computing
CS 4476 Introduction to Computer Vision

Select one of the following for Advanced Mathematics:¹
MATH 4022 Introduction to Graph Theory
MATH 4150 Introduction to Number Theory
MATH 4032 Combinatorial Analysis

Other Required Courses
MATH 3012 Applied Combinatorics ³
Select one of the following: ³
MATH 3215 Introduction to Probability and Statistics
MATH 3670 Probability and Statistics with Applications
CEE 3770 Statistics and Applications
ISYE 3770 Statistics and Applications
or ISYE 2027 & ISYE 2028 Probability with Applications & Basic Statistical Methods

Free Electives
Free Electives ¹⁰
Total Credit Hours ¹²

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required)

¹ Minimum grade of C required.
² Two of three labs MUST be a sequence.
³ Junior Design Options are as follows (students must pick one option and may not change):
 • Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 • Option 2 - ECE VIP courses and LMC 3403.
 • Option 3 - Satisfy Georgia Tech Research Option.
 • Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

• Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.
A research project will also fulfill the capstone design requirement if
the student registers for CS 4980 for one of the research terms. This is
typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s
transcript. For more information, see www.urop.gatech.edu (http://
www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at
least 60 hours of work towards the BSCS degree. Applicants should have
a cumulative GPA of at least 3.4. This GPA must be maintained for the
student to take graduate level courses.

Students admitted to the program will take 6 hours during their final
undergraduate year to double count in both their BSCS and MSCS
degrees; they should choose 3 hours of MS Core or Elective hours their
fall semester and 3 hours of MS Core or Elective hours their spring
semester that can count toward their thread hours and CS Specialization
hours.

Visit College of Computing (https://www.cc.gatech.edu) for more
information.

Bachelor of Science in Computer
Science - Thread: Information
Internetworks & Intelligence

The Threads™ represent partial paths through the curriculum. Thus, a
student weaves a degree from these Threads. Students are not forced
to make Thread decisions very early in their academic careers; however,
they may if they want. We define the Threads so they are flexible enough
to allow for a variety of technical and creative experiences. Threads are
coherent enough that students develop computing skills even if their
focus shifts as they go along.

The Intelligence thread is where computing models intelligence.
This thread is concerned with computational models of intelligence
from top to bottom. To this end, we emphasize designing and
implementing artifacts that exhibit various levels of intelligence as
well as understanding and modeling natural cognitive agents such as
humans, ants, or bees. Students acquire the technical knowledge and
skills necessary for expressing, specifying, understanding, creating, and
exploiting computational models that represent cognitive processes. It
prepares students for fields as diverse as artificial intelligence, machine
learning, perception, and cognitive science, as well as for fields that
benefit from applications of techniques from those fields.

The Information Internetworks thread is where computing meets the data
enterprise and all that this implies. The thread prepares students for all
levels of information management by helping them to capture, represent,
organize, transform, communicate, and present data so that it becomes
information.
Bachelor of Science in Computer Science - Thread: Information Internetworks & Intelligence

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
<td></td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I (if not taken for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Information Management)</td>
<td></td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security (if</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not taken for Introduction to Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management)</td>
<td></td>
</tr>
<tr>
<td>CS 4237</td>
<td>Computer and Network Security</td>
<td></td>
</tr>
<tr>
<td>CS 4251</td>
<td>Computer Networking II</td>
<td></td>
</tr>
<tr>
<td>CS 4255</td>
<td>Introduction to Network Management</td>
<td></td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Converged Networks</td>
<td></td>
</tr>
<tr>
<td>CS 4270</td>
<td>Data Communications Laboratory</td>
<td></td>
</tr>
<tr>
<td>CS 4365</td>
<td>Introduction to Enterprise Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems (if not taken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for Introduction to Information Management)</td>
<td></td>
</tr>
<tr>
<td>CS 4420</td>
<td>Database System Implementation</td>
<td></td>
</tr>
<tr>
<td>CS 4440</td>
<td>Emerging Database Technologies and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 4675</td>
<td>Internet Computing Systems, Services and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
<td>3</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td></td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 4635</td>
<td>Knowledge-Based Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 4646</td>
<td>Machine Learning for Trading</td>
<td></td>
</tr>
<tr>
<td>CS 4649</td>
<td>Robot Intel1 Planning</td>
<td></td>
</tr>
<tr>
<td>CS 4650</td>
<td>Natural Language Understanding</td>
<td></td>
</tr>
<tr>
<td>CS 4731</td>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 4635</td>
<td>Knowledge-Based Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 4646</td>
<td>Machine Learning for Trading</td>
<td></td>
</tr>
<tr>
<td>CS 4649</td>
<td>Robot Intel1 Planning</td>
<td></td>
</tr>
<tr>
<td>CS 4650</td>
<td>Natural Language Understanding</td>
<td></td>
</tr>
<tr>
<td>CS 4731</td>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3211</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or ISYE 2 Probability with Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& ISYE 21 and Basic Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Total Credit Hours: 126

Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3311, CS 3312
 - Option 2 - ECE VIP courses and LMC 3403
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) + 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) + 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP (VIP 1 + VIP 2 + VIP 3) (for a total of 6 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for their junior design will take at least 6 hours of CREATE-X Start-Ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:
- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:
1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Information Internetworks & Media

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHP 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APHP 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1555</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CEE 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

Junior Design Option: 1, 2, 3, 6

- **Concentration**
 - CS 2110 Computer Organization and Programming 1
 - CS 2200 Computer Systems and Networks 1
 - CS 3451 Computer Graphics 1
 - CS 3510 Design and Analysis of Algorithms 1
 - or CS 3511 Design and Analysis of Algorithms, Honors

Select six credit hours of the following for Introduction to Information Management:

- CS 3251 Computer Networking I
- CS 4235 Introduction to Information Security
- CS 4400 Introduction to Database Systems

Select one of the following for Advanced Information Management:

- CS 3251 Computer Networking I (if not taken for Introduction to Information Management)
- CS 4235 Introduction to Information Security (if not taken for Introduction to Information Management)
- CS 4237 Computer and Network Security
- CS 4251 Computer Networking II
- CS 4255 Introduction to Network Management
- CS 4261 Mobile Applications and Services for Converged Networks
- CS 4270 Data Communications Laboratory
- CS 4365 Introduction to Enterprise Computing
- CS 4400 Introduction to Database Systems (if not taken for Introduction to Information Management)
- CS 4420 Database System Implementation
- CS 4440 Emerging Database Technologies and Applications
- CS 4675 Internet Computing Systems, Services and Applications

Select six credit hours of the following for Media Technologies:

- CS 4455 Video Game Design and Programming

Other Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4464</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 4475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 4480</td>
<td>Digital Video Special Effects</td>
<td></td>
</tr>
<tr>
<td>CS 4496</td>
<td>Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 4590</td>
<td>Principles and Applications of Computer Audio</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2P</td>
<td>Probability with Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2A</td>
<td>Basic Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours

- Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).

1. Minimum grade of C required.
2. Two of three labs MUST be a sequence.
3. Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan [Link](http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan [Link](http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)
International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Information Internetworks & People

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>1</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Any HUM (p. 93)</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>
Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1564</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>3</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311C</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Select six credit hours of the following for Introduction to Information Management: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
</tr>
</tbody>
</table>

Select one of the following for Advanced Information Management: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4237</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I (if not taken for Intro to Information Management)</td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security (if not taken for Intro to Information Management)</td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
</tr>
<tr>
<td>or ISYE 2 Probability with Applications & ISYE 2</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2 and Basic Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Total Credit Hours 126

Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.
Bachelor of Science in Computer Science - Thread: Information Internetworks & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1558</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>CS 2210</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3210</td>
<td>Design of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software Codesign of a Processor</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Select six credit hours of the following for Introduction to Information Management:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
<td></td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Advanced Information Management:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I (if not taking for Introduction to Information Management)</td>
<td>3</td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security (if not taken for Introduction to Information Management)</td>
<td>3</td>
</tr>
<tr>
<td>CS 4237</td>
<td>Computer and Network Security</td>
<td></td>
</tr>
<tr>
<td>CS 4251</td>
<td>Computer Networking II</td>
<td></td>
</tr>
<tr>
<td>CS 4255</td>
<td>Introduction to Network Management</td>
<td></td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for Converged Networks</td>
<td></td>
</tr>
<tr>
<td>CS 4270</td>
<td>Data Communications Laboratory</td>
<td></td>
</tr>
<tr>
<td>CS 4365</td>
<td>Introduction to Enterprise Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems (if not taken for Introduction to Information Management)</td>
<td>3</td>
</tr>
<tr>
<td>CS 4420</td>
<td>Database System Implementation</td>
<td></td>
</tr>
<tr>
<td>CS 4440</td>
<td>Emerging Database Technologies and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 4675</td>
<td>Internet Computing Systems, Services and Applications</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Systems Software Tools:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 3300</td>
<td>Introduction to Software Engineering</td>
<td></td>
</tr>
</tbody>
</table>
CS 4240 Compilers, Interpreters, and Program Analyzers
Select one of the following for Advanced Systems Architectures:
CS 4210 Advanced Operating Systems
CS 4220 Programming Embedded Systems
CS 4290 Advanced Computer Organization

Other Required Courses
MATH 3012 Applied Combinatorics 3
Select one of the following: 3
MATH 3215 Introduction to Probability and Statistics
MATH 3670 Probability and Statistics with Applications
CEE 3770 Statistics and Applications
ISYE 3770 Statistics and Applications
or ISYE 2027 & ISYE 2028 Probability with Applications & Basic Statistical Methods

Free Electives
Free Electives 11
Total Credit Hours 126

Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 • Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 • Option 2 - ECE VIP courses and LMC 3403
 • Option 3 - Satisfy Georgia Tech Research Option.
 • Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

Research for Credit
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.
Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Intelligence & Media

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>1</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1565</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>1</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>1</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>1</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>Junior Design Options (Capstone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>1</td>
</tr>
<tr>
<td>CS 3451</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>1</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td>3</td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following for Computational Complexity:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
<td></td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Embodied Intelligence:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
</tbody>
</table>
Georgia Institute of Technology

CS 3790 Introduction to Cognitive Science
PSYC 3040 Sensation and Perception

Select six credit hours of the following for Approaches to Intelligence:

1. CS 4635 Knowledge-Based Artificial Intelligence
2. CS 4476 Introduction to Computer Vision
3. CS 4641 Machine Learning
4. CS 4646 Machine Learning for Trading
5. CS 4649 Robot Intelligence
6. CS 4650 Natural Language Understanding
7. CS 4731 Game AI

Select six credit hours of the following for Media Technology:

1. CS 4455 Video Game Design and Programming
2. CS 4460 Introduction to Information Visualization
3. CS 4464 Computational Journalism
4. CS 4475 Computational Photography
5. CS 4480 Digital Video Special Effects
6. CS 4496 Computer Animation
7. CS 4590 Principles and Applications of Computer Audio

Other Required Courses

MATH 3012 Applied Combinatorics 3
Select one of the following: 3

MATH 3215 Introduction to Probability and Statistics
MATH 3670 Probability and Statistics with Applications
CEE 3770 Statistics and Applications
ISYE 3770 Statistics and Applications or ISYE 2027 Basic Statistical Methods

Free Electives

Free Electives 14
Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

Minimum grade of C required.
Two of three lab sciences MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
</tbody>
</table>
To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student's transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Intelligence & People

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1556</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>Junior Design Option (Capstone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming 1</td>
<td>4</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence 1</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods 1</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following for Computational Complexity 1:

- CS 3240: Languages and Computation
- CS 4510: Automata and Complexity Theory

Select one of the following for Embodied Intelligence: 1,3,4

- CS 3630: Introduction to Perception and Robotics
- CS 3790: Introduction to Cognitive Science
- PSYC 3040: Sensation and Perception

Select six credit hours of the following for Approaches to Intelligence 1:

- CS 4635: Knowledge-Based Artificial Intelligence
- CS 4476: Introduction to Computer Vision
- CS 4641: Machine Learning
- CS 4646: Machine Learning for Trading
- CS 4649: Robot Intelli Planning
- CS 4650: Natural Language Understanding
- CS 4731: Game AI
- CS 3750: Human Computer Interface Design and Evaluation 1

Select six credit hours of the following for Human-Centered Technology 1,3:

- CS 3790: Introduction to Cognitive Science
- CS 4660: Introduction to Educational Technology
- CS 4460: Introduction to Information Visualization
- CS 4470: Introduction to User Interface Software
- CS 4472: Design of Online Communities
- CS 4605: Mobile and Ubiquitous Computing
- CS 4745: Information and Communication Technologies and Global Development

Select one of the following for Social/Behavioral Science for Computing 1,4:

- PSYC 2210: Social Psychology
- PSYC 2760: Human Language Processing
- PSYC 3040: Sensation and Perception

Other Required Courses

- MATH 3012: Applied Combinatorics 3
- MATH 3215: Introduction to Probability and Statistics
- MATH 3670: Probability and Statistics with Applications
- CEE 3770: Statistics and Applications
- ISYE 3770: Statistics and Applications
- or ISYE 2 Probability with Applications & ISYE 211and Basic Statistical Methods

Free Electives

Free Electives 3,4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Total Credit Hours 126

1. Minimum grade of C required.
2. Two of three lab sciences MUST be a sequence.
3. If CS 3790 is successfully completed, Embodied Intelligence is completed, one course from Human-Centered Technology is considered fulfilled, and three credit hours are added to Free Electives.
4. If PSYC 3040 is successfully completed, both requirements are fulfilled, and three credit hours are added to Free Electives.
5. Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X can be used in free electives.

1. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designation for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:
1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science
Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Intelligence & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1564</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

Lab Science
- CS 1100 Freshman Leap Seminar
- CS 1331 Introduction to Object Oriented Programming
- CS 1332 Data Structures and Algorithms for Applications
- CS 2050 Introduction to Discrete Mathematics for Computer Science
- or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science

MATH 2550 Introduction to Multivariable Calculus

Major Requirements

CS 2340 Objects and Design

CS 4001 Computing, Society, and Professionalism
- or CS 4002 Robots and Society
- or CS 4726 Privacy, Technology, Policy, and Law
- or SLS 311 Technology and Sustainable Community Development

Junior Design Options (Capstone)

Concentration
- CS 2110 Computer Organization and Programming
- CS 2200 Computer Systems and Networks
- CS 3210 Design of Operating Systems
- CS 3220 Computer Structures: Hardware/Software Codesign of a Processor
- CS 3510 Design and Analysis of Algorithms
- or CS 3511 Design and Analysis of Algorithms, Honors
- ECE 2031 Digital Design Laboratory
- CS 3600 Introduction to Artificial Intelligence
- Select one of the following for Embodied Intelligence:
 - CS 3630 Introduction to Perception and Robotics
 - CS 3790 Introduction to Cognitive Science
 - PSYC 3040 Sensation and Perception

Select six credit hours of the following for Approaches to Intelligence:
- CS 4635 Knowledge-Based Artificial Intelligence
- CS 4476 Introduction to Computer Vision
- CS 4641 Machine Learning
- CS 4646 Machine Learning for Trading
- CS 4649 Robot Intelligent Planning
- CS 4650 Natural Language Understanding
- CS 4731 Game AI

Select one of the following for Computational Complexity:
- CS 3240 Languages and Computation
- CS 4510 Automata and Complexity Theory

Select one of the following for Advanced System Architectures:
- CS 3300 Introduction to Software Engineering
- CS 4240 Compilers, Interpreters, and Program Analyzers

Select one of the following for Systems Software Tools:
- CS 4210 Advanced Operating Systems
- CS 4220 Programming Embedded Systems
- CS 4290 Advanced Computer Organization

Other Required Courses

MATH 3012 Applied Combinatorics

Select one of the following:
- MATH 3215 Introduction to Probability and Statistics
- MATH 3670 Probability and Statistics with Applications
- CEE 3770 Statistics and Applications
- ISYE 3770 Statistics and Applications
- or ISYE 3770 Probability with Applications & ISYE 3001 Basic Statistical Methods

Free Electives

Free Electives

Total Credit Hours

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 if required.

1. Minimum grade of C required.
2. Two of three lab sciences MUST be a sequence.
3. Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit.

Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-Up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Research for Credit</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research for Pay (Audit only)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>1-12</td>
</tr>
</tbody>
</table>

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student's transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Media & People

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.
<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554 Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1564 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101 General Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>CS 1100 Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331 Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332 Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050 Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550 Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340 Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001 Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002 Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726 Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311 Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Design Options (Capstone)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Design Option</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following for Media Architectures:</td>
<td>4</td>
</tr>
<tr>
<td>CS 2110 Computer Organization and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 2261 Media Device Architectures</td>
<td></td>
</tr>
<tr>
<td>PSYC 2015 Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>CS 3451 Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>Select six credit hours of the following for Media Technologies:</td>
<td>6</td>
</tr>
<tr>
<td>CS 4455 Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 4460 Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4464 Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 4475 Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 4480 Digital Video Special Effects</td>
<td></td>
</tr>
<tr>
<td>CS 4496 Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 4590 Principles and Applications of Computer Audio</td>
<td></td>
</tr>
<tr>
<td>CS 3750 Human Computer Interface Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>Select six credit hours of the following for Human-Centered Technology:</td>
<td>6</td>
</tr>
<tr>
<td>CS 3790 Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 4660 Introduction to Educational Technology</td>
<td></td>
</tr>
<tr>
<td>CS 4460 Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4470 Introduction to User Interface Software</td>
<td></td>
</tr>
<tr>
<td>CS 4472 Design of Online Communities</td>
<td></td>
</tr>
<tr>
<td>CS 4605 Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4745 Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Social/Behavioral Science for Computing:</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2210 Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760 Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040 Sensation and Perception</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012 Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215 Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 3670 Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770 Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770 Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2 Probability with Applications & ISYE 2 Basic Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Electives</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours: 126

Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required)

1 Minimum grade of C required.
2 Two of three lab sciences MUST be a sequence.
3 If CS 4460 is successfully completed, one of the Media Technologies is fulfilled, one of the Human-Centered Technology is fulfilled, and an additional 3 credit hour Thread Elective is required. Thread Electives can be chosen from the following courses: CS 2110, CS 2261, CS 3240, CS 3510, CS 3790, CS 4455, CS 4464, CS 4470, CS 4472, CS 4475, CS 4480, CS 4496, CS 4550, CS 4590, CS 4605, CS 4660, CS 4665, CS 4670, CS 4690, CS 4770, CS 4745, CS 4793, PSYC 2020, PSYC 2210, PSYC 2760, PSYC 3012, PSYC 3040, PSYC 4090, PSYC 4260 or CX 4236.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit.

Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.
Bachelor of Science in Computer Science - Thread: Media & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 156</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capston)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4455</td>
<td>Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4464</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 4475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 4480</td>
<td>Digital Video Special Effects</td>
<td></td>
</tr>
<tr>
<td>CS 4496</td>
<td>Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 4590</td>
<td>Principles and Applications of Computer Audio</td>
<td></td>
</tr>
</tbody>
</table>

Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3210</td>
<td>Design of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CS 3451</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
</tbody>
</table>

Select six credit hours of the following for Media Technologies:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3300</td>
<td>Introduction to Software Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 3420</td>
<td>Compilers, Interpreters, and Program Analyzers</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following for Advanced Systems Architectures:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4210</td>
<td>Advanced Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4220</td>
<td>Programming Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4290</td>
<td>Advanced Computer Organization</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following for Systems Software Tools:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3300</td>
<td>Introduction to Software Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 4240</td>
<td>Compilers, Interpreters, and Program Analyzers</td>
<td></td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2600</td>
<td>Probability with Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2081</td>
<td>Basic Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives
Undergraduate Research (Junior and Senior)

Undergraduate Research Assistantship (Junior and Senior) must:

1. Minimum grade of C required.
2. Two of three lab sciences MUST be a sequence.
3. Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) + 9 hours or CS 4699-I2P (6 hours), LMC 3403 (3 hours) + 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Research for Credit</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research for Pay (Audit only)</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
<td></td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring
semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Devices

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

Code Title Credit Hours

Wellness
APPH 1040 Scientific Foundations of Health 2
or APPH 10 The Science of Physical Activity and Health

Core A - Essential Skills
ENGL 1101 English Composition I 3
ENGL 1102 English Composition II 3
MATH 1552 Integral Calculus 4

Core B - Institutional Options
CS 1301 Introduction to Computing 1 3

Core C - Humanities
Any HUM (p. 93) 6

Core D - Science, Math, & Technology
PHYS 2211 Introductory Physics I 2 4
Lab Science 2 4

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra 4</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1555</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences
Select one of the following: 3
- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Any SS (p. 97) 9

Core F - Courses Related to Major
Lab Science 2 4
CS 1100 Freshman Leap Seminar 1 3
CS 1331 Introduction to Object Oriented Programming 1 3
CS 1332 Data Structures and Algorithms for Applications 1 3
CS 2050 Introduction to Discrete Mathematics for Computer Science 1 3
or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science

MATH 2550 Introduction to Multivariable Calculus 4 2

Major Requirements
CS 2340 Objects and Design 1 3
CS 4001 Computing, Society, and Professionalism 1 3
or CS 4002 Robots and Society
or CS 4726 Privacy, Technology, Policy, and Law
or SLS 3110 Technology and Sustainable Community Development

Junior Design Options (Capstone)
Junior Design Option 1,3 6

Concentration
CS 1171 Introductory Computing in MATLAB 1 1
CS 2110 Computer Organization and Programming 1 4
CS 2200 Computer Systems and Networks 1 4
CS 3251 Computer Networking 1 3
CS 3510 Design and Analysis of Algorithms 1 3
or CS 3511 Design and Analysis of Algorithms, Honors

ECE 2031 Digital Design Laboratory 1 2

MATH 2552 Differential Equations 1 4

Select one of the following for Building Devices: 1 4
- CS 3651 Prototyping Intelligence Appliances
- ECE 4180 Embedded Systems Design

Select one of the following for Devices in the Real World: 1 3
- CS 3630 Introduction to Perception and Robotics
- CS 4261 Mobile Applications and Services for Converged Networks
- CS 4605 Mobile and Ubiquitous Computing
- CS 4476 Introduction to Computer Vision
Select two of the following for Computational Science and Engineering:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td>6</td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
<td></td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>CX 4230</td>
<td>Computer Simulation</td>
<td></td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis I</td>
<td></td>
</tr>
</tbody>
</table>

Other Required Courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or ISYE 2 Probability with Applications & ISYE 2and Basic Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

Total Credit Hours: 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required)

1 Minimum grade of C required.

2 Two of three labs MUST be a sequence.

3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option
 - Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit.

Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.
A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Intelligence

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 156 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Introduction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>
Junior Design Options (Capstone)

Junior Design Option \(^1,4\) \(\quad\) 6

Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1171</td>
<td>Introductory Computing in MATLAB</td>
<td>1</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming (^1)</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks (^1)</td>
<td>4</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms (^1)</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations (^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following for Computational Complexity: \(^1\) \(\quad\) 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
</tr>
</tbody>
</table>

Select one of the following for Embodied Intelligence: \(^1\) \(\quad\) 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
</tr>
</tbody>
</table>

Select six credit hours of the following for Approaches to Intelligence: \(^1,3\) \(\quad\) 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4635</td>
<td>Knowledge-Based Artificial Intelligence</td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 4646</td>
<td>Machine Learning for Trading</td>
</tr>
<tr>
<td>CS 4649</td>
<td>Robot Intel Planning</td>
</tr>
<tr>
<td>CS 4650</td>
<td>Natural Language Understanding</td>
</tr>
<tr>
<td>CS 4731</td>
<td>Game AI</td>
</tr>
</tbody>
</table>

Select six credit hours of the following for Computational Science and Engineering: \(^1,3\) \(\quad\) 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
</tr>
<tr>
<td>CX 4230</td>
<td>Computer Simulation</td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
</tr>
</tbody>
</table>

Select one of the following: \(^1\) \(\quad\) 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
</tr>
<tr>
<td>ISYE 2006</td>
<td>Probability with Applications</td>
</tr>
<tr>
<td>or ISYE 2002</td>
<td>Basic Statistical Methods</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Credit Hours \(\quad\) 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

\(^1\) Minimum grade of C required.

\(^2\) Two of three lab sciences MUST be a sequence.

\(^3\) If CS 4641 is successfully completed, it counts toward both requirements, and an addition 3 credit hours Free Elective is required.

\(^4\) Junior Design Options are as follows (students must pick one option and may not change):

1. Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
2. Option 2 - ECE VIP courses and LMC 3403.
3. Option 3 - Satisfy Georgia Tech Research Option.
4. Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).
Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science
Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling - Simulation & People
The Threads represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Modeling · Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling · Simulation plays an important role.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 155 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Choose one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Any SS (p. 97) 6

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311C</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Design Option</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1171</td>
<td>Introductory Computing in MATLAB</td>
<td>1</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>CS 3750</td>
<td>Human Computer Interface Design and Evaluation</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following for Computational Science and Engineering: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
<td></td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>CX 4230</td>
<td>Computer Simulation</td>
<td></td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following for Human-Centered Technology: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 4660</td>
<td>Introduction to Educational Technology</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4470</td>
<td>Introduction to User Interface Software</td>
<td></td>
</tr>
<tr>
<td>CS 4472</td>
<td>Design of Online Communities</td>
<td></td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td></td>
</tr>
<tr>
<td>CS 4745</td>
<td>Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
</tbody>
</table>
International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>or Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002 Robots and Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or CS 4726 Privacy, Technology, Policy, and Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or SLS 3110 Technology and Sustainable Community Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Design Options (Capstone)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1171</td>
<td>Introductory Computing in MATLAB</td>
<td>1</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3210</td>
<td>Design of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software Codesign of a Processor</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Select two of the following for Computational Science and Engineering:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
<td></td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>CX 4230</td>
<td>Computer Simulation</td>
<td></td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Software Systems Tools:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 3300</td>
<td>Introduction to Software Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 4240</td>
<td>Compilers, Interpreters, and Program Analyzers</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Advanced Systems Architectures:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 4210</td>
<td>Advanced Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4220</td>
<td>Programming Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4290</td>
<td>Advanced Computer Organization</td>
<td></td>
</tr>
<tr>
<td>Other Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2070 Probability with Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ISYE 2071 Basic Statistical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required)

1 Minimum grade of C required.
2 Two of three lab sciences MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) for a total of 5 credit hours + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science
Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.
Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Theory

The Threads represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

- Any HUM (p. 93) 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Junior Design Options (Capstone)

Junior Design Option 6

Concentration

- CS 1171 Introductory Computing in MATLAB 1
- CS 2110 Computer Organization and Programming 4
- CS 2200 Computer Systems and Networks 4
- CS 3510 Design and Analysis of Algorithms 3
- or CS 3511 Design and Analysis of Algorithms, Honors 3
- CS 4510 Automata and Complexity Theory 3
- CS 4540 Advanced Algorithms 3
- MATH 2552 Differential Equations 4
- MATH 3406 A Second Course in Linear Algebra 3
- Select two of the following for Computational Science and Engineering: 6
- CS 4641 Machine Learning
- CX 4140 Computational Modeling Algorithms
- CX 4220 Introduction to High Performance Computing
- CX 4230 Computer Simulation
- CX 4640 Numerical Analysis I
- Select one of the following for Advanced Mathematics: 3
- MATH 4022 Introduction to Graph Theory
- MATH 4032 Combinatorial Analysis
- MATH 4150 Introduction to Number Theory
- MATH 4151 Machine Learning
- MATH 3012 Applied Combinatorics 3

Select one of the following: 3

- MATH 3215 Introduction to Probability and Statistics
Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu.

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.
Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling and Simulation & Media

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1556</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td>Lab Science</td>
<td></td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming 1</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications 1</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus 4</td>
<td>2</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>CS 2340</td>
<td>Objects and Design 1</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>Junior Design Options (Capstone)</td>
<td>CS 1171</td>
<td>Introductory Computing in MATLAB</td>
</tr>
<tr>
<td>Junior Design Option 1,3</td>
<td>CS 2110</td>
<td>Computer Organization and Programming 1</td>
</tr>
<tr>
<td>or CS 2200</td>
<td>Computer Systems and Networks 1</td>
<td>4</td>
</tr>
<tr>
<td>or CS 3451</td>
<td>Computer Graphics 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations 1</td>
<td>4</td>
</tr>
<tr>
<td>Concentration</td>
<td>CS 4455</td>
<td>Video Game Design and Programming</td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4464</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 4475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 4480</td>
<td>Digital Video Special Effects</td>
<td></td>
</tr>
<tr>
<td>CS 4496</td>
<td>Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 4590</td>
<td>Principles and Applications of Computer Audio</td>
<td></td>
</tr>
<tr>
<td>Select six credit hours of the following for Media Technologies:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>or CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
</tbody>
</table>
CX 4140 Computational Modeling Algorithms
CX 4220 Introduction to High Performance Computing
CX 4230 Computer Simulation
CX 4640 Numerical Analysis I

Other Required Courses
MATH 3012 Applied Combinatorics 3
Select one of the following: 3
 MATH 3215 Introduction to Probability and Statistics
 MATH 3670 Probability and Statistics with Applications
 CEE 3770 Statistics and Applications
 ISYE 3770 Statistics and Applications
 or ISYE 2027 & ISYE 2028 Probability with Applications & Basic Statistical Methods

Free Electives
Free Electives 14
Total Credit Hours 126

Pass-Fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).

1. Minimum grade of C required.
2. Two of three lab sciences MUST be a sequence.
3. Junior Design Options are as follows (students must pick one option and may not change):
 • Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 • Option 2 - ECE VIP courses and LMC 3403.
 • Option 3 - Satisfy Georgia Tech Research Option.
 • Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699- I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 5 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

• Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/merit-credit-experience/center-career-discovery-development)
• Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/merit-credit-experience/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student's transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)
BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Modeling-Simulation & Information Internetworks

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>
Select one of the following for Advanced Information Management: 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3251</td>
<td>Computer Networking I (if not taken for Introduction to Information Management)</td>
</tr>
<tr>
<td>CS 4235</td>
<td>Introduction to Information Security (if not taken for Introduction to Information Management)</td>
</tr>
<tr>
<td>CS 4237</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>CS 4251</td>
<td>Computer Networking II</td>
</tr>
<tr>
<td>CS 4255</td>
<td>Introduction to Network Management</td>
</tr>
<tr>
<td>CS 4261</td>
<td>Mobile Applications and Services for Converged Networks</td>
</tr>
<tr>
<td>CS 4270</td>
<td>Data Communications Laboratory</td>
</tr>
<tr>
<td>CS 4365</td>
<td>Introduction to Enterprise Computing</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems (if not taken for Introduction to Information Management)</td>
</tr>
<tr>
<td>CS 4420</td>
<td>Database System Implementation</td>
</tr>
<tr>
<td>CS 4440</td>
<td>Emerging Database Technologies and Applications</td>
</tr>
<tr>
<td>CS 4675</td>
<td>Internet Computing Systems, Services and Applications</td>
</tr>
</tbody>
</table>

Select six credit hours of the following for Computational Science and Engineering: 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
</tr>
<tr>
<td>CX 4230</td>
<td>Computer Simulation</td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications & Basic Statistical Methods</td>
</tr>
<tr>
<td>or ISYE 2840</td>
<td>Probability with Applications</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 126

Pass-fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required) .

1 Minimum grade of C required.

2 Two of three labs MUST be a sequence.

3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).
Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student's transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: People & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra 4</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>
Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST 1100</td>
<td>Introduction to Java Programming</td>
<td>3</td>
</tr>
<tr>
<td>CST 1131</td>
<td>Introduction to C++ Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computers</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>或 CS 2051 Honors - Induction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
</tbody>
</table>

Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2210</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3210</td>
<td>Design of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>CS 3750</td>
<td>Human Computer Interface Design and Evaluation</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following for Human-Centered Technology: 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td>6</td>
</tr>
<tr>
<td>CS 4660</td>
<td>Introduction to Educational Technology</td>
<td>4</td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td>3</td>
</tr>
<tr>
<td>CS 4470</td>
<td>Introduction to User Interface Software</td>
<td>3</td>
</tr>
<tr>
<td>CS 4605</td>
<td>Mobile and Ubiquitous Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 4472</td>
<td>Design of Online Communities</td>
<td>3</td>
</tr>
<tr>
<td>CS 4745</td>
<td>Information and Communication Technologies and Global Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following for Social/Behavioral Science for Computing: 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following for Systems Software Tools: 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3300</td>
<td>Introduction to Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CS 4240</td>
<td>Compilers, Interpreters, and Program Analyzers</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following for Advanced Systems Architectures: 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4210</td>
<td>Advanced Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 4220</td>
<td>Programming Embedded Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 4290</td>
<td>Advanced Computer Organization</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- MATH 3215 Introduction to Probability and Statistics
- MATH 3670 Probability and Statistics with Applications
- CEE 3770 Statistics and Applications
- ISYE 3770 Statistics and Applications
- or ISYE 2201 Probability with Applications & ISYE 2201 Basic Statistical Methods

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credit Hours: 126

Pass-fail only for Free electives (max six credit hours), CS 1100, and CS 1171 (if required)

1 Minimum grade of C required.
2 Two of three lab sciences MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) + 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the
International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urep.gatech.edu (http://www.urep.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Theory & Information Internetworks

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1555</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td>4</td>
</tr>
</tbody>
</table>
Core E - Social Sciences
Select one of the following: 3
- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Any SS (p. 97) 9

Core F - Courses Related to Major
Lab Science 4
- CS 1100 Freshman Leap Seminar 1
- CS 1331 Introduction to Object Oriented Programming 3
- CS 1332 Data Structures and Algorithms for Applications 3
- CS 2050 Introduction to Discrete Mathematics for Computer Science 3
 or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science
- MATH 2550 Introduction to Multivariable Calculus 4 2

Major Requirements
- CS 2340 Objects and Design 1 3
- CS 4001 Computing, Society, and Professionalism 1 3
 or CS 4002 Robots and Society
 or CS 4726 Privacy, Technology, Policy, and Law
 or SLS 3110 Technology and Sustainable Community Development

Junior Design Options (Capstone)
Junior Design Option 1 3 6

Concentration
- CS 2110 Computer Organization and Programming 1 4
- CS 2200 Computer Systems and Networks 1 4
- CS 3510 Design and Analysis of Algorithms 1 3
 or CS 3511 Design and Analysis of Algorithms, Honors
- CS 4510 Automata and Complexity Theory 1 3
- CS 4540 Advanced Algorithms 1 3
- MATH 3406 A Second Course in Linear Algebra 1 3

Select six credit hours of the following for Introduction to Information Management: 1 6
- CS 3251 Computer Networking I
- CS 4235 Introduction to Information Security
- CS 4400 Introduction to Database Systems

Select one of the following for Advanced Information Management: 1 3
- CS 3251 Computer Networking I (if not taken for Introduction to Information Management)
- CS 4235 Introduction to Information Security (if not taken for Introduction to Information Management)
- CS 4237 Computer and Network Security
- CS 4251 Computer Networking II
- CS 4255 Introduction to Network Management
- CS 4261 Mobile Applications and Services for Converged Networks
- CS 4270 Data Communications Laboratory

- CS 4365 Introduction to Enterprise Computing
- CS 4400 Introduction to Database Systems (if not taken for Introduction to Information Management)
- CS 4420 Database System Implementation
- CS 4440 Emerging Database Technologies and Applications
- CS 4675 Internet Computing Systems, Services and Applications

Select one of the following for Advanced Mathematics: 1 3
- MATH 4022 Introduction to Graph Theory
- MATH 4032 Combinatorial Analysis
- MATH 4150 Introduction to Number Theory

Other Required Courses
- MATH 3012 Applied Combinatorics 3

Select one of the following: 3
- MATH 3215 Introduction to Probability and Statistics
- MATH 3670 Probability and Statistics with Applications
- CEE 3770 Statistics and Applications
- ISYE 3770 Statistics and Applications
 or ISYE 2027 Probability with Applications
 and ISYE 2028 Basic Statistical Methods

Free Electives
Free Electives 13
Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
3 Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-12P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-12P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 6 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-ip Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4 Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:
• Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
• Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Theory & Intelligence

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine
learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>1</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1555</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CS 1100</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or CS 2051</td>
<td>Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 4001</td>
<td>Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002</td>
<td>Robots and Society</td>
<td></td>
</tr>
<tr>
<td>or CS 4726</td>
<td>Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td>or SLS 311</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>Junior Design Options (Capstone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Design Option</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td>CS 4540</td>
<td>Advanced Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3406</td>
<td>A Second Course in Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following for Advanced Mathematics:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 4022</td>
<td>Introduction to Graph Theory</td>
<td></td>
</tr>
<tr>
<td>MATH 4032</td>
<td>Combinatorial Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 4150</td>
<td>Introduction to Number Theory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following for Embodied Intelligence:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>PSYC 3040</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>Select six credit hours of the following for Approaches to Intelligence:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 4476</td>
<td>Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CS 4635</td>
<td>Knowledge-Based Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 4646</td>
<td>Machine Learning for Trading</td>
<td></td>
</tr>
<tr>
<td>CS 4649</td>
<td>Robot Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4650</td>
<td>Natural Language Understanding</td>
<td></td>
</tr>
<tr>
<td>CS 4731</td>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>Other Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td>or ISYE 2 Probability with Applications & ISYE 2 Basic Statistical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three lab sciences MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Credit

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student's transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MScs program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Theory & Media

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced
to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 1301 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2211 Introductory Physics 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Lab Science 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or MATH 1554 Linear Algebra 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1555 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTO 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any SS (p. 97)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab Science 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 1100 Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 1331 Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 1332 Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 2050 Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 2051 Honors - Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 2550 Introduction to Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 2340 Objects and Design 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4001 Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 4002 Robots and Society</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CS 4726 Privacy, Technology, Policy, and Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or SLS 3110 Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junior Design Options (Capstone)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Junior Design Option 1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 2110 Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 3451 Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 3510 Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 3511 Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4510 Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 4540 Advanced Algorithms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 3406 A Second Course in Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two of the following for Media Technologies:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CS 4455 Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4460 Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4464 Computational Journalism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4475 Computational Photography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4480 Digital Video Special Effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4496 Computer Animation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4590 Principles and Applications of Computer Audio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following for Advanced Mathematics:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 4022 Introduction to Graph Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 4032 Combinatorial Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 4150 Introduction to Number Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Required Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 3012 Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 3215 Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 3670 Probability and Statistics with Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEE 3770 Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISYE 3770 Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or ISYE 2020 Probability with Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& ISYE 2040 Basic Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Pass-Fail only allowed for Free Electives (max six credit hours), CS 1100, and CS 1171 (if required).</td>
<td></td>
</tr>
</tbody>
</table>

1 Minimum grade of C required.
2 Two of three lab sciences MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option.
- Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit. Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.

Bachelor of Science in Computer Science - Thread: Theory & People

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced
to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

ENGL 1101	English Composition I	3
ENGL 1102	English Composition II	3
MATH 1552	Integral Calculus	4

Core B - Institutional Options

| CS 1301 | Introduction to Computing | 3 |

Core C - Humanities

| Any HUM | (p. 93) | 6 |

Core D - Science, Math, & Technology

PHYS 2211	Introductory Physics	2
Lab Science		4
MATH 1551	Differential Calculus	2
MATH 1554	Linear Algebra	4
or MATH 1556	Linear Algebra with Abstract Vector Spaces	

Core E - Social Sciences

Select one of the following: 3

HIST 2111	The United States to 1877	
HIST 2112	The United States since 1877	
INTA 1200	American Government in Comparative Perspective	
POL 1101	Government of the United States	
PUBP 3000	American Constitutional Issues	
PSYC 1101	General Psychology	3
Any SS (p. 97)		6

Core F - Courses Related to Major

Lab Science		2
CS 1100	Freshman Leap Seminar	1
CS 1331	Introduction to Object Oriented Programming	3
CS 1332	Data Structures and Algorithms for Applications	3
CS 2050	Introduction to Discrete Mathematics for Computer Science	3
or CS 2051	Honors - Induction to Discrete Mathematics for Computer Science	
MATH 2550	Introduction to Multivariable Calculus	2

Major Requirements

CS 2340	Objects and Design	3
CS 4001	Computing, Society, and Professionalism	3
or CS 4002	Robots and Society	3
or CS 4726	Privacy, Technology, Policy, and Law	
or SLS 311	Technology and Sustainable Community Development	

Junior Design Options (Capstone)

Junior Design Option 3,3

Concentration

CS 2110	Computer Organization and Programming	4
CS 3510	Design and Analysis of Algorithms	3
or CS 3511	Design and Analysis of Algorithms, Honors	
CS 4510	Automata and Complexity Theory	3
CS 4540	Advanced Algorithms	3
MATH 3406	A Second Course in Linear Algebra	3
PSYC 2015	Research Methods	4
CS 3750	Human Computer Interface Design and Evaluation	3

Select two of the following for Human-Centered Technology: 1,6

CS 3790	Introduction to Cognitive Science	
CS 4660	Introduction to Educational Technology	
CS 4460	Introduction to Information Visualization	
CS 4470	Introduction to User Interface Software	
CS 4472	Design of Online Communities	
CS 4605	Mobile and Ubiquitous Computing	
CS 4745	Information and Communication Technologies and Global Development	

Select one of the following for Social/Behavioral Science for Computing: 3

PSYC 2210	Social Psychology	
PSYC 2760	Human Language Processing	
PSYC 3040	Sensation and Perception	

Select one of the following for Advanced Mathematics: 3

MATH 4022	Introduction to Graph Theory	
MATH 4150	Introduction to Number Theory	
MATH 4032	Combinatorial Analysis	

Other Required Courses

| MATH 3012 | Applied Combinatorics | 3 |

Select one of the following: 3

MATH 3215	Introduction to Probability and Statistics	
MATH 3670	Probability and Statistics with Applications	
CEE 3770	Statistics and Applications	
ISYE 3770	Statistics and Applications	

Free Electives

Free Electives 10

Total Credit Hours 126
Pass-fail only allowed for Free Electives (max 6 hours), CS 1100, and CS 1171 (if required)

1. Minimum grade of C required.
2. Two of three lab sciences MUST be a sequence.
3. Junior Design Options are as follows (students must pick one option and may not change):
 - Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
 - Option 2 - ECE VIP courses and LMC 3403.
 - Option 3 - Satisfy Georgia Tech Research Option.
 - Option 4 - CS 2701 (3 hours), CS 4699-I2P (3 hours), LMC 3403 (3 hours) = 9 hours
 OR CS 4699-I2P (6 hours), LMC 3403 (3 hours) = 9 hours

Six credits of the Junior Design option are used as Major Requirements and the average credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit.

Students using CREATE-X for junior design take at least 6 hours of CREATE-X Start-up Lab and Idea 2 Prototype (I2P) and 3 of the 6 hours must be I2P. Students take these 6 hours with LMC 3403 (3 hours) for a total of 9 hours. Extra three hours for CREATE-X option can be used in free electives.

4. Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs

The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further Information:

- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan

The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (p. 86).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option

To complete the Research Option in the College of Computing, students must:

1. Complete at least nine units of undergraduate research
 - a. Over at least two, preferably three terms
 - b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take

 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Research for Credit</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td></td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td></td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td></td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research for Pay (Audit only)</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td></td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td></td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring semester that can count toward their thread hours and CS Specialization hours.

Visit College of Computing (https://www.cc.gatech.edu) for more information.
Bachelor of Science in Computer Science - Thread: Theory & Systems and Architecture

The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health 2</td>
<td></td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 156 Linear Algebra with Abstract Vector Spaces</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3110</td>
<td>Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3311</td>
<td>Introduction to Object Oriented Programming 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3321</td>
<td>Data Structures and Algorithms for Applications 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2050</td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 2051</td>
<td>Honors Induction to Discrete Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>MATH 2550</td>
<td>Introduction to Multivariable Calculus 4</td>
<td>2</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming 1</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks 1</td>
<td>4</td>
</tr>
<tr>
<td>CS 3210</td>
<td>Design of Operating Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software Codesign of a Processor 1</td>
<td>3</td>
</tr>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms 1</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory 1</td>
<td>2</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory 1</td>
<td>3</td>
</tr>
<tr>
<td>CS 4540</td>
<td>Advanced Algorithms 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3406</td>
<td>A Second Course in Linear Algebra 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4022</td>
<td>Introduction to Graph Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4032</td>
<td>Combinatorial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4150</td>
<td>Introduction to Number Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3770</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or ISYE 3778</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3778</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 2081</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives
Free Electives 8
Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required)

Minimum grade of a C required.
Two of three lab sciences MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):

1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes

The following classes count toward fulfillment of the Research Option:

Research for Credit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Research for Pay (Audit only)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2698</td>
<td>Undergraduate Research Assistantship (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4698</td>
<td>Undergraduate Research Assistantship (Junior and Senior)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

General Research Option Information (p. 90)

BS/MS in Computer Science

Students who want to pursue

the BS/MS option must apply to the MSCS program after completing at least 60 hours of work towards the BSCS degree. Applicants should have a cumulative GPA of at least 3.4. This GPA must be maintained for the student to take graduate level courses.

Students admitted to the program will take 6 hours during their final undergraduate year to double count in both their BSCS and MSCS degrees; they should choose 3 hours of MS Core or Elective hours their fall semester and 3 hours of MS Core or Elective hours their spring
The undergraduate program requires:

• academic education with industry experience.

A year cooperative plan is offered for students who wish to combine their and international study. In addition to the standard four-year plan, a five-year plan is available for students who need more time to complete their degree.

The CS curriculum also offers opportunities in undergraduate research. Students focus on a specific area of study, such as programming and computational theory, to allow each student the opportunity to explore a variety of computing paths in depth. There are eight Threads, each providing a focused journey through a broad spectrum of course offerings at Georgia Tech in preparation for a distinctive future in a changing and interconnected world. Each student selects two Threads to fulfill the requirements for an accredited Bachelor of Science degree in computer science. It is at the intersection of the two paths that the unique synergistic value of this educational experience is realized. Graduates will leave the College of Computing fully aware of the limitless potential of their dynamic discipline and be able to adapt and continuously add value to society throughout their careers.

The Threads represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The CS curriculum also offers opportunities in undergraduate research and international study. In addition to the standard four-year plan, a five-year cooperative plan is offered for students who wish to combine their academic education with industry experience.

The undergraduate program requires:

• a total of 124 credit hours for graduation, plus

• a two-hour Wellness course.

• With the exception of free electives, all Bachelor of Science degree coursework must be taken on a letter-grade basis.

• Up to six hours of free electives may be taken on a pass/fail basis.

• No 1000- or 2000-level HPS hours or precalculus hours (currently MATH 1113) may be used as free electives.

• No course that covers the same material as other courses in a student’s plan of study can be used as a free elective.

• All required CS courses, whether Thread or non-Thread, must be completed with a C or better to be counted toward degree requirements.

• All courses listed as required for a Thread, whether CS or non-CS, must be completed with a C or better to be counted toward degree requirements.

The College of Computing Defines Eight Threads

A Thread provides an intuitive, flexible, and mutually strengthening set of courses that allows a student to craft a distinctive future in an area that is certain to have societal value in the emerging world. A Thread provides a skill and credential basis that allows graduates to create value in ways beyond what would be possible with only a narrowly focused tool set.

Choose any two threads to create your own path and special variation on an area of study.

1. Computing and Devices: creating devices embedded in physical objects that interact in the physical world
2. Computing and Information Internetworks: representing, transforming, transmitting, and presenting information
3. Computing and Intelligence: building top-to-bottom models of human-level intelligence
4. Computing and Media: building systems in order to exploit computing’s abilities to provide creative outlets
5. Computing and Modeling - Simulation: representing natural and physical processes
6. Computing and People: designing, building, and evaluating systems that treat the human as a central component
7. Computing and Systems and Architecture: creating computer architectures, systems, and languages
8. Computing and Theory: theoretical foundations underlying a wide range of computing disciplines

Threads are defined as partial paths through the course offerings of the Institute. Students construct their own personalized computer science degree by weaving through two Threads. Each Thread is about 2/3 of a degree, but with Thread arithmetic, since there’s so much overlap, 2/3 + 2/3 = 1. Each pair of Threads fulfills the requirements for an accredited Bachelor of Science degree in computer science.

The Power of One Thread

Are you a computationalist who is interested in the expressive arts (telling stories, making games, creating emotional experiences)? Join the Computing and Media Thread. Here you’ll see courses on topics ranging from computational graphics to Hamlet, from human perception to interactive fiction engines.

Are you a computationalist who is interested in placing intelligence in physical objects like robots, airplanes, or cell phones? Join the Computing and Devices Thread. Here you’ll see courses on everything from computational sensors to dealing with noisy data, from real-time operating systems to mobile power issues and computational autonomy.

Weaving Two Threads Together - A Leap

Are you interested in computer security? Then perhaps choose Computing and Information to learn how data is stored, retrieved, encoded, transmitted, etc. And perhaps also choose Computing and Devices to interact with intelligent objects that interact in the physical world.
human subjects, etc. The kind of person you will become is the kind of person who will be able to invent and build secure systems that are usable by people.

For more information about the BS CS undergraduate program or the College of Computing, visit The College of Computing website (http://www.cc.gatech.edu).

Bachelor of Science in Computer Science

Threads

Devices
The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

- Modeling and Simulation & Devices (p. 295)
- Theory & Devices (p. 273)
- Information Internetworks & Devices (p. 262)
- Intelligence & Devices (p. 265)
- Media & Devices (p. 267)
- People & Devices (p. 269)
- Systems and Architecture & Devices (p. 271)

Information Internetworks
The Information Internetworks thread is where computing meets the data enterprise and all that this implies. The thread prepares students for all levels of information management by helping them to capture, represent, organize, transform, communicate, and present data so that it becomes information.

- Modeling and Simulation & Information Internetworks (p. 308)
- Devices & Information Internetworks (p. 262)
- Theory & Information Internetworks (p. 312)
- Intelligence & Information Internetworks (p. 275)
- Media & Information Internetworks (p. 277)
- People & Information Internetworks (p. 279)
- Systems and Architecture & Information Internetworks (p. 282)

Intelligence
The Intelligence thread is where computing models intelligence. This thread is concerned with computational models of intelligence from top to bottom. To this end, we emphasize designing and implementing artifacts that exhibit various levels of intelligence as well as understanding and modeling natural cognitive agents such as humans, ants, or bees. Students acquire the technical knowledge and skills necessary for expressing, specifying, understanding, creating, and exploiting computational models that represent cognitive processes. It prepares students for fields as diverse as artificial intelligence, machine learning, perception, and cognitive science, as well as for fields that benefit from applications of techniques from those fields.

- Modeling and Simulation & Intelligence (p. 297)
- Devices & Intelligence (p. 265)
- Theory & Intelligence (p. 314)
- Information Internetworks & Intelligence (p. 275)
- Media & Intelligence (p. 284)
- People & Intelligence (p. 286)
- Systems and Architecture & Intelligence (p. 288)

Media
The Media thread is where computing meets design. This thread prepares students by helping them to understand the technical and computational capabilities of systems in order to exploit their abilities to provide creative outlets.

- Modeling and Simulation & Media (p. 306)
- Devices & Media (p. 267)
- Theory & Media (p. 316)
- Information Internetworks & Media (p. 277)
- Intelligence & Media (p. 284)
- People & Media (p. 290)
- Systems and Architecture & Media (p. 293)

Modeling and Simulation
The Modeling - Simulation thread is intended for students interested in developing a deep understanding and appreciation of how natural and human-generated systems such as weather, biological processes, supply chains, or computers can be represented by mathematical models and computer software. Such models are widely used today to better understand and predict the behavior of such systems. Because these models are often described and represented by mathematical expressions, and the models themselves often deal with physical phenomena, a background in mathematics and the sciences is required. Combining this background with a deep knowledge in computer science will yield the basic tools necessary to transform abstract conceptual models to computer programs that execute efficiently on digital machines. The required coursework in this thread includes topics in continuous and discrete mathematics, the sciences, and computing. Elective courses enable students to further develop and apply their knowledge and skills to a specific discipline where Modeling - Simulation plays an important role.

- Devices & Modeling and Simulation (p. 295)
- Theory & Modeling and Simulation (p. 304)
- Information Internetworks & Modeling and Simulation (p. 308)
- Intelligence & Modeling and Simulation (p. 297)
- Media & Modeling and Simulation (p. 306)
- People & Modeling and Simulation (p. 299)
- Systems and Architecture & Modeling and Simulation (p. 301)

People
The People thread is where computing meets users. This thread prepares students by helping them to understand the theoretical and computational foundations for designing, building, and evaluating systems that treat the human as a central component.

- Modeling and Simulation & People (p. 299)
- Devices & People (p. 269)
- Theory & People (p. 318)
- Information Internetworks & People (p. 279)
- Intelligence & People (p. 286)
- Media & People (p. 290)
- Systems and Architecture & People (p. 310)
Systems and Architecture

The Systems and Architecture thread is where many of the practical skills of computing are learned. Like Theory, Systems and Architecture lies at the center of computing. It prepares students to create and evaluate computer architectures, systems, and languages across a variety of paradigms and approaches.

- Modeling and Simulation & Systems and Architecture (p. 301)
- Devices & Systems and Architecture (p. 271)
- Theory & Systems and Architecture (p. 321)
- Information Internetworks & Systems and Architecture (p. 282)
- Intelligence & Systems and Architecture (p. 288)
- Media & Systems and Architecture (p. 293)
- People & Systems and Architecture (p. 310)

Theory

The Theory thread is where computing meets itself. Theory teaches students the theoretical and mathematical foundations underlying a wide range of computational disciplines. Early preparation includes discrete mathematics, algorithms, and complexity. Knowledge goals are for students to mature in development and analysis of abstract models for applications ranging from theoretical computer science to computational physics, biology, mathematics, economics, and optimization.

- Modeling and Simulation & Theory (p. 304)
- Devices & Theory (p. 273)
- Information Internetworks & Theory (p. 312)
- Intelligence & Theory (p. 314)
- Media & Theory (p. 316)
- People & Theory (p. 318)
- Systems and Architecture & Theory (p. 321)

Bachelor of Science in Earth and Atmospheric Sciences - Business Option

The EAS degree is comparable to traditional degrees in meteorology and environmental sciences, but the program has several unique attributes. EAS courses provide "hands-on" experiences in collection and interpretation of environmental data and in predictive modeling. The integrated approach of the program gives a broad environmental background while still allowing students to specialize in meteorology, earth science, education, or a business option. The program prepares students for graduate study or immediate employment in fields such as meteorology, air quality, environmental chemistry, exploration geophysics, geological engineering, geological hazards, impact assessment, and environmental policy. Electives (30 hours), both within the School and in other units of Georgia Tech, allow students considerable flexibility in tailoring their degree programs according to individual career goals. The School provides incentives and encouragement for undergraduate students to participate in ongoing research with the faculty.

EAS Undergraduate Information (http://www.eas.gatech.edu/undergrad/prospective-undergraduate-students)
Bachelor of Science in Earth and Atmospheric Sciences - Business Option

Technical Electives
Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>MATH 4012</td>
<td>Algebraic Structures in Coding Theory</td>
</tr>
<tr>
<td>MATH 4032</td>
<td>Combinatorial Analysis</td>
</tr>
<tr>
<td>MATH 4108</td>
<td>Introduction to Abstract Algebra II</td>
</tr>
<tr>
<td>MATH 4150</td>
<td>Introduction to Number Theory</td>
</tr>
<tr>
<td>MATH 4221</td>
<td>Probability with Applications I</td>
</tr>
<tr>
<td>MATH 4222</td>
<td>Probability with Applications II</td>
</tr>
<tr>
<td>MATH 4255</td>
<td>Monte Carlo Methods</td>
</tr>
<tr>
<td>MATH 4261</td>
<td>Mathematical Statistics I</td>
</tr>
<tr>
<td>MATH 4262</td>
<td>Mathematical Statistics I</td>
</tr>
<tr>
<td>MATH 4280</td>
<td>Elements of Information Theory</td>
</tr>
<tr>
<td>MATH 4318</td>
<td>Analysis II</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MATH 4431</td>
<td>Introductory Topology</td>
</tr>
<tr>
<td>MATH 4432</td>
<td>Introduction to Algebraic Topology</td>
</tr>
<tr>
<td>MATH 4640</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>MATH 4641</td>
<td>Numerical Analysis II</td>
</tr>
<tr>
<td>MATH 4777</td>
<td>Vector and Parallel Scientific Computation</td>
</tr>
<tr>
<td>MATH 4782</td>
<td>Quantum Information and Quantum Computing</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
</tr>
<tr>
<td>CS 3220</td>
<td>Computer Structures: Hardware/Software</td>
</tr>
<tr>
<td></td>
<td>Codesign of a Processor</td>
</tr>
<tr>
<td>CS 3240</td>
<td>Languages and Computation</td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
</tr>
<tr>
<td>CS 3451</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>CS 4540</td>
<td>Advanced Algorithms</td>
</tr>
<tr>
<td>ECE 2025</td>
<td>Introduction to Signal Processing</td>
</tr>
<tr>
<td>ECE 2030</td>
<td>Introduction to Computer Engineering</td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
</tr>
<tr>
<td>ECE 3055</td>
<td>Computer Architecture and Operating Systems</td>
</tr>
<tr>
<td>ECE 3075</td>
<td>Random Signals</td>
</tr>
<tr>
<td>ECE 3085</td>
<td>Introduction to Systems and Controls</td>
</tr>
<tr>
<td>ECE 4270</td>
<td>Fundamentals of Digital Signal Processing</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
</tr>
<tr>
<td>ISYE 3103</td>
<td>Introduction to Supply Chain Modeling: Logistics</td>
</tr>
<tr>
<td>ISYE 3104</td>
<td>Introduction to Supply Chain Modeling: Manufacturing and Warehousing</td>
</tr>
<tr>
<td>ISYE 4833</td>
<td>Honors Topics</td>
</tr>
</tbody>
</table>

Free Electives
Free Electives 4 6

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

1. If PHYS 2231 is taken, extra hour goes toward Free Electives.
2. If PHYS 2232 is taken, extra hour goes toward Free Electives.
3. Minimum grade of C required.
4. MATH 1113, MATH 3670, CEE 3770, and ISYE 3770 are restricted from counting towards Free Electives. Limit two credit hours of HPS coursework.

International Plan
The EAS with International Plan (EAS-IP) is designed to give a student a solid, global competence within the context of an Earth and Atmospheric Science degree.

The major course requirements are the same for both EAS and EAS-IP. Where they differ is that for the EAS-IP degree, a student:

1. Spends 26 weeks abroad engaged in any combination of study abroad, research, or internship.
2. Takes their Social Science/Humanities electives in targeted areas:
 a. International relations
 b. Global economics
 c. A course about a particular country or region
3. Complete the equivalent to two years of college-level language study. See Georgia IP requirements for the different options: www.internationalplan.gatech.edu/ (http://www.internationalplan.gatech.edu)
4. Complete a capstone course that combines their global experience with their EAS degree.

Research Option
The BS in Earth and Atmospheric Sciences with Research Option allows students to emphasize their interest in research. To complete
the Research Option in the School of Earth and Atmospheric Sciences students must:

1. Complete at least nine units of undergraduate research
 a. Courses should span at least two, preferably three terms (note there is also a two semester sequence of proposal and thesis writing courses - see below)
 b. Research may be for either pay (EAS 4698) or credit (EAS 4699)
 c. At least six of the nine required credit hours should be on the same topic
2. Complete a research proposal outlining their research topic and project for the thesis while taking LMC 4701.
3. Write an undergraduate thesis/report of research on their findings while taking LMC 4702.

To submit your intent form to Undergraduate Research Opportunities Program (UROP), please go to the web form at http://undergradresearch.gatech.edu/ This form must be completed and can also be reached from the main UROP webpage.

For further information, consult the EAS Undergraduate Coordinator.

General Research Option Information (p. 90)

BS/MS Earth and Atmospheric Sciences
EAS offers a BS/MS Program. EAS majors may apply to the BS/MS program after completing at least thirty semester credit hours at Georgia Tech with a GPA of at least 3.5.

Students admitted to the program must maintain a cumulative GPA of at least 3.0.

As part of the program, students may use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

To apply, complete the BS/MS application form, a biographical statement, and two letters of recommendation.

EAS Undergraduate Information (http://www.eas.gatech.edu/undergrad/5-year-bsms)

Bachelor of Science in Earth and Atmospheric Sciences - General
The EAS degree is comparable to traditional degrees in meteorology and environmental sciences, but the program has several unique attributes. EAS courses provide "hands-on" experiences in collection and interpretation of environmental data and in predictive modeling. The integrated approach of the program gives a broad environmental background while still allowing students to specialize in meteorology, earth science, education, or a business option. The program prepares students for graduate study or immediate employment in fields such as meteorology, air quality, environmental chemistry, exploration geophysics, geological engineering, geological hazards, impact assessment, and environmental policy. Electives (30 hours), both within the School and in other units of Georgia Tech, allow students considerable flexibility in tailoring their degree programs according to individual career goals. The School provides incentives and encouragement for undergraduate students to participate in ongoing research with the faculty.

EAS Undergraduate Information (http://www.eas.gatech.edu/undergrad/prospective-undergraduate-students)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>4</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>9</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>9</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>EAS 1600</td>
<td>Introduction to Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td>EAS 2600</td>
<td>Earth Processes</td>
<td>4</td>
</tr>
<tr>
<td>EAS 2655</td>
<td>Quantitative Techniques in Earth and Atmospheric Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3603</td>
<td>Thermodynamics of Earth Systems</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3610</td>
<td>Introduction to Geophysics</td>
<td>6</td>
</tr>
<tr>
<td>EAS 4200</td>
<td>Environmental Geochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4305</td>
<td>Physical and Chemical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4370</td>
<td>Physics of Planets</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4655</td>
<td>Atmospheric Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4740</td>
<td>Atmospheric Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4221</td>
<td>Environmental Geochemistry Lab or EAS 4656Atmospheric Dynamics Practicum</td>
<td>1</td>
</tr>
<tr>
<td>EAS 4420</td>
<td>Environmental Field Methods & EAS 4610 and Earth System Modeling</td>
<td>7</td>
</tr>
<tr>
<td>Select 15 credit hours from the following:</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CEE 4210</td>
<td>Hydrology</td>
<td>15</td>
</tr>
<tr>
<td>CEE 4300</td>
<td>Environmental Engineering Systems</td>
<td>15</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>CEE 4330</td>
<td>Air Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>EAS 1601</td>
<td>Habitable Planet</td>
<td></td>
</tr>
<tr>
<td>EAS 2420</td>
<td>Environmental Measures of Urban and Regional Change</td>
<td></td>
</tr>
<tr>
<td>EAS 2551</td>
<td>Introduction to Meteorological Analysis</td>
<td></td>
</tr>
<tr>
<td>EAS 2750</td>
<td>Physics of the Weather</td>
<td></td>
</tr>
<tr>
<td>EAS 3000-level or higher</td>
<td>Free Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 122

Pass/fail allowed only for Humanities, Social Sciences, and Free Electives.

1. Limit six credit hours total of EAS 4699 and EAS 4651 towards Technical Electives.
2. Minimum grade of C required.
3. GT 1000 recommended

International Plan

The EAS with International Plan (EAS-IP) is designed to give a student a solid, global competence within the context of an Earth and Atmospheric Science degree.

The major course requirements are the same for both EAS and EAS-IP. Where they differ is that for the EAS-IP degree, a student:

1. Spends 26 weeks abroad engaged in any combination of study abroad, research, or internship.
2. Takes their Social Science/Humanities electives in targeted areas: a. International relations
 b. Global economics
 c. A course about a particular country or region
3. Complete the equivalent to two years of college-level language study. See Georgia IP requirements for the different options: www.internationalplan.gatech.edu
4. Complete a capstone course that combines their global experience with their EAS degree.

Research Option

The BS in Earth and Atmospheric Sciences with Research Option allows students to emphasize their interest in research. To complete the Research Option in the School of Earth and Atmospheric Sciences students must:

1. Complete at least nine units of undergraduate research a. Courses should span at least two, preferably three terms (note there is also a two semester sequence of proposal and thesis writing courses - see below)
 b. Research may be for either pay (EAS 4698) or credit (EAS 4699)
 c. At least six of the nine required credit hours should be on the same topic
2. Complete a research proposal outlining their research topic and project for the thesis while taking LMC 4701.
3. Write an undergraduate thesis/report of research on their findings while taking LMC 4702.

To submit your intent form to Undergraduate Research Opportunities Program (UROP), please go to the web form at http://undergradresearch.gatech.edu This form must be completed and can also be reached from the main UROP webpage.

For further information, consult the EAS Undergraduate Coordinator.

General Research Option Information (p. 90)

BS/MS Earth and Atmospheric Sciences

EAS offers a BS/MS Program. EAS majors may apply to the BS/MS program after completing at least thirty semester credit hours at Georgia Tech with a GPA of at least 3.5.

Students admitted to the program must maintain a cumulative GPA of at least 3.0.

As part of the program, students may use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

To apply, complete the BS/MS application form, a biographical statement, and two letters of recommendation.

EAS Undergraduate Information (http://www.eas.gatech.edu/undergrad/5-year-bsms)

Bachelor of Science in Earth and Atmospheric Sciences

The EAS degree is comparable to traditional degrees in meteorology and environmental sciences, but the program has several unique attributes. EAS courses provide "hands-on" experiences in collection and interpretation of environmental data and in predictive modeling. The integrated approach of the program gives a broad environmental background while still allowing students to specialize in meteorology, earth science, education, or a business option. The program prepares students for graduate study or immediate employment in fields such as meteorology, air quality, environmental chemistry, exploration geophysics, geological engineering, geological hazards, impact assessment, and environmental policy. Electives (30 hours), both within the School and in other units of Georgia Tech, allow students considerable flexibility in tailoring their degree programs according to individual career goals. The School provides incentives and encouragement for undergraduate students to participate in ongoing research with the faculty.

EAS Undergraduate Information (http://www.eas.gatech.edu/undergrad/prospective-undergraduate-students)

- Bachelor of Science in Earth and Atmospheric Sciences · General (p. 327)
- Bachelor of Science in Earth and Atmospheric Sciences · Business Option (p. 325)

Bachelor of Science in Economics and International Affairs

The primary objectives of the Bachelor of Science degree in Economics and International Affairs are to provide students with:
1. a detailed understanding of economic theory and practice in the contemporary world;
2. an understanding of the global, interdependent, and multicultural environment in which they live; and
3. a set of quantitative and qualitative analytical skills centered around policy-oriented issue areas in economics and international affairs. These skills will provide graduates with the capabilities to engage in strategic planning and analysis efforts in economic and international contexts.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPL 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Wellness

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>Integral Calculus</td>
<td></td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Language 3</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 151</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2040</td>
<td>Science, Technology, and International Affairs 3</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy 3</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3028</td>
<td>Ancient Greece: Gods, Heroes, and RuinS</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3029</td>
<td>Ancient Rome: From Greatness to Ruins</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3030</td>
<td>Medieval Europe: 350 to 1400</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3031</td>
<td>European Labor History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3033</td>
<td>Medieval England</td>
<td>3</td>
</tr>
</tbody>
</table>

EIA Electives

Any ECON 3 | 3
Any INTA 3 | 3

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3110</td>
<td>Advanced Microeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3120</td>
<td>Advanced Macroeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3161</td>
<td>Econometric Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4350</td>
<td>International Economics</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2001</td>
<td>Careers in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3110</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA 4740</td>
<td>Seminar in Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 474</td>
<td>Seminar in Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 471</td>
<td>Thesis in Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 47</td>
<td>Thesis in Political Economy</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-Major Cluster

Non-Major Cluster 2 | 9

Technical Requirement

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 2400</td>
<td>Introduction to Bioengineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1316</td>
<td>Representing Structure and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 3311</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3110</td>
<td>Energy, Environment, and Society</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4480</td>
<td>Environmental Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ID 3103</td>
<td>Industrial Design Computing I</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science in Economics

The program of study provides a thorough grounding in science, the humanities, and mathematics as well as the tools of economic analysis and decision making. In addition, the curriculum provides ample opportunities for career-oriented studies in fields such as accounting, finance, management science, public policy, and international affairs. Life-enriching studies in history and literature are also available.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td></td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td></td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td></td>
</tr>
<tr>
<td>MGT 4051</td>
<td>Decision Support and Expert Systems</td>
<td></td>
</tr>
<tr>
<td>MGT 4052</td>
<td>Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives.

39 hours of the degree must be upper division coursework. 15 hours of the Cluster, Free electives, ECON/INTA electives, or Technology requirement must be upper division (3000/4000 level).

1 Modern Language courses must be in the same language as used in Core Area C.
2 All nine credit hours must come from the same discipline, or be part of a coherent theme. Please consult with advisor on course selection.
3 Minimum grade of C required.
4 Approved instances of CS 2803 may be applied by advisor.

International Plan

All degree programs offered by the School of Economics including the BS degree in Economics offer an International Plan (IP) Designation. In general the IP designation can be obtained by completing courses in three specified area:

1. Students are required to complete a general course in Global Economics.
2. Students are also required to complete a region specific course. Any number of International Affairs course can be used to fulfill this requirement
3. Student are also required to complete a capstone course rounding out the international experience. The IP designation also requires students to become proficient in a language as well as spending at
least twenty-six weeks in a foreign culture enrolled in school and/or participating in an internship experience.

Research Option
The School of Economics also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 (typically taken during the first or second semester of research) and LMC 4702 (taken during the term in which the thesis is written), and completing the thesis.

BS/MS in Economics
Students with a GPA of 3.25 or higher in ECON courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the B.S. student to maintain a GPA of 3.25 or higher in their ECON courses. The program will not penalize students who opt out after the bachelor’s degree.

Students in the BS-MS ECON program will take 6 hours of ECON electives at the 6000 level which will be used toward ECON electives in the BS in Economics program and may be used toward core requirements or electives in the MS in Economics program. Prior to enrolling in 6000-level ECON courses, students will be required to complete ECON 3110 Advanced Microeconomics, ECON 3120 Advanced Macroeconomics, and ECON 3161 Econometrics.

Students are encouraged to take 6 credit hours from the MSECON core courses (ECON 6105, ECON 6106, ECON 6140, or ECON 6160) during enrollment as a BS student. However, they will have flexibility to enroll in any 6000 ECON course whose prerequisite requirements they have met.

Bachelor of Science in Electrical Engineering
The School of Electrical and Computer Engineering offers two undergraduate degree programs:

- electrical engineering (EE) and
- computer engineering (CmpE).

Both programs include elective hours, enabling students to individually tailor their programs to provide emphasis in a particular specialization or exposure to a broad range of subjects. Engineering analysis and design concepts are integrated throughout both programs, culminating in a common major design experience involving a broad range of issues including economic and societal considerations.

The EE program offers elective courses in a wide variety of specializations including analog electronics, bioengineering, computer engineering, systems and controls, microsystems and nanosystems, electronics packaging, digital signal processing, optics and photonics, electrical energy, electromagnetics, and telecommunications. Additionally, students may elect to take advanced courses in other programs such as computer science, mathematics, physics, or management.

Program Objectives
The School of Electrical and Computer Engineering has established the following student educational objectives for its undergraduate programs:

1. Graduates will be successful in the professional practice of engineering or other related fields. They will obtain employment appropriate to their background, interests, and education and will advance in their career field.
2. Graduates will engage in life-long learning; e.g., advanced education/degrees, professional development activities, and/or other career-appropriate options.
3. Graduates who are employed within engineering fields will demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current engineering techniques, skills, and tools.
4. As appropriate to their professional or educational positions, graduates will
 a. effectively communicate technical information in multiple formats,
 b. function effectively on teams, and
 c. develop and apply electrical/computer engineering solutions within global, societal, and environmental contexts.

Additional information about program assessment (http://www.ece.gatech.edu/academics/accreditation.html) for all of the School’s programs is available on the ECE website.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS</td>
<td>Introductory Physics II</td>
<td>3</td>
</tr>
<tr>
<td>MATH</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science in Electrical Engineering

POL 1101 Government of the United States

PUBP 3000 American Constitutional Issues

Select one of the following:
- ECON 2100 Economic Analysis and Policy Problems
- ECON 2101 The Global Economy
- ECON 2105 Principles of Macroeconomics
- ECON 2106 Principles of Microeconomics

Any SS (p. 97)

Core F - Courses Related to Major

- ECE 2020 Digital System Design
- MATH 2551 Multivariable Calculus
- MATH 2552 Differential Equations
- CHEM 1310 General Chemistry
- or CHEM 1230 Chemical Principles I

Science Elective

Ethics Requirement (p. 101)

Major Requirements

- ECE 2026 Introduction to Signal Processing
- ECE 2031 Digital Design Laboratory
- ECE 2035 Programming for Hardware/Software Systems
- or ECE 2036 Engineering Software Design

- ECE 2040 Circuit Analysis
- ECE 3025 Electromagnetics
- ECE 3040 Microelectronic Circuits
- ECE 3043 Measurements, Circuits, and Microelectronics Laboratory

- ECE 3072 Electrical Energy Systems
- ECE 3084 Signals and Systems
- ECE 4011 ECE Culminating Design Project I
- ECE 4012 ECE Culminating Design Project II

ECE Electives

Senior Lab Elective

ECE 3-4000-Level Electives

Non-ECE Engineering Electives

Electives

Approved Electives

Total Credit Hours

Pass-fail only allowed for Approved Electives, Humanities, and Social Sciences.

Courses that are cross-listed with ECE must be taken under the ECE number.

1. Students must complete an Ethics requirement. For a complete list of Ethics courses, please see: /academics/undergraduate/core-curriculum/ethics/ (p. 101)
2. If PHYS 2231 is taken, extra hour goes to Free Electives.
3. Minimum grade of C required.

Science Elective must be chosen from the following list: APPH 3751, BIOL 1510, BIOL 1520, BIOL 3751, CHEM 1212K, CHEM 1315, EAS 1600, EAS 1601, EAS 2600, PHYS 2021, PHYS 2022, or PHYS 2213.

Students must complete one Ethics course during their program. For a complete list of Ethics courses, please see: /academics/undergraduate/core-curriculum/ethics/ (p. 101)

The following courses are not allowed: HPS 1XXX, LMC 2661, LMC 2662, LMC 3661, LMC 3662, MATH 1113, MUSI 1008, MUSI 1009, MUSI 2008, MUSI 2009, MUSI 3008, MUSI 3009, MUSI 4008, and MUSI 4009, PHYS 2XXX (AP Credit). Maximum of six credit hours of Special Problems.

CPE 3770 or ISYE 3770 or MATH 3670 or ECE 3077 (Must be taken on Letter/Grade basis)

ECE 3005 or ECE 3006

ECE 4043 or ECE 4180 or ECE 4185 or ECE 4446 or ECE 4452 or ECE 4502 or ECE 4550 or ECE 4612 or ECE 4752 or ECE 4881 or ECE 4884 (with title 'Optical Fiber Communications')

Non-ECE Engineering Electives (5 credit hours; 2 Courses) 2000-level or above. Each course must be at least a 2 credit hour course. Allow only subject codes of AE, BMED, CEE, CHBE, COE, ISYE, ME, MSE, or NRE.

Cannot include BMED 2400, BMED 4781, BMED 4782, BMED 4783, BMED 4784, CHBE 2120, CHBE 4752, COE 3002, ISYE 2027, ISYE 2028, ME 2110, ME 4781, or ME 4782.

Cannot include any 28XX Special Topics courses or any Special Problems courses. Can only include one Thermodynamics course and one Dynamics course.

9 credit hours must be 4000-level

Cooperative Plan

The Georgia Tech Undergraduate Cooperative Education Program allows students to combine classroom study with paid practical work experience directly related to the academic major. Co-ops alternate semesters of on-campus study with semesters of full-time employment, normally beginning the program as freshmen or sophomores. Over 30 percent of ECE undergraduates participate in the co-op program.

The degree requirements for students in the co-op program are the same as those for other students in the major. The Cooperative Plan designation may be pursued separately or in combination with the International Plan and/or the Research Option.

Begun in 1912, Georgia Tech’s program is currently the largest optional co-op program in the United States and has perennially been listed in U.S. News & World Report as one of the top ten co-op programs in America. As an integral part of the overall education experience, the co-op program allows students to take on increasing levels of responsibility and to use their job knowledge and classroom learning to make meaningful contributions to the organizations in which they work. Many co-op graduates are hired by their co-op employer, and more than 700 companies or government organizations throughout the United States and abroad currently employ Georgia Tech Undergrad Co-op Program students.

Because the School of ECE in Atlanta offers a wide range of electives and almost all required courses every term, including summer, co-op students have substantial flexibility in completing their degree requirements. Many
students continue their co-op work assignments through the senior year. Additionally, co-op students working in the Atlanta area may be able to take certain ECE courses, particularly laboratories offered in the evening, during the work term.

In addition to the co-op program, the Center for Career Discovery and Development also offers the Undergraduate Professional Internship and Work Abroad programs. These programs also provide opportunities for students to gain practical work experience, without the long-term commitment of the co-op program.

Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu)

International Plan

The International Plan is intended for students who seek an intensive international experience integrated into their undergraduate studies in electrical engineering. The International Plan develops global competence through a combination of coursework, language study, and residential overseas experience. Students who complete this option receive a designation on their transcript and diploma.

The electrical engineering aspects of the BS EE - International Plan degree requirements are identical to those for the regular BS EE. Please refer to the BS EE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the International Plan designation through appropriate choices of electives without additional credit hours to complete the degree. The International Plan designation may be pursued separately or in combination with the Cooperative Plan and/or the Research Option.

The School of Electrical and Computer Engineering offers a junior-year program at the Georgia Tech-Lorraine campus in Metz, France, that is designed to facilitate participation in the International Plan. However, electrical engineering majors are not restricted to this option and may complete any allowable courses, languages, and overseas experiences that satisfy the International Plan requirements.

BS EE Description (https://www.ece.gatech.edu/current-students/undergraduate/international-programs)

International Plan (http://www.internationalplan.gatech.edu)

Research Option

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in electrical engineering. This option includes three or four semesters of structured research and provides an open evaluation of a student's research capabilities, viewable by the public via a required Web-based research portfolio. Students who complete this option receive a designation on their transcript.

The electrical engineering aspects of the BS EE - Research Option degree requirements are identical to those for the regular BS EE. Please refer to the BS EE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the Research Option designation through appropriate choices of electives without additional credit hours to complete the degree. The Research Option designation may be pursued separately, or in combination with the Cooperative Plan and/or the International Plan.

The School of Electrical and Computer Engineering (ECE) offers a two-semester Undergraduate Research Opportunity Program (UROP), which may be completed to provide a less-intensive research experience or as the initial phase of the Research Option. Contact the ECE Academic Office for additional information about the Research Option, including specific Institute and ECE requirements, and assistance in planning your schedule to allow participation in this program.

BS/MS Electrical and Computer Engineering

This program allows highly qualified students to receive the Bachelor of Science in either Electrical Engineering or Computer Engineering and a master's degree in Electrical and Computer Engineering. The joint BS/MS degree program affords undergraduate electrical or computer engineering majors the opportunity to broaden their studies and improve their career prospects.

Eligible Georgia Tech undergraduates normally apply for this program during their junior year. Contact the Electrical and Computer Engineering Graduate Affairs Office for program information, eligibility requirements, and applications.

BS/MS Information (5 Year) (https://www.ece.gatech.edu/current-students/undergraduate/joint-bsms)

Dual BS in Electrical Engineering

Georgia Tech & Korea Advanced Institute of Science and Tech

Students may pursue the BSEE degree from the Korea Advanced Institute of Science and Technology (KAIST) as they earn the BSEE or BSCmpE from Georgia Tech. KAIST offers one of the top engineering programs in Korea and the Far East. All lectures at KAIST are given in English to better serve a growing number of students from overseas. While earning their dual degrees, students spend two years each at both Georgia Tech and KAIST.

Bachelor of Science in Environmental Engineering

The School of Civil and Environmental Engineering (CEE) offers a BS degree in Environmental Engineering (BS EnvE). The curriculum is designed to provide students with fundamental knowledge of scientific disciplines and engineering principles that are used to address emerging environmental issues such as sustainable air, water, and land resources; human health; and environmental restoration. In the first and second years, students take courses in physics, chemistry, biology, mathematics, English composition, and introductory engineering. The third year incorporates advanced engineering topics, including solid and fluid mechanics, thermodynamics, and laboratories in engineering materials, hydraulic engineering, and environmental monitoring and process engineering. The fourth year is elective based, allowing students to select courses from specific focus areas, including biological processes, sustainability, air pollution, and water resources, in addition to technical and design electives. A senior-level capstone design course serves to integrate principles from a range of disciplines. The curriculum is intended to provide students with the flexibility to develop tailored sequences of electives to meet individual education and career objectives, while ensuring a comprehensive engineering design experience.
Prerequisites and Other Requirements

Although students are not required to take courses during the indicated semester, all prerequisites must be satisfied. In addition to Institute academic requirements for graduation with a BS degree, the following requirements must be satisfied for the BS EnvE:

1. A letter grade of C or better must be earned in

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1502</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
</tbody>
</table>

2. The total number of quality points earned in CEE courses used to satisfy degree requirements must be at least twice the number of credit hours in those courses. If a course is repeated, the most recent grade will be used in applying this rule. No CEE courses may be repeated for the purpose of satisfying this rule if the original grade was a C or higher.

Program Objectives

Graduates will pursue a diverse range of careers that build on their engineering education. During the initial years of their careers, graduates will:

A. apply technical proficiency in the principles and methods essential to modern environmental engineering practice.
B. demonstrate understanding of global, societal, environmental, and sustainability issues related to environmental engineering.
C. exhibit effective communication, teamwork, entrepreneurial, and leadership skills.
D. engage in ethical and responsible practice while pursuing professional growth.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93) 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Any SS (p. 97) 6

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td>3</td>
</tr>
<tr>
<td>& 1107L</td>
<td>Biological Principles Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Ethics Requirement (p. 101) 1

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 2040</td>
<td>Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>CEE 2300</td>
<td>Environmental Engineering Principles</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3000</td>
<td>Civil Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3020</td>
<td>Civil Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3040</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3340</td>
<td>Environmental Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3770</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or ISYE 377 Statistics and Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 4090</td>
<td>Capstone Design</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4200</td>
<td>Hydraulic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1315</td>
<td>Survey of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EAS 2600</td>
<td>Earth Processes</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBE 2130</td>
<td>Chemical Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>EAS 3603</td>
<td>Thermodynamics of Earth Systems</td>
<td></td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Engineering Technical Elective

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4210</td>
<td>Hydrology</td>
<td></td>
</tr>
<tr>
<td>CEE 4405</td>
<td>Introduction to Geotechnical Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4620</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>CEE 4795</td>
<td>Groundwater Hydrology</td>
<td></td>
</tr>
</tbody>
</table>

Design Elective

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4310</td>
<td>Water Quality Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4340</td>
<td>Environmental Modeling and Health Risk Analysis</td>
<td></td>
</tr>
</tbody>
</table>
Cooperative Program to those students who wish to combine career-related work experiences with their education. Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Plan, one of the oldest of its kind in the world and the largest optional co-op program in the country. It is the fourth largest of its kind in the world and the largest optional co-op program in the country.

Students must earn a minimum of 52 credit hours from the College of Environmental Engineering. (40 credit hours of required courses plus a minimum of twelve credit hours from electives.)

Students must earn a 2.0 average in all CEE courses.

Students must earn a minimum of 52 credit hours from the College of Engineering. (40 credit hours of required courses plus a minimum of twelve credit hours from electives.)

1. Students must complete an Ethics requirement from the following courses: PHIL 4176 (recommended), PHIL 3105, PHIL 3109, or PHIL 3127.
2. If PHYS 2231 is taken, extra credit hour goes to Free Electives.
3. Minimum grade of C required.
4. Technical Electives Focus may be chosen from the following list: BIOL 2335, BIOL 3380, BMED 3400, BMED 4757, BMED 4758, CEE 3010, CEE 4100, CEE 4210, CEE 4225, CEE 4230, CEE 4300, CEE 4310, CEE 4320, CEE 4330, CEE 4340, CEE 4350, CEE 4405, CEE 4420, CEE 4600, CEE 4620, CEE 4795, CHBE 3200, CHEM 3281, CHEM 3511, CHEM 4740, CP 4210, CP 4510, EAS 4110, EAS 4300, EAS 4410, EAS 4420, EAS 4430, EAS 4480, EAS 4610, EAS 4625, EAS 4740, ECE 3710, ECE 3741, ME 4171, ME 4172 or ME 4782. A maximum of 3 credit hours of CEE 4699 and CEE 4900.
5. Maximum 3 credit hours CEE 2699. MATH 1113, PHYS 2XXX (AP Credit), PHYS 2802, one-credit-hour MUSI courses, GT 1000, and FREE XXXX are not allowed.

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. The program is the fourth oldest of its kind in the world and the largest optional co-op program in the country.

Students alternate between work assignments and classroom studies until they complete four or five semesters of work. Co-op students with an environmental engineering major complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as freshmen or sophomores and are classified as full time students regardless of whether they are attending classes on campus or are full time at an employer’s location.

Students who participate in the program have the opportunity to develop career interests, become more confident in their career choices, and develop human relations skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation.

The Undergraduate Professional Internship Program is for environmental engineering students who do not participate in the Cooperative Program, but want some career-related experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work experiences. Students must have completed at least 30 hours of coursework at Georgia Tech before they can participate in the program. For more details, see: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu), which complements a student’s formal education with paid international work experience directly related to environmental engineering. Participating students typically are juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of needed skills. This program satisfies requirements for the International Plan, which is available to environmental engineering students.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovey.gatech.edu).

International Plan

The International Plan is a challenging and coherent academic program for undergraduates that develops global competence within the context of a student’s major. It is a degree-long program that integrates international studies and experiences into any participating major at Georgia Tech. It helps to prepare Georgia Tech graduates professionally and personally for successful lives in the twenty-first century.

The International Plan is not intended to replace current international programs; it supplements them. Existing study abroad opportunities continue to be offered. It is also not intended to be an add-on to the current degree programs. It is intended to be another curriculum path to earn a degree in which international competence is integrated into the program of study. The plan can be completed within the normal timeframe of four years of undergraduate study.

The overarching model for the International Plan has four components:

1. International coursework: Three courses to include one from each of the following categories:
 a. International relations
 b. Global economics
 c. A course about a specific country or region

2. International experience: Two terms abroad (not less than 26 weeks) engaged in any combination of study abroad, research, or internship

3. Second language proficiency: All students in the program are expected to reach at least the proficiency level equivalent to two years of college-level language study. Students who use the language to study, conduct research, or participate in an internship during their international experience are expected to attain a higher level of proficiency. Language proficiency is determined by testing (not course credits).

4. Culminating course: A capstone course in the major designed to tie the international studies and experiences together with the student’s major

Completion of the International Plan is recognized by a designation on the student’s diploma indicating completion of the degree with global competence.

For additional information about the International Plan visit www.oie.gatech.edu/internationalplan (http://www.internationalplan.gatech.edu).
Research Option
The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in environmental engineering. In order to graduate with a BS EnvE – Research Option degree, the students must:

Complete at least nine units of undergraduate research (over at least two, preferably three terms). Research may be for either pay (CEE 2698 or CEE 4698) or credit (CEE 2699 or CEE 4699). Research for credit may be used towards the BS EnvE approved elective requirements. Write an undergraduate thesis/report of research on their findings. This is usually done during the graduating term. The thesis will be published in the Georgia Tech Library.

Take two 1-hour classes: LMC 4701 (typically taken during the first or second semester of research) and LMC 4702 (taken during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be completed in LMC 4701 which serves as a prerequisite for LMC 4702. Completion of Research Option is noted on the student’s transcript.

Joint BS/MS Degree Program
The joint BS/MS program is designed to attract the best-of-the-best undergraduate students and is especially intended for students who demonstrate an interest in, and ability for, additional education beyond the bachelor’s degree.

Students will be eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech and appropriate progress in their degree program. As a practical matter, students should apply for the program at least three semesters prior to graduation in order to take graduate-level courses prior to receiving their BS degree. Students must have a Georgia Tech GPA of 3.5 or higher for admission into the BS/MS Program in Environmental Engineering.

This program is available only to those completing a Bachelor’s degree with majors of Civil Engineering or Environmental Engineering.

The key components of this program are intense interaction among students and faculty, including mentoring and undergraduate research, and careful advising and course planning to enable students to begin challenging coursework in their fourth year of study.

Students in the joint BS/MS program remain undergraduates until they meet the requirements for the bachelor’s degree, at which point they will receive the BSEnvE degree. Their status will then be changed to graduate. Graduate school application fees and the GRE requirements are waived.

Once admitted, a GPA of at least 3.0 must be maintained to remain in the program. Additionally, students in the BS/MS program are eligible to use the Graduate Course Option (p. 107) even if their cumulative grade-point average is below 3.5 at the time they complete their bachelor’s degree.

Bachelor of Science in Global Economics and Modern Languages - Chinese
In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 15 Differential Calculus & MATH 15 & Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as:
 - a. the role of state sovereignty and nationalism and non-state actors in the international system;
 - b. international conflict, peace, security, intervention, and nation-building;
 - c. international organizations, law, and ethics;
 - d. transnational problems of the environment, terrorism, health, and migration;
 - e. among other issues (see INTA courses).

2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as:
 - a. international trade, finance, investment, and production;
 - b. regional economic integration (such as the EU);
 - c. economic development and modernization; and
 - d. questions of natural resource sustainability.

3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.
Bachelor of Science in Global Economics and Modern Languages - French

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MATH 15 Differential Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MATH 15 and Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulates, CNN International, etc. The internship must be approved in advance.

Any 1000- or 2000-level course with the following prefixes: AE, APPH, BIOL, BMED, CEE, CHBE, CHEM, EAS, ECE, ISYE, MATH, ME, MSE, NRE, PHYS.

Students must complete 21 credit hours of French electives at 2002 level or above. Six credit hours are counted in Humanities, six in Core Area F, and 9 in Modern Languages Requirements.

Minimum grade of C required.

ECON and FREN courses not allowed for cluster electives.

One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Non-Major Cluster</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cluster Electives</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>
Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:
- Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or
- International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610 or
- Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

FREN courses below 2002 may count toward the free elective courses.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages. The term abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as:
 - the role of state sovereignty and nationalism and non-state actors in the international system;
 - international conflict, peace, security, intervention, and nation-building;
 - international organizations, law, and ethics;
 - transnational problems of the environment, terrorism, health, and migration;
 - among other issues (see INTA courses).
2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as:
 - international trade, finance, investment, and production;
 - regional economic integration (such as the EU);
 - economic development and modernization; and
 - questions of natural resource sustainability.
3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.
4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Bachelor of Science in Global Economics and Modern Languages - German

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Modern Languages</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 15 Differential Calculus & MATH 15 and Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
Any SS (p. 97) 9

Core F - Courses Related to Major
ECON 2105 Principles of Macroeconomics 3 3
ECON 2106 Principles of Microeconomics 3 3
Statistics Elective 3,5 3
Engineering/Science/Math Elective 1 3
Modern Languages 2,3 6

Major Requirements
ECON 3110 Advanced Microeconomic Analysis 3 3
ECON 3120 Advanced Macroeconomic Analysis 3 3
ECON 3150 Economic and Financial Modeling 3 3
ECON 3161 Econometric Analysis 3 3
ECON 4311 Strategic Economics for Global Enterprise 3 3
or ECON 43 International Economics 3 3
ECON 4910 Individual Research in Economics 3 3

ECON Electives
ECON Electives 3 6

Non-Major Cluster
Cluster Electives 3,4 12

Modern Languages
GRMN 4500 Advanced Intercultural Seminar 3 3
Modern Languages 2,3 9

Free Electives
Free Electives 7 11

Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.
2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Six hours of Econ Electives must be chosen from one of the following Specialization areas:
- Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or
- International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610 or
- Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

GRMN courses below 200 may count toward the free elective courses.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as:
 - a. the role of state sovereignty and nationalism and non-state actors in the international system;
 - b. international conflict, peace, security, intervention, and nation-building;
 - c. international organizations, law, and ethics;
 - d. transnational problems of the environment, terrorism, health, and migration;
 - e. among other issues (see INTA courses).
2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as:
 - a. international trade, finance, investment, and production;
 - b. regional economic integration (such as the EU);
 - c. economic development and modernization; and
d. questions of natural resource sustainability.
3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.
4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.
Bachelor of Science in Global Economics and Modern Languages - Japanese

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

Code Title Credit Hours

<table>
<thead>
<tr>
<th>Wellness</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core A - Essential Skills</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 1712 Mathematics for Management II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core B - Institutional Options</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1315 Introduction to Media Computation</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core C - Humanities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Languages</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1711 Finite Mathematics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or MATH 15 Differential Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MATH 15 and Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2105 Principles of Macroeconomics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 2106 Principles of Microeconomics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistics Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering/Science/Math Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Modern Languages 2,3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3110 Advanced Microeconomic Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 3120 Advanced Macroeconomic Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 3150 Economic and Financial Modeling</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 3161 Econometric Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 4311 Strategic Economics for Global Enterprise</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or ECON 43 International Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 4910 Individual Research in Economics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECON Electives</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON Electives 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Major Cluster</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Electives 3,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modern Languages</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPN 4500 Advanced Intercultural Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Modern Languages 2,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Electives</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student's language of study, the student must justify and receive prior approval.
2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Any 1000- or 2000-level course with the following prefixes: AE, APPH, BIOL, BMED, CEE, CHBE, CHEM, EAS, ECE, ISYE, MATH, ME, MSE, NRE, PHYS.

Students must complete 21 credit hours of Japanese electives at 2002 level or above. Six credit hours are counted in Humanities, six in Core Area F, and 9 in Modern Languages Requirements.

Minimum grade of C required.

ECON and JAPN courses not allowed for cluster electives.

One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)
Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:

- Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or ECON 4160
- International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610
- Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

JAPN courses below 2002 may count toward the free elective courses.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages. The terms abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics;
 d. transnational problems of the environment, terrorism, health, and migration;
 e. among other issues (see INTA courses).

2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as:
 a. international trade, finance, investment, and production;
 b. regional economic integration (such as the EU);
 c. economic development and modernization; and
 d. questions of natural resource sustainability.

3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Bachelor of Science in Global Economics and Modern Languages - Korean

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>3.8</td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>and MATH 15</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
Strategic Economics for Global Enterprise

Economic and Financial Modeling

Principles of Microeconomics

Advanced Microeconomic Analysis

KOR 4500 Intercultural Seminar

ECON Electives

ECON Electives

Non-Major Cluster

Modern Languages

Free Electives

Free Electives

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

3. Minimum grade of C required.

4. ECON and KOR courses not allowed for cluster electives.

5. One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)

6. Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:
 - Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or
 - International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610 or
 - Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

7. KOR courses below 2002 may count toward the free elective courses.

8. Up to two KOR 34XX courses may be counted in total for the ALIS-KOR major requirements.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages. The terms abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics;
 d. questions of natural resource sustainability.

2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as
 a. international trade, finance, investment, and production;
 b. regional economic integration (such as the EU);
 c. economic development and modernization; and
 d. among other issues (see INTA courses).

3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.
4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Bachelor of Science in Global Economics and Modern Languages - Russian

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.
2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Any SS (p. 97)

Core F - Courses Related to Major

ECON 2105 Principles of Macroeconomics \(^3 \) 3
ECON 2106 Principles of Microeconomics \(^3 \) 3
Statistics Elective \(^{3,5} \) 3
Engineering/Science/Math Elective \(^1 \) 3
Modern Languages \(^{2,3} \) 6

Major Requirements

ECON 3110 Advanced Microeconomic Analysis \(^3 \) 3
ECON 3120 Advanced Macroeconomic Analysis \(^3 \) 3
ECON 3150 Economic and Financial Modeling \(^3 \) 3
ECON 3161 Econometric Analysis \(^3 \) 3
ECON 4311 Strategic Economics for Global Enterprise \(^3 \) 3
or ECON 43 International Economics
ECON 4910 Individual Research in Economics \(^3 \) 3

ECON Electives

ECON Electives \(^3 \) 6

Non-Major Cluster

Cluster Electives \(^{3,4} \) 12

Modern Languages

RUSS 4500 Russian Intercultural Capstone Seminar \(^3 \) 3
Modern Languages \(^{2,3} \) 9

Free Electives

Free Electives \(^7 \) 11

Total Credit Hours 122

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.
2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Any 1000- or 2000-level course with the following prefixes: AE, APPH, BIOL, BMED, CEE, CHBE, CHEM, EAS, ECE, ISYE, MATH, ME, MSE, NRE, PHYS.

Students must complete 21 credit hours of Russian electives at 2002 level or above. Six credit hours are counted in Humanities, six in Core Area F, and 9 in Modern Languages Requirements.

Minimum grade of C required.

ECON and RUSS courses not allowed for cluster electives.

One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)
Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:

- Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or ECON 4610 or
- International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610 or
- Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

RUSS courses below 2002 may count toward the free elective courses.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad may typically consist of one semester of study plus a significant amount of time spent abroad with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics;
 d. transnational problems of the environment, terrorism, health, and migration;
 e. among other issues (see INTA courses).

2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as
 a. international trade, finance, investment, and production;
 b. regional economic integration (such as the EU);
 c. economic development and modernization;
 d. questions of natural resource sustainability.

3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Bachelor of Science in Global Economics and Modern Languages - Spanish

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 3000 level or twenty-four semester hours of Chinese, Japanese, or Russian courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1551</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Modern Languages 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 1551 Differential Calculus & MATH 151 and Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Core E - Social Sciences Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues

Any SS (p. 97) 9

Core F - Courses Related to Major
ECON 2105 Principles of Macroeconomics 3
ECON 2106 Principles of Microeconomics 3
Statistics Elective 3
Engineering/Science/Math Elective 1
Modern Languages 2,3

Major Requirements
ECON 3110 Advanced Microeconomic Analysis 3
ECON 3120 Advanced Macroeconomic Analysis 3
ECON 3150 Economic and Financial Modeling 3
ECON 3161 Econometric Analysis 3
ECON 4311 Strategic Economics for Global Enterprise 3
or ECON 43 International Economics
ECON 4910 Individual Research in Economics 3

ECON Electives
ECON Electives 3 6

Non-Major Cluster
Cluster Electives 3,4 12

Modern Languages
SPAN 4500 Advanced Intercultural Seminar 3
Modern Languages 2,3 9

Free Electives
Free Electives 7 11

Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Any 1000- or 2000-level course with the following prefixes: AE, APPH, BIOL, BMED, CEE, CHBE, CHEM, EAS, ECE, ISYE, MATH, ME, MSE, NRE, PHYS.

Students must complete 21 credit hours of Spanish electives at 2002 level or above. Six credit hours are counted in Humanities, six in Core Area F, and 9 in Modern Languages Requirements.

Minimum grade of C required.

ECON and SPAN courses not allowed for cluster electives.

One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)

Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:

- Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or
- International Economics: ECON 4311 or ECON 4350 or ECON 4355 or ECON 4610 or
- Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

SPAN courses below 2002 may count toward the free elective courses.

International Plan

The degree requirements for the Global Economics and Modern Languages (Chinese, French, German, Japanese, Korean, Russian and Spanish)-International Plan are basically the same as for the GEML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese or Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad may typically consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Students may also opt for a second semester. GEML-IP majors are also strongly encouraged to enroll in the LBAT intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set you apart from other applicants with recruiters from top companies and governmental agencies.

Other Required Courses include the following, and these can easily be obtained within the regular required curriculum offerings of ECON and Modern Languages. These requirements can also be met with courses taken abroad, upon consultation with ECON degree advisors.

1. At least one course focused on international relations historically and theoretically, including topics such as:
 a. the role of state sovereignty and nationalism and non-state actors in the international system;
 b. international conflict, peace, security, intervention, and nation-building;
 c. international organizations, law, and ethics;
 d. transnational problems of the environment, terrorism, health, and migration;
 e. among other issues (see INTA courses).

2. At least one course that provides a historical and theoretical understanding of the global economy, including topics such as:
 a. international trade, finance, investment, and production;
 b. regional economic integration (such as the EU);
 c. economic development and modernization; and
 d. questions of natural resource sustainability.

3. At least one course that provides familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture. This course could come from various disciplinary perspectives, including history, public policy, philosophy, international affairs, literature, economics, management, architecture, among others. Upper division Modern Language course will count here.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.
Bachelor of Science in Global Economics and Modern Languages

In partnership with the School of Modern Languages (http://www.modlangs.gatech.edu), the School of Economics offers a Bachelor of Science in Global Economics and Modern Languages with language concentrations in Chinese, French, German, Japanese, Korean, Russian, or Spanish. Global Economics and Modern Language graduates are especially attractive to employers with long-term interests outside the United States who demand employees prepared to successfully navigate the challenges and opportunities presented by global, economically interdependent, multilingual, and multicultural environments. Through a variety of coursework and the opportunity to spend a semester abroad, students have in-depth knowledge not only of their own cultures but also have the capacity to function effectively in a second culture. Coursework focuses on rigorous training in economics combined with extensive foreign language study. Students are expected to develop advanced communication skills and professional competency in the language of choice through courses and extracurricular opportunities that focus on current issues, classic literature, business applications, and cross-cultural perspectives.

Students pursuing this degree must complete forty-five semester hours of general education requirements, twenty-four semester hours of French, German, or Spanish courses at or above the 2002 level, and twenty-four semester hours of Economics. This degree program provides significant flexibility for students through eleven hours of free electives and six semester hours of non-major cluster electives.

- Bachelor of Science in Global Economics and Modern Languages - Chinese (p. 336)
- Bachelor of Science in Global Economics and Modern Languages - French (p. 338)
- Bachelor of Science in Global Economics and Modern Languages - German (p. 339)
- Bachelor of Science in Global Economics and Modern Languages - Japanese (p. 341)
- Bachelor of Science in Global Economics and Modern Languages - Korean (p. 342)
- Bachelor of Science in Global Economics and Modern Languages - Russian (p. 344)
- Bachelor of Science in Global Economics and Modern Languages - Spanish (p. 345)

Bachelor of Science in History, Technology, and Society

The bachelor’s degree in History, Technology, and Society (BS-HTS) is comparable to traditional degrees in history and sociology, but has several attributes that make it unique and give our students an edge over other liberal arts majors. A degree in HTS requires broad-based training in humanities, mathematics, computing, science, and social sciences, giving our majors a truly rigorous and broad education. The program’s focus on global issues related to the origin and impact of technology and science is also distinctive, providing students with the critical tools needed to understand the development of the modern world. Students earning a degree in HTS may participate in both the International Plan and the Research Option, which enhance the undergraduate experience. Finally, the HTS curriculum allows one of the largest numbers of free electives of any major at Georgia Tech, giving our students a chance to pursue minor degrees, certificates, and other interests that prepare them for the broadest possible range of careers, from government and politics to law and medicine to journalism and business.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 15</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>HTS Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>HTS Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td>6</td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
<td></td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
<td></td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
<td></td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
<td></td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td></td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in History, Technology, and Society

HTS 3028 Ancient Greece: Gods, Heroes, and Ruins
HTS 3029 Ancient Rome: From Greatness to Ruins
HTS 3030 Medieval Europe: 350 to 1400
HTS 3031 European Labor History
HTS 3032 Modern European Intellectual History
HTS 3033 Medieval England
HTS 3034 Britain from 1815-1914
HTS 3035 Britain Since 1914
HTS 3036 The French Revolution
HTS 3037 Modern France
HTS 3038 Medieval Spain
HTS 3039 Modern Germany
HTS 3040 Nazi Germany and the Holocaust
HTS 3041 Science, Politics, and Culture in Nazi Germany
HTS 3042 Modern Russian History
HTS 3043 Women and the Politics of Gender in the Middle East
HTS 3044 Globalization in the Modern Era
HTS 3045 Modern China
HTS 3046 Modern Japan
HTS 3047 Outposts of Empire: Comparative History of British
HTS 3048 Sociology of Development
HTS 3049 History of Global Societies
HTS 3050 Modern Cuba
HTS 3051 Historical and Social Research
HTS 2111 The United States to 1877
HTS 2112 The United States since 1877
HTS 1101 Introduction to Sociology

Major Requirements
Select two of the following: 3

HTS 1081 Engineering in History
HTS 2080 Introduction to the History of Disease and Medicine
HTS 2081 The Scientific Revolution
HTS 2082 Technology and Science in the Industrial Age
HTS 2084 Technology and Society
HTS 2100 Sci, Tech & Modern World
HTS 3001 American Economic History
HTS 3002 Sociology of Work, Industry, and Occupations
HTS 3003 Gender and Technology
HTS 3004 Women in Science and Engineering
HTS 3005 Science, Politics, and Culture in Nazi Germany
HTS 3006 History of Rocketry
HTS 3007 Technology and the Environment
HTS 3008 Sociology of Science
HTS 3009 Technology and the Shaping of American Society
HTS 3010 Culture and Technology
HTS 3011 Law, Technology, and Politics
HTS 3012 Sociology of Medicine and Health
HTS 3013 History of Medicine
HTS 3014 Race, Medicine & Science

Select 8 credit hours of the following: 8

HTS 3089 Science, Technology and Sports
HTS 4001 Seminar in United States History
HTS 4011 Seminar in Sociology
HTS 4031 Seminar in European History
HTS 4061 Seminar in Asian History
HTS 4081 Seminar in History of Technology
HTS 4086 Seminar in Health, Medicine, and Society
HTS 4091 Seminar in Global Issues
HTS Elective

HTS Specialization Electives
Select three classes from one of the following specialization groups:

U.S. Society

HTS 2001 Early American History
HTS 2002 The American Revolution and Constitution
HTS 2006 History of the Old South to 1865
HTS 2007 History of the New South since 1865
HTS 2011 The Gilded Age and the Progressive Era
HTS 2013 Modern America: World War II and After
HTS 2015 History of Sports in America
HTS 2052 North American Borderlands
HTS 2085 Reel History I: US History through Hollywood Films
HTS 3001 American Economic History
HTS 3002 History of American Business
HTS 3005 American Environmental History
HTS 3006 United States Labor History
HTS 3009 The American Civil War
HTS 3011 The City in American History
HTS 3012 Urban Sociology
HTS 3015 History of the Vietnam War
HTS 3016 Women and Gender in the United States
HTS 3018 New Religions and Cults in America
HTS 3019 The Family, Sexuality, and Social Change in America
HTS 3022 Gender and Sports
HTS 3023 Slaves without Masters: Free People of Color before 1865
HTS 3024 African American History to 1865
HTS 3025 African American History since 1865
HTS 3026 Sociology of Race and Ethnicity
HTS 3027 The Civil Rights Movement
HTS 3068 Social Movements
HTS 3070 Culture and Society
HTS 3073 Sociology of Sports
HTS 3083 Technology and the Shaping of American Society
HTS 3100 Introduction to Museum Studies

Global Studies

HTS 1031 Europe Since the Renaissance
HTS 2036 Revolutionary Europe: 1789-1914
HTS 2037 Twentieth Century Europe: 1914 to Present
HTS 2040	History of Islamic Societies
HTS 2041	History of the Modern Middle East
HTS 2051	Colonial Latin America and the World
HTS 2061	Traditional Asia and Its Legacy
HTS 2062	Asia in the Modern World
HTS 2100	Sci, Tech & Modern World
HTS 3030	Medieval Europe: 350 to 1400
HTS 3031	European Labor History
HTS 3032	Modern European Intellectual History
HTS 3033	Medieval England
HTS 3035	Britain from 1815-1914
HTS 3036	Britain Since 1914
HTS 3038	The French Revolution
HTS 3039	Modern France
HTS 3041	Modern Spain
HTS 3043	Modern Germany
HTS 3045	Nazi Germany and the Holocaust
HTS 3046	Science, Politics, and Culture in Nazi Germany
HTS 3048	Modern Russian History
HTS 3051	Women and the Politics of Gender in the Middle East
HTS 3055	Globalization in the Modern Era
HTS 3061	Modern China
HTS 3062	Modern Japan
HTS 3063	Outposts of Empire: Comparative History of British
HTS 3064	Sociology of Development
HTS 3065	History of Global Societies
HTS 3067	Revolutionary Movements in the Modern World
HTS 3069	Modern Cuba

Politics, Economics, and Innovation

HTS 1081	Engineering in History
HTS 2016	Social Issues and Public Policy
HTS 2100	Sci, Tech & Modern World
HTS 3001	American Economic History
HTS 3002	History of American Business
HTS 3003	Sociology of Economic Institutions
HTS 3006	United States Labor History
HTS 3007	Sociology of Work, Industry, and Occupations
HTS 3031	European Labor History
HTS 3064	Sociology of Development
HTS 3066	Sociology of Politics and Society
HTS 3068	Social Movements
HTS 3080	History of Rocketry
HTS 3083	Technology and the Shaping of American Society
HTS 3084	Culture and Technology
HTS 3085	Law, Technology, and Politics

Science, Technology, and Medicine

HTS 1081	Engineering in History
HTS 2080	Introduction to the History of Disease and Medicine
HTS 2081	The Scientific Revolution
HTS 2082	Technology and Science in the Industrial Age
HTS 2084	Technology and Society
HTS 2100	Sci, Tech & Modern World
HTS 3020	Gender and Technology
HTS 3021	Women in Science and Engineering
HTS 3046	Science, Politics, and Culture in Nazi Germany
HTS 3080	History of Rocketry
HTS 3081	Technology and the Environment
HTS 3082	Sociology of Science
HTS 3083	Technology and the Shaping of American Society
HTS 3084	Culture and Technology
HTS 3085	Law, Technology, and Politics
HTS 3086	Sociology of Medicine and Health
HTS 3087	History of Medicine
HTS 3088	Race, Medicine & Science
HTS 3089	Science, Technology and Sports

Communities, Environment, and Sustainability

HTS 3005	American Environmental History
HTS 3011	The City in American History
HTS 3012	Urban Sociology
HTS 3026	Sociology of Race and Ethnicity
HTS 3064	Sociology of Development
HTS 3071	Sociology of Crime
HTS 3072	Sociology of Education
HTS 3081	Technology and the Environment

Power, Inequality, and Social Justice

HTS 2016	Social Issues and Public Policy
HTS 3006	United States Labor History
HTS 3008	Class, Power, and Social Inequality
HTS 3011	The City in American History
HTS 3012	Urban Sociology
HTS 3016	Women and Gender in the United States
HTS 3017	Sociology of Gender
HTS 3020	Gender and Technology
HTS 3021	Women in Science and Engineering
HTS 3022	Gender and Sports
HTS 3023	Slaves without Masters: Free People of Color before 1865
HTS 3024	African American History to 1865
HTS 3025	African American History since 1865
HTS 3026	Sociology of Race and Ethnicity
HTS 3027	The Civil Rights Movement
HTS 3031	European Labor History
HTS 3051	Women and the Politics of Gender in the Middle East
HTS 3067	Revolutionary Movements in the Modern World
HTS 3068	Social Movements
HTS 3071	Sociology of Crime
HTS 3072	Sociology of Education

Culture and Society

| HTS 2015 | History of Sports in America |
There are two IP tracks:

- the English Language Option
- the Foreign Language Option.

The HTS degree supports both options, which the Institute deems to be equal in difficulty and value. Both tracks require a total of twenty-six weeks in residence in a specific foreign country or region. These weeks must be accumulated in one to two trips abroad; any combination of coursework, research, internship, or work may apply to this twenty-six week total, given the approval of the advisor. Both IP tracks require a minimum of twelve credit hours in one foreign language and demonstration of proficiency in that language. Both require participants to take a cluster of courses from a menu of IP-designated electives; both require completion of a capstone course, which will be offered through the HTS degree program.

For more complete information, see the official Institute IP website through Georgia Tech’s Office of International Education.

Office of International Education (http://www.oie.gatech.edu)

Research Option

The School of History and Sociology Research Option allows students to incorporate additional research, writing, and presentation experiences into the HTS major program of study. Students interested in going on to graduate or professional school are encouraged to consider the research option, which allows a student to complete a significant scholarly work for presentation at a professional conference and/or publication.

In addition to the courses required of all HTS majors, including eight credit hours of research seminars and the three-credit HTS research methods course, students enrolled in the Research Option will also complete six hours of supervised individual undergraduate research and two-1 hour writing courses: LMC 4701 (typically taken during the first or second semester of research) and LMC 4702 (taken during the term in which the thesis is written).

Bachelor of Science in Industrial Design

Undergraduate education in industrial design at Georgia Tech leads to the Bachelor of Science Degree in Industrial Design that is accredited by the National Association of Schools of Art and Design (NASAD). The undergraduate program prepares students for a career in design practice as well as for graduate education in industrial design and in related fields. The School of Industrial Design at Georgia Tech offers the only industrial design degree program in the University System of Georgia.

Industrial design is the professional practice of creating products that enhance the function, usability, value, and appearance of products with the goal of benefiting the user, manufacturer, community, and the environment. Also known as product design, industrial design education prepares students to design systems and tangible artifacts including, consumer and recreational products, business and industrial products, medical and computer equipment, and transportation and environments. Both generalist and specialist, industrial designers tend to be part artist, part entrepreneur and engineer.

Cross-disciplinary education is the primary focus of the four-year industrial design program. The university education provides:

1. an understanding of the arts (liberal and visual arts), technology (engineering and sciences), humanities (sociology and psychology), and management (marketing and branding),
2. a collaborative and shared education through an emphasis on the design studio, and
3. an opportunity to periodically participate in real-life design projects through sponsored studio projects.

The undergraduate program offers a well-rounded course of study with an emphasis on critical thinking, basic design, design skills, and design communication. There are 6 industrial design studios after the first year suite of introductory design classes. The industrial design studios focus on a sequential learning path which begins with form making to product design to post design that involves development and manufacturing. Design projects stress developing a broad education through an exposure to academic and professional considerations. The School encourages students to develop a diverse background in order to expand individual talents and respond to emerging opportunities in the field. Faculty members are scholars and design practitioners, giving students the opportunity to learn about both.

All work executed in the College becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse credit for any project executed outside the precincts of the College or otherwise executed without proper coordination with the instructor.

Grade Requirements
All required industrial design courses must be completed with a grade of C or higher. A student may not enter a more advanced studio design course until this requirement is met; students with such academic deficiencies may be required to delay their studies for one year. Studio design courses must be taken in sequence beginning fall semester. A maximum of 9 credit hours may be taken on a pass/fail basis. Only courses taken as free electives in the undergraduate curriculum maybe taken for pass/fail credit. See "Information for Undergraduate Students" for Institute regulations regarding pass/fail courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 1050 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COA 2242</td>
<td>History of Art II</td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Core D - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives.

If PHYS 2231 (5 credit hours) is taken, excess hour applies to Free Electives.
International Plan

The International Plan offers a challenging academic program that develops global competence within the context of Industrial Design.

The International Plan is a four-year program that builds global competence by requiring students to spend two full terms at an Industrial Design program in another country, to develop a proficiency in a second language, and to take internationally oriented coursework. This experience provides students a deeper global competency than traditional international opportunities. The eight-semester sequence is structured to allow for the Fall and Spring third year semester to be completed at an industrial design program in another country. Students are responsible for locating those courses at the host institution that will serve as equivalents to the courses listed in the curriculum.

Degree requirements are not modified but are satisfied with specialized courses and appropriate choices of elective courses, which includes globally focused courses within the major area and a capstone Senior Studio: Global Awareness. Consult with the Industrial Design Program for the suggested curriculum.

All International Plan participants must develop proficiency in a language other than English. Unless otherwise approved, the language chosen to fulfill this requirement will have a relationship to the country or region in which the student plans to fulfill the 26 week requirement. Any variance will require approval from the IP faculty representative and the IP Committee.

Admission Requirements

• Applicants must be undergraduate degree-seeking Georgia Tech students in one of the participating majors.
• Students must submit an application via the International Plan website. Notification of acceptance will be communicated via the student’s Georgia Tech e-mail address.
• There is no GPA requirement for first-semester freshmen applying to the International Plan. All other applicants must have at least a 2.5 GPA at the time of application.

International Plan (http://www.internationalplan.gatech.edu)
Industrial Design International Studies (http://www.id.gatech.edu/academics/international-studies)

Bachelor of Science in Industrial Engineering - Analytics and Data Science

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

• Advanced Studies in Operations Research and Statistics (p. 358),
• Analytics and Data Science (p. 352),
• Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
• Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
• Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
• Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
• General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

• to become successful Industrial Engineers;
• to take leadership in their endeavors;
• to be self-learners and starters;
• to succeed in professional and educational advancement.

Code Title Credit Hours

Wellness
APPH 1040 Scientific Foundations of Health 2
or APPH 10 The Science of Physical Activity and Health

Core A - Essential Skills
ENGL 1101 English Composition I 3
ENGL 1102 English Composition II 3
MATH 1552 Integral Calculus 4

Core B - Institutional Options
CS 1301 Introduction to Computing 3

Core C - Humanities
Any HUM (p. 93) 6

Core D - Science, Math, & Technology
PHYS 2211 Introductory Physics I 4
PHYS 2212 Introductory Physics II 4
MATH 1551 Differential Calculus 2
MATH 1553 Introduction to Linear Algebra 2

Core E - Social Sciences
Select one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
ECON 2100 Economic Analysis and Policy Problems 3
PSYC 1101 General Psychology 3
Any SS (p. 97) 3

Core F - Courses Related to Major
CS 2316 Data Manipulation for Science and Industry 3
CS 4400 Introduction to Database Systems 3
MATH 2551 Multivariable Calculus 1,2 4
Lab Science 3 8
Ethics Requirement (p. 101) 4
Environmental Requirement 5

Major Requirements
ACCT 2101 Accounting I: Financial Accounting 3
or MGT 300 Accounting for Decision Making
MATH 2603 Introduction to Discrete Mathematics 1 4
ISYE 2027 Probability with Applications 3
ISYE 3030 Basic Statistical Methods 3
ISYE 3025 Essentials of Engineering Economy 1
ISYE 3133 Engineering Optimization 3
ISYE 3232 Probabilistic Operations Research 3
ISYE 3044 Simulation Analysis and Design 3
ISYE 4106 Senior Design 4

Engineering Electives 5,7
Select one of the following: 3
ECE 2020 Digital System Design
ECE 2026 Introduction to Signal Processing
ECE 3710 Circuits and Electronics
& ECE 3741 Instrumentation and Electronics Lab
Select 6 credits of the following: 8 6
Group 1
AE 2220 Dynamics
AE 3450 Thermodynamics and Compressible Flow
BMED 2210 Conservation Principles in Biomedical Engineering
BMED 3100 Systems Physiology
CHBE 2100 Chemical Process Principles
CHBE 2110 Chemical Engineering Thermodynamics I
CHBE 4763 Pulping and Chemical Recovery
CHBE 4764 Bleaching and Papermaking
COE 2001 Statics
COE 3001 Mechanics of Deformable Bodies
CEE 2300 Environmental Engineering Principles
CEE 3010 Geomatics
CEE 4100 Construction Engineering and Management
CEE 4300 Environmental Engineering Systems
CEE 4600 Transportation Planning, Operations, and Design
CS 2110 Computer Organization and Programming
CS 4641 Machine Learning
CX 4010 Computational Problem Solving for Scientists and Engineers
CX 4240 Introduction to Computing for Data Analysis
CX 4242 Data and Visual Analytics
ECE 2020 Digital System Design
ECE 2026 Introduction to Signal Processing
ECE 2040 Circuit Analysis
ECE 3035 Mechanisms for Computing Systems
ECE 3076 Computer Communications
ECE 3090 Software Fundamentals for Engineering Systems
ECE 3710 Circuits and Electronics
ECE 3741 Instrumentation and Electronics Lab
ECE 4606 Wireless Communications
ME 2202 Dynamics of Rigid Bodies
ME 3015 System Dynamics and Control
ME 3322 Thermodynamics
ME 3720 Introduction to Fluid and Thermal Engineering
ME 4763 Pulping and Chemical Recovery
ME 4764 Bleaching and Papermaking
MSE 2001 Principles and Applications of Engineering Materials
MSE 3012 Thermal and Transport Properties of Materials
MSE 3015 Electrical, Optical and Magnetic Properties
NRE 3301 Radiation Physics

Group 2 9
AE 4370 Life Cycle Cost Analysis
AE 4701 Wind Engineering
AE 4793 Composite Materials and Processes
ARCH 6271 Healthcare Design of the Future
BIOS 2400 Math Models in Biology
BIOS 4740 Biologically-Inspired Design
BMED 2300 Problems in Biomedical Engineering II
BMED 3400 Introduction to Biomechanics
BMED 4751 Introduction to Biomaterials
CHBE 4793 Composite Materials and Processes
COE 3002 Intro to Microelectronics and Nanotechnology Revolution
CCEE 4225 Introduction to Coastal Engineering
CCEE 4330 Air Pollution Engineering
CCEE 4793 Composite Materials and Processes
CP 4310 Urban Transportation and Planning
CP 4510 Fundamentals of Geographic Information Systems
ECE 2031 Digital Design Laboratory
ECE 4755 Electronic Packaging Substrate Fabrication
ME 2110 Creative Decisions and Design
ME 3057 Experimental Methodology and Technical Writing
ME 4740 Biologically Inspired Design
ME 4793 Composite Materials and Processes
MSE 2021 Materials Characterization
MSE 3720 Introduction to Polymer/Fiber Enterprise
MSE 4751 Introduction to Biomaterials
MSE 4755 Electronic Packaging Substrate Fabrication
MSE 4793 Composite Materials and Processing

Analytics and Data Science Concentration 11 18
Select four from the two groups below:
Select 1-2 from Group A:
ISYE 4133 Advanced Optimization
ISYE 4232 Advanced Stochastic Systems
ISYE 4045 Advanced Simulation
ISYE 4134 Constraint Programming
Select 2-3 from Group B:
ISYE 4034 Decision and Data Analytics
CX 4240 Introduction to Computing for Data Analysis
CS 4641 Machine Learning
or ISYE 4 Special Topics
ISYE 4803 Special Topics (On-Line Learning and Decision Making)
Select 2 from the following:
ECON 3150 Economic and Financial Modeling
ECON 4340 Economics of Industrial Competition
ECON 4350 International Economics
ISYE 3039 Methods of Quality Improvement
ISYE 3103 Introduction to Supply Chain Modeling: Logistics
ISYE 3104 Introduction to Supply Chain Modeling: Manufacturing and Warehousing
ISYE 4111 Advanced Supply Chain Logistics
ISYE 4301 Supply Chain Economics
ISYE 4311 Capital Investment Analysis
ISYE 4803 Special Topics
MATH 4262 Mathematical Statistics I
MGT 3078 Finance and Investments
Free Electives
Free Electives
Total Credit Hours 128

Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.

Students must achieve a minimum GPA of 2.0 in the BSIE Major Requirements to graduate.

1. Students must earn a C or better in all required MATH courses in the BSIE curriculum.
2. Students may also complete MATH 1554 and MATH 2550 to satisfy math requirements. If MATH 1554/MATH 2550 combination is taken, then two hours from MATH 1554 may be used in Area F to give Area F 18 hours.
3. Only one EAS course can be used toward ISYE Lab Science requirements.
4. PSYC 1101 will satisfy the Ethics requirement.
5. Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.
6. Students must take at least nine credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710 AND ECE 3741. Students must complete courses from two different eligible engineering elective subjects. Engineering elective credits taken in excess of the nine required may count toward free electives.
7. At most, one computing course (CS or CX) is allowed, including courses cross-listed with CS or CX courses.
8. In addition to the ECE requirement, take at least two additional credits from Group 1 and no more than four credits from Group 2.
9. To count as Group 2 Engineering Elective credit, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Undergraduate Chair, and at least three but no more than four credits of VIP coursework may count toward the Engineering Elective requirement.
10. Students must complete five concentration courses: one or two from Group A, two or three from Group B, and one as listed from any other concentration. A minimum of four of the five concentration courses must be ISYE courses.
11. ISYE 4803 must be titled “Introduction to Machine Learning”
12. ISYE 4803 must be titled “Online Learn/Decision Making.”
13. ISYE 4803 must be titled “Cornerstone Modeling and Design” and must be taken prior to ISYE 4106.
14. ISYE 4803 must be titled “Additive Manufacturing” or “Advanced Manufacturing” or “Decision Analysis and Risk Modeling” or “Design of Experiments” or “Facility Layout and Warehousing” or “Financial Data Analysis” or “Health Systems Engineering” or “Reliability Engineering” or “Supply Chain Project” or “Supply Chain Strategy” or “Systems Design for IEs.”
15. MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.

Cooperative Plan
The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

• Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
• Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
• International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.
• Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdisclosure.gatech.edu).

International Plan
The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include
1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program
A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in Industrial Engineering - Quality and Statistics
The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
- Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
- Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
- Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
- General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives
The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

- to become successful Industrial Engineers;
- to take leadership in their endeavors;
- to be self-learners and starters;
- to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>1</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS</td>
<td>Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>1</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 300</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2603</td>
<td>Introduction to Discrete Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3030</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4031</td>
<td>Regression and Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4106</td>
<td>Senior Design</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>select one of the following:</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science in Industrial Engineering - Quality and Statistics

Select 6 credits of the following: 7,8

Group 1

- AE 2220 Dynamics
- AE 3450 Thermodynamics and Compressible Flow
- BMED 2210 Conservation Principles in Biomedical Engineering
- BMED 3100 Systems Physiology
- CHBE 2100 Chemical Process Principles
- CHBE 2110 Chemical Engineering Thermodynamics I
- CHBE 4763 Pulping and Chemical Recovery
- CHBE 4764 Bleaching and Papermaking
- COE 2001 Statics
- COE 3001 Mechanics of Deformable Bodies
- CEE 2040 Dynamics
- CEE 2300 Environmental Engineering Principles
- CEE 3010 Geomatics
- CEE 4100 Construction Engineering and Management
- CEE 4300 Environmental Engineering Systems
- CEE 4600 Transportation Planning, Operations, and Design
- CS 2110 Computer Organization and Programming
- CS 4641 Machine Learning
- CX 4010 Computational Problem Solving for Scientists and Engineers
- CX 4240 Introduction to Computing for Data Analysis
- CX 4242 Data and Visual Analytics
- ECE 2020 Digital System Design
- ECE 2026 Introduction to Signal Processing
- ECE 3710 Circuits and Electronics
- ECE 3741 Instrumentation and Electronics Lab
- ECE 4606 Wireless Communications
- ME 2202 Dynamics of Rigid Bodies
- ME 3015 System Dynamics and Control
- ME 3222 Thermodynamics
- ME 3720 Introduction to Fluid and Thermal Engineering
- ME 4763 Pulping and Chemical Recovery
- ME 4764 Bleaching and Papermaking
- MSE 2001 Principles and Applications of Engineering Materials
- MSE 3012 Thermal and Transport Properties of Materials
- MSE 3015 Electrical, Optical and Magnetic Properties
- NRE 3301 Radiation Physics

Group 2:

- AE 4701 Wind Engineering
- AE 4793 Composite Materials and Processes
- ARCH 6271 Healthcare Design of the Future
- BIOS 2400 Math Models in Biology
- BIOS 4740 Biologically-Inspired Design
- BMED 2300 Problems in Biomedical Engineering II
- BMED 3400 Introduction to Biomechanics
- BMED 4751 Introduction to Biomaterials
- CHBE 4793 Composite Materials and Processes
- COE 3002 Intro to Microelectronics and Nanotechnology Revolution
- CEE 2031 Digital Design Laboratory
- CEE 4755 Electronic Packaging Substrate Fabrication
- ISYE 4740 Bio-Inspired Design
- MATH 4755 Mathematical Biology
- ME 2110 Creative Decisions and Design
- ME 3057 Experimental Methodology and Technical Writing
- ME 4740 Biologically Inspired Design
- ME 4793 Composite Materials and Processes
- MSE 2021 Materials Characterization
- MSE 3720 Introduction to Polymer/Fiber Enterprise
- MSE 4751 Introduction to Biomaterials
- MSE 4755 Electronic Packaging Substrate Fabrication
- MSE 4793 Composite Materials and Processing

Quality and Statistics Concentration 10

- ISYE 3039 Methods of Quality Improvement 3
- ISYE 4803 Special Topics (Design of Experiments) 3

Depth Electives (select one from):

- ISYE 4034 Decision and Data Analytics 3
- ISYE 4803 Special Topics (Reliability Engineering) 3
- MATH 4262 Mathematical Statistics I
- CS 4641 Machine Learning
- CX 4240 Introduction to Computing for Data Analysis
- CX 4242 Data and Visual Analytics

Breadth Electives (select two of the following): 11 6

- ECON 3150 Economic and Financial Modeling
- ECON 4340 Economics of Industrial Competition
- ECON 4350 International Economics
- ISYE 3103 Introduction to Supply Chain Modeling: Logistics
- ISYE 3104 Introduction to Supply Chain Modeling: Manufacturing and Warehousing
- ISYE 4111 Advanced Supply Chain Logistics
- ISYE 4133 Advanced Optimization
- ISYE 4301 Supply Chain Economics
- ISYE 4232 Advanced Stochastic Systems

Notes:

7. Additional courses may be selected from other departments within the College of Engineering and Applied Sciences.
8. Courses can be chosen to complement specific interests or career goals.
9. Group 2 courses are selected to provide breadth in the field.
10. The Quality and Statistics Concentration is designed to equip students with skills in data analysis, quality control, and statistical methods.
11. Breadth Electives can reinforce the core knowledge with additional subjects relevant to industrial engineering.
Students must achieve a minimum GPA of 2.0 in the BSIE Major Sciences elective.

Students must choose from the following to meet the Environmental Analysis requirement:

- ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.
- CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.

Students must complete courses from two different eligible engineering elective subjects.

Only one EAS course can be used toward ISYE Lab Science requirements.

PSYC 1101 will satisfy the Ethics requirement.

Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.

Students must complete courses from two different eligible engineering elective subjects.

Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.

Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.

To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Chair.

Students must complete 6 concentration courses: 3 depth courses and 3 breadth courses. A minimum of 5 of the 6 required concentration courses must be ISYE courses.

These 3 courses must be from at least 2 of the following groups:

- Supply Chain Engineering (ISYE 3103 or ISYE 3104 or ISYE 4111 or ISYE 4803 titled “Advanced Manufacturing” or ISYE 4803 titled “Facility Layout and Warehousing”)
- Economic and Financial Systems (ISYE 4301 or ISYE 4311 or ECON 3150 or ECON 4340 or ECON 4350 or MGT 3078)
- Operations Research (ISYE 4133 or ISYE 4232 or ISYE 4803 titled “Advanced Simulation”)

ISYE 4803 must be titled “Advanced Manufacturing” or “Advanced Simulation” or “Facility Layout and Warehousing” or “Supply Chain Project” or “Linear and Convex Optimization” or “Energy and Environmental Analysis.”

MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.

Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.

Free Electives

- Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.

- Only one EAS course can be used toward ISYE Lab Science requirements.

- PSYC 1101 will satisfy the Ethics requirement.

- Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.

- Students must complete courses from two different eligible engineering elective subjects.

- Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.

- Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.

- To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Chair.

- Students must complete 6 concentration courses: 3 depth courses and 3 breadth courses. A minimum of 5 of the 6 required concentration courses must be ISYE courses.

- These 3 courses must be from at least 2 of the following groups:
 - Supply Chain Engineering (ISYE 3103 or ISYE 3104 or ISYE 4111 or ISYE 4803 titled “Advanced Manufacturing” or ISYE 4803 titled “Facility Layout and Warehousing”)
 - Economic and Financial Systems (ISYE 4301 or ISYE 4311 or ECON 3150 or ECON 4340 or ECON 4350 or MGT 3078)
 - Operations Research (ISYE 4133 or ISYE 4232 or ISYE 4803 titled “Advanced Simulation”)

- ISYE 4803 must be titled “Advanced Manufacturing” or “Advanced Simulation” or “Facility Layout and Warehousing” or “Supply Chain Project” or “Linear and Convex Optimization” or “Energy and Environmental Analysis.”

- MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

- Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.

- Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.

- International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.

- Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdisccovery.gatech.edu).

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/undergraduate/international/isyintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.
Bachelor of Science in Industrial Engineering - Advanced Studies in Operations Research and Statistics

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
- Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
- Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
- Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
- General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

- to become successful Industrial Engineers;
- to take leadership in their endeavors;
- to be self-learners and starters;
- to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Introduction to Linear Algebra 1, 2, 3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or MATH 1564 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus 1, 2</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2560 Introduction to Multivariable Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 2564 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2106</td>
<td>Foundations of Mathematical Proof</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Environmental Requirement</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 300</td>
<td>Accounting for Decision Making</td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3406</td>
<td>A Second Course in Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3030</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4031</td>
<td>Regression and Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4106</td>
<td>Senior Design</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 2020</td>
<td>Digital System Design</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2026</td>
<td>Introduction to Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>& ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td></td>
</tr>
<tr>
<td>Select 5 credits of the following:</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 2220</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>AE 3450</td>
<td>Thermodynamics and Compressible Flow</td>
<td></td>
</tr>
<tr>
<td>BMED 2210</td>
<td>Conservation Principles in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>CHBE 2100</td>
<td>Chemical Process Principles</td>
<td></td>
</tr>
<tr>
<td>CHBE 2130</td>
<td>Chemical Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>CHBE 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>CHBE 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td></td>
</tr>
<tr>
<td>CEE 2040</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>CEE 2300</td>
<td>Environmental Engineering Principles</td>
<td></td>
</tr>
<tr>
<td>CEE 3010</td>
<td>Geomatics</td>
<td></td>
</tr>
<tr>
<td>CEE 4100</td>
<td>Construction Engineering and Management</td>
<td></td>
</tr>
<tr>
<td>CEE 4300</td>
<td>Environmental Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>CEE 4600</td>
<td>Transportation Planning, Operations, and Design</td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td></td>
</tr>
<tr>
<td>CS/PSYC 3750</td>
<td>Human Computer Interface Design and Evaluation</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td></td>
</tr>
<tr>
<td>CX 4010</td>
<td>Computational Problem Solving for Scientists and Engineers</td>
<td></td>
</tr>
<tr>
<td>CX 4240</td>
<td>Introduction to Computing for Data Analysis</td>
<td></td>
</tr>
<tr>
<td>CX 4242</td>
<td>Data and Visual Analytics</td>
<td></td>
</tr>
<tr>
<td>ECE 2020</td>
<td>Digital System Design</td>
<td></td>
</tr>
<tr>
<td>ECE 2026</td>
<td>Introduction to Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECE 2040</td>
<td>Circuit Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 3035</td>
<td>Mechanisms for Computing Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 3076</td>
<td>Computer Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 3090</td>
<td>Software Fundamentals for Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td></td>
</tr>
<tr>
<td>ECE 4606</td>
<td>Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 4823</td>
<td>Special Topics (Game Theory and Multiagent Systems)</td>
<td></td>
</tr>
<tr>
<td>ISYE 4133</td>
<td>Advanced Optimization</td>
<td></td>
</tr>
<tr>
<td>ISYE 4232</td>
<td>Advanced Stochastic Systems</td>
<td></td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td></td>
</tr>
<tr>
<td>ME 3015</td>
<td>System Dynamics and Control</td>
<td></td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 3720</td>
<td>Introduction to Fluid and Thermal Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>ME 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>MSE 3012</td>
<td>Thermal and Transport Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>MSE 3015</td>
<td>Electrical, Optical and Magnetic Properties</td>
<td></td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td></td>
</tr>
<tr>
<td>AE 4370</td>
<td>Life Cycle Cost Analysis</td>
<td></td>
</tr>
<tr>
<td>AE 4701</td>
<td>Wind Engineering</td>
<td></td>
</tr>
<tr>
<td>AE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>ARCH 6271</td>
<td>Healthcare Design of the Future</td>
<td></td>
</tr>
<tr>
<td>BIOS 2400</td>
<td>Math Models in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4740</td>
<td>Biologically-Inspired Design</td>
<td></td>
</tr>
<tr>
<td>BMED 2300</td>
<td>Problems in Biomedical Engineering II</td>
<td></td>
</tr>
<tr>
<td>BMED 3400</td>
<td>Introduction to Biomechanics</td>
<td></td>
</tr>
<tr>
<td>BMED 4751</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>CHBE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>COE 3002</td>
<td>Intro to Microelectronics and Nanotechnology Revolution</td>
<td></td>
</tr>
<tr>
<td>CEE 4225</td>
<td>Introduction to Coastal Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4330</td>
<td>Air Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>CP 4310</td>
<td>Urban Transportation and Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td></td>
</tr>
<tr>
<td>ECE 4755</td>
<td>Electronic Packaging Substrate Fabrication</td>
<td></td>
</tr>
<tr>
<td>ISYE 4801</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>ISYE 4803</td>
<td>Special Topics (System Modeling with SysML)</td>
<td></td>
</tr>
<tr>
<td>ISYE 4803</td>
<td>Special Topics (Model Based Systems Engineering)</td>
<td></td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td></td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td></td>
</tr>
<tr>
<td>ME 4740</td>
<td>Biologically Inspired Design</td>
<td></td>
</tr>
<tr>
<td>ME 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>MSE 2021</td>
<td>Materials Characterization</td>
<td></td>
</tr>
<tr>
<td>MSE 3720</td>
<td>Introduction to Polymer/Fiber Enterprise</td>
<td></td>
</tr>
<tr>
<td>MSE 4751</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>MSE 4755</td>
<td>Electronic Packaging Substrate Fabrication</td>
<td></td>
</tr>
<tr>
<td>ME 4764</td>
<td>Composite Materials and Processing</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Studies in Operations Research & Statistics Concentration

- ISYE 8813 | Special Topics in Operations Research or MATH 4317 Analysis I |
- Select two of the following: |
- ISYE 4133 | Advanced Optimization |
- ISYE 4232 | Advanced Stochastic Systems |
- ISYE 6661 | Optimization I: Linear Programming |
- ISYE 6662 | Optimization II: Network Flows and Discrete Optimization |
- ISYE 6663 | Optimization III: Nonlinear Programming |
- ISYE 6664 | Stochastic Optimization |
- ISYE 6761 | Stochastic Processes I |
- ISYE 6412 | Theoretical Statistics |

- Select two of the following: |
- ISYE 3103 | Introduction to Supply Chain Modeling: Logistics |
- ISYE 3104 | Introduction to Supply Chain Modeling: Manufacturing and Warehousing |
- ISYE 3803 | Special Topics |
- ISYE 3039 | Methods of Quality Improvement |
- ISYE 4034 | Decision and Data Analytics |
- ISYE 4045 | ADV Simulation |
- ISYE 4111 | Advanced Supply Chain Logistics |
- ISYE 4134 | Constraint Programming |
- ISYE 4301 | Supply Chain Economics |
- ISYE 4311 | Capital Investment Analysis |
- ISYE 4501 | Energy, Efficiency, and Sustainability |
- ISYE 4803 | Special Topics |

Group 2

- AE 4370 | Life Cycle Cost Analysis |
- AE 4701 | Wind Engineering |
- AE 4793 | Composite Materials and Processes |
- ARCH 6271 | Healthcare Design of the Future |
- BIOS 2400 | Math Models in Biology |
- BIOS 4740 | Biologically-Inspired Design |
- BMED 2300 | Problems in Biomedical Engineering II |
- BMED 3400 | Introduction to Biomechanics |
- BMED 4751 | Introduction to Biomaterials |
- CHBE 4793 | Composite Materials and Processes |
Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.

Students must achieve a minimum GPA of 3.3 in the BSIE Major Requirements to graduate (Math beyond Calculus, BSIE required courses and concentration electives).

1. Students must earn a C or better in all required MATH courses in the BSIE curriculum.
2. MATH 1564 is preferred, but not required.
3. Students may also complete MATH 1554 or MATH 1564 and MATH 2550 or MATH 2561 to satisfy math requirements. If MATH 1554 or MATH 1564/MATH 2550 or MATH 2561 combination is taken, then two hours from MATH 1554 may be used in Area F to give Area F 18 hours.
4. Minimum grade of B in MATH 2106 is required to pursue the Advanced Studies for OR & Stat Concentration.
5. Only one EAS course can be used toward ISYE Lab Science Requirements.
6. PSYC 1101 will satisfy the Ethics requirement.
7. Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300,EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480,ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.
8. Students must complete courses from two different eligible engineering elective subjects.
9. Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.
10. In addition to the three-credit ECE requirement, take at least one additional credit from Group 1 and no more than four credits from Group 2.
11. To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIPS) courses must be approved by the ISyE Associate Chair.
12. ISYE 4803 must be titled “Preparing for Consulting” or “Business Essentials for IE” or “Product Development Design to Value” or “Work Measurement & Forensics” or “ISyE Undergraduate Seminar.”
13. Students must complete five concentration courses: A minimum of four of the five concentration courses must be ISYE courses.
14. The 6000-level ISYE course options are preferred, but not required.
15. ISYE 3803 must be titled “Cornerstone Modeling and Design” and must be taken prior to ISYE 4106.
16. ISYE 4803 must be titled “Additive Manufacturing” or “Advanced Manufacturing” or “Decision Analysis and Risk Modeling” or “Design and Analysis of Experiments” or “Facility Layout and Warehousing” or “Financial Data Analysis” or “Health Systems Engineering” or “Introduction to Machine Learning” or “Online Learn/Decision Making” or “Reliability Engineering” or “Supply Chain Project” or “Supply Chain Strategy” or “Systems Design for IEs.”
17. MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

• Co-ops are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
• Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
• International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.
• Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu).

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.
Bachelor of Science in Industrial Engineering - Economic and Financial Systems

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
- Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
- Quality and Statistics (http://catalog.gatech.edu/programs(industrial-engineering-quality-statistics-bs),
- Supply Chain Engineering (http://catalog.gatech.edu/programs(industrial-engineering-supply-chain-engineering-bs), and
- General Industrial Engineering (http://catalog.gatech.edu/programs(industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

- to become successful Industrial Engineers;
- to take leadership in their endeavors;
- to be self-learners and starters;
- to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>1</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>1</td>
</tr>
</tbody>
</table>

MATH 1553 | Introduction to Linear Algebra | 2 |

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>1</td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Environmental Requirement</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 300</td>
<td>Accounting for Decision Making</td>
<td></td>
</tr>
<tr>
<td>MATH 2603</td>
<td>Introduction to Discrete Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3030</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4031</td>
<td>Regression and Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4106</td>
<td>Senior Design</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering Electives

Select 6 credits of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 2220</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>AE 3450</td>
<td>Thermodynamics and Compressible Flow</td>
<td></td>
</tr>
<tr>
<td>BMED 2210</td>
<td>Conservation Principles in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>CHBE 2100</td>
<td>Chemical Process Principles</td>
<td></td>
</tr>
<tr>
<td>CHBE 2110</td>
<td>Chemical Engineering Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>CHBE 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>CHBE 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td></td>
</tr>
<tr>
<td>CEE 2040</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>CEE 2300</td>
<td>Environmental Engineering Principles</td>
<td></td>
</tr>
<tr>
<td>CEE 3010</td>
<td>Geomatics</td>
<td></td>
</tr>
</tbody>
</table>

Select 6 credits of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 2220</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>AE 3450</td>
<td>Thermodynamics and Compressible Flow</td>
<td></td>
</tr>
<tr>
<td>BMED 2210</td>
<td>Conservation Principles in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>CHBE 2100</td>
<td>Chemical Process Principles</td>
<td></td>
</tr>
<tr>
<td>CHBE 2110</td>
<td>Chemical Engineering Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>CHBE 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>CHBE 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td></td>
</tr>
<tr>
<td>CEE 2040</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>CEE 2300</td>
<td>Environmental Engineering Principles</td>
<td></td>
</tr>
<tr>
<td>CEE 3010</td>
<td>Geomatics</td>
<td></td>
</tr>
</tbody>
</table>
Economic and Financial Systems Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 4301</td>
<td>Supply Chain Economics</td>
</tr>
<tr>
<td>ISYE 4311</td>
<td>Capital Investment Analysis</td>
</tr>
</tbody>
</table>

Dept Electives (select one of the following):
- ECON 3150 Economic and Financial Modeling
- ECON 4340 Economics of Industrial Competition
- ECON 4350 International Economics
- MGT 3078 Finance and Investments

Breadth Electives (select two of the following):
- ISYE 3039 Methods of Quality Improvement
- ISYE 3103 Introduction to Supply Chain Modeling: Logistics
- ISYE 3104 Introduction to Supply Chain Modeling: Manufacturing and Warehousing
- ISYE 4111 Advanced Supply Chain Logistics
- ISYE 4133 Advanced Optimization
- ISYE 4232 Advanced Stochastic Systems
- ISYE 4803 Special Topics

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 3039</td>
<td>Methods of Quality Improvement</td>
</tr>
<tr>
<td>ISYE 3103</td>
<td>Introduction to Supply Chain Modeling: Logistics</td>
</tr>
<tr>
<td>ISYE 3104</td>
<td>Introduction to Supply Chain Modeling: Manufacturing and Warehousing</td>
</tr>
<tr>
<td>ISYE 4111</td>
<td>Advanced Supply Chain Logistics</td>
</tr>
<tr>
<td>ISYE 4133</td>
<td>Advanced Optimization</td>
</tr>
<tr>
<td>ISYE 4232</td>
<td>Advanced Stochastic Systems</td>
</tr>
</tbody>
</table>

Total Credit Hours

- 128

Notes:
- Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.
- Students must achieve a minimum GPA of 2.0 in the BSIE Major Requirements to graduate.
- Students must earn a C or better in all required MATH courses in the BSIE curriculum.
- Students may also complete MATH 1554 and MATH 2550 to satisfy Math requirements. If MATH 1554/MATH 2550 combination is taken, then two hours from MATH 1554 may be used in Area F to give Area F 18 hours.
- Only one EAS course can be used toward ISYE Lab Science requirements.
- PSYC 1101 will satisfy the Ethics requirement.
- Students should choose from the following for Environmental Requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis”, ISYE 4501, SLS 3120, or PHYS 2750
- Students must complete courses from two different eligible engineering elective subjects.
Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.

Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.

To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Chair.

Students must complete 6 concentration courses: 3 depth courses and 3 breadth courses. A minimum of 5 of the 6 required concentration courses must be ISyE courses.

These 3 courses must be from at least 2 of the following groups:
- Supply Chain Engineering (ISYE 3103 or ISYE 3104 or ISYE 4111 or ISYE 4803 titled "Advanced Manufacturing," or ISYE 4803 titled "Facility Layout and Warehousing") or
- Quality and Statistics (ISYE 3039 or ISYE 4031 or ISYE 4034 or ISYE 4803 titled "Business Analytics" or CS 4641 or CX 4010 or CS 4210 or CX 4240 or CX 4242 or MATH 4262) or
- Operations Research (ISYE 4133 or ISYE 4232 or ISYE 4803 titled "Advanced Simulation")

ISYE 4803 must be titled "Advanced Manufacturing" or "Advanced Simulation" or "Facility Layout and Warehousing" or "Supply Chain Project" or "Business Analytics" or "Linear and Convex Optimization" or "Energy and Environmental Analysis".

MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX(AP credit) not allowed.

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech's co-op Website (http://www.coop.gatech.edu).

- Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
- Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
- International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.
- Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designer.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu).

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in Industrial Engineering - General

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
- Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
- Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
- Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
- General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.
Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

- to become successful Industrial Engineers;
- to take leadership in their endeavors;
- to be self-learners and starters;
- to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Ethics Requirement (p. 101)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Environmental Requirement</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 300</td>
<td>Accounting for Decision Making</td>
<td></td>
</tr>
<tr>
<td>MATH 2603</td>
<td>Introduction to Discrete Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3030</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4106</td>
<td>Senior Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Engineering Electives</td>
<td></td>
</tr>
<tr>
<td>ECE 2020</td>
<td>Digital System Design</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2026</td>
<td>Introduction to Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics & ECE 3741</td>
<td></td>
</tr>
<tr>
<td>BMED 2210</td>
<td>Conservation Principles in Biomedical</td>
<td></td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>CHBE 2100</td>
<td>Chemical Process Principles</td>
<td></td>
</tr>
<tr>
<td>CHBE 2110</td>
<td>Chemical Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>CHBE 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>CHBE 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td></td>
</tr>
<tr>
<td>CEE 2040</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>CEE 2300</td>
<td>Environmental Engineering Principles</td>
<td></td>
</tr>
<tr>
<td>CEE 3010</td>
<td>Geomatics</td>
<td></td>
</tr>
<tr>
<td>CEE 4100</td>
<td>Construction Engineering and Management</td>
<td></td>
</tr>
<tr>
<td>CEE 4300</td>
<td>Environmental Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>CEE 4600</td>
<td>Transportation Planning, Operations, and</td>
<td></td>
</tr>
<tr>
<td>ECON 2110</td>
<td>Computer Organization and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CX 4010</td>
<td>Computational Problem Solving for Scientists</td>
<td></td>
</tr>
<tr>
<td>CX 4240</td>
<td>Introduction to Computing for Data Analysis</td>
<td></td>
</tr>
<tr>
<td>CX 4242</td>
<td>Data and Visual Analytics</td>
<td></td>
</tr>
<tr>
<td>ECE 2020</td>
<td>Digital System Design</td>
<td></td>
</tr>
<tr>
<td>ECE 2026</td>
<td>Introduction to Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECE 2040</td>
<td>Circuit Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 3035</td>
<td>Mechanisms for Computing Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 3076</td>
<td>Computer Communications</td>
<td></td>
</tr>
<tr>
<td>ECE 3090</td>
<td>Software Fundamentals for Engineering</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td></td>
</tr>
<tr>
<td>ECE 4606</td>
<td>Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td></td>
</tr>
<tr>
<td>ME 3015</td>
<td>System Dynamics and Control</td>
<td></td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 3720</td>
<td>Introduction to Fluid and Thermal</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Engineeining</td>
<td></td>
</tr>
<tr>
<td>ME 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>ME 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>ECE 4606</td>
<td>Wireless Communications</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td></td>
</tr>
<tr>
<td>ME 3015</td>
<td>System Dynamics and Control</td>
<td></td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>ME 3720</td>
<td>Introduction to Fluid and Thermal</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Engineeining</td>
<td></td>
</tr>
<tr>
<td>ME 4763</td>
<td>Pulping and Chemical Recovery</td>
<td></td>
</tr>
<tr>
<td>ME 4764</td>
<td>Bleaching and Papermaking</td>
<td></td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MSE 3012</td>
<td>Thermal and Transport Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>MSE 3015</td>
<td>Electrical, Optical and Magnetic Properties</td>
<td></td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td></td>
</tr>
<tr>
<td>Group 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 4370</td>
<td>Life Cycle Cost Analysis</td>
<td></td>
</tr>
<tr>
<td>AE 4701</td>
<td>Wind Engineering</td>
<td></td>
</tr>
<tr>
<td>AE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>ARCH 6271</td>
<td>Healthcare Design of the Future</td>
<td></td>
</tr>
<tr>
<td>BIOS 2400</td>
<td>Math Models in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4740</td>
<td>Biologically-Inspired Design</td>
<td></td>
</tr>
<tr>
<td>BMED 2300</td>
<td>Problems in Biomedical Engineering II</td>
<td></td>
</tr>
<tr>
<td>BMED 3400</td>
<td>Introduction to Biomechanics</td>
<td></td>
</tr>
<tr>
<td>BMED 4751</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>CHBE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>COE 3002</td>
<td>Intro to Microelectronics and Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>CEE 4225</td>
<td>Introduction to Coastal Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4330</td>
<td>Air Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>CEE 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>CP 4310</td>
<td>Urban Transportation and Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>ECE 2031</td>
<td>Digital Design Laboratory</td>
<td></td>
</tr>
<tr>
<td>ECE 4755</td>
<td>Electronic Packaging Substrate Fabrication</td>
<td></td>
</tr>
<tr>
<td>ISYE 4740</td>
<td>Bio-Inspired Design</td>
<td></td>
</tr>
<tr>
<td>MATH 4755</td>
<td>Mathematical Biology</td>
<td></td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td></td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td></td>
</tr>
<tr>
<td>ME 4740</td>
<td>Biologically Inspired Design</td>
<td></td>
</tr>
<tr>
<td>ME 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
<tr>
<td>MSE 2021</td>
<td>Materials Characterization</td>
<td></td>
</tr>
<tr>
<td>MSE 3720</td>
<td>Introduction to Polymer/Fiber Enterprise</td>
<td></td>
</tr>
<tr>
<td>MSE 4751</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>MSE 4755</td>
<td>Electronic Packaging Substrate Fabrication</td>
<td></td>
</tr>
<tr>
<td>ME 4793</td>
<td>Composite Materials and Processes</td>
<td></td>
</tr>
</tbody>
</table>

General Concentration

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 4111</td>
<td>Advanced Supply Chain Logistics</td>
</tr>
<tr>
<td>ISYE 4133</td>
<td>Advanced Optimization</td>
</tr>
<tr>
<td>ISYE 4232</td>
<td>Advanced Stochastic Systems</td>
</tr>
<tr>
<td>ISYE 4311</td>
<td>Capital Investment Analysis</td>
</tr>
<tr>
<td>ISYE 4803</td>
<td>Special Topics</td>
</tr>
<tr>
<td>ISYE 3039</td>
<td>Methods of Quality Improvement</td>
</tr>
<tr>
<td>ISYE 3103</td>
<td>Introduction to Supply Chain Modeling: Logistics</td>
</tr>
<tr>
<td>ISYE 3104</td>
<td>Introduction to Supply Chain Modeling: Manufacturing and Warehousing</td>
</tr>
<tr>
<td>ISYE 4031</td>
<td>Regression and Forecasting</td>
</tr>
<tr>
<td>ISYE 4301</td>
<td>Supply Chain Economics</td>
</tr>
</tbody>
</table>

Free Electives 12

- Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.
- Students must achieve a minimum GPA of 2.0 in the BSIE Major Requirements to graduate.
 1. Students must earn a C or better in all required MATH courses in the BSIE curriculum.
 2. Students may also complete MATH 1554 and MATH 2550 to satisfy math requirements. If MATH 1554/MATH 2550 combination is taken, then two hours from MATH 1554 may be used in Area F to give Area F 18 hours.
 3. Only one EAS course can be used toward ISYE Lab Science requirements.
 4. PSYC 1101 will satisfy the Ethics requirement.
 5. Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.
 6. Students must complete courses from two different eligible engineering elective subjects.
 7. Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.
 8. Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.
 9. To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Chair.
 10. Students must complete 6 concentration courses. A minimum of 5 of the 6 required concentration courses must be ISYE courses.
 11. ISYE 4803 must be titled “Advanced Manufacturing” or “Linear and Convex Optimization” or “Advanced Simulation.”
 12. MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

- Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
- Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.

Notes

- Only one EAS course can be used toward ISYE Lab Science requirements.
- PSYC 1101 will satisfy the Ethics requirement.
- Students must choose from the following to meet the Environmental requirement: BIOS 1107 and BIOS 1107L, BIOS 2300, CEE 2300, CEE 4300, EAS 1600, EAS 1601, EAS 2600, EAS 2750, EAS 3110, EAS 4480, ECON 4440, ISYE 4803 titled “Energy and Environmental Analysis,” ISYE 4501, SLS 3120, or PHYS 2750.
- Students must complete courses from two different eligible engineering elective subjects.
- Only one computing course (CX or CS) may count toward engineering elective requirements, unless given approval from ISyE Associate Chair.
- Students must take at least 9 credits of engineering electives. Three credits must be chosen from ECE 2020, ECE 2026, or ECE 3710/ECE 3741. For the remaining 6 credits, at least 2 credits must be from Group 1.
- To count toward the Engineering Elective Group 2 requirement, all Vertically-Integrated Projects (VIP) courses must be approved by the ISyE Associate Chair.
- Students must complete 6 concentration courses. A minimum of 5 of the 6 required concentration courses must be ISYE courses.
- ISYE 4803 must be titled “Advanced Manufacturing” or “Linear and Convex Optimization” or “Advanced Simulation.”
- MATH 1113, MGT 2250, ISYE 3770, and PHYS 2XXX (AP credit) not allowed.
• International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.

• Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu).

International Plan
The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program
A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in Industrial Engineering - Operations Research
The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

• Advanced Studies in Operations Research and Statistics (p. 358),
• Analytics and Data Science (p. 352),
• Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
• Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
• Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
• Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
• General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives
The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

• to become successful Industrial Engineers;
• to take leadership in their endeavors;
• to be self-learners and starters;
• to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Ethics Requirement (p. 101)

Environmental Requirement

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 300</td>
<td>Accounting for Decision Making</td>
<td></td>
</tr>
<tr>
<td>MATH 2603</td>
<td>Introduction to Discrete Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3030</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3044</td>
<td>Simulation Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4031</td>
<td>Regression and Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4106</td>
<td>Senior Design</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering Electives

Select one of the following: 3

- ECE 2020 Digital System Design
- ECE 2026 Introduction to Signal Processing
- ECE 3710 Circuits and Electronics & ECE 3741 Instrumentation and Electronics Lab

Select 6 credits of the following: 7,8

- Group 1
 - AE 2220 Dynamics
 - AE 3450 Thermodynamics and Compressible Flow
 - BMED 2210 Conservation Principles in Biomedical Engineering
 - BMED 3100 Systems Physiology
 - CHBE 2100 Chemical Process Principles
 - CHBE 2110 Chemical Engineering Thermodynamics I
 - CHBE 4763 Pulping and Chemical Recovery
 - CHBE 4764 Bleaching and Papermaking
 - COE 2001 Statics
 - COE 3001 Mechanics of Deformable Bodies
 - CEE 2040 Dynamics
 - CEE 2300 Environmental Engineering Principles
 - CEE 3010 Geomechanics
 - CEE 4100 Construction Engineering and Management
 - CEE 4300 Environmental Engineering Systems
 - CEE 4600 Transportation Planning, Operations, and Design
 - CS 2110 Computer Organization and Programming
 - CS 4641 Machine Learning
 - CX 4010 Computational Problem Solving for Scientists and Engineers
 - CX 4240 Introduction to Computing for Data Analysis
 - CX 4242 Data and Visual Analytics
 - ECE 2020 Digital System Design
 - ECE 2026 Introduction to Signal Processing
 - ECE 2040 Circuit Analysis
 - ECE 3035 Mechanisms for Computing Systems
 - ECE 3076 Computer Communications
 - ECE 3090 Software Fundamentals for Engineering Systems

- Group 2
 - AE 4370 Life Cycle Cost Analysis
 - AE 4793 Composite Materials and Processes
 - ARCH 6271 Healthcare Design of the Future
 - BIOS 2400 Math Models in Biology
 - BIOS 4740 Biologically-Inspired Design
 - BMED 2300 Problems in Biomedical Engineering II
 - BMED 3400 Introduction to Biomechanics
 - BMED 4751 Introduction to Biomaterials
 - CHBE 4793 Composite Materials and Processes
 - COE 3002 Intro to Microelectronics and Nanotechnology Revolution
 - CEE 4225 Introduction to Coastal Engineering
 - CEE 4330 Air Pollution Engineering
 - CEE 4793 Composite Materials and Processes
 - CP 4310 Urban Transportation and Planning
 - CP 4510 Fundamentals of Geographic Information Systems
 - ECE 2031 Digital Design Laboratory
 - ECE 2040 Circuit Analysis
 - ECE 4755 Electronic Packaging Substrate Fabrication
 - ME 2110 Creative Decisions and Design
 - ME 3057 Experimental Methodology and Technical Writing
 - ME 4740 Biologically Inspired Design
 - ME 4793 Composite Materials and Processes
 - MSE 2021 Materials Characterization
 - MSE 3720 Introduction to Polymer/Fiber Enterprise
 - MSE 4751 Introduction to Biomaterials
 - MSE 4755 Electronic Packaging Substrate Fabrication
 - MSE 4793 Composite Materials and Processing

- Operations Research Concentration
 - ISYE 4803 Special Topics
 - or ISYE 4133 Advanced Optimization

Operations Research Concentration

- ISYE 4803 Special Topics
- ISYE 4232 Advanced Stochastic Systems
- Breadth Electives (select three of the following): 13
 - CS 4641 Machine Learning
ECON 3150 Economic and Financial Modeling
ECON 4340 Economics of Industrial Competition
ECON 4350 International Economics
ISYE 3039 Methods of Quality Improvement
ISYE 3103 Introduction to Supply Chain Modeling: Logistics
ISYE 3104 Introduction to Supply Chain Modeling: Manufacturing and Warehousing
ISYE 4111 Advanced Supply Chain Logistics
ISYE 4301 Supply Chain Economics
ISYE 4311 Capital Investment Analysis
ISYE 4803 Special Topics
MATH 4262 Mathematical Statistics I
MGT 3078 Finance and Investments

Free Electives

- ISYE 4803 must be titled "Advanced Manufacturing" or "Facility Layout and Warehousing"
- ISYE 4803 must be titled "Business Analytics" or "Energy and Environmental Analysis."

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

- Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
- Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
- International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.
- Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in Industrial Engineering - Supply Chain Engineering

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
- Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
- Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
- Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
- General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

- to become successful Industrial Engineers;
- to take leadership in their endeavors;
- to be self-learners and starters;
- to succeed in professional and educational advancement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
</tbody>
</table>
Bachelor of Science in Industrial Engineering - Supply Chain Engineering

AE 2220 Dynamics
AE 3450 Thermodynamics and Compressible Flow
BMED 2210 Conservation Principles in Biomedical Engineering
BMED 3100 Systems Physiology
CHBE 2100 Chemical Process Principles
CHBE 2110 Chemical Engineering Thermodynamics I
CHBE 4763 Pulping and Chemical Recovery
CHBE 4764 Bleaching and Papermaking
COE 2001 Statics
COE 3001 Mechanics of Deformable Bodies
CEE 2040 Dynamics
CEE 2300 Environmental Engineering Principles
CEE 3010 Geomatics
CEE 4100 Construction Engineering and Management
CEE 4300 Environmental Engineering Systems
CEE 4600 Transportation Planning, Operations, and Design
CS 2110 Computer Organization and Programming
CS 4641 Machine Learning
CX 4010 Computational Problem Solving for Scientists and Engineers
CX 4240 Introduction to Computing for Data Analysis
ECE 2020 Digital System Design
ECE 2026 Introduction to Signal Processing
ECE 2040 Circuit Analysis
ECE 3076 Computer Communications
ECE 3090 Software Fundamentals for Engineering Systems
ECE 3710 Circuits and Electronics
ECE 3741 Instrumentation and Electronics Lab
ECE 4606 Wireless Communications
ME 2202 Dynamics of Rigid Bodies
ME 3015 System Dynamics and Control
ME 3322 Thermodynamics
ME 3720 Introduction to Fluid and Thermal Engineering
ME 4763 Pulping and Chemical Recovery
ME 4764 Bleaching and Papermaking
MSE 2001 Principles and Applications of Engineering Materials
MSE 3012 Thermal and Transport Properties of Materials
MSE 3015 Electrical, Optical and Magnetic Properties
NRE 3301 Radiation Physics
Group 2: 9
AE 4370 Life Cycle Cost Analysis
AE 4701 Wind Engineering
AE 4793 Composite Materials and Processes
ARCH 6271 Healthcare Design of the Future
BIOS 2400 Math Models in Biology
BIOS 4740 Biologically-Inspired Design
BMED 2300 Problems in Biomedical Engineering II
BMED 3400 Introduction to Biomechanics
BMED 4751 Introduction to Biomaterials
CHBE 4793 Composite Materials and Processes
COE 3002 Intro to Microelectronics and Nanotechnology
CEE 4225 Introduction to Coastal Engineering
CEE 4330 Air Pollution Engineering
CEE 4793 Composite Materials and Processes
CP 4310 Urban Transportation and Planning
CP 4510 Fundamentals of Geographic Information Systems
ECE 2031 Digital Design Laboratory
ECE 4755 Electronic Packaging Substrate Fabrication
ISYE 4740 Bio-Inspired Design
MATH 4755 Mathematical Biology
ME 2110 Creative Decisions and Design
ME 3057 Experimental Methodology and Technical Writing
ME 4740 Biologically Inspired Design
ME 4793 Composite Materials and Processes
MSE 2021 Materials Characterization
MSE 3720 Introduction to Polymer/Fiber Enterprise
MSE 4751 Introduction to Biomaterials
MSE 4755 Electronic Packaging Substrate Fabrication
MSE 4793 Composite Materials and Processing
Supply Chain Engineering Concentration 10
ISYE 3103 Introduction to Supply Chain Modeling: Logistics 3
ISYE 3104 Introduction to Supply Chain Modeling: Manufacturing and Warehousing 3
ISYE 4803 Special Topics 11 or ISYE 411 Advanced Supply Chain Logistics 3
Breadth Electives (select two of the following): 12 6
CS 4641 Machine Learning
ECON 3150 Economic and Financial Modeling
ECON 4340 Economics of Industrial Competition
ECON 4350 International Economics
ISYE 3039 Methods of Quality Improvement
ISYE 4133 Advanced Optimization
ISYE 4232 Advanced Stochastic Systems
ISYE 4301 Supply Chain Economics
ISYE 4311 Capital Investment Analysis
ISYE 4803 Special Topics 13
MATH 4262 Mathematical Statistics I
MGT 3078 Finance and Investments
Free Electives 14
Free Electives 11
Total Credit Hours 128

Pass-fail only allowed for Free Electives, Humanities, and the Social Sciences elective.

Students must achieve a minimum GPA of 2.0 in the BSIE Major Requirements to graduate.
Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

- Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
- Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
- International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.
- Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu).

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in Industrial Engineering

The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BS IE) is its blend of mathematics, physical sciences and business applications. The methodology foundation is built on probability, optimization, statistics, computing, and economics. The program features a unique concentration system that allows students to get a broad industrial engineering education and to specialize in areas such as

- Advanced Studies in Operations Research and Statistics (p. 358),
- Analytics and Data Science (p. 352),
- Economic and Financial Systems (http://catalog.gatech.edu/programs/industrial-engineering-economic-financial-systems-bs),
• Operations Research (http://catalog.gatech.edu/programs/industrial-engineering-operations-research-bs),
• Quality and Statistics (http://catalog.gatech.edu/programs/industrial-engineering-quality-statistics-bs),
• Supply Chain Engineering (http://catalog.gatech.edu/programs/industrial-engineering-supply-chain-engineering-bs), and
• General Industrial Engineering (http://catalog.gatech.edu/programs/industrial-engineering-general-bs).

This blend produces the flexibility that is inherent in the field of industrial and systems engineering, and that affords BSIE graduates a wide array of career options. Our graduates are constantly looking for ways to make anything in life work better, more efficiently and more productively.

Program Educational Objectives

The Stewart School of Industrial & Systems Engineering expects our graduates (in 3 to 6 years):

• to become successful Industrial Engineers;
• to take leadership in their endeavors;
• to be self-learners and starters;
• to succeed in professional and educational advancement.

• Bachelor of Science in Industrial Engineering - Advanced Studies in Operations Research and Statistics (p. 358)
• Bachelor of Science in Industrial Engineering - Analytics and Data Science (p. 352)
• Bachelor of Science in Industrial Engineering - General (p. 363)
• Bachelor of Science in Industrial Engineering - Economic and Financial Systems (p. 361)
• Bachelor of Science in Industrial Engineering - Operations Research (p. 366)
• Bachelor of Science in Industrial Engineering - Quality and Statistics (p. 355)
• Bachelor of Science in Industrial Engineering - Supply Chain Engineering (p. 369)

Cooperative Plan

The Co-op Program enhances the student’s education, employability and earnings potential. For more details, visit co-op pages from Georgia Tech’s co-op Website (http://www.coop.gatech.edu).

• Co-op courses are designated in the schedule of classes as co-op. All students interested in registering for this course(s) must have been accepted into the co-op Program. Students must have met with their co-op advisor to be issued a permit to register for restricted course(s). Students must register for the co-op course every semester they are at work in order to receive credit for the work term.
• Students who are in the Co-op Program (U.S. citizens and Permanent Residents) and are returning to work should automatically receive a permit but are advised to remain in close contact with their co-op advisor.
• International students must receive work authorization from the Office of International Education prior to each work term before a course registration permit will be issued.

• Neither co-op nor internship courses count for credit towards the industrial engineering degree; however, successful completion of the Co-op Program leads to a degree designator.

For more information about all of the programs in the Center for Career Discovery and Development, visit Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu).

International Plan

The Georgia Tech International Plan is designed to prepare graduates to develop significant global competence. Many Industrial Engineers work in consulting companies, supply chain, economic decision systems, etc. Global perspectives are very important. The significant global competence will give them an additional advantage on the job market and on the jobs.

The major components of International Plan include

1. Twenty six weeks of international experience (work, research or study)
2. Foreign language requirements. This can be satisfied by oral proficiency measured tested by an exam by the American Council for the Teaching of Foreign Languages (ACTFL). The foreign language requirement can also be satisfied by course work. It means the passing of two 2XXX level language classes.
3. Three internationally oriented courses plus an addendum in the capstone design on international perspective.

For more details of the International Plan, including application materials, visit the Office of International Education (http://www.internationalplan.gatech.edu). Please also see The International Plan Option in ISyE (http://www.isye.gatech.edu/academics/undergraduate/international/isyeintplan.pdf).

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Bachelor of Science in International Affairs and Modern Language - Chinese

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 15: Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td></td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
<td></td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
<td></td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
<td></td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
<td></td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td></td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
<td></td>
</tr>
<tr>
<td>HTS 3028</td>
<td>Ancient Greece: Gods, Heroes, and RuinS</td>
<td></td>
</tr>
<tr>
<td>HTS 3029</td>
<td>Ancient Rome: From Greatness to Ruins</td>
<td></td>
</tr>
<tr>
<td>HTS 3030</td>
<td>Medieval Europe: 350 to 1400</td>
<td></td>
</tr>
<tr>
<td>HTS 3031</td>
<td>European Labor History</td>
<td></td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td></td>
</tr>
<tr>
<td>HTS 3033</td>
<td>Medieval England</td>
<td></td>
</tr>
<tr>
<td>HTS 3035</td>
<td>Britain from 1815-1914</td>
<td></td>
</tr>
<tr>
<td>HTS 3036</td>
<td>Britain Since 1914</td>
<td></td>
</tr>
<tr>
<td>HTS 3038</td>
<td>The French Revolution</td>
<td></td>
</tr>
<tr>
<td>HTS 3039</td>
<td>Modern France</td>
<td></td>
</tr>
<tr>
<td>HTS 3041</td>
<td>Modern Spain</td>
<td></td>
</tr>
<tr>
<td>HTS 3043</td>
<td>Modern Germany</td>
<td></td>
</tr>
<tr>
<td>HTS 3045</td>
<td>Nazi Germany and the Holocaust</td>
<td></td>
</tr>
<tr>
<td>HTS 3046</td>
<td>Science, Politics, and Culture in Nazi Germany</td>
<td></td>
</tr>
<tr>
<td>HTS 3051</td>
<td>Women and the Politics of Gender in the Middle East</td>
<td></td>
</tr>
<tr>
<td>HTS 3061</td>
<td>Modern China</td>
<td></td>
</tr>
<tr>
<td>HTS 3062</td>
<td>Modern Japan</td>
<td></td>
</tr>
<tr>
<td>HTS 3063</td>
<td>Outposts of Empire: Comparative History of British</td>
<td></td>
</tr>
<tr>
<td>HTS 3065</td>
<td>History of Global Societies</td>
<td></td>
</tr>
<tr>
<td>HTS 3067</td>
<td>Revolutionary Movements in the Modern World</td>
<td></td>
</tr>
<tr>
<td>HTS 3069</td>
<td>Modern Cuba</td>
<td></td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>2</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 2010</td>
<td>Empirical Methods</td>
<td>2</td>
</tr>
<tr>
<td>INTA 2040</td>
<td>Science, Technology, and International Affairs</td>
<td>2</td>
</tr>
<tr>
<td>INTA 1000-</td>
<td>or 2000-level Electives</td>
<td>9</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BMED 2400</td>
<td>Introduction to Bioengineering Statistics</td>
<td></td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>CS 1316</td>
<td>Representing Structure and Behavior</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td></td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td></td>
</tr>
<tr>
<td>EAS 3110</td>
<td>Energy, Environment, and Society</td>
<td></td>
</tr>
<tr>
<td>EAS 4480</td>
<td>Environmental Data Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 2020</td>
<td>Digital System Design</td>
<td></td>
</tr>
<tr>
<td>ID 3103</td>
<td>Industrial Design Computing I</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td></td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td></td>
</tr>
<tr>
<td>MGT 2200</td>
<td>Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>MGT 4051</td>
<td>Decision Support and Expert Systems</td>
<td></td>
</tr>
<tr>
<td>MGT 4052</td>
<td>Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 2001</td>
<td>Careers in International Affairs</td>
<td>1</td>
</tr>
<tr>
<td>INTA 3110</td>
<td>U.S. Foreign Policy</td>
<td>2</td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>2</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>2</td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td>2</td>
</tr>
<tr>
<td>INTA 3000-</td>
<td>or 4000-level Electives</td>
<td>12</td>
</tr>
<tr>
<td>Capstone Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in International
Affairs and Modern Language, all IAML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can be met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 credit hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Students must complete 39 hours of upper division (3000/4000-level courses). Fifteen hours of the free electives, language, or technology requirements must be upper division (3000/4000-level coursework).

1. Students must complete 21 credit hours of CHIN electives from 2002, 3000- or 4000-level courses. Six credit hours are counted in Humanities, and 15 in Modern Languages Electives.
2. Minimum grade of C required.
3. CHIN courses below 2002 may count toward the free elective courses.
4. Technical elective.
5. Approved instances of CS 2803 may be applied here by advisor.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>CHIN/FREN/</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>GRMN/JAPN/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOR/RUSS/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAN 4500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. INTA 1110 focuses on international relations historically and theoretically, including topics such as the role of state sovereignty and nationalism and non-state actors in the international system; international conflict, peace, security, intervention, and nation-building; international organizations, law, and ethics; and transnational problems of the environment, terrorism, health, and migration; among other issues.
2. INTA 3301 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.
3. INTA 3203 or approved INTA elective or upper-division Modern Language courses provide familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture.
4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor’s degree.
Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml)/International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language - French

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1712 Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Integral Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 1315 Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modern Languages</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1711 Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Differential Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& MATH 15: And Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 2100 Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 2101 The Global Economy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 2105 Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 2106 Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- HTS 1031 Europe Since the Renaissance
- HTS 2036 Revolutionary Europe: 1789-1914
- HTS 2037 Twentieth Century Europe: 1914 to Present
- HTS 2040 History of Islamic Societies
- HTS 2041 History of the Modern Middle East
- HTS 2061 Traditional Asia and Its Legacy
- HTS 2062 Asia in the Modern World
- HTS 3028 Ancient Greece: Gods, Heroes, and Ruins
- HTS 3029 Ancient Rome: From Greatness to Ruins
- HTS 3030 Medieval Europe: 350 to 1400
- HTS 3031 European Labor History
- HTS 3032 Modern European Intellectual History
- HTS 3033 Medieval England
- HTS 3035 Britain from 1815-1914
- HTS 3036 Britain Since 1914
- HTS 3038 The French Revolution
- HTS 3039 Modern France
- HTS 3041 Modern Spain
- HTS 3043 Modern Germany
- HTS 3045 Nazi Germany and the Holocaust
- HTS 3046 Science, Politics, and Culture in Nazi Germany
- HTS 3051 Women and the Politics of Gender in the Middle East
- HTS 3061 Modern China
- HTS 3062 Modern Japan
- HTS 3063 Outposts of Empire: Comparative History of British
- HTS 3065 History of Global Societies
- HTS 3067 Revolutionary Movements in the Modern World
- HTS 3069 Modern Cuba
- INTA 1110 Introduction to International Relations ² ³

Select one of the following: ⁴ ⁵

- BMED 2400 Introduction to Bioengineering Statistics
- CP 4510 Fundamentals of Geographic Information Systems
- CS 1301 Introduction to Computing
- CS 1315 Introduction to Media Computation
- CS 1316 Representing Structure and Behavior
- CS 1331 Introduction to Object Oriented Programming
- CS 2316 Data Manipulation for Science and Industry
- EAS 3110 Energy, Environment, and Society
- EAS 4480 Environmental Data Analysis
- ECE 2020 Digital System Design
- ID 3103 Industrial Design Computing I
- LMC 3402 Graphic and Visual Design
- LMC 3410 The Rhetoric of Nonlinear Documents
- ME 2016 Computer Applications
- MGT 2200
are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages. In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations 1</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy 2</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs 4</td>
<td>3</td>
</tr>
<tr>
<td>CHIN/FREN/GRMN/JAPN/KOR/RUSS/SPAN 4500</td>
<td>Advanced Intercultural Seminar 4</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. INTA 1110 focuses on international relations historically and theoretically, including topics such as the role of state sovereignty and nationalism and non-state actors in the international system; international conflict, peace, security, intervention, and nation-building; international organizations, law, and ethics; and transnational problems of the environment, terrorism, health, and migration; among other issues.

2. INTA 3301 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. INTA 3203 or approved INTA elective or upper-division Modern Language courses provide familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture.
A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor's degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml)/International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language - German

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus & MATH 15</td>
<td></td>
</tr>
<tr>
<td>& Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative</td>
<td></td>
</tr>
<tr>
<td>or HIST 2112</td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td></td>
</tr>
<tr>
<td>or INTA 2010</td>
<td>Empirical Methods</td>
<td></td>
</tr>
<tr>
<td>or INTA 2040</td>
<td>Science, Technology, and International Affairs</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in International Affairs and Modern Language - German

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1000- or 2000-level Electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED 2400 Introduction to Bioengineering Statistics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CP 4510 Fundamentals of Geographic Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301 Introduction to Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1315 Introduction to Media Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1316 Representing Structure and Behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1331 Introduction to Object Oriented Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 2316 Data Manipulation for Science and Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 3103 Industrial Design Computing I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 3110 Energy, Environment, and Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 4480 Environmental Data Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 2020 Digital System Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3402 Graphic and Visual Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 3410 The Rhetoric of Nonlinear Documents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 2016 Computer Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 2200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 4051 Decision Support and Expert Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 4052 Systems Analysis and Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2001</td>
<td>Careers in International Affairs</td>
<td>1</td>
</tr>
<tr>
<td>INTA 3110</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3000- or 4000-level Electives</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Modern Language

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRMN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours

122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in International Affairs and Modern Language, all IAML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can be met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student's language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 credit hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Students must complete 39 hours of upper division coursework (3000-4000-level courses). Fifteen hours of free electives, language, or technology requirements must be upper division (3000-4000-level courses).

Students must complete 21 credit hours of GRMN electives from 3000- or 4000-level courses. Six credit hours are counted in Humanities, and 15 in Modern Languages Electives.

Minimum grade of C required.

GRMN courses below 3000-level may count toward the free elective courses.

Technical elective.

Approved instances of CS 2803 may be applied here by advisor.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor's research experience will benefit the student's research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>1</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>2</td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in International Affairs and Modern Language - Japanese

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Pro-Seminar in International Affairs</td>
<td>4</td>
</tr>
<tr>
<td>CHIN/FREN/ GRMN/JAPN/ KOR/ RUSS/ SPAN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1. INTA 1110 focuses on international relations historically and theoretically, including topics such as the role of state sovereignty and nationalism and non-state actors in the international system; international conflict, peace, security, intervention, and nation-building; international organizations, law, and ethics; and transnational problems of the environment, terrorism, health, and migration; among other issues.

2. INTA 3301 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. INTA 3203 or approved INTA elective or upper-division Modern Language courses provide familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)

Bachelor of Science in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor's degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees) and International Affairs (https://inta.gatech.edu) for more information.
JAPN 4500 Advanced Intercultural Seminar 3 3
Modern Languages 2,3 9
Free Electives 11
Free Electives 7
Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in Global Economics and Modern Languages, all GEML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Any 1000- or 2000-level course with the following prefixes: AE, APPH, BIOL, BMED, CEE, CHBE, CHEM, EAS, ECE, ISYE, MATH, ME, MSE, NRE, PHYS.

2. Students must complete 21 credit hours of Japanese electives at 2002 level or above. Six credit hours are counted in Humanities, six in Core Area F, and 9 in Modern Languages Requirements.

3. Minimum grade of C required.

4. ECON and JAPN courses not allowed for cluster electives.

5. One course from MATH 3215, ISYE 3770 or (MGT 2250 - minimum B)

6. Six credit hours of Econ Electives must be chosen from one of the following Specialization areas:
 - Industrial Organization: ECON 4340 or ECON 4180 or ECON 4360 or ECON 4610 or ECON 4619 or Environmental Economics: ECON 3300 or ECON 4421 or ECON 4440

7. JAPN courses below 2002 may count toward the free elective courses.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations 1</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy 2</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs 4</td>
<td>3</td>
</tr>
<tr>
<td>CHIN/FREN/GRMN/JAPN/KOR/RUSS/SPAN 4500</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. INTA 1110 focuses on international relations historically and theoretically, including topics such as the role of state sovereignty and nationalism and non-state actors in the international system; international conflict, peace, security, intervention, and nation-building; international organizations, law, and ethics; and transnational problems of the environment, terrorism, health, and migration, among other issues.

2. INTA 3301 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. INTA 3203 or approved INTA elective or upper-division Modern Language courses provide familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)
BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor's degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml)/International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language - Korean

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Languages</td>
<td>Modern Languages</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Differential Calculus & MATH 15: and Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
<td></td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
<td></td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
<td></td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
<td></td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
<td></td>
</tr>
<tr>
<td>HTS 3028</td>
<td>Ancient Greece: Gods, Heroes, and Ruins S</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3029</td>
<td>Ancient Rome: From Greatness to Ruins</td>
<td></td>
</tr>
<tr>
<td>HTS 3030</td>
<td>Medieval Europe: 350 to 1400</td>
<td></td>
</tr>
<tr>
<td>HTS 3031</td>
<td>European Labor History</td>
<td></td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
<td></td>
</tr>
<tr>
<td>HTS 3033</td>
<td>Medieval England</td>
<td></td>
</tr>
<tr>
<td>HTS 3035</td>
<td>Britain from 1815-1914</td>
<td></td>
</tr>
<tr>
<td>HTS 3036</td>
<td>Britain Since 1914</td>
<td></td>
</tr>
<tr>
<td>HTS 3038</td>
<td>The French Revolution</td>
<td></td>
</tr>
<tr>
<td>HTS 3039</td>
<td>Modern France</td>
<td></td>
</tr>
<tr>
<td>HTS 3041</td>
<td>Modern Spain</td>
<td></td>
</tr>
<tr>
<td>HTS 3043</td>
<td>Modern Germany</td>
<td></td>
</tr>
<tr>
<td>HTS 3045</td>
<td>Nazi Germany and the Holocaust</td>
<td></td>
</tr>
<tr>
<td>HTS 3046</td>
<td>Science, Politics, and Culture in Nazi Germany</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3051</td>
<td>Women and the Politics of Gender in the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3061</td>
<td>Modern China</td>
<td></td>
</tr>
<tr>
<td>HTS 3062</td>
<td>Modern Japan</td>
<td></td>
</tr>
<tr>
<td>HTS 3063</td>
<td>Outposts of Empire: Comparative History of British</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3065</td>
<td>History of Global Societies</td>
<td></td>
</tr>
<tr>
<td>HTS 3067</td>
<td>Revolutionary Movements in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3069</td>
<td>Modern Cuba</td>
<td></td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>2</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2010</td>
<td>Empirical Methods</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2040</td>
<td>Science, Technology, and International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1000- or 2000-level Electives</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

Select one of the following: 4, 5

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 2400</td>
<td>Introduction to Bioengineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in International Affairs and Modern Language - Korean

Major Requirements

INTA 2001 Careers in International Affairs 1
INTA 3110 U.S. Foreign Policy 2 3
INTA 3203 Comparative Politics 2 3
INTA 3301 International Political Economy 2 3
INTA 4500 Pro-Seminar in International Affairs 2 3
INTA 3000- or 4000-level Electives 2 12

Capstone Requirement
KOR 4500 Intercultural Seminar 3

Modern Language
Modern Languages 1,2 15

Free Electives
Free Electives 3 16

Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in International Affairs and Modern Language, all IAML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can be met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 credit hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Students must complete 39 hours of upper division (3000/4000-level courses). Fifteen hours of the free electives, language, or technology requirements must be upper division (3000/4000-level coursework).

1 Students must complete 21 credit hours of KOR electives from 2002, 3000- or 4000-level courses. Six credit hours are counted in Humanities, and 15 in Modern Languages Electives.

2 Minimum grade of C required.

3 KOR courses below 2002 may count toward the free elective courses.

4 Technical elective.

5 Approved instances of CS 2803 may be applied here by advisor.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations 1</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy 2</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs 4</td>
<td>3</td>
</tr>
</tbody>
</table>
Degree Information (http://www.modlangs.gatech.edu/degrees)

BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor's degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml)/International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language - Russian

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 1040 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 151 and Introduction to Linear Algebra</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Advanced Intercultural Seminar</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 2112 The United States since 1877</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or INTA 1200 American Government in Comparative Perspective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or POL 1101 Government of the United States</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 2105 Principles of Macroeconomics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or ECON 2106 Principles of Microeconomics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
<td>3</td>
</tr>
<tr>
<td>or HTS 2036 Revolutionary Europe: 1789-1914</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 2037 Twentieth Century Europe: 1914 to Present</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 2040 History of Islamic Societies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 2041 History of the Modern Middle East</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 2061 Traditional Asia and Its Legacy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 2062 Asia in the Modern World</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3028 Ancient Greece: Gods, Heroes, and Ruins</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3029 Ancient Rome: From Greatness to Ruins</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3030 Medieval Europe: 350 to 1400</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3031 European Labor History</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3032 Modern European Intellectual History</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3033 Medieval England</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3035 Britain from 1815-1914</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or HTS 3036 Britain Since 1914</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
HTS 3038 The French Revolution
HTS 3039 Modern France
HTS 3041 Modern Spain
HTS 3043 Modern Germany
HTS 3045 Nazi Germany and the Holocaust
HTS 3046 Science, Politics, and Culture in Nazi Germany
HTS 3051 Women and the Politics of Gender in the Middle East
HTS 3061 Modern China
HTS 3062 Modern Japan
HTS 3063 Outposts of Empire: Comparative History of British
HTS 3065 History of Global Societies
HTS 3067 Revolutionary Movements in the Modern World
HTS 3069 Modern Cuba
INTA 1110 Introduction to International Relations ² 3

Core F - Courses Related to Major
INTA 2010 Empirical Methods ² 3
INTA 2040 Science, Technology, and International Affairs ² 3
INTA 1000- or 2000-level Electives ² 9
Select one of the following: 4,5 3
- BMED 2400 Introduction to Bioengineering Statistics
- CP 4510 Fundamentals of Geographic Information Systems
- CS 1301 Introduction to Computing
- CS 1315 Introduction to Media Computation
- CS 1316 Representing Structure and Behavior
- CS 1331 Introduction to Object Oriented Programming
- CS 2316 Data Manipulation for Science and Industry
- EAS 3110 Energy, Environment, and Society
- EAS 4480 Environmental Data Analysis
- ECE 2020 Digital System Design
- ID 3103 Industrial Design Computing I
- LMC 3402 Graphic and Visual Design
- LMC 3410 The Rhetoric of Nonlinear Documents
- ME 2016 Computer Applications
- MGT 2200
- MGT 4051 Decision Support and Expert Systems
- MGT 4052 Systems Analysis and Design

Major Requirements
INTA 2001 Careers in International Affairs 1
INTA 3110 U.S. Foreign Policy ² 3
INTA 3203 Comparative Politics ² 3
INTA 3301 International Political Economy ² 3
INTA 4500 Pro-Seminar in International Affairs ² 3
INTA 3000- or 4000-level Electives ² 12

Modern Language
RUSS 4500 Russian Intercultural Capstone Seminar ² 3
Modern Languages 1,2 15

Free Electives
Free Electives ³ 16

Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in International Affairs and Modern Languages, all IAML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can be met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student’s language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 credit hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Students must complete 39 hours of upper division coursework (3000/4000-level courses). Fifteen hours of free electives, language, or technology requirements must be upper division (3000/4000-level courses).

1. Students must complete 21 credit hours of RUSS electives from 2002, 3000- or 4000-level courses. Six credit hours are counted in Humanities, and 15 in Modern Languages Electives.
2. Minimum grade of C required.
3. RUSS courses below 2002 may count toward the free elective courses.
4. Technical elective.
5. Approved instances of CS 2803 may be applied here by advisor.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in
the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants with recruiters from top companies and governmental agencies. Other required courses include the following, which can easily be obtained within the regular required curriculum offerings of INTA and Modern Languages (these requirements can also be met with courses taken abroad, upon consultation with IAML degree advisors):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>CHIN/FREN/ GRMN/JAPN/ KOR/ RUSS/ SPAN 4500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. INTA 1110 focuses on international relations historically and theoretically, including topics such as the role of state sovereignty and nationalism and non-state actors in the international system; international conflict, peace, security, intervention, and nation-building; international organizations, law, and ethics; and transnational problems of the environment, terrorism, health, and migration; among other issues.

2. INTA 3301 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration (such as the EU); economic development and modernization; and questions of natural resource sustainability.

3. INTA 3203 or approved INTA elective or upper-division Modern Language courses provide familiarity with an area of the world or a country that allows them to make systematic comparisons with their own society and culture.

4. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor’s degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml/) or International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language - Spanish

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 15</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science in International Affairs and Modern Language - Spanish

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>HTS 1031</td>
<td>Europe Since the Renaissance</td>
</tr>
<tr>
<td>HTS 2036</td>
<td>Revolutionary Europe: 1789-1914</td>
</tr>
<tr>
<td>HTS 2037</td>
<td>Twentieth Century Europe: 1914 to Present</td>
</tr>
<tr>
<td>HTS 2040</td>
<td>History of Islamic Societies</td>
</tr>
<tr>
<td>HTS 2041</td>
<td>History of the Modern Middle East</td>
</tr>
<tr>
<td>HTS 2061</td>
<td>Traditional Asia and Its Legacy</td>
</tr>
<tr>
<td>HTS 2062</td>
<td>Asia in the Modern World</td>
</tr>
<tr>
<td>HTS 3028</td>
<td>Ancient Greece: Gods, Heroes, and Ruins</td>
</tr>
<tr>
<td>HTS 3029</td>
<td>Ancient Rome: From Greatness to Ruins</td>
</tr>
<tr>
<td>HTS 3030</td>
<td>Medieval Europe: 350 to 1400</td>
</tr>
<tr>
<td>HTS 3031</td>
<td>European Labor History</td>
</tr>
<tr>
<td>HTS 3032</td>
<td>Modern European Intellectual History</td>
</tr>
<tr>
<td>HTS 3033</td>
<td>Medieval England</td>
</tr>
<tr>
<td>HTS 3035</td>
<td>Britain from 1815-1914</td>
</tr>
<tr>
<td>HTS 3036</td>
<td>Britain Since 1914</td>
</tr>
<tr>
<td>HTS 3038</td>
<td>The French Revolution</td>
</tr>
<tr>
<td>HTS 3039</td>
<td>Modern France</td>
</tr>
<tr>
<td>HTS 3041</td>
<td>Modern Spain</td>
</tr>
<tr>
<td>HTS 3043</td>
<td>Modern Germany</td>
</tr>
<tr>
<td>HTS 3045</td>
<td>Nazi Germany and the Holocaust</td>
</tr>
<tr>
<td>HTS 3046</td>
<td>Science, Politics, and Culture in Nazi Germany</td>
</tr>
<tr>
<td>HTS 3051</td>
<td>Women and the Politics of Gender in the Middle East</td>
</tr>
<tr>
<td>HTS 3061</td>
<td>Modern China</td>
</tr>
<tr>
<td>HTS 3062</td>
<td>Modern Japan</td>
</tr>
<tr>
<td>HTS 3063</td>
<td>Outposts of Empire: Comparative History of British</td>
</tr>
<tr>
<td>HTS 3065</td>
<td>History of Global Societies</td>
</tr>
<tr>
<td>HTS 3067</td>
<td>Revolutionary Movements in the Modern World</td>
</tr>
<tr>
<td>HTS 3069</td>
<td>Modern Cuba</td>
</tr>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2010</td>
<td>Empirical Methods</td>
</tr>
<tr>
<td>INTA 2040</td>
<td>Science, Technology, and International Affairs</td>
</tr>
<tr>
<td>INTA 1000- or 2000-level Electives</td>
<td>9</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

- Modern Languages: 15
- Humanities: 6
- Modern Languages Electives: 15

Total Credit Hours 122

Note: Non-credit requirement

With the goal of enhanced educational and career prospects and in accordance with the pedagogical objectives of the degree in International Affairs and Modern Languages, all IAML students are required to fulfill an International Experience as part of their graduation requirements. This requirement can be met through one of two ways:

1. Complete a minimum 6-week overseas experience. If this is not a country whose primary language is in the student's language of study, the student must justify and receive prior approval.

2. Complete a 15-week internship or similar experience of at least 10 credit hours per week at an international organization such as consulate, CNN International, etc. The internship must be approved in advance.

Students must complete 39 hours of upper division coursework (3000/4000-level courses). Fifteen hours of free electives, language, or technology requirements must be upper division (3000/4000-level courses).

1. Students must complete 21 credit hours of SPAN electives from 3000- or 4000-level courses. Six credit hours are counted in Humanities, and 15 in Modern Languages Electives.

2. Minimum grade of C required.

3. SPAN courses below 3000-level may count toward the free elective courses.

4. Technical elective.

5. Approved instances of CS 2803 may be applied here by advisor.

Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal,
International Plan

The degree requirements for the International Affairs and Modern Language (Chinese, French, German, Japanese, Korean, Russian, and Spanish) - International Plan (IAML - IP) are basically the same as for the IAML degree, except that students are required to spend two terms abroad and then achieve Intermediate High (for Chinese, Japanese, Russian: Intermediate Low) on the standardized ACTFL testing scale during an oral interview. The costs of the test will be paid for by the School of Modern Languages for each student. The terms abroad must total a minimum of twenty-six weeks; typically these consist of one semester of study plus a significant amount of time spent with a research or work project abroad. Only one summer semester abroad will count in this total. IAML-IP majors are strongly encouraged to enroll in the Language for Business and Technology (LBAT) intensive summer programs offered by the School of Modern Languages.

In addition to gaining advanced global competence, the International Plan designation will set IAML majors apart from other applicants. A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

Degree Information (http://www.modlangs.gatech.edu/degrees)

BS in International Affairs and Modern Languages/MS in International Affairs

Students with a GPA of 3.5 or higher in IAC courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Depending on demand, the required minimum GPA may be higher. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in IAC courses. The program will not penalize students who opt out after the bachelor’s degree.

Visit International Affairs and Modern Languages (https://modlangs.gatech.edu/degrees/iaml)/International Affairs (https://inta.gatech.edu) for more information.

Bachelor of Science in International Affairs and Modern Language

In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a joint Bachelor of Science in International Affairs and Modern Language (IAML) with separate concentrations in Chinese, French, German, Japanese, Russian, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. IAML students learn how to formulate the policy decisions that must be made in an increasingly multilingual and multicultural global forum. Our graduates are prepared for advanced graduate and professional study and are ready for employment in a large arena of globally oriented businesses, government agencies, as well as social service and not-for-profit organizations.

- Bachelor of Science in International Affairs and Modern Language - Chinese (p. 372)
- Bachelor of Science in International Affairs and Modern Language - French (p. 375)
- Bachelor of Science in International Affairs and Modern Language - German (p. 377)
• Bachelor of Science in International Affairs and Modern Language - Japanese (p. 379)
• Bachelor of Science in International Affairs and Modern Language - Korean (p. 381)
• Bachelor of Science in International Affairs and Modern Language - Russian (p. 383)
• Bachelor of Science in International Affairs and Modern Language - Spanish (p. 385)

Bachelor of Science in International Affairs

The Bachelor of Science in International Affairs (BS INTA) program includes instruction in international affairs, foreign languages, ethics and philosophy, social and natural sciences, and computer science. Upper-division coursework provides training in four substantive areas:

- technology, and scientific analysis, and ethics;
- international security and diplomacy;
- comparative politics, cultures, and societies; and
- international political economy.

Graduates of the BS INTA program are prepared for advanced graduate and professional study and are ready for employment in internationally oriented firms, government agencies, and nonprofit organizations.

International Affairs majors are expected to enhance their education through participation in the International Plan, study abroad programs, internships, and a host of on- and off-campus programs. In addition to the numerous opportunities afforded through Georgia Tech’s Office of International Education, the Sam Nunn School sponsors rigorous summer study abroad programs in the European Union (Brussels), East Asia (China, Japan, Taiwan), South Asia (Cambodia, Singapore, Thailand), Latin America (Argentina and Brazil), and Iberia (Portugal and Spain).

Recognizing the importance of professional experience in enhancing a student’s education, the Sam Nunn School encourages majors to pursue an internship or participate in the Cooperative Plan in their field of interest. In addition, students are strongly encouraged to get involved in a range of extracurricular activities, including Model United Nations; AIESEC; Sigma Iota Rho (the International Affairs honor society); the Center for International Strategy, Technology, and Policy; the International Affairs Student Organization; and student conferences. Students are actively involved in the guest lecture series and participate in the biennial Sam Nunn/Bank of America Policy Forum.

INTA Undergraduate Information (http://inta.gatech.edu/current-students/undergraduate)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
</tbody>
</table>
Research Option

The Sam Nunn School of International Affairs also participates in the Research Option plan offered by the Undergraduate Research Opportunities Program (UROP). The Research Option offers students the opportunity for in-depth research experience working under the guidance of a faculty mentor. Requirements for participation in the Research Option include completing nine hours of undergraduate research, at least six of which are on the same topic, writing a research proposal, taking two 1-hour courses: LMC 4701 Undergraduate Research Proposal Writing (typically taken during the first or second semester of research) and LMC 4702 Undergraduate Research Thesis Writing (taken during the term in which the thesis is written), and completing the thesis. Students are also required to send a weekly update of progress of research to the faculty mentor. Along with their application, students must explain how the faculty mentor’s research experience will benefit the student’s research.

International Plan

International Affairs majors with the International Plan are engaged in a combination of study, research, or internship abroad for a total of twenty-six weeks. This overseas experience must be obtained over two terms (a summer and semester, or two semesters). In addition to gaining advanced global competence, the International Plan designation will set INTA students apart from other applicants with recruiters from top companies and governmental agencies. Required coursework for the International Plan is easily satisfied by the International Affairs core curriculum as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110</td>
<td>Introduction to International Relations</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 3203</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>INTA approved elective or upper-division Modern Language course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 4500</td>
<td>Pro-Seminar in International Affairs</td>
<td>3</td>
</tr>
<tr>
<td>ML 4500</td>
<td>Intercultural Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 12

1 focuses on international relations historically and theoretically
2 provides a historical and theoretical understanding of the global economy, including topics such as international trade, finance, investment, and production; regional economic integration, economic development and modernization; and questions of natural resource sustainability
3 provides familiarity with an area of the world or a country that allows students to make systematic comparisons with their own society and culture
4 A culminating course, occurring either at the end of or after the international experience that integrates knowledge of the discipline and the international experience in a global context.

BS/MS International Affairs

The Sam Nunn School of International Affairs offers a BS/MS program for students enrolled in the International Affairs undergraduate program who
demonstrate an interest in and ability for additional education beyond the BS degree.

Students in the BS/MS program will remain undergraduates until they meet requirements for the undergraduate degree, at which point they will receive their BS degree and be changed to graduate status. Students will be eligible to apply for the program after completion of 45 semester credit hours at Georgia Tech (i.e., at the end of their third semester), and if they show appropriate progress in their degree program thereafter. Any student in good standing in the BS INTA program is eligible to apply to the program. Admissions decisions will be based on GPA and judgments of the faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.5 or higher in Ivan Allen College courses. The program will not penalize students who opt out after the bachelor's degree. Students participating in this program will be eligible for the six semester credit-hour Graduate Course Option, which allows students completing both the bachelor's and master's in the same discipline to use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

The Graduate-level Credits Required in the BS/MS Program are usually as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core (includes 6 hours of shared courses)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Technical Requirement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>42</td>
</tr>
</tbody>
</table>

Specific Requirements for the Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 6202</td>
<td>Comparative Politics (Taken at Undergraduate Level)</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6302</td>
<td>International Political Economy (Taken at Undergraduate Level)</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6003</td>
<td>Empirical Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6102</td>
<td>International Relations Theory</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6103</td>
<td>International Security</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MS Track and Free Electives</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Technical Requirement (or, INTA/Free elective, if waived)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>42</td>
</tr>
</tbody>
</table>

Contact the BS/MS program director for further information. https://inta.gatech.edu/programs/graduate/five-year-bsms-inta

INTA Undergraduate Information (https://inta.gatech.edu)

Bachelor of Science in Literature, Communication, and Media: Thread - Communication & Design

The BS in Literature, Communication, and Media (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 15</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POLP 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Science in Literature, Communication, and Media: Thread - Communication & Design
LMC 2050 Seminar in Literature, Media, and Communication 3

Capstone
Select one of the following: 3

LMC 4100 Seminar in Science, Technology, and Culture
LMC 4200 Seminar in Literary and Cultural Theory
LMC 4300 Seminar in Biomedicine and Culture
LMC 4400 Seminar in Media Studies
LMC 4500 Seminar in Film Studies
LMC 4600 Seminar in Performance Studies
LMC 4102 Senior Thesis

Concentration
Design
LMC 2720 Principles of Visual Design 3
Select two Foundation courses: 6

LMC 2400 Introduction to Media Studies
LMC 2410 Introduction to Game Studies
LMC 2700 Introduction to Computational Media
LMC 2730 Constructing the Moving Image
LMC 3314 Technologies of Representation
LMC 3705 Principles of Information Design
LMC 3710 Principles of Interaction Design
LMC 4725 Games Design as a Cultural Practice
LMC 4733 Mixed Reality Experience Design

Select three Specialty courses: 9

LMC 3106 The Age of Scientific Revolution
LMC 3206 Communication and Culture
LMC 3306 Science, Technology, and Race
LMC 3308 Environmentalism and Ecocriticism
LMC 3318 Biomedicine and Culture
LMC 3403 Technical Communication, Theory and Practice
LMC 3404 Social Media
LMC 3406 Video Production
LMC 3407 Advanced Video Production
LMC 3408 The Rhetoric of Technical Narratives
LMC 3410 The Rhetoric of Nonlinear Documents
LMC 3412 Communicating Science and Technology to the Public
LMC 3823 Special Topics in Literature and Culture
LMC 4720 Interactive Narrative
LMC Electives 6

Free Electives
Free Electives 14

Total Credit Hours 122

1 Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2062 or HTS 2066 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2 Any CoS or CS course.
3 Minimum grade of C required.
4 Any Modern Language 2000-level or higher.
5 Students must complete one 2000-level or higher Ethics course during their program.
6 Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)
The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study.

Georgia Institute of Technology
It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by:

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Science, Technology, and Culture

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or "threads" of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 15 Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>& MATH 15</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science, Technology and Culture</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 2100</td>
<td>Introduction to Science, Technology and Culture</td>
<td></td>
</tr>
<tr>
<td>Select two Foundation courses:</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

- LMC 3104 The Age of Scientific Discovery
- LMC 3106 The Age of Scientific Revolution
- LMC 3112 Evolution and the Industrial Age
- LMC 3214 Science Fiction
- LMC 3215 Science Fiction Film and Television
- LMC 3310 The Rhetoric of Scientific Inquiry
- LMC 3318 Biomedicine and Culture
- LMC 3302 Science, Technology, and Ideology
- LMC 3304 Science, Technology, and Gender
- LMC 3306 Science, Technology, and Race

Select three Specialty courses: 9
- LMC 3206 Communication and Culture
- LMC 3219 Literature and Medicine
- LMC 3225 Gender Studies in the Disciplines
- LMC 3257 Global Cinema
- LMC 3308 Environmentalism and Ecocriticism
- LMC 3314 Technologies of Representation
- LMC 3352 Film and/as Technology
- LMC 3403 Technical Communication, Theory and Practice
- LMC 3404 Social Media
- LMC 3405 Media, Culture, and Society
- LMC 3410 The Rhetoric of Nonlinear Documents
- LMC 3823 Special Topics in Literature and Culture
- LMC 4725 Games Design as a Cultural Practice
- LMC 4730 Experimental Digital Art
- LMC 4733 Mixed Reality Experience Design

Select two Foundation courses: 6
- LMC 2400 Introduction to Media Studies
- LMC 2720 Principles of Visual Design
- LMC 3206 Communication and Culture
- LMC 3310 The Rhetoric of Scientific Inquiry
- LMC 3404 Social Media
- LMC 3405 Media, Culture, and Society
- LMC 3406 Video Production
- LMC 3408 The Rhetoric of Technical Narratives
- LMC 3410 The Rhetoric of Nonlinear Documents
- LMC 3412 Communicating Science and Technology to the Public

Select three Specialty courses: 9
- LMC 3214 Science Fiction
- LMC 3215 Science Fiction Film and Television
- LMC 3225 Gender Studies in the Disciplines
- LMC 3236 Writing for the Stage and Screen
- LMC 3252 Studies in Film and Television
- LMC 3302 Science, Technology, and Ideology
- LMC 3314 Technologies of Representation
- LMC 3318 Biomedicine and Culture
- LMC 3402 Graphic and Visual Design
- LMC 3520 Contemporary Issues in Literature & Culture
- LMC 3705 Principles of Information Design
Undergraduate Research Proposal Writing

Performance Practicum

Senior Thesis

will modify their program as follows. They will:

• complete twelve credit hours of language instruction (by dedicating
 six credit hours of humanities electives, and 3 credit hours of the LMC language requirement to
 language study); and
• complete a LMC capstone course that links international studies with
 the major.

While all of the LMC degree combinations provide students with 14 credit
hours of free electives, different options provide students with different
numbers of free LMC elective hours. Students should contact the LMC
advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the
opportunity for a substantial, in-depth research experience. Students
who pursue this degree option will learn how to design and complete
advanced, multi-semester research projects through a combination of
independent research, group writing instruction, and one-to-one work
with a faculty mentor. Students are strongly encouraged at the end of
their experience to work with their faculty mentor to develop a journal
publication or conference presentation on the research in addition to the
actual thesis. All students who successfully complete the research thesis
option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

Code Title Credit Hours
LMC Undergraduate Research 1 6
LMC 2699/4699

LMC 4701 Undergraduate Research Proposal Writing 1
LMC 4702 Undergraduate Research Thesis Writing 1
LMC 4102 Senior Thesis 3

Students will meet these requirements without adding additional hours to
their schedules by

• Dedicating six credit hours of undefined LMC elective and/or free
 elective credit hours to undergraduate research
• Dedicating two more credit hours of free elective credit to LMC 4701
 and LMC 4702
• Dedicating 3 hours of capstone coursework in the LMC major to
 LMC 4102: Senior Thesis.

1 Students may substitute audit hours of LMC 2698/LMC 4698 for
 equivalent hours of LMC 2699/LMC 4699. If they elect this option,
 they must add corresponding credit hours of an elective, for-credit
 class.

While all of the LMC degree thread combinations provide students
with 14 credit hours of free electives, different options provide
students with different numbers of free LMC elective hours. Students
should contact the LMC advisor to learn about options for particular
thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM
must apply to the School after completing at least seventy-five credit

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a
global competence connected to the student’s major program of study.
It thus integrates international studies and experiences with work in
a broad range of cultural and media studies, preparing graduates to
critique and create cultural texts within an international professional
environment. All students who successfully complete this option will
receive the “International Plan” designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of
122 credit hours of coursework, students following the International Plan
will modify their program as follows. They will:

• take three Social Science courses, one each from the following
categories: international relations, global economics, and a course on a
 specific country or region;
• spend two terms abroad engaged in any combination of study
 abroad, research, or internship;
• complete twelve credit hours of language instruction (by dedicating
 six credit hours of humanities electives, 3 credit hours of free
 electives, and 3 credit hours of the LMC language requirement to
 language study); and
• complete a LMC capstone course that links international studies with
 the major.

While all of the LMC degree combinations provide students with 14 credit
hours of free electives, different options provide students with different
numbers of free LMC elective hours. Students should contact the LMC
advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM
must apply to the School after completing at least seventy-five credit
hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Social Justice

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

International Requirement

- Any SS (p. 97) 3

Core F - Courses Related to Major

Science or Computing Electives

- Modern Language Elective 4

Ethics Requirement (p. 101)

- LMC 2000 Introduction to Literature, Media, and Communication 3
- LMC 2050 Seminar in Literature, Media, and Communication 3

Major Requirements

Select one of the following:

- LMC 4100 Seminar in Science, Technology, and Culture
- LMC 4200 Seminar in Literary and Cultural Theory
- LMC 4300 Seminar in Biomedicine and Culture
- LMC 4400 Seminar in Media Studies
- LMC 4500 Seminar in Film Studies
- LMC 4600 Seminar in Performance Studies
- LMC 4102 Senior Thesis

Concentration

Social Justice

- LMC 2350 Introduction to Social Justice 3

Select two Foundation courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3209</td>
<td>Ethnicity in American Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three Specialty courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3104</td>
<td>The Age of Scientific Discovery</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3263</td>
<td>Music, Culture, and Society</td>
<td></td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td></td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td></td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td></td>
</tr>
<tr>
<td>LMC 3511</td>
<td>American Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3520</td>
<td>Contemporary Issues in Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
</tbody>
</table>

**Select two Foundation courses: **

- LMC 2400 Introduction to Media Studies
- LMC 2720 Principles of Visual Design
- LMC 3206 Communication and Culture
- LMC 3310 The Rhetoric of Scientific Inquiry
- LMC 3404 Social Media
- LMC 3405 Media, Culture, and Society
- LMC 3408 The Rhetoric of Technical Narratives
- LMC 3406 Video Production
- LMC 3410 The Rhetoric of Nonlinear Documents
- LMC 3412 Communicating Science and Technology to the Public

Select three Specialty courses:

- LMC 3214 Science Fiction
- LMC 3215 Science Fiction Film and Television
- LMC 3225 Gender Studies in the Disciplines
- LMC 3236 Writing for the Stage and Screen
- LMC 3252 Studies in Film and Television
- LMC 3302 Science, Technology, and Ideology
- LMC 3314 Technologies of Representation
- LMC 3318 Biomedicine and Culture
- LMC 3402 Graphic and Visual Design
- LMC 3520 Contemporary Issues in Literature & Culture
- LMC 3705 Principles of Information Design
- LMC 3710 Principles of Interaction Design
- LMC 4406 Contemporary Issues in Professional Communication
- LMC 4720 Interactive Narrative

LMC Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 122

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 INTA 3311 INTA 3333 INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Minimum grade of C required.

4. Any Modern Language 2000-level or higher.

5. Students must complete one 2000-level or higher Ethics course during their program.

6. Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information
Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/LMC 4699</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

¹ Students may substitute audit hours of LMC 2699/LMC 4699 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Communication, and Media: Thread - Design & Science, Technology, & Culture

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Differential Calculus & MATH 15 Introduction to Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in Literature, Communication, and Media: Thread - Design & Science, Technology, & Culture

INTA 1200
American Government in Comparative Perspective

POL 1101
Government of the United States

PUBP 3000
American Constitutional Issues

International Requirement
1

Any SS (p. 97)
6

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2100</td>
<td>Introduction to Science, Technology and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2200</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2300</td>
<td>Seminar in Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Seminar in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3000</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3100</td>
<td>Seminar in Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Requirements

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3100</td>
<td>Introduction to Science, Technology and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3200</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3300</td>
<td>Seminar in Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3400</td>
<td>Seminar in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3500</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3600</td>
<td>Seminar in Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration

Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4725</td>
<td>Games Design as a Cultural Practice</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three Specialty courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3407</td>
<td>Advanced Video Production</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3408</td>
<td>The Rhetoric of Technical Narratives</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3411</td>
<td>Communicating Science and Technology to the Public</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4720</td>
<td>Interactive Narrative</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

Free Electives

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Total Credit Hours

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
</tr>
</tbody>
</table>

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Minimum grade of C required.

4. Any Modern Language 2000-level or higher.
Students must complete one 2000-level or higher Ethics course during their program.

Historical courses include any LMC 3100-level course.

Literary/Film/Cultural courses include any LMC 2200-level, LMC 3200-level, LMC 3500-level, LMC 4300-level course.

Issues courses include any LMC 3300-level course.

Media courses include any LMC 2700-level, LMC 3400-level, LMC 4400-level course (Excluding LMC 2700 and LMC 3403).

Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student's major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

• take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
• spend two terms abroad engaged in any combination of study abroad, research, or internship;
• complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
• complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by:
• Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research;
• Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702;
• Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Communication, and Media: Thread - Design & Social Justice

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication
common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two Foundations courses:</td>
<td>6</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td></td>
</tr>
<tr>
<td>LMC 4725</td>
<td>Games Design as a Cultural Practice</td>
<td></td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three Specialty courses:</td>
<td>9</td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3407</td>
<td>Advanced Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3408</td>
<td>The Rhetoric of Technical Narratives</td>
<td></td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td></td>
</tr>
<tr>
<td>LMC 3412</td>
<td>Communicating Science and Technology to the Public</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4720</td>
<td>Interactive Narrative</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Justice</td>
<td></td>
</tr>
<tr>
<td>LMC 2350</td>
<td>Introduction to Social Justice</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two Foundations courses:</td>
<td>6</td>
</tr>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td></td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td></td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td></td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
</tbody>
</table>
Select three Specialty courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3104</td>
<td>The Age of Scientific Discovery</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3263</td>
<td>Music, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3511</td>
<td>American Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3520</td>
<td>Contemporary Issues in Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

LMC Electives

Free Electives

Total Credit Hours

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3201 or INTA 3202 or INTA 3203 or INTA 3204 or INTA 3231 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3312 or INTA 3320 or INTA 3321 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Minimum grade of C required.

4. Any Modern Language 2000-level or higher.

5. Students must complete one 2000-level or higher Ethics course during their program.

6. Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student's major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research (^1)</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by:

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.
Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class. While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Communication

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lmc)
Select 3 of these Specialty courses: 3
LMC 3102 Science, Technology, and the Classical Tradition
LMC 3112 Evolution and the Industrial Age
LMC 3204 Poetry and Poetics
LMC 3208 African American Literature and Culture
LMC 3210 Ethnicity in American Culture
LMC 3212 Women, Literature, and Culture
LMC 3214 Science Fiction
LMC 3219 Literature and Medicine
LMC 3228 Shakespeare
LMC 3234 Creative Writing
LMC 3236 Writing for the Stage and Screen
LMC 3316 Science, Technology, and Postcolonialism
LMC 3520 Contemporary Issues in Literature & Culture
LMC 3823 Special Topics in Literature and Culture
LMC 4204 Poetry and Poetics II
LMC 3403 Technical Communication, Theory and Practice
LMC 3200 Introduction to Media Studies
LMC 3206 Communication and Culture
LMC 3310 The Rhetoric of Scientific Inquiry
LMC 3404 Social Media
LMC 3405 Media, Culture, and Society
LMC 3406 Video Production
LMC 3408 The Rhetoric of Technical Narratives
LMC 3410 The Rhetoric of Nonlinear Documents
LMC 3412 Communicating Science and Technology to the Public
Select 3 of these Specialty courses: 3
LMC 3214 Science Fiction
LMC 3215 Science Fiction Film and Television
LMC 3225 Gender Studies in the Disciplines
LMC 3236 Writing for the Stage and Screen
LMC 3252 Studies in Film and Television
LMC 3302 Science, Technology, and Ideology
LMC 3314 Technologies of Representation
LMC 3318 Biomedicine and Culture
LMC 3402 Graphic and Visual Design
LMC 3520 Contemporary Issues in Literature & Culture
LMC 3705 Principles of Information Design
LMC 3710 Principles of Interaction Design
LMC 3823 Special Topics in Literature and Culture
LMC 4406 Contemporary Issues in Professional Communication
LMC 4720 Interactive Narrative

Free Electives
Free Electives 6
Total Credit Hours 14

1 Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340
2 Any CoS or CS course.
3 Minimum grade of C required.
4 Any Modern Language 2000-level or higher.
5 Students must complete one 2000-level or higher Ethics course during their program.
6 Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
• complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
• complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

• Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
• Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
• Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

¹ Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Design

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1512</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td>Any HUM (p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 1711 Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Differential Calculus & MATH 15/Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL 1101 Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PUBP 3000 American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>International Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td>Science or Computing Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Modern Language Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ethics Requirement (p. 101)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 2000 Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 2050 Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LMC 4100 Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4200 Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4300 Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4400 Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4500 Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4600 Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4102 Senior Thesis</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2060 Introduction to Literary Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two Foundation courses:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>LMC 3202 Studies in Fiction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3226 Major Authors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3502 Ancient and Medieval Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3504 Renaissance Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3506 Enlightenment and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3511 American Literature & Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3512 British and Continental Romanticism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3514 Victorian Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3516 Literary and Cultural Modernism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3518 Literary and Cultural Postmodernism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three Specialty courses:</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>LMC 3102 Science, Technology, and the Classical Tradition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3112 Evolution and the Industrial Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3204 Poetry and Poetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3208 African American Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3210 Ethnicity in American Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3212 Women, Literature, and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3214 Science Fiction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3219 Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3228 Shakespeare</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3234 Creative Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3236 Writing for the Stage and Screen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3316 Science, Technology, and Postcolonialism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3520 Contemporary Issues in Literature & Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3823 Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4204 Poetry and Poetics II</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>LMC 2720 Principles of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two Foundation courses:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>LMC 2400 Introduction to Media Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2410 Introduction to Game Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2700 Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 2730 Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3314 Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3402 Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3705 Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3710 Principles of Interaction Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4725 Games Design as a Cultural Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4733 Mixed Reality Experience Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three Specialty courses:</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>LMC 3106 The Age of Scientific Revolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3206 Communication and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3306 Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3308 Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3318 Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3403 Technical Communication, Theory and Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3404 Social Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3406 Video Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3407 Advanced Video Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3408 The Rhetoric of Technical Narratives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3410 The Rhetoric of Nonlinear Documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3412 Communicating Science and Technology to the Public</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 3823 Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4720 Interactive Narrative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC 4730 Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMC Electives</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td>Free Electives</td>
<td>14</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>
Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

- Dedicate six credit hours of undefined elective credit to undergraduate research
- Dedicate two more credit hours of elective credit to LMC 4701 and LMC 4702
- Dedicate 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.
Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Media

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1041</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Integral Calculus</td>
<td></td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 1553</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative</td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

Any SS (p. 97) | 6

Major Requirements

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration

Literature

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2060</td>
<td>Introduction to Literary Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two Foundations courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3226</td>
<td>Major Authors</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3502</td>
<td>Ancient and Medieval Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3504</td>
<td>Renaissance Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3506</td>
<td>Enlightenment and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3511</td>
<td>American Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3512</td>
<td>British and Continental Romanticism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3514</td>
<td>Victorian Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3516</td>
<td>Literary and Cultural Modernism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3518</td>
<td>Literary and Cultural Postmodernism</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three Specialty courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and the Classical Tradition</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3204</td>
<td>Poetry and Poetics</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3228</td>
<td>Shakespeare</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3234</td>
<td>Creative Writing</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3236</td>
<td>Writing for the Stage and Screen</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3520</td>
<td>Contemporary Issues in Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4204</td>
<td>Poetry and Poetics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Media
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two Foundations courses: 6

- LMC 2410 Introduction to Game Studies
- LMC 2500 Introduction to Film
- LMC 2600 Introduction to Performance Studies
- LMC 2700 Introduction to Computational Media
- LMC 2720 Principles of Visual Design
- LMC 2730 Constructing the Moving Image

LMC 3206 Communication and Culture
LMC 3314 Technologies of Representation
LMC 3404 Social Media
LMC 3405 Media, Culture, and Society

Select three Specialty courses: 9

- LMC 3252 Studies in Film and Television
- LMC 3253 Animation
- LMC 3254 Film History
- LMC 3255 Cinema and Digital Culture
- LMC 3256 Major Filmmakers
- LMC 3257 Global Cinema
- LMC 3258 Documentary Film
- LMC 3259 Experimental Film
- LMC 3352 Film and/as Technology

- LMC 3402 Graphic and Visual Design
- LMC 3406 Video Production
- LMC 3407 Advanced Video Production
- LMC 3823 Special Topics in Literature and Culture
- LMC 4730 Experimental Digital Art
- LMC 4733 Mixed Reality Experience Design

LMC Electives 3

Free Electives 6

Free Electives 14

Total Credit Hours 122

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Any Modern Language 2000-level or higher.

4. Minimum grade of C required.

5. Students must complete one 2000-level or higher Ethics course during their program.

6. Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student's major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
</tbody>
</table>
Students will meet these requirements without adding additional hours to their schedules by:

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Science, Technology, and Culture

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lmc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 151 Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 151 Differential Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& MATH 151 Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>POL 1100</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement</td>
<td>(p. 101)</td>
<td>3</td>
</tr>
<tr>
<td>Any SS</td>
<td>(p. 97)</td>
<td>6</td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td>(p. 101)</td>
<td>6</td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td>(p. 101)</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement</td>
<td>(p. 101)</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1100 Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100 Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4200 Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300 Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
</tr>
</tbody>
</table>

Concentration

Literature

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2060</td>
<td>Introduction to Literary Studies</td>
</tr>
</tbody>
</table>

Select two Foundations courses: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
</tr>
<tr>
<td>LMC 3226</td>
<td>Major Authors</td>
</tr>
<tr>
<td>LMC 3502</td>
<td>Ancient and Medieval Literature and Culture</td>
</tr>
<tr>
<td>LMC 3504</td>
<td>Renaissance Literature and Culture</td>
</tr>
<tr>
<td>LMC 3506</td>
<td>Enlightenment and Culture</td>
</tr>
<tr>
<td>LMC 3511</td>
<td>American Literature & Culture</td>
</tr>
<tr>
<td>LMC 3512</td>
<td>British and Continental Romanticism</td>
</tr>
<tr>
<td>LMC 3514</td>
<td>Victorian Literature and Culture</td>
</tr>
<tr>
<td>LMC 3516</td>
<td>Literary and Cultural Modernism</td>
</tr>
<tr>
<td>LMC 3518</td>
<td>Literary and Cultural Postmodernism</td>
</tr>
</tbody>
</table>

Select three Specialty courses: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3102</td>
<td>Science, Technology, and the Classical Tradition</td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
</tr>
<tr>
<td>LMC 3204</td>
<td>Poetry and Poetics</td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
</tr>
<tr>
<td>LMC 3325</td>
<td>Film and/as Technology</td>
</tr>
<tr>
<td>LMC 3403</td>
<td>Technical Communication, Theory and Practice</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
</tr>
<tr>
<td>LMC 4725</td>
<td>Games Design as a Cultural Practice</td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
</tr>
</tbody>
</table>

LMC Electives 6

Free Electives

Free Electives 14

Total Credit Hours 122

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3012 or INTA 3013 or INTA 3015 or INTA 3017 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Minimum grade of C required.

4. Any Modern Language 2000-level or higher.

5. Students must complete one 2000-level or higher Ethics course during their program.

6. Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.
While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

¹ Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Social Justice

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or "threads" of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II or MATH 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 15 & MATH 15: Differential Calculus & Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 2060</td>
<td>Introduction to Literary Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td></td>
</tr>
<tr>
<td>LMC 3226</td>
<td>Major Authors</td>
<td></td>
</tr>
<tr>
<td>LMC 3502</td>
<td>Ancient and Medieval Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3504</td>
<td>Renaissance Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3506</td>
<td>Enlightenment and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3511</td>
<td>American Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3512</td>
<td>British and Continental Romanticism</td>
<td></td>
</tr>
<tr>
<td>LMC 3514</td>
<td>Victorian Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3516</td>
<td>Literary and Cultural Modernism</td>
<td></td>
</tr>
<tr>
<td>LMC 3518</td>
<td>Literary and Cultural Postmodernism</td>
<td></td>
</tr>
<tr>
<td>Select three Specialty courses:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 3102</td>
<td>Science, Technology, and the Classical Tradition</td>
<td></td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td></td>
</tr>
<tr>
<td>LMC 3204</td>
<td>Poetry and Poetics</td>
<td></td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td></td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td>LMC 3228</td>
<td>Shakespeare</td>
<td></td>
</tr>
<tr>
<td>LMC 3234</td>
<td>Creative Writing</td>
<td></td>
</tr>
<tr>
<td>LMC 3236</td>
<td>Writing for the Stage and Screen</td>
<td></td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td></td>
</tr>
<tr>
<td>LMC 3520</td>
<td>Contemporary Issues in Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4204</td>
<td>Poetry and Poetics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Justice</td>
<td></td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td>3</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td></td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td></td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td></td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>Select three Specialty courses:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 3104</td>
<td>The Age of Scientific Discovery</td>
<td></td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td></td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td></td>
</tr>
<tr>
<td>LMC 3202</td>
<td>Studies in Fiction</td>
<td></td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td></td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td></td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3263</td>
<td>Music, Culture, and Society</td>
<td></td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td></td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td></td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td></td>
</tr>
</tbody>
</table>
While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

Code	**Title**	**Credit Hours**
LMC | Undergraduate Research | 6
LMC 2699/4699 | Undergraduate Research Proposal Writing | 1
LMC 4702 | Undergraduate Research Thesis Writing | 1
LMC 4102 | Senior Thesis | 3

Students will meet these requirements without adding additional hours to their schedules by

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.
Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Media & Communication

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15 Integral Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315 Introduction to Media Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

Core B - Institutional Options

Core C - Humanities

Core D - Science, Math, & Technology

Core F - Courses Related to Major

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

International Requirement

Any SS (p. 97) 6

Major Requirements

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration

Communication

LMC 3403 Technical Communication, Theory and Practice 3

Select two Foundation courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3310</td>
<td>The Rhetoric of Scientific Inquiry</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3408</td>
<td>The Rhetoric of Technical Narratives</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3412</td>
<td>Communicating Science and Technology to the Public</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three Specialty courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3215</td>
<td>Science Fiction Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3236</td>
<td>Writing for the Stage and Screen</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3520</td>
<td>Contemporary Issues in Literature & Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3705</td>
<td>Principles of Information Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3710</td>
<td>Principles of Interaction Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4406</td>
<td>Contemporary Issues in Professional Communication</td>
<td></td>
</tr>
<tr>
<td>LMC 4720</td>
<td>Interactive Narrative</td>
<td></td>
</tr>
</tbody>
</table>

Media

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td></td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td></td>
</tr>
</tbody>
</table>

Select two Foundation courses: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td></td>
</tr>
<tr>
<td>LMC 3253</td>
<td>Animation</td>
<td></td>
</tr>
<tr>
<td>LMC 3254</td>
<td>Film History</td>
<td></td>
</tr>
<tr>
<td>LMC 3255</td>
<td>Cinema and Digital Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3256</td>
<td>Major Filmmakers</td>
<td></td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td></td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3259</td>
<td>Experimental Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3407</td>
<td>Advanced Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td></td>
</tr>
</tbody>
</table>

Select three Specialty courses: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td></td>
</tr>
<tr>
<td>LMC 3253</td>
<td>Animation</td>
<td></td>
</tr>
<tr>
<td>LMC 3254</td>
<td>Film History</td>
<td></td>
</tr>
<tr>
<td>LMC 3255</td>
<td>Cinema and Digital Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3256</td>
<td>Major Filmmakers</td>
<td></td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td></td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3259</td>
<td>Experimental Film</td>
<td></td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td></td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3407</td>
<td>Advanced Video Production</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td></td>
</tr>
</tbody>
</table>

LMC Electives 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Electives</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>122</td>
</tr>
</tbody>
</table>

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340
2. Any CoS or CS course.
3. Minimum grade of C required.
4. Any Modern Language 2000-level or higher.
5. Students must complete one 2000-level or higher Ethics course during their program.
6. Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information
Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

Students will meet these requirements without adding additional hours to their schedules by

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Media & Design

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>International Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>Major Requirements</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select three Specialty courses:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3255</td>
<td>Cinema and Digital Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3256</td>
<td>Major Filmmakers</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3259</td>
<td>Experimental Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3402</td>
<td>Graphic and Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Select an additional 14 credits:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>

1. Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2. Any CoS or CS course.

3. Minimum grade of C required.

4. Any Modern Language 2000-level or higher.
Students must complete one 2000-level or higher Ethics course during their program.

Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the “International Plan” designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

- dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Media & Science, Technology and Culture

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or "threads" of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice
Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>9</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 15</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement (p. 97)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 3104</td>
<td>The Age of Scientific Discovery</td>
<td></td>
</tr>
<tr>
<td>LMC 3106</td>
<td>The Age of Scientific Revolution</td>
<td></td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td></td>
</tr>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td></td>
</tr>
<tr>
<td>LMC 3215</td>
<td>Science Fiction Film and Television</td>
<td></td>
</tr>
<tr>
<td>LMC 3310</td>
<td>The Rhetoric of Scientific Inquiry</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td></td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td></td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td>Select three Specialty courses:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td></td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td></td>
</tr>
<tr>
<td>LMC 3410</td>
<td>The Rhetoric of Nonlinear Documents</td>
<td></td>
</tr>
<tr>
<td>LMC 3823</td>
<td>Special Topics in Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4725</td>
<td>Games Design as a Cultural Practice</td>
<td></td>
</tr>
<tr>
<td>LMC 4730</td>
<td>Experimental Digital Art</td>
<td></td>
</tr>
<tr>
<td>LMC 4733</td>
<td>Mixed Reality Experience Design</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>LMC 2600</td>
<td>Introduction to Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 2700</td>
<td>Introduction to Computational Media</td>
<td></td>
</tr>
<tr>
<td>LMC 2720</td>
<td>Principles of Visual Design</td>
<td></td>
</tr>
<tr>
<td>LMC 2730</td>
<td>Constructing the Moving Image</td>
<td></td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td></td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td></td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td></td>
</tr>
<tr>
<td>Select three Specialty courses:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td></td>
</tr>
<tr>
<td>LMC 3253</td>
<td>Animation</td>
<td></td>
</tr>
<tr>
<td>LMC 3254</td>
<td>Film History</td>
<td></td>
</tr>
</tbody>
</table>
International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
- complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC</td>
<td>Undergraduate Research ¹</td>
<td>6</td>
</tr>
<tr>
<td>2699/4699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by:

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

© 2021 The McGraw-Hill Companies, Inc. All rights reserved.
Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class. While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Media & Social Justice

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lmc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II or MATH 15 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics or MATH 15 Differential Calculus & MATH 15 Introduction to Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>International Requirement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Science or Computing Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modern Language Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LMC 2000</td>
<td>Introduction to Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2050</td>
<td>Seminar in Literature, Media, and Communication</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4100</td>
<td>Seminar in Science, Technology, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4200</td>
<td>Seminar in Literary and Cultural Theory</td>
<td></td>
</tr>
<tr>
<td>LMC 4300</td>
<td>Seminar in Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>LMC 4400</td>
<td>Seminar in Media Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4500</td>
<td>Seminar in Film Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4600</td>
<td>Seminar in Performance Studies</td>
<td></td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select two Foundations courses:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LMC 2410</td>
<td>Introduction to Game Studies</td>
<td></td>
</tr>
</tbody>
</table>
Select three Specialty courses:
LMC 2500 Introduction to Film
LMC 2600 Introduction to Performance Studies
LMC 2700 Introduction to Computational Media
LMC 2720 Principles of Visual Design
LMC 2730 Constructing the Moving Image
LMC 3206 Communication and Culture
LMC 3314 Technologies of Representation
LMC 3404 Social Media
LMC 3405 Media, Culture, and Society

Select two Foundations courses:
LMC 3252 Studies in Film and Television
LMC 3253 Animation
LMC 3254 Film History
LMC 3255 Cinema and Digital Culture
LMC 3256 Major Filmmakers
LMC 3257 Global Cinema
LMC 3258 Documentary Film
LMC 3259 Experimental Film
LMC 3352 Film and/as Technology
LMC 3402 Graphic and Visual Design
LMC 3406 Video Production
LMC 3407 Advanced Video Production
LMC 3823 Special Topics in Literature and Culture
LMC 4730 Experimental Digital Art
LMC 4733 Mixed Reality Experience Design

Social Justice
LMC 3302 Science, Technology, and Ideology

Select two Foundations courses:
LMC 2200 Introduction to Gender Studies
LMC 3208 African American Literature and Culture
LMC 3210 Ethnicity in American Culture
LMC 3212 Women, Literature, and Culture
LMC 3219 Literature and Medicine
LMC 3225 Gender Studies in the Disciplines
LMC 3302 Science, Technology, and Ideology
LMC 3304 Science, Technology, and Gender
LMC 3306 Science, Technology, and Race
LMC 3318 Biomedicine and Culture

Select three Specialty courses:
LMC 3104 The Age of Scientific Discovery
LMC 3106 The Age of Scientific Revolution
LMC 3112 Evolution and the Industrial Age
LMC 3202 Studies in Fiction
LMC 3214 Science Fiction
LMC 3257 Global Cinema
LMC 3258 Documentary Film
LMC 3263 Music, Culture, and Society
LMC 3308 Environmentalism and Ecocriticism
LMC 3316 Science, Technology, and Postcolonialism
LMC 3404 Social Media
LMC 3405 Media, Culture, and Society
LMC 3511 American Literature & Culture

LMC 3520 Contemporary Issues in Literature & Culture
LMC 3823 Special Topics in Literature and Culture
LMC Electives

Free Electives

Total Credit Hours

1 Must be selected from the following list: Allow ECON 2101 or ECON 3300 or ECON 4311 or ECON 4350 or ECON 4351 or ECON 4355 or ECON 4411 or ECON 4415 or ECON 4620 or HTS 1031 or HTS 2036 or HTS 2037 or HTS 2041 or HTS 2061 or HTS 2062 or HTS 2082 or HTS 3012 or HTS 3015 or HTS 3028 or HTS 3030 or HTS 3031 or HTS 3032 or HTS 3035 or HTS 3036 or HTS 3038 or HTS 3039 or HTS 3041 or HTS 3043 or HTS 3045 or HTS 3051 or HTS 3061 or HTS 3062 or HTS 3063 or HTS 3064 or HTS 3065 or HTS 3069 or HTS 3087 or INTA 1110 or INTA 2030 or INTA 2040 or INTA 2100 or INTA 2210 or INTA 2220 or INTA 2230 or INTA 3010 or INTA 3020 or INTA 3031 or INTA 3101 or INTA 3102 or INTA 3104 or INTA 3120 or INTA 3121 or INTA 3130 or INTA 3131 or INTA 3203 or INTA 3220 or INTA 3221 or INTA 3230 or INTA 3231 or INTA 3240 or INTA 3241 or INTA 3301 or INTA 3303 or INTA 3304 or INTA 3321 or INTA 3330 or INTA 3331 or INTA 4007 or INTA 4011 or INTA 4040 or INTA 4050 or INTA 4060 or INTA 4101 or INTA 4121 or INTA 4230 or INTA 4240 or INTA 4241 or INTA 4330 or INTA 4331 or INTA 4332 or INTA 4333 or INTA 4340

2 Any CoS or CS course.
3 Minimum grade of C required.
4 Any Modern Language 2000-level or higher.
5 Students must complete one 2000-level or higher Ethics course during their program.
6 Other Core D Math Options include: MATH 1551 and MATH 1554, MATH 1551 and MATH 1564, MATH 1550 and MATH 1553, MATH 1550 and MATH 1554, or MATH 1550 and MATH 1564.

International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student's major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the "International Plan" designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

- take three Social Science courses, one each from the following categories: international relations, global economics, and a course on a specific country or region;
- spend two terms abroad engaged in any combination of study abroad, research, or internship;
- complete twelve credit hours of language instruction (by dedicating six credit hours of humanities electives, 3 credit hours of free electives, and 3 credit hours of the LMC language requirement to language study); and
• complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the "research option" designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

• Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
• Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
• Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

1 Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication - Thread: Social Justice and Science, Technology, and Culture

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lcc)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Lab Science 4
MATH 1711 Finite Mathematics or MATH 15 Differential Calculus & MATH 15 Differential Calculus

Core E - Social Sciences 3
Select one of the following:
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective

Core F - Courses Related to Major 6
Select two Foundations courses:

Core E - Social Sciences 3
Select two Foundations courses:

Major Requirements 3
Select one of the following:
LMC 2000 Introduction to Literature, Media, and Communication
LMC 2050 Seminar in Literature, Media, and Communication

Concentration 3
Science, Technology, and Culture
LMC 2100 Introduction to Science, Technology and Culture

Select three Specialty courses: 3
LMC 3104 The Age of Scientific Discovery
LMC 3106 The Age of Scientific Revolution
LMC 3112 Evolution and the Industrial Age
LMC 3214 Science Fiction
LMC 3215 Science Fiction Film and Television
LMC 3310 The Rhetoric of Scientific Inquiry
LMC 3318 Biomedicine and Culture
LMC 3302 Science, Technology, and Ideology
LMC 3304 Science, Technology, and Gender
LMC 3306 Science, Technology, and Race

Select three Specialty courses: 3
LMC 3206 Communication and Culture
LMC 3219 Literature and Medicine
LMC 3225 Gender Studies in the Disciplines
LMC 3257 Global Cinema
LMC 3308 Environmentalism and Ecocriticism
LMC 3314 Technologies of Representation

LMC Electives 3
Free Electives 14
Total Credit Hours 122
International Plan (All Thread Combinations)

The LMC International Plan follows the Institute model to develop a global competence connected to the student’s major program of study. It thus integrates international studies and experiences with work in a broad range of cultural and media studies, preparing graduates to critique and create cultural texts within an international professional environment. All students who successfully complete this option will receive the “International Plan” designation on their transcripts.

While following the basic LMC program of instruction, requiring a total of 122 credit hours of coursework, students following the International Plan will modify their program as follows. They will:

1. Complete a LMC capstone course that links international studies with the major.

While all of the LMC degree combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

Research Option (All Thread Combinations)

This degree option offers LMC students on all degree tracks the opportunity for a substantial, in-depth research experience. Students who pursue this degree option will learn how to design and complete advanced, multi-semester research projects through a combination of independent research, group writing instruction, and one-to-one work with a faculty mentor. Students are strongly encouraged at the end of their experience to work with their faculty mentor to develop a journal publication or conference presentation on the research in addition to the actual thesis. All students who successfully complete the research thesis option will receive the “research option” designation on their transcripts.

To fulfill the requirements of the LMC Research Option, students must:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2699/4699</td>
<td>Undergraduate Research 1</td>
<td>6</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4102</td>
<td>Senior Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Students will meet these requirements without adding additional hours to their schedules by

- Dedicating six credit hours of undefined LMC elective and/or free elective credit hours to undergraduate research
- Dedicating two more credit hours of free elective credit to LMC 4701 and LMC 4702
- Dedicating 3 hours of capstone coursework in the LMC major to LMC 4102: Senior Thesis.

Students may substitute audit hours of LMC 2698/LMC 4698 for equivalent hours of LMC 2699/LMC 4699. If they elect this option, they must add corresponding credit hours of an elective, for-credit class.

While all of the LMC degree thread combinations provide students with 14 credit hours of free electives, different options provide students with different numbers of free LMC elective hours. Students should contact the LMC advisor to learn about options for particular thread combinations.

LMC Information

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least seventy-five credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.
Students admitted to the program will select the LMC 4400 seminar option and take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace the STAC free electives and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 (Project) or LMC 7000 (Thesis), and with no more than three courses taken outside the DM program.

Bachelor of Science in Literature, Media, and Communication

The BS in Literature, Media, and Communication (formerly named Science, Technology, and Culture) is the oldest undergraduate degree program in the Ivan Allen College for the Liberal Arts at Georgia Tech. This program offers a thorough education in the different modes of representation that structure our increasingly technological and global world. Program graduates will have both significant theoretical and hands-on experience with novels, films, games, comic books, web pages, and scientific documents. By learning the modes of communication common to science, technology, and the humanities, LMC graduates are prepared to become leaders in education, business, and the arts.

LMC students take classes across six paths or “threads” of study, eventually choosing two threads as their major fields of study. These threads include Literature; Media; Communication; Social Justice Studies; Interaction Design; and Science, Technology, and Culture. This prepares them to intern in fields including journalism, marketing, graphic design, videography, and educational policy. Many LMC alumni go on to graduate school in literature, communication sciences, and interactive entertainment studies or professional school in law, health, and social work. Other graduates pursue careers in fields ranging from graphic art and photography to client advocacy and medical administration to library services and arts administration.

LMC Information (http://www.iac.gatech.edu/academics/schools/lmc)

- Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Media (p. 407)
- Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Communication (p. 402)
- Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Design (p. 404)
- Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Social Justice (p. 411)
- Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Science, Technology, and Culture (p. 409)
- Bachelor of Science in Literature, Media, and Communication - Thread: Media & Communication (p. 414)
- Bachelor of Science in Literature, Media, and Communication - Thread: Media & Design (p. 416)
- Bachelor of Science in Literature, Media, and Communication - Thread: Media & Social Justice (p. 421)
- Bachelor of Science in Literature, Media, and Communication - Thread: Media & Science, Technology and Culture (p. 418)
- Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Design (p. 390)
- Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Social Justice (p. 395)
- Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Science, Technology, and Culture (p. 392)
- Bachelor of Science in Literature, Media, and Communication - Thread: Design & Social Justice (p. 400)
- Bachelor of Science in Literature, Media, and Communication - Thread: Design & Science, Technology, and Culture (p. 397)
- Bachelor of Science in Literature, Media, and Communication - Thread: Social Justice and Science, Technology, and Culture (p. 423)

Bachelor of Science in Materials Science and Engineering - Biomaterials

The materials science and engineering undergraduate program offers a BS degree in Materials Science and Engineering with concentrations in Polymer and Fiber materials, Structural and Functional materials and Biomaterials. This versatile degree combines instruction in the fundamentals of ceramic, metallurgy, and polymer and fiber science and engineering with specialized knowledge and skills, including nano-, bio-, composite, electronic, and optical and magnetic materials. Freshmen and sophomores study basic chemistry, physics, mathematics, and engineering science and are introduced to the fundamental aspects of materials. Two English courses taken in the freshman year provide the foundation for further instruction in communications that is integrated throughout the curriculum. Juniors and seniors take courses in the engineering and science of materials including the details of materials processing, structure, and properties. The curriculum culminates in a two-course senior design sequence in which students work in teams to design a material, component, or process using previously learned skills and knowledge.

Five concentration related courses provide flexibility that allow students in their junior-senior years to focus in a particular area of materials. Five hours of free electives allows students to further specialize or pursue other interests. Courses in the humanities/fine arts and social sciences ensure that graduates appreciate the role of engineering in today’s global society.

Mission Statement

The mission of the Bachelor of Science in Materials Science and Engineering program is to produce graduates well-rounded in the fundamentals of materials science and engineering who are prepared to meet the related needs of industry and government, and prepared for advanced academic study in materials related disciplines. This will be accomplished by providing students with up-to-date knowledge and skills through coursework, modern laboratories, opportunities to conduct cutting edge research with distinguished faculty mentors, and opportunities to participate in leadership and service activities.
Program Educational Objectives

The general educational objective of the Materials Science and Engineering undergraduate program is to provide its graduates with the fundamental knowledge to function effectively in materials-related positions in industry, government, and academics. The following specific Program Educational Objectives were established to ensure the attainment of this general objective consistent with the visions and missions of Georgia Tech and the College of Engineering, and ABET Criteria for Evaluating Engineering Programs:

1. To produce graduates with the fundamental knowledge and skills to function effectively in materials science and engineering related positions in industry and government, or to successfully pursue advanced study.
2. To produce graduates who advance in their chosen fields.
3. To produce graduates who function effectively in the global arena.

Grade Requirements

In order to encourage students to explore subjects of personal or professional interest without jeopardizing their GPA, the Institute has a limited pass/fail option. The policy of the School of Materials Science and Engineering regarding the use of pass/fail hours for credit is as follows: no course specifically required by name and number by the materials science and engineering curriculum may be taken on a pass/fail basis and used toward graduation, unless the course is offered only on that basis.

In cases of deficiencies obtained for the intended graduation term, refer to Section VII (on Deficiencies) of the Rules and Regulations published in the on-line General Catalog.

Transfer Students

Students transferring into Materials Science and Engineering from another university or major should meet with the Associate Chair for Undergraduate Programs to discuss possible course substitutions and plan their remaining coursework.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MSE 1111</td>
<td>Introduction to Materials Science and Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2021</td>
<td>Materials Characterization</td>
<td>4</td>
</tr>
<tr>
<td>MSE 3001</td>
<td>Chemical Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3002</td>
<td>Structural Transformations in Metallic, Ceramic, and Polymeric Systems</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3005</td>
<td>Mechanical Behavior of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3015</td>
<td>Electrical, Optical and Magnetic Properties</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3021</td>
<td>Materials Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MSE 3025</td>
<td>Statistics and Numerical Methods in Materials Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3210</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4022</td>
<td>Materials Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>MSE 4410</td>
<td>Capstone Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4420</td>
<td>Capstone Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4775</td>
<td>Polymer Science and Engineering I: Formation and Properties</td>
<td>3</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 1510</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>MSE 4002</td>
<td>Ceramic Materials: Properties, Processing, Applications</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4006</td>
<td>Processing and Applications of Engineering Alloys</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4751</td>
<td>Introduction to Biomaterials</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

1. HIST 2111 The United States to 1877
2. HIST 2112 The United States since 1877
3. INTA 1200 American Government in Comparative Perspective
4. POL 1101 Government of the United States
5. PUBP 3000 American Constitutional Issues

Select one of the following:

1. ECON 2100 Economic Analysis and Policy Problems
2. ECON 2101 The Global Economy
3. ECON 2105 Principles of Macroeconomics
4. ECON 2106 Principles of Microeconomics

Any SS (p. 97)

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1315</td>
<td>Survey of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 4002</td>
<td>Ceramic Materials: Properties, Processing, Applications</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4006</td>
<td>Processing and Applications of Engineering Alloys</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4751</td>
<td>Introduction to Biomaterials</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

1. HIST 2111 The United States to 1877
2. HIST 2112 The United States since 1877
3. INTA 1200 American Government in Comparative Perspective
4. POL 1101 Government of the United States
5. PUBP 3000 American Constitutional Issues

Select one of the following:

1. ECON 2100 Economic Analysis and Policy Problems
2. ECON 2101 The Global Economy
3. ECON 2105 Principles of Macroeconomics
4. ECON 2106 Principles of Microeconomics

Any SS (p. 97)
Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related work experience with classroom studies. The program is the fourth oldest of its kind in the world.

Students typically alternate between industrial assignments and classroom studies until they complete at least three terms of work (two of which must be fall or spring). Co-op students complete the same course work on campus that is completed by non-co-op students. Most co-op students begin the program as freshman or sophomores and are classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer's location.

Participants have the opportunity to develop career interests, gain hands-on work experience, develop human relation skills and earn a paycheck. Graduates of the program receive a bachelor's degree with the Cooperative Plan Designation.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, visit: http://career.gatech.edu/co-op.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Internships

The Undergraduate Professional Internship Program is for students who do not participate in the Cooperative Program, but want some career-related work experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, visit: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu), which complements a student's formal education with paid international work experience directly related to Materials Science and Engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of professional skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu

Research Option

The Materials Science and Engineering undergraduate program offers a Research Option that allows students to participate in undergraduate research in faculty laboratories. The words "Research Option in Materials Science and Engineering" will appear on the transcript of each student completing the requirements to indicate that the student has had a substantial, in-depth, research experience.

The requirements for the "Research Option" in Materials Science and Engineering are:

1. Selection of a faculty advisor and research topic in conjunction with the faculty advisor. The topic and expected scope of the project must be approved in advance by the MSE Undergraduate Curriculum Committee. A key criterion will be whether the research may lead to a publishable paper.

2. Completion of nine units (see item 3 below) of supervised research, over a period of at least two, but preferably three, terms. Research may be either for pay or credit. At least six credit hours must involve work on a single research project.

3. Registration in nine hours of undergraduate research courses MSE 2698 and MSE 4698 (for pay), or MSE 2699 and MSE 4699 (for credit). MSE 2699 or MSE 4699 can be used to satisfy the free elective requirements of the BS degree in MSE.

ME 1770 Introduction to Engineering Graphics and Visualization

MSE 3012 Thermal and Transport Properties of Materials
MSE 3220 Operations and Management Methods
MSE 3225 Rheology
MSE 3230 Polymer and Fiber Processing
MSE 4004 Materials in Electronic Applications
MSE 4010 Environmental Degradation
MSE 4025 Fiber Product Manufacturing
MSE 4140 Polymer Physics
MSE 4230 Industrial Ctls In MFG
MSE 4330 Fundamentals of Nanomaterials and Nanostructures
MSE 4335 Soft Nano and Bio Materials
MSE 4754 Electronics Packaging Assembly, Reliability, Thermal Management, and Test
MSE 4755 Electronic Packaging Substrate Fabrication
MSE 4790 Materials Selection and Design
MSE 4791 Mechanical Behavior of Composites
MSE 4793 Composite Materials and Processing

Free Electives

Free Electives 3,5 4

Total Credit Hours 132

Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

1. If PHYS 2231 is taken, extra hour goes to Free Electives.
2. If PHYS 2232 is taken, extra hour goes to Free Electives.
3. MATH 1113 and PHYS 2XXX/AP credit are not allowed.
4. Allow CS 4001 or CS 4002 or HTS 2084 or HTS 3032 or INTA 2030 or LMC 3318 or PHIL 3105 or PHIL 3109 or PHIL 3127 or PHIL 4176 or PUBP 3600
5. ME 1770 is recommended as a Free Elective, depending upon whether the student wishes to enter the work force directly after graduation or intends to pursue a graduate degree. Consultation with the academic advisor is highly recommended.

Students who participate in the Cooperative Program or the Research Option in Materials Science and Engineering are:
4. Completion of LMC 4701 Undergraduate Research Proposal Writing (one hr. credit typically taken during the first or second semester of research). The student should write a Research Proposal while taking this class.

5. Obtain approval of the Research Proposal from the MSE Undergraduate Curriculum Committee. This is required before taking LMC 4702.

6. Completion of LMC 4702 (one hr. credit). This course is taken during the term in which the thesis is written.

7. Have research thesis approved by the faculty advisor and one other MSE faculty member approved by the MSE Undergraduate Curriculum Committee. The thesis will be evaluated on the basis of publishability, originality, creativity, and clarity. The MSE Undergraduate Curriculum Committee must approve each “Research Option” awarded under the BS MSE program.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

BS/MS Option

The School of Materials Science and Engineering (MSE) offers a BS/MS program for outstanding students who want to obtain a graduate degree in addition to their BS degree. The advanced degree provides the additional knowledge and specialization needed to further facilitate a technical career. As a participant in this program, students have an opportunity to work with individual faculty members on projects in one of the traditional or innovative research areas in MSE. See www.mse.gatech.edu (http://www.mse.gatech.edu) for more details.

Current undergraduate students may participate in the BS/MS Program offered by the School. Georgia Tech undergraduate students may be admitted into the program after completing a minimum of 30 semester credit hours (and no more than 75 hours) at Georgia Tech and have a GPA of 3.5 or higher at time of application. Both the application fee and the GRE test score are waived. Students need to maintain at least a 3.0 GPA when receiving the B.S. degree in order to be converted into graduate student status and must continue immediately into the M.S. program in order to qualify for the 6 semester-hour “Graduate Course Credit” option, http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/undergraduate-students-taking-graduate-courses/.

Bachelor of Science in Materials Science and Engineering - Polymer and Fiber Materials

The materials science and engineering undergraduate program offers a BS degree in Materials Science and Engineering with concentrations in Polymer and Fiber materials, Structural and Functional materials and Biomaterials. This versatile degree combines instruction in the fundamentals of ceramic, metallurgy, and polymer and fiber science and engineering with specialized knowledge and skills, including nano-, bio-, composite, electronic, and optical and magnetic materials. Freshmen and sophomores study basic chemistry, physics, mathematics, and engineering science and are introduced to the fundamental aspects of materials. Two English courses taken in the freshman year provide the foundation for further instruction in communications that is integrated throughout the curriculum. Juniors and seniors take courses in the engineering and science of materials including the details of materials processing, structure, and properties. The curriculum culminates in a two-course senior design sequence in which students work in teams to design a material, component, or process using previously learned skills and knowledge.

Five concentration related courses provide flexibility that allow students in their junior-senior years to focus in a particular area of materials. Five hours of free electives allows students to further specialize or pursue other interests. Courses in the humanities/fine arts and social sciences ensure that graduates appreciate the role of engineering in today's global society.

Mission Statement

The mission of the Bachelor of Science in Materials Science and Engineering program is to produce graduates well-rounded in the fundamentals of materials science and engineering who are prepared to meet the related needs of industry and government, and prepared for advanced academic study in materials related disciplines. This will be accomplished by providing students with up-to-date knowledge and skills through coursework, modern laboratories, opportunities to conduct cutting edge research with distinguished faculty mentors, and opportunities to participate in leadership and service activities.

Program Educational Objectives

The general educational objective of the Materials Science and Engineering undergraduate program is to provide its graduates with the fundamental knowledge to function effectively in materials-related positions in industry, government, and academics. The following specific Program Educational Objectives were established to ensure the attainment of this general objective consistent with the visions and missions of Georgia Tech and the College of Engineering, and ABET Criteria for Evaluating Engineering Programs:

1. To produce graduates with the fundamental knowledge and skills to function effectively in materials science and engineering related positions in industry and government, or to successfully pursue advanced study.

2. To produce graduates who advance in their chosen fields.

3. To produce graduates who function effectively in the global arena.

Grade Requirements

In order to encourage students to explore subjects of personal or professional interest without jeopardizing their GPA, the Institute has a limited pass/fail option. The policy of the School of Materials Science and Engineering regarding the use of pass/fail hours for credit is as follows: no course specifically required by name and number by the materials science and engineering curriculum may be taken on a pass/fail basis and used toward graduation, unless the course is offered only on that basis.

In cases of deficiencies obtained for the intended graduation term, refer to Section VII (on Deficiencies) of the Rules and Regulations published in the on-line General Catalog.

Transfer Students

Students transferring into Materials Science and Engineering from another university or major should meet with the Associate Chair for Undergraduate Programs to discuss possible course substitutions and plan their remaining coursework.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1315</td>
<td>Survey of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>2</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>MSE 1111</td>
<td>Introduction to Materials Science and Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2021</td>
<td>Materials Characterization</td>
<td>4</td>
</tr>
<tr>
<td>MSE 3001</td>
<td>Chemical Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3002</td>
<td>Structural Transformations in Metallic, Ceramic, and Polymeric Systems</td>
<td></td>
</tr>
<tr>
<td>MSE 3005</td>
<td>Mechanical Behavior of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3015</td>
<td>Electrical, Optical and Magnetic Properties</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3021</td>
<td>Materials Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>MSE 3025</td>
<td>Statistics and Numerical Methods in Materials Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3210</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4022</td>
<td>Materials Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>MSE 4410</td>
<td>Capstone Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4420</td>
<td>Capstone Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4775</td>
<td>Polymer Science and Engineering I: Formation and Properties</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Non-Major Requirements</td>
<td></td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MSE 3225</td>
<td>Rheology</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3230</td>
<td>Polymer and Fiber Processing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4140</td>
<td>Polymer Physics</td>
<td>3</td>
</tr>
<tr>
<td>Choose two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and Visualization</td>
<td></td>
</tr>
<tr>
<td>MSE 3220</td>
<td>Operations and Management Methods</td>
<td></td>
</tr>
<tr>
<td>MSE 4025</td>
<td>Fiber Product Manufacturing</td>
<td></td>
</tr>
<tr>
<td>MSE 4230</td>
<td>Industrial Ctrl's In MFG</td>
<td></td>
</tr>
<tr>
<td>MSE 4335</td>
<td>Soft Nano and Bio Materials</td>
<td></td>
</tr>
<tr>
<td>MSE 4790</td>
<td>Materials Selection and Design</td>
<td></td>
</tr>
<tr>
<td>MSE 4791</td>
<td>Mechanical Behavior of Composites</td>
<td></td>
</tr>
<tr>
<td>MSE 4793</td>
<td>Composite Materials and Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

1. If PHYS 2231 is taken, extra hour goes to Free Electives.
2. If PHYS 2232 is taken, extra hour goes to Free Electives.
3. MATH 1113 and PHYS 2XXX (AP credit) are not allowed.
4. Allow CS 4001 or CS 4002 or HTS 2084 or HTS 3032 or INTA 2030 or LMC 3318 or PHIL 3105 or PHIL 3109 or PHIL 3127 or PHIL 4176 or PUBP 3600
5. ME 1770 is recommended as a Free Elective, depending upon whether the student wishes to enter the work force directly after graduation or intends to pursue a graduate degree. Consultation with the academic advisor is highly recommended.

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related work experience with classroom studies. The program is the fourth oldest of its kind in the world.

Students typically alternate between industrial assignments and classroom studies until they complete at least three terms of work (two of which must be fall or spring). Co-op students complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as freshman or sophomores and
are can be classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer's location.

Participants have the opportunity to develop career interests, gain hands-on work experience, develop human relation skills and earn a paycheck. Graduates of the program receive a bachelor’s degree with the Cooperative Plan Designation.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, visit: http://career.gatech.edu/co-op.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Internships

The Undergraduate Professional Internship Program is for students who do not participate in the Cooperative Program, but want some career-related work experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, visit: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu), which complements a student’s formal education with paid international work experience directly related to Materials Science and Engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of professional skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Research Option

The Materials Science and Engineering undergraduate program offers a Research Option that allows students to participate in undergraduate research in faculty laboratories. The words "Research Option in Materials Science and Engineering" will appear on the transcript of each student completing the requirements to indicate that the student has had a substantial, in-depth, research experience.

The requirements for the "Research Option" in Materials Science and Engineering are:

1. Selection of a faculty advisor and research topic in conjunction with the faculty advisor. The topic and expected scope of the project must be approved in advance by the MSE Undergraduate Curriculum Committee. A key criterion will be whether the research may lead to a publishable paper.
2. Completion of nine units (see item 3 below) of supervised research, over a period of at least two, but preferably three, terms. Research may be either for pay or credit. At least six credit hours must involve work on a single research project.
3. Registration in nine hours of undergraduate research courses MSE 2698 and MSE 4698 (for pay), or MSE 2699 and MSE 4699 (for credit). MSE 2699 or MSE 4699 can be used to satisfy the free elective requirements of the BS degree in MSE.
4. Completion of LMC 4701 Undergraduate Research Proposal Writing (one hr. credit typically taken during the first or second semester of research). The student should write a Research Proposal while taking this class.
5. Obtain approval of the Research Proposal from the MSE Undergraduate Curriculum Committee. This is required before taking LMC 4702.
6. Completion of LMC 4702 (one hr. credit). This course is taken during the term in which the thesis is written.
7. Have research thesis approved by the faculty advisor and one other MSE faculty member approved by the MSE Undergraduate Curriculum Committee. The thesis will be evaluated on the basis of publishability, originality, creativity, and clarity. The MSE Undergraduate Curriculum Committee must approve each "Research Option" awarded under the BS MSE program.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

BS/MS Option

The School of Materials Science and Engineering (MSE) offers a BS/MS program for outstanding students who want to obtain a graduate degree in addition to their BS degree. The advanced degree provides the additional knowledge and specialization needed to further facilitate a technical career. As a participant in this program, students have an opportunity to work with individual faculty members on projects in one of the traditional or innovative research areas in MSE. See www.mse.gatech.edu (http://www.mse.gatech.edu) for more details.

Current undergraduate students may participate in the BS/MS Program offered by the School. Georgia Tech undergraduate students may be admitted into the program after completing a minimum of 30 semester credit hours (and no more than 75 hours) at Georgia Tech and have a GPA of 3.5 or higher at time of application. Both the application fee and the GRE test score are waived. Students need to maintain at least a 3.0 GPA when receiving the B.S. degree in order to be converted into graduate student status and must continue immediately into the M.S. program in order to qualify for the 6 semester-hour “Graduate Course Credit” option, http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/undergraduate-students-taking-graduate-courses/.

Bachelor of Science in Materials Science and Engineering - Structural and Functional Materials

The materials science and engineering undergraduate program offers a BS degree in Materials Science and Engineering with concentrations in Polymer and Fiber materials, Structural and Functional materials and Biomaterials. This versatile degree combines instruction in the fundamentals of ceramic, metallurgy, and polymer and fiber science and engineering with specialized knowledge and skills, including nano-, bio-, composite, electronic, and optical and magnetic materials. Freshmen
and sophomores study basic chemistry, physics, mathematics, and engineering science and are introduced to the fundamental aspects of materials. Two English courses taken in the freshman year provide the foundation for further instruction in communications that is integrated throughout the curriculum. Juniors and seniors take courses in the engineering and science of materials including the details of materials processing, structure, and properties. The curriculum culminates in a two-course senior design sequence in which students work in teams to design a material, component, or process using previously learned skills and knowledge.

Five concentration related courses provide flexibility that allow students in their junior-senior years to focus in a particular area of materials. Five hours of free electives allows students to further specialize or pursue other interests. Courses in the humanities/fine arts and social sciences ensure that graduates appreciate the role of engineering in today's global society.

Mission Statement
The mission of the Bachelor of Science in Materials Science and Engineering program is to produce graduates well-rounded in the fundamentals of materials science and engineering who are prepared to meet the related needs of industry and government, and prepared for advanced academic study in materials related disciplines. This will be accomplished by providing students with up-to-date knowledge and skills through coursework, modern laboratories, opportunities to conduct cutting edge research with distinguished faculty mentors, and opportunities to participate in leadership and service activities.

Program Educational Objectives
The general educational objective of the Materials Science and Engineering undergraduate program is to provide its graduates with the fundamental knowledge to function effectively in materials-related positions in industry, government, and academics. The following specific Program Educational Objectives were established to ensure the attainment of this general objective consistent with the visions and missions of Georgia Tech and the College of Engineering, and ABET Criteria for Evaluating Engineering Programs:

1. To produce graduates with the fundamental knowledge and skills to function effectively in materials science and engineering related positions in industry and government, or to successfully pursue advanced study.
2. To produce graduates who advance in their chosen fields.
3. To produce graduates who function effectively in the global arena.

Grade Requirements
In order to encourage students to explore subjects of personal or professional interest without jeopardizing their GPA, the Institute has a limited pass/fail option. The policy of the School of Materials Science and Engineering regarding the use of pass/fail hours for credit is as follows: no course specifically required by name and number by the materials science and engineering curriculum may be taken on a pass/fail basis and used toward graduation, unless the course is offered only on that basis.

In cases of deficiencies obtained for the intended graduation term, refer to Section VII (on Deficiencies) of the Rules and Regulations published in the on-line General Catalog.

Transfer Students
Students transferring into Materials Science and Engineering from another university or major should meet with the Associate Chair for Undergraduate Programs to discuss possible course substitutions and plan their remaining coursework.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS</td>
<td>(p. 97)</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 1211K</td>
<td>Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1212K</td>
<td>Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1315</td>
<td>Survey of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 1111</td>
<td>Introduction to Materials Science and Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2021</td>
<td>Materials Characterization</td>
<td>4</td>
</tr>
<tr>
<td>MSE 3001</td>
<td>Chemical Thermodynamics of Materials</td>
<td>3</td>
</tr>
</tbody>
</table>
Mechanical Behavior of Materials 2
Materials Laboratory I 2
Statistics and Numerical Methods in Materials Science and Engineering 3
Transport Phenomena 3
Materials Laboratory II 2
Capstone Engineering Design I 3
Capstone Engineering Design II 3
Polymer Science and Engineering I: Formation and Properties 3

Non-Major Requirements
Statics 2
Mechanics of Deformable Bodies 3
Electronics 2
Instrumentation and Electronics Lab 1
Essentials of Engineering Economy 1

Structural & Functional Materials Concentration
Ceramic Materials: Properties, Processing, Applications 3
Processing and Applications of Engineering Alloys 3
Environmental Degradation 3
Introduction to Engineering Graphics and Visualization 1

Select two of the following: 6
Thermal and Transport Properties of Materials 3
Operations and Management Methods 3
Rheology 3
Polymer and Fiber Processing 3
Materials in Electronic Applications 3
Fiber Product Manufacturing 3
Polymer Physics 3
Industrial Controls in MFG 3
Fundamentals of Nanomaterials and Nanostructures 3
Soft Nano and Bio Materials 3
Introduction to Biomaterials 3
Electronics Packaging Assembly, Reliability, Thermal Management, and Test 3
Electronic Packaging Substrate Fabrication 3
Materials Selection and Design 3
Mechanical Behavior of Composites 3
Composite Materials and Processing 3

Free Electives
Free Electives 3.5

Total Credit Hours 132

Pass-fail only allowed for Free Electives, Humanities, and Social Sciences.

Cooperative Plan
Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related work experience with classroom studies. The program is the fourth oldest of its kind in the world.

Students typically alternate between industrial assignments and classroom studies until they complete at least three terms of work (two of which must be fall or spring). Co-op students complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as freshman or sophomores and are classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer’s location.

Participants have the opportunity to develop career interests, gain hands-on work experience, develop human relation skills and earn a paycheck. Graduates of the program receive a bachelor’s degree with the Cooperative Plan Designation.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, visit: http://career.gatech.edu/co-op.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Internships
The Undergraduate Professional Internship Program is for students who do not participate in the Cooperative Program, but want some career-related work experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, visit: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu), which complements a student’s formal education with paid international work experience directly related to Materials Science and Engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of professional skills.
For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Research Option

The Materials Science and Engineering undergraduate program offers a Research Option that allows students to participate in undergraduate research in faculty laboratories. The words "Research Option in Materials Science and Engineering" will appear on the transcript of each student completing the requirements to indicate that the student has had a substantial, in-depth, research experience.

The requirements for the "Research Option" in Materials Science and Engineering are:

1. Selection of a faculty advisor and research topic in conjunction with the faculty advisor. The topic and expected scope of the project must be approved in advance by the MSE Undergraduate Curriculum Committee. A key criterion will be whether the research may lead to a publishable paper.

2. Completion of nine units (see item 3 below) of supervised research, over a period of at least two, but preferably three, terms. Research may be either for pay or credit. At least six credit hours must involve work on a single research project.

3. Registration in nine hours of undergraduate research courses MSE 2698 and MSE 4698 (for pay), or MSE 2699 and MSE 4699 (for credit). MSE 2699 or MSE 4699 can be used to satisfy the free elective requirements of the BS degree in MSE.

4. Completion of LMC 4701 Undergraduate Research Proposal Writing (one hr. credit typically taken during the first or second semester of research). The student should write a Research Proposal while taking this class.

5. Obtain approval of the Research Proposal from the MSE Undergraduate Curriculum Committee. This is required before taking LMC 4702.

6. Completion of LMC 4702 (one hr. credit). This course is taken during the term in which the thesis is written.

7. Have research thesis approved by the faculty advisor and one other MSE faculty member approved by the MSE Undergraduate Curriculum Committee. The thesis will be evaluated on the basis of publishability, originality, creativity, and clarity. The MSE Undergraduate Curriculum Committee must approve each "Research Option" awarded under the BS MSE program.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

BS/MS Option

The School of Materials Science and Engineering (MSE) offers a BS/MS program for outstanding students who want to obtain a graduate degree in addition to their BS degree. The advanced degree provides the additional knowledge and specialization needed to further facilitate a technical career. As a participant in this program, students have an opportunity to work with individual faculty members on projects in one of the traditional or innovative research areas in MSE. See www.mse.gatech.edu (http://www.mse.gatech.edu) for more details.

Current undergraduate students may participate in the BS/MS Program offered by the School. Georgia Tech undergraduate students may be admitted into the program after completing a minimum of 30 semester credit hours (and no more than 75 hours) at Georgia Tech and have a GPA of 3.5 or higher at time of application. Both the application fee and the GRE test score are waived. Students need to maintain at least a 3.0 GPA when receiving the B.S. degree in order to be converted into graduate student status and must continue immediately into the M.S. program in order to qualify for the 6 semester-hour “Graduate Course Credit” option, http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/undergraduate-students-taking-graduate-courses/.

Bachelor of Science in Materials Science and Engineering

The materials science and engineering undergraduate program offers a BS degree in Materials Science and Engineering with concentrations in Polymer and Fiber materials, Structural and Functional materials, and Biomaterials. This versatile degree combines instruction in the fundamentals of ceramic, metallurgy, and polymer and fiber science and engineering with specialized knowledge and skills, including nano-, bio-, composite, electronic, and optical and magnetic materials. Freshmen and sophomores study basic chemistry, physics, mathematics, and engineering science and are introduced to the fundamental aspects of materials. Two English courses taken in the freshman year provide the foundation for further instruction in communications that is integrated throughout the curriculum. Juniors and seniors take courses in the engineering and science of materials including the details of materials processing, structure, and properties. The curriculum culminates in a two-course senior design sequence in which students work in teams to design a material, component, or process using previously learned skills and knowledge.

Five concentration related courses provide flexibility that allow students in their junior-senior years to focus in a particular area of materials. Five hours of free electives allows students to further specialize or pursue other interests. Courses in the humanities/fine arts and social sciences ensure that graduates appreciate the role of engineering in today's global society.

Mission Statement

The mission of the Bachelor of Science in Materials Science and Engineering program is to produce graduates well-rounded in the fundamentals of materials science and engineering who are prepared to meet the related needs of industry and government, and prepared for advanced academic study in materials related disciplines. This will be accomplished by providing students with up-to-date knowledge and skills through coursework, modern laboratories, opportunities to conduct cutting edge research with distinguished faculty mentors, and opportunities to participate in leadership and service activities.

Program Educational Objectives

The general educational objective of the Materials Science and Engineering undergraduate program is to provide its graduates with the fundamental knowledge to function effectively in materials-related positions in industry, government, and academics. The following specific Program Educational Objectives were established to ensure the attainment of this general objective consistent with the visions and
missions of Georgia Tech and the College of Engineering, and ABET Criteria for Evaluating Engineering Programs:

1. To produce graduates with the fundamental knowledge and skills to function effectively in materials science and engineering related positions in industry and government, or to successfully pursue advanced study.
2. To produce graduates who advance in their chosen fields.
3. To produce graduates who function effectively in the global arena.

Grade Requirements

In order to encourage students to explore subjects of personal or professional interest without jeopardizing their GPA, the Institute has a limited pass/fail option. The policy of the School of Materials Science and Engineering regarding the use of pass/fail hours for credit is as follows: no course specifically required by name and number by the materials science and engineering curriculum may be taken on a pass/fail basis and used toward graduation, unless the course is offered only on that basis.

In cases of deficiencies obtained for the intended graduation term, refer to Section VII (on Deficiencies) of the Rules and Regulations published in the on-line General Catalog.

Transfer Students

Students transferring into Materials Science and Engineering from another university or major should meet with the Associate Chair for Undergraduate Programs to discuss possible course substitutions and plan their remaining coursework.

- Bachelor of Science in Materials Science and Engineering - Biomaterials (p. 426)
- Bachelor of Science in Materials Science and Engineering - Polymer and Fiber Materials (p. 429)
- Bachelor of Science in Materials Science and Engineering - Structural and Functional Materials (p. 431)

Bachelor of Science in Mathematics - Applied Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>Core A - Essential Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Core B - Institutional Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Core C - Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Core D - Science, Math, & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 15 Introduction to Differential Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 1553</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 1553</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>Core E - Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Core F - Courses Related to Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2553</td>
<td>Honors Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2556</td>
<td>Honors Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 2106</td>
<td>Foundations of Mathematical Proof</td>
<td>3</td>
</tr>
<tr>
<td>Bridging Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3235</td>
<td>Probability Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3406</td>
<td>A Second Course in Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Upper Level Foundation Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4107</td>
<td>Introduction to Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4640</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4347</td>
<td>Introduction to Partial Differential Equations I</td>
<td></td>
</tr>
<tr>
<td>MATH 4541</td>
<td>Dynamics and Bifurcations I</td>
<td>3</td>
</tr>
<tr>
<td>Select nine credits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4348</td>
<td>Introduction to Partial Differential Equations II</td>
<td></td>
</tr>
<tr>
<td>MATH 4542</td>
<td>Dynamics and Bifurcations II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4580</td>
<td>Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4581</td>
<td>Advanced Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4641</td>
<td>Numerical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4755</td>
<td>Mathematical Biology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4777</td>
<td>Vector and Parallel Scientific Computation</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4782</td>
<td>Quantum Information and Quantum Computing</td>
<td>3</td>
</tr>
<tr>
<td>CX 4140</td>
<td>Computational Modeling Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CX 4240</td>
<td>Introduction to Computing for Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME 3000-level or higher courses</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>
Pass-fail only allowed for Free Electives.

Four courses from Group A list must be completed. Student may select MATH elective from Group B if four courses from Group A are complete, otherwise, the Math elective must come from Group A. If student does not complete four courses from Group A list from concentration requirements and MATH elective, then the course(s) must be completed for free electives.

Group A list: MATH 3236, MATH 4022, MATH 4032, MATH 4108, MATH 4150, MATH 4221, MATH 4261, MATH 4318, MATH 4347, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640, MATH 4699, MATH 4755, MATH 4777, MATH 4801, MATH 4802, CS 3510/CS 3511, CS 4510, CS 4540, CS 4641, CX 4140 CX 4240, ISYE 3133, ISYE 4133.

1. If PHYS 2231 is taken, extra hour goes toward Free Electives
2. C-minimum required
3. MATH 4699 must be an approved topic and can be used up to 6 hours.
4. CEE 3770/ISYE 3770, CS 4001, and CS 4002 are not allowed to be used here.
5. Two courses must be from the same school.
6. MATH 1113, MATH 3670 CEE 3770, and ISYE 3770 are restricted from free electives.

Bachelor of Science in Mathematics - Business Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MATH 1555</td>
<td>Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1561</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1571</td>
<td>Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1581</td>
<td>Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1591</td>
<td>Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2111</td>
<td>The United States to 1877</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select twelve credits:

- MATH 3236 Statistical Theory
- MATH 4022 Introduction to Graph Theory
- MATH 4032 Combinatorial Analysis
- MATH 4108 Introduction to Abstract Algebra II
- MATH 4150 Introduction to Number Theory
- MATH 4221 Probability with Applications I
- MATH 4261 Mathematical Statistics I
- MATH 4318 Analysis II
- MATH 4347 Introduction to Partial Differential Equations I
- MATH 4431 Introduction to Algebraic Topology
- MATH 4441 Differential Geometry
- MATH 4541 Dynamics and Bifurcations I
- MATH 4640 Numerical Analysis I

Select nine credits (or, select nine credits from previous list):

- MATH 4080 Senior Project I
- MATH 4090 Senior Project II
- MATH 4222 Probability with Applications II
- MATH 4255 Monte Carlo Methods
- MATH 4262 Mathematical Statistics I
- MATH 4280 Elements of Information Theory
- MATH 4348 Introduction to Partial Differential Equations II
- MATH 4542 Dynamics and Bifurcations II
- MATH 4580 Linear Programming
- MATH 4581 Advanced Engineering Mathematics
- MATH 4641 Numerical Analysis II
- MATH 4699 Undergraduate Research I
- MATH 4755 Mathematical Biology
MATH 4777 Vector and Parallel Scientific Computation
MATH 4782 Quantum Information and Quantum Computing
MATH 4801 Special Topics
MATH 4802 Special Topics
CS 3510 Design and Analysis of Algorithms
or CS 351 Design and Analysis of Algorithms, Honors
CS 4510 Automata and Complexity Theory
CS 4540 Advanced Algorithms
CS 4641 Machine Learning
CX 4140 Computational Modeling Algorithms
CS 4240 Compilers, Interpreters, and Program Analyzers
ISYE 3133 Engineering Optimization
ISYE 4133 Advanced Optimization

Engineering or Science Electives
BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME 3000-level or higher courses 4,5

Business Option
ACCT 2101 Accounting I: Financial Accounting
or MGT 3000 Accounting for Decision Making
PSYC 2220 Industrial/Organizational Psychology
or MGT 310 Organizational Behavior
or MGT 315 Principles of Management
Select 6 credit hours:
MGT 3062 Financial Management
MGT 3078 Finance and Investments
MGT 3300 Marketing Management I
MGT 3660 International Business
MGT 4015 Advanced Managerial Accounting
MGT 4026 Financial Reporting and Analysis I
MGT 4028 Financial Analysis and Reporting of Technology Firms
MGT 4030 International Accounting
MGT 4190 Strategic Quality Management and Competitiveness
MGT 4191 The Entrepreneurship Forum
MGT 4192 Impact Speaker Series Forum
MGT 4193 Servant Leadership, Values & Systems
MGT 4194 Social Enterprise and Entrepreneurship
MGT 4303 Personal Selling and Sales Management
MGT 4304 Strategic Brand Management
MGT 4307 Strategic Marketing
MGT 4335 International Marketing
MGT 4610 Law, Management, and Economics
MGT 4670 Entrepreneurship

Free Electives
Free Electives 6
Select 6 credit hours:
MATH 4080/MATH 4090, MATH 4222, MATH 4255, MATH 4262, MATH 4280, MATH 4348, MATH 4580, MATH 4581, MATH 4641, MATH 4699, MATH 4755, MATH 4777, MATH 4801, MATH 4802, CS 3510/CS 3511, CS 4510, CS 4540, CS 4641, CX 4140, CX 4240, ISYE 3133, ISYE 4133.

Pass-fail only allowed for Free Electives.

Four courses from Group A list must be completed. Student may select MATH elective from Group B if four courses from Group A are complete, otherwise, the Math elective must come from Group A. If student does not complete four courses from Group A list from concentration requirements and MATH elective, then the course(s) must be completed for free electives.

Group A list: MATH 3236, MATH 4022, MATH 4032, MATH 4108, MATH 4150, MATH 4221, MATH 4261, MATH 4318, MATH 4347, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640.

Group B list: MATH 4080/MATH 4090, MATH 4222, MATH 4255, MATH 4262, MATH 4280, MATH 4348, MATH 4580, MATH 4581, MATH 4641, MATH 4699, MATH 4755, MATH 4777, MATH 4801, MATH 4802, CS 3510/CS 3511, CS 4510, CS 4540, CS 4641, CX 4140, CX 4240, ISYE 3133, ISYE 4133.

1 If PHYS 2231 is taken, extra hour goes toward Free Electives
2 C-minimum required
3 MATH 4699 must be an approved topic and can be used up to 6 hours.
4 CEE 3770/ISYE 3770, CS 4001, and CS 4002 are not allowed to be used here.
5 MATH 1113, MATH 3670, CEE 3770, and ISYE 3770 are restricted from free electives.
6 Two courses must be from the same school.

Bachelor of Science in Mathematics - Discrete Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Introduction to Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 15</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>
| Core E - Social Sciences
Select one of the following:
| HIST 2111 | The United States to 1877 | 3 |
| HIST 2112 | The United States since 1877 | |
| INTA 1200 | American Government in Comparative Perspective | |
| POL 1101 | Government of the United States | |
| PUBP 3000 | American Constitutional Issues | 9 |

Total Credit Hours 122

Georgia Institute of Technology 437
Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2561</td>
<td>Honors Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2562</td>
<td>Honors Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 2106</td>
<td>Foundations of Mathematical Proof</td>
<td>3</td>
</tr>
</tbody>
</table>

Bridging Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3235</td>
<td>Probability Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3406</td>
<td>A Second Course in Linear Algebra</td>
<td>3</td>
</tr>
</tbody>
</table>

Upper Level Foundation Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4107</td>
<td>Introduction to Abstract Algebra I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis I</td>
<td>2</td>
</tr>
</tbody>
</table>

Discrete Mathematics Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3510</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3511</td>
<td>Design and Analysis of Algorithms, Honors</td>
<td></td>
</tr>
<tr>
<td>MATH 4022</td>
<td>Introduction to Graph Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4032</td>
<td>Combinatorial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 45</td>
<td>Linear Programming</td>
<td></td>
</tr>
</tbody>
</table>

Select six hours:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4150</td>
<td>Introduction to Number Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>CS 4510</td>
<td>Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td>CS 4540</td>
<td>Advanced Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4133</td>
<td>Advanced Optimization</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematics Elective

Select a course from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4640</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineering or Science Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93)

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 155</td>
<td>Introduction to Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 155</td>
<td>Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 155</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td>2</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2561</td>
<td>Honors Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2562</td>
<td>Honors Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 2106</td>
<td>Foundations of Mathematical Proof</td>
<td>3</td>
</tr>
</tbody>
</table>

Bridging Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
</tbody>
</table>
Upper Level Foundation Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4107</td>
<td>Introduction to Abstract Algebra I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

General Mathematics

Select twelve credits:

- MATH 3236 Statistical Theory
- MATH 4022 Introduction to Graph Theory
- MATH 4032 Combinatorial Analysis
- MATH 4107 Introduction to Abstract Algebra I
- MATH 4110 Probability with Applications I
- MATH 4221 Probability with Applications II
- MATH 4261 Mathematical Statistics I
- MATH 4317 Analysis II
- MATH 4320 Complex Analysis II
- MATH 4431 Introductory Topology
- MATH 4432 Introduction to Algebraic Topology
- MATH 4441 Differential Geometry
- MATH 4541 Dynamics and Bifurcations I
- MATH 4640 Numerical Analysis I

Select nine credits (or, select nine credits from previous list):

- MATH 4080 Senior Project I
- MATH 4090 Senior Project II
- MATH 4222 Probability with Applications II
- MATH 4255 Monte Carlo Methods
- MATH 4262 Mathematical Statistics II
- MATH 4280 Elements of Information Theory
- MATH 4341 Introduction to Partial Differential Equations I
- MATH 4342 Introduction to Algebraic Topology
- MATH 4441 Differential Geometry
- MATH 4541 Dynamics and Bifurcations II
- MATH 4580 Linear Programming
- MATH 4581 Advanced Engineering Mathematics
- MATH 4640 Numerical Analysis II
- MATH 4699 Undergraduate Research
- MATH 4755 Mathematical Biology
- MATH 4777 Vector and Parallel Scientific Computation
- MATH 4782 Quantum Information and Quantum Computing
- MATH 4801 Special Topics
- MATH 4802 Special Topics
- CS 3510 Design and Analysis of Algorithms
- or CS 3511 Design and Analysis of Algorithms, Honors
- CS 4510 Automata and Complexity Theory
- CS 4540 Advanced Algorithms
- CS 4641 Machine Learning
- CX 4140 Computational Modeling Algorithms
- CX 4240 Introduction to Computing for Data Analysis
- ISYE 3133 Engineering Optimization
- ISYE 4133 Advanced Optimization

Free Electives

Free Electives 6

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

Four courses from Group A list must be completed. Student may select MATH elective from Group B if four courses from Group A are complete, otherwise, the Math elective must come from Group A. If student does not complete four courses from Group A list from concentration requirements and MATH elective, then the course(s) must be completed for free electives.

Group A list: MATH 3236, MATH 4022, MATH 4032, MATH 4108, MATH 4110, MATH 4221, MATH 4261, MATH 4318, MATH 4347, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640.

Group B list: MATH 4080/MATH 4090, MATH 4222, MATH 4255, MATH 4262, MATH 4280, MATH 4317, MATH 4320, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640, MATH 4699.

1. If PHYS 2231 is taken, extra hour goes toward Free Electives
2. C-minimum required
3. MATH 4699 must be an approved topic and can be used up to 6 hours.
4. CEE 3770/ISYE 3770, CS 4001, and CS 4002 are not allowed to be used here.
5. Two courses must be from the same school.
6. MATH 1113, MATH 3670, CEE 3770, and ISYE 3770 are restricted from free electives.

Bachelor of Science in Mathematics - Probability and Statistics

Code	**Title**	**Credit Hours**
APPH 1040 | Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health | 2

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93) | 6 |

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Introduction to Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 1555</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Engineering or Science Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME</td>
<td>3000-level or higher courses</td>
</tr>
<tr>
<td>ISYE 3133</td>
<td>Engineering Optimization</td>
</tr>
<tr>
<td>ISYE 4133</td>
<td>Advanced Optimization</td>
</tr>
</tbody>
</table>

Wellness

APPH 1040 | Scientific Foundations of Health or APPH 10 | 2 |
Bachelor of Science in Mathematics - Pure Mathematics

Core E - Social Sciences
Select one of the following:
- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Any SS (p. 97) 9

Core F - Courses Related to Major
- CS 1331 Introduction to Object Oriented Programming 3
- Lab Science 4
- MATH 2551 Multivariable Calculus 4
 or MATH 2561 Honors Multivariable Calculus
- MATH 2552 Differential Equations 4
 or MATH 2562 Honors Differential Equations
- MATH 2106 Foundations of Mathematical Proof 3

Bridging Courses
- MATH 3012 Applied Combinatorics 3
- MATH 3235 Probability Theory 3
- MATH 3406 A Second Course in Linear Algebra 3

Upper Level Foundation Courses
- MATH 4107 Introduction to Abstract Algebra I 2
- MATH 4317 Analysis I 2
- MATH 4320 Complex Analysis 2

Probability and Statistics Concentration
- MATH 3236 Statistical Theory 3
 or MATH 426 Mathematical Statistics I
- MATH 4221 Probability with Applications I 3

Select twelve credits:
- MATH 4222 Probability with Applications II
- MATH 4255 Monte Carlo Methods
- MATH 4262 Mathematical Statistics I
- MATH 4280 Elements of Information Theory
- MATH 4580 Linear Programming
- MATH 4699 Undergraduate Research 3
- ISYE 4133 Advanced Optimization
- CX 4240 Introduction to Computing for Data Analysis

Mathematics Elective
3

Engineering or Science Electives
- BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME 3000-level or higher courses 4
 or MATH 4699 must be an approved topic related to concentration and can only be used once.

Free Electives
Free Electives 6
11

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

Four courses from Group A list must be completed. Student may select MATH elective from Group B if four courses from Group A are complete, otherwise, the Math elective must come from Group A. If student does not complete four courses from Group A list from concentration requirements and MATH elective, then the course(s) must be completed for free electives.

Group A list: MATH 3236, MATH 4022, MATH 4032, MATH 4108, MATH 4150, MATH 4221, MATH 4261, MATH 4318, MATH 4347, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640.

Group B list: MATH 4080/MATH 4090, MATH 4222, MATH 4255, MATH 4262, MATH 4280, MATH 4348, MATH 4542, MATH 4580, MATH 4581, MATH 4641, MATH 4699, MATH 4755, MATH 4777, MATH 4782, MATH 4801, MATH 4802, CS 3510/CS 3511, CS 4510, CS 4540, CS 4641, CX 4140, CX 4240, ISYE 3133, ISYE 4133.

1 If PHYS 2231 is taken, extra hour goes toward Free Electives
2 C-minimum required
3 MATH 4699 must be an approved topic related to concentration and can only be used once.
4 CEE 3770/ISYE 3770, CS 4001, and CS 4002 are not allowed to be used here.
5 Two courses must be from the same school.
6 MATH 1113, MATH 3670, CEE 3770, and ISYE 3770 restricted from free electives.

Bachelor of Science in Mathematics - Pure Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 151</td>
<td>Introduction to Differential Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 155</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 155</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
</tbody>
</table>
Lab Science 4
MATH 2551 Multivariable Calculus 4
or MATH 2561 Honors Multivariable Calculus 4
MATH 2552 Differential Equations 4
or MATH 2562 Honors Differential Equations 4
MATH 2106 Foundations of Mathematical Proof 3

Bridging Courses
MATH 3012 Applied Combinatorics 3
MATH 3235 Probability Theory 3
MATH 3406 A Second Course in Linear Algebra 3

Upper Level Foundation Courses
MATH 4107 Introduction to Abstract Algebra I 2 3
MATH 4317 Analysis I 2 3
MATH 4320 Complex Analysis 2 3

Pure Mathematics Concentration
MATH 4318 Analysis II 3
MATH 4108 Introduction to Abstract Algebra II 3
or MATH 41 Introduction to Number Theory 3
MATH 4431 Introductory Topology 3
or MATH 448 Introduction to Algebraic Topology 3
or MATH 448 Differential Geometry 3

Select nine credits: 9
MATH 4022 Introduction to Graph Theory 3
MATH 4032 Combinatorial Analysis 3
MATH 4108 Introduction to Abstract Algebra II 3
MATH 4150 Introduction to Number Theory 3
MATH 4221 Probability with Applications I 3
MATH 4222 Probability with Applications II 3
MATH 4347 Introduction to Partial Differential Equations I 3
MATH 4348 Introduction to Partial Differential Equations II 3
MATH 4431 Introductory Topology 3
MATH 4432 Introduction to Algebraic Topology 3
MATH 4441 Differential Geometry 3
MATH 4541 Dynamics and Bifurcations I 3
MATH 4542 Dynamics and Bifurcations II 3
MATH 4699 Undergraduate Research 3

Mathematics Elective 3

Engineering or Science Electives
BIOS, CHEM, EAS, PHYS, PSYC, ECON, CS, AE, BMED, CEE, CHBE, ECE, ISYE, MSE, ME 3000-level or higher courses 45 9

Free Electives
Free Electives 6 11

Total Credit Hours 122

Pass-fail only allowed for Free Electives.

Four courses from Group A list must be completed. Student may select MATH elective from Group B if four courses from Group A are complete, otherwise, the Math elective must come from Group A. If student does not complete four courses from Group A list from concentration requirements and MATH elective, then the course(s) must be completed for free electives.

Group A list: MATH 3236, MATH 4022, MATH 4032, MATH 4108, MATH 4150, MATH 4221, MATH 4261, MATH 4318, MATH 4347, MATH 4431, MATH 4432, MATH 4441, MATH 4541, MATH 4640.

Group B list: MATH 4080/MATH 4090, MATH 4222, MATH 4255, MATH 4262, MATH 4280, MATH 4348, MATH 4542, MATH 4580, MATH 4581, MATH 4641, MATH 4699, MATH 4755, MATH 4777, MATH 4782, MATH 4801, MATH 4802, CS 3510/CS 3511, CS 4510, CS 4540, CS 4641, CX 4140 CX 4240, ISYE 3133, ISYE 4133.

1 If PHYS 2231 is taken, extra hour goes toward Free Electives
2 C-minimum required
3 MATH 4699 must be an approved topic related to concentration and can only be used once.
4 CEE 3770/ISYE 3770, CS 4001, and CS 4002 are not allowed to be used here.
5 Two courses must be from the same school.
6 MATH 1113, MATH 3670, CEE 3770, and ISYE 3770 are restricted from free electives.

Bachelor of Science in Mathematics

The School of Mathematics at Georgia Tech offers a Bachelor of Science degree in Mathematics. The B.S. in Mathematics degree provides a certification of extensive training in mathematics at one of the nation's leading scientific and technological universities. Holders of this degree are well qualified for a variety of careers in academia, business and industry, computer programming, data science, and education. The program provides excellent preparation for graduate studies in mathematics and related fields.

Students have the option of completing the B.S. in Mathematics or completing the B.S. in Mathematics with one of the areas of concentration.

Optional concentrations
- Applied Mathematics
- Discrete Mathematics
- Probability and Statistics
- Pure Mathematics

Bachelor of Science in Mathematics with a concentration in Applied Mathematics (p. 435)
Bachelor of Science in Mathematics with a concentration in Discrete Mathematics (p. 437)
Bachelor of Science in Mathematics with a concentration in Pure Mathematics (p. 440)
Bachelor of Science in Mathematics with a concentration in Probability and Statistics (p. 439)
Bachelor of Science in Mathematics - Business Option (p. 436)
Bachelor of Science in Mathematics - General (p. 438)

Business and Research Options

A student may elect to complete both the Business Option and the Research Option.
Completion of the Business and Research Options is noted by the designations "Business Option" and "Research Option" on the student's transcript.

See Concentrations for the for the Business Option requirements. See below for the Research Option requirements.

Math Undergraduate Website (http://www.math.gatech.edu/ undergraduate/undergraduate-programs)

Research Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2698</td>
<td>Undergraduate Research Assistantship & MATH 469 & Undergraduate Research Assistantship (for pay)</td>
<td>9</td>
</tr>
<tr>
<td>MATH 2699</td>
<td>Undergraduate Research & MATH 469 & Undergraduate Research (for credit)</td>
<td>2</td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing (complete during the first or second semester of research)</td>
<td>3</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing (take during the thesis-writing semester)</td>
<td>4</td>
</tr>
</tbody>
</table>

Completion of this Research Option is noted by the designation "Research Option in Mathematics" on the student's transcript.

For more information, visit: http://www.undergradresearch.gatech.edu/research-option/.

Math Undergraduate Website (http://www.math.gatech.edu/academics/undergraduate/undergraduate-programs)

Bachelor of Science in Mechanical Engineering - Automation and Robotic Systems

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academia, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1555</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1556</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
</tbody>
</table>
Any SS (p. 97)

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Visualization</td>
<td></td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Writing</td>
<td></td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3345</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3210</td>
<td>Design, Materials, and Manufacture</td>
<td>3</td>
</tr>
<tr>
<td>ME 4056</td>
<td>Mechanical Engineering Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4182</td>
<td>Mechanical Design Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Automation and Robotic Systems Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3180</td>
<td>Machine Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 4452</td>
<td>Control of Dynamic Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 4641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>ME 4012</td>
<td>Modeling and Control of Motion Systems</td>
<td></td>
</tr>
<tr>
<td>ME 4013</td>
<td>Hybrid Vehicle Powertrains</td>
<td></td>
</tr>
<tr>
<td>ME 4189</td>
<td>Structural Vibrations</td>
<td></td>
</tr>
<tr>
<td>ME 4405</td>
<td>Fundamentals of Mechatronics</td>
<td></td>
</tr>
<tr>
<td>ME 4451</td>
<td>Robotics</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

- ECE 3710 Circuits and Electronics
- ECE 3741 Instrumentation and Electronics Lab
- ISYE 3025 Essentials of Engineering Economy

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP credit) and MGT 2250.
5. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
6. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student’s ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience.
Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdisclosure.gatech.edu).

Research Option

The School of Mechanical Engineering offers the 'Research Option' (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

• Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
• Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
• Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a prerequisite for LMC 4702. Completion of the Research Option is noted on students' transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master's degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech's interdisciplinary bioengineering graduate program. There are two options to consider.

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student's BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student's career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student's work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master's degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering - Automotive

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

• Our graduates will be entrepreneurially minded innovators who have knowledge and engineering practices that have a world-wide impact.
• Our graduates will be recognized leaders in ME-related fields or other professional organizations.
• Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
• Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
• Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities
Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra or MATH 1554 Linear Algebra or MATH 1558 Linear Algebra with Abstract Vector Spaces</td>
<td>2</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Select one of the following: 3

- ECON 2100 Economic Analysis and Policy Problems
- ECON 2101 The Global Economy
- ECON 2105 Principles of Macroeconomics
- ECON 2106 Principles of Microeconomics

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Ethics Requirement (p. 101) 1

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3345</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3210</td>
<td>Design, Materials, and Manufacture</td>
<td>3</td>
</tr>
<tr>
<td>ME 4056</td>
<td>Mechanical Engineering Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4182</td>
<td>Mechanical Design Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Automotive Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3180</td>
<td>Machine Design</td>
<td>3</td>
</tr>
</tbody>
</table>

or ME 4315 Energy Systems Analysis and Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4823</td>
<td>Introduction to Automotive Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following: 9

- ME 4011 Internal Combustion Engines
- ME 4013 Hybrid Vehicle Powertrains
- ME 4215 Manufacturing Process Analysis
- ME 4189 Structural Vibrations
- ME 4325 Introduction to Fuel Cell Systems
- ME 4405 Fundamentals of Mechatronics
- ME 4452 Control of Dynamic Systems
- ME 4759 Electrochemical Energy Storage and Conversion
- ME 4760 Engineering Acoustics and Noise Control
- ME 4699 Undergraduate Research
- ME 4903 Special Problems
- AE 3030 Aerodynamics

Free Electives

Free Electives 3,4,5 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP credit) and MGT 2250.
5. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 381X, ECE 481X) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
6. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts.
Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give you hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These events will foster your career interests and expand your selection of possible employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on your thesis project, your advisor, and your work ethic.

During the first year of your graduate studies, you will be encouraged to continue for the PhD In many cases, you might be working on an interesting topic of study as part of your master’s degree research that could provide the basis for doctoral research.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider.

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
</tbody>
</table>
or APPH 10 The Science of Physical Activity and Health

Core A - Essential Skills

ENGL 1101 English Composition I 3
ENGL 1102 English Composition II 3
MATH 1552 Integral Calculus 2 4

Core B - Institutional Options

CS 1371 Computing for Engineers 3

Core C - Humanities

Any HUM (p. 93) 6

Core D - Science, Math, & Technology

PHYS 2211 Introductory Physics I 2 4
PHYS 2212 Introductory Physics II 4
MATH 1551 Differential Calculus 2 2
MATH 1553 Introduction to Linear Algebra 2 2
or MATH 1554 Linear Algebra
or MATH 1564 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences

Select one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues

Select one of the following: 3
ECON 2100 Economic Analysis and Policy Problems
ECON 2101 The Global Economy
ECON 2105 Principles of Macroeconomics
ECON 2106 Principles of Microeconomics

Any SS (p. 97) 6

Core F - Courses Related to Major

CHEM 1310 General Chemistry 6 4
ME 1770 Introduction to Engineering Graphics and Visualization
MATH 2551 Multivariable Calculus 2 4
MATH 2552 Differential Equations 2 4
MSE 2001 Principles and Applications of Engineering Materials

Ethics Requirement (p. 101) 1

Major Requirements

COE 2001 Statics 2 2
ME 2016 Computer Applications 3
ME 2110 Creative Decisions and Design 3
ME 2202 Dynamics of Rigid Bodies 3
ME 3017 System Dynamics 3
ME 3057 Experimental Methodology and Technical Writing
ME 3322 Thermodynamics 3
ME 3340 Fluid Mechanics 3
ME 3345 Conduction and Radiation Heat Transfer 3
COE 3001 Mechanics of Deformable Bodies 3
ME 3210 Design, Materials, and Manufacture 3
ME 4056 Mechanical Engineering Systems Laboratory 3
ME 4182 Mechanical Design Engineering 3

Other Engineering Requirements

ECE 3710 Circuits and Electronics 2
ECE 3741 Instrumentation and Electronics Lab 1
ISYE 3025 Essentials of Engineering Economy 1
MATH 3670 Probability and Statistics with Applications 3

Automotive Concentration

ME 3180 Machine Design 3
or ME 4315 Energy Systems Analysis and Design
ME 4823 Introduction to Automotive Engineering 3

Select three of the following: 9
ME 4011 Internal Combustion Engines
ME 4013 Hybrid Vehicle Powertrains
ME 4215 Manufacturing Process Analysis
ME 4189 Structural Vibrations
ME 4325 Introduction to Fuel Cell Systems
ME 4405 Fundamentals of Mechatronics
ME 4452 Control of Dynamic Systems
ME 4759 Electrochemical Energy Storage and Conversion
ME 4760 Engineering Acoustics and Noise Control
ME 4699 Undergraduate Research
ME 4903 Special Problems
AE 3030 Aerodynamics

Free Electives

Free Electives 3,4,5 6

Total Credit Hours 129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1 Students must complete one Ethics course during their program.
2 Minimum grade of C required.
3 At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4 Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP credit) and MGT 2250.
Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academia, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

Bachelor of Science in Mechanical Engineering - General

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 1555Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>
Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>2</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3180</td>
<td>Machine Design</td>
<td>3</td>
</tr>
<tr>
<td>or ME 4315</td>
<td>Energy Systems Analysis and Design</td>
<td>2</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3345</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3210</td>
<td>Design, Materials, and Manufacture</td>
<td>3</td>
</tr>
<tr>
<td>ME 4056</td>
<td>Mechanical Engineering Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4182</td>
<td>Mechanical Design Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

ME Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3000-level Electives</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-Level Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours

129

No pass-fail courses allowed.

Students must complete one Ethics course during their program.

ME Electives must be 3000-level electives. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed. ME Elective must not duplicate any other material used for BSME degree.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student’s ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer's location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).
Research Option

The School of Mechanical Engineering offers the 'Research Option' (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

- Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
- Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
- Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students' transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering - Manufacturing

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

- PHYS 2211 Introductory Physics I
- PHYS 2212 Introductory Physics II
- MATH 1551 Differential Calculus
- MATH 1553 Introduction to Linear Algebra
or MATH 1554 Linear Algebra or MATH 1564 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences
Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major
CHEM 1310 General Chemistry 6 4
ME 1770 Introduction to Engineering Graphics and Visualization 3
MATH 2551 Multivariable Calculus 2 4
MATH 2552 Differential Equations 2 4
MSE 2001 Principles and Applications of Engineering Materials 3
Ethics Requirement (p. 101) 1

Major Requirements
COE 2001 Statics 2 2
ME 2016 Computer Applications 3
ME 2110 Creative Decisions and Design 3
ME 2202 Dynamics of Rigid Bodies 3
ME 3017 System Dynamics 3
ME 3057 Experimental Methodology and Technical Writing 3
ME 3322 Thermodynamics 3
ME 3340 Fluid Mechanics 3
ME 3345 Conduction and Radiation Heat Transfer 3
COE 3001 Mechanics of Deformable Bodies 3
ME 3210 Design, Materials, and Manufacture 3
ME 4056 Mechanical Engineering Systems Laboratory 3
ME 4182 Mechanical Design Engineering 3

Other Engineering Requirements
ECE 3710 Circuits and Electronics 2
ECE 3741 Instrumentation and Electronics Lab 1
ISYE 3025 Essentials of Engineering Economy 1
MATH 3670 Probability and Statistics with Applications 3

Manufacturing Concentration
ME 3180 Machine Design 3
ME 4215 Manufacturing Process Analysis 3
Select one of the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4214</td>
<td>Mechanical Behavior of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 4405</td>
<td>Fundamentals of Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4452</td>
<td>Control of Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>ME 4766</td>
<td>Fabrication and Properties of Nanoscale Devices</td>
<td>3</td>
</tr>
<tr>
<td>ME 4793</td>
<td>Composite Materials and Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives
Free Electives 3,5,6 6
Total Credit Hours 129

No pass-fail courses allowed.

Students must earn a 2.0 GPA within Major Requirements and the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP Credit) and MGT 2250.
5. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
6. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan
Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student's ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.
Cooperative Plan
Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer's location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option
The School of Mechanical Engineering offers the ‘Research Option’ (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

- Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
- Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
- Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students' transcripts.

The BS/MS Program
The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master's degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech's interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option
The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student's BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option
The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student's career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student's work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master's degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering - Mechanics of Materials
The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives
The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
• Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
• Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS</td>
<td>(p. 97)</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement</td>
<td>(p. 101)</td>
<td>1</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

Core B - Institutional Options

Core C - Humanities

Core D - Science, Math, & Technology

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 3020</td>
<td>Civil Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CEE 3055</td>
<td>Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>CEE 4550</td>
<td>Structural Analysis II</td>
<td></td>
</tr>
<tr>
<td>ME 4041</td>
<td>Interactive Computer Graphics and Computer-aided Design</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4010</td>
<td>Environmental Degradation</td>
<td></td>
</tr>
<tr>
<td>MSE 4325</td>
<td>Thin Film Materials Science</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

Free Electives $^3,^4$ | 6

Total Credit Hours | 129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX(AP Credit) and MGT 2250.
Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.

CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student’s ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option

The School of Mechanical Engineering offers the ‘Research Option’ (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

- Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
- Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
- Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students' transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor, the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)
Bachelor of Science in Mechanical Engineering - Micro- and Nanoengineering

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

Core B - Institutional Options

Core C - Humanities

Any HUM (p. 93) 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877
- HIST 2112 The United States since 1877
- INTA 1200 American Government in Comparative Perspective
- POL 1101 Government of the United States
- PUBP 3000 American Constitutional Issues

Core F - Courses Related to Major

CHEM 1310 General Chemistry 6
ME 1770 Introduction to Engineering Graphics and Visualization
MATH 2551 Multivariable Calculus 2
MATH 2552 Differential Equations 2
MSE 2001 Principles and Applications of Engineering Materials

Ethics Requirement (p. 101) 1

Major Requirements

COE 2001 Statics 2
ME 2016 Computer Applications
ME 2110 Creative Decisions and Design
ME 2202 Dynamics of Rigid Bodies
ME 3017 System Dynamics
ME 3057 Experimental Methodology and Technical Writing
ME 3322 Thermodynamics
ME 3340 Fluid Mechanics
ME 3345 Conduction and Radiation Heat Transfer
ME 3301 Mechanics of Deformable Bodies
ME 3210 Design, Materials, and Manufacture
ME 4056 Mechanical Engineering Systems Laboratory
ME 4182 Mechanical Design Engineering

Other Engineering Requirements

ECE 3710 Circuits and Electronics
ECE 3741 Instrumentation and Electronics Lab
ISYE 3025 Essentials of Engineering Economy
MATH 3670 Probability and Statistics with Applications

Micro- and Nanoengineering Concentration

ME 4315 Energy Systems Analysis and Design
Select four of the following: 3

- CHBE 4020 Chemical Engineering in Nanoscale Systems
- CHBE 4050 The Science and Engineering of Microelectronic Fabrication
- CHEM 3412 Physical Chemistry II
- ME 4699 Undergraduate Research (In MEMs or Nano)
Fabrication and Properties of Nanoscale Devices
Multiscale Thermal Engineering
Nanoengineered Energy Technologies
Thin Film Materials Science
Fundamentals of Nanomaterials and Nanostructures
Soft Nano and Bio Materials
Solid-state Physics

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP Credit) and MGT 2250.
5. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
6. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related work experience with classroom studies. The program is the fourth oldest of its kind in the world.

Students typically alternate between industrial assignments and classroom studies until they complete at least three terms of work (two of which must be fall or spring). Co-op students complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as freshman or sophomores and are can be classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer’s location.

Participants have the opportunity to develop career interests, gain hands-on work experience, develop human relation skills and earn a paycheck. Graduates of the program receive a bachelor’s degree with the Cooperative Plan Designation.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, visit: http://career.gatech.edu/co-op.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Internships

The Undergraduate Professional Internship Program is for students who do not participate in the Cooperative Program, but want some career-related work experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, visit: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu), which complements a student’s formal education with paid international work experience directly related to Materials Science and Engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of professional skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

Research Option

The Materials Science and Engineering undergraduate program offers a Research Option that allows students to participate in undergraduate research in faculty laboratories. The words "Research Option in Materials Science and Engineering" will appear on the transcript of each student completing the requirements to indicate that the student has had a substantial, in-depth, research experience.

The requirements for the "Research Option" in Materials Science and Engineering are:

1. Selection of a faculty advisor and research topic in conjunction with the faculty advisor. The topic and expected scope of the project must be approved in advance by the MSE Undergraduate Curriculum Committee. A key criterion will be whether the research may lead to a publishable paper.
2. Completion of nine units (see item 3 below) of supervised research, over a period of at least two, but preferably three, terms. Research
may be either for pay or credit. At least six credit hours must involve work on a single research project.

3. Registration in nine hours of undergraduate research courses MSE 2698 and MSE 4698 (for pay), or MSE 2699 and MSE 4699 (for credit). MSE 2699 or MSE 4699 can be used to satisfy the free elective requirements of the BS degree in MSE.

4. Completion of LMC 4701 Undergraduate Research Proposal Writing (one hr. credit typically taken during the first or second semester of research). The student should write a Research Proposal while taking this class.

5. Obtain approval of the Research Proposal from the MSE Undergraduate Curriculum Committee. This is required before taking LMC 4702.

6. Completion of LMC 4702 (one hr. credit). This course is taken during the term in which the thesis is written.

7. Have research thesis approved by the faculty advisor and one other MSE faculty member approved by the MSE Undergraduate Curriculum Committee. The thesis will be evaluated on the basis of publishability, originality, creativity, and clarity. The MSE Undergraduate Curriculum Committee must approve each "Research Option" awarded under the BS MSE program.

We highly recommend careful planning with your faculty research mentor and academic advisor to determine how to incorporate this option into your educational experience.

BS/MS Option

The School of Materials Science and Engineering (MSE) offers a BS/MS program for outstanding students who want to obtain a graduate degree in addition to their BS degree. The advanced degree provides the additional knowledge and specialization needed to further facilitate a technical career. As a participant in this program, students have an opportunity to work with individual faculty members on projects in one of the traditional or innovative research areas in MSE. See www.mse.gatech.edu (http://www.mse.gatech.edu) for more details.

Current undergraduate students may participate in the BS/MS Program offered by the School. Georgia Tech undergraduate students may be admitted into the program after completing a minimum of 30 semester credit hours (and no more than 75 hours) at Georgia Tech and have a GPA of 3.5 or higher at time of application. Both the application fee and the GRE test score are waived. Students need to maintain at least a 3.0 GPA when receiving the B.S. degree in order to be converted into graduate student status and must continue immediately into the M.S. program in order to qualify for the 6 semester-hour “Graduate Course Credit” option, http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/undergraduate-students-taking-graduate-courses/.

Bachelor of Science in Mechanical Engineering - Nuclear and Radiological Engineering

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Georgia Institute of Technology
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ME 1770</td>
<td>Introduction to Engineering Graphics and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Requirement (p. 101)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3345</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3210</td>
<td>Design, Materials, and Manufacture</td>
<td>3</td>
</tr>
<tr>
<td>ME 4056</td>
<td>Mechanical Engineering Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4182</td>
<td>Mechanical Design Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Nuclear Energy Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRE 2120</td>
<td>Elements of Nuclear and Radiological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Any 3000-/4000-level NRE electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Required Design elective (select one):</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ME 4315</td>
<td>Energy Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>ME 3180</td>
<td>Machine Design</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP Credit) and MGT 2250.
5. ME 4803/NRE 4803 must have the title 'Nuclear Reactor Materials'.
6. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
7. CHEM 1211K can substitute for CHEM 1310, CHEM 1211K and CHEM 1212K are recommended for pre-health students.
8. Excluding NRE 4699 or NRE 4903

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student's ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer's location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career
choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option

The School of Mechanical Engineering offers the ‘Research Option’ (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

- Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
- Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
- Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students’ transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering - Nuclear Engineering

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Wellness

- APPH 1040 Scientific Foundations of Health
- or APPH 10 The Science of Physical Activity and Health

Core A - Essential Skills

Core B - Institutional Options

Core C - Humanities
Bachelor of Science in Mechanical Engineering - Nuclear Engineering

Any HUM (p. 93) 6

Core D - Science, Math, & Technology
PHYS 2211 Introductory Physics I 2 4
PHYS 2212 Introductory Physics II 4
MATH 1551 Differential Calculus 2 2
MATH 1553 Introduction to Linear Algebra 2
or MATH 1554 Linear Algebra
or MATH 1564 Linear Algebra with Abstract Vector Spaces 2

Core E - Social Sciences
Select one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1100 Government of the United States
PUBP 3000 American Constitutional Issues
Select one of the following: 3
ECON 2100 Economic Analysis and Policy Problems
ECON 2101 The Global Economy
ECON 2105 Principles of Macroeconomics
ECON 2106 Principles of Microeconomics

Any SS (p. 97) 6

Core F - Courses Related to Major
CHEM 1310 General Chemistry 7 4
ME 1770 Introduction to Engineering Graphics and Visualization 3
MATH 2551 Multivariable Calculus 2 4
MATH 2552 Differential Equations 2 4
MSE 2001 Principles and Applications of Engineering Materials

Ethics Requirement (p. 101) 1

Major Requirements
COE 2001 Statics 2 2
ME 2016 Computer Applications 3
ME 2110 Creative Decisions and Design 3
ME 2202 Dynamics of Rigid Bodies 3
ME 3017 System Dynamics 3
ME 3057 Experimental Methodology and Technical Writing 3
ME 3322 Thermodynamics 3
ME 3340 Fluid Mechanics 3
ME 3345 Conduction and Radiation Heat Transfer 3
COE 3001 Mechanics of Deformable Bodies 3
ME 3210 Design, Materials, and Manufacture 3
ME 4056 Mechanical Engineering Systems Laboratory 3
ME 4182 Mechanical Design Engineering 3

Other Engineering Requirements
ECE 3710 Circuits and Electronics 2
ECE 3741 Instrumentation and Electronics Lab 1
ISYE 3025 Essentials of Engineering Economy 1
MATH 3670 Probability and Statistics with Applications 3

Nuclear Energy Concentration
NRE 3208 Nuclear Reactor Phys I 3
ME 3180 Machine Design 3
or ME 4315 Energy Systems Analysis and Design
Select two of the following: 5
ECE 3025 Electromagnetics 6
ECE 3072 Electrical Energy Systems 6
ME 4214 Mechanical Behavior of Materials 6
ME 4340 Applied Fluid Mechanics 6
MSE 4010 Environmental Degradation 6
NRE 4214 Reactor Engineering 6
NRE 4610 Introduction to Plasma Physics and Fusion Engineering 6

Free Electives
Free Electives 3,4,6 6

Total Credit Hours 129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
</tbody>
</table>

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP Credit) and MGT 2250.
5. ME 4803/NRE 4803 must have the title 'Nuclear Reactor Materials'.
6. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
7. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP Credit) and MGT 2250.
5. ME 4803/NRE 4803 must have the title 'Nuclear Reactor Materials'.
6. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
7. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.
1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student's ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer's location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option

The School of Mechanical Engineering offers the 'Research Option' (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

• Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
• Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
• Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students’ transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master's degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering - Thermal, Fluid, & Energy Systems

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.
Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

Code Title Credit Hours

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Any SS (p. 97)

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3057</td>
<td>Experimental Methodology and Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3345</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>COE 3001</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3210</td>
<td>Design, Materials, and Manufacture</td>
<td>3</td>
</tr>
<tr>
<td>ME 4056</td>
<td>Mechanical Engineering Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4182</td>
<td>Mechanical Design Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Engineering Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Thermal, Fluid, and Energy Systems Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4315</td>
<td>Energy Systems Analysis and Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4011</td>
<td>Internal Combustion Engines</td>
<td>3</td>
</tr>
<tr>
<td>ME 4013</td>
<td>Hybrid Vehicle Powertrains</td>
<td>3</td>
</tr>
<tr>
<td>ME 4321</td>
<td>Principles of Air Conditioning</td>
<td>3</td>
</tr>
<tr>
<td>ME 4325</td>
<td>Introduction to Fuel Cell Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 4340</td>
<td>Applied Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4342</td>
<td>Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4701</td>
<td>Wind Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 4759</td>
<td>Electrochemical Energy Storage and Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ME 4803</td>
<td>Multiscale Thermal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 4803</td>
<td>Nanoengineered Energy Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ME 4823</td>
<td>Renewable Energy Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Bachelor of Science in Mechanical Engineering - Thermal, Fluid, & Energy Systems
If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1. Students must complete one Ethics course during their program.
2. Minimum grade of C required.
3. At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.
4. Excludes CEE 2040, PHYS 2802, PHYS 2XXX(AP credits) and MGT 2250.
5. Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.
6. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student’s ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience.

Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option

The School of Mechanical Engineering offers the ‘Research Option’ (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

• Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
• Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
• Take both LMC 4701 (typically during the first or second semester of research) and LMC 4702 (during the thesis-writing semester).

At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students’ transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes
a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Mechanical Engineering

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

- Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
- Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
- Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
- Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.

The Woodruff School of Mechanical Engineering has established concentration areas in sub-fields of Mechanical Engineering. Concentrations are optional for the students; they are not required. The Concentrations are each fifteen hours of classes, and will satisfy the Design Elective, the ME Elective and nine hours of Free Electives. The current Concentrations are:

- General (p. 448)
- Automotive (p. 444)
- Automation and Robotic System (p. 442)
- Design (p. 446)
- Manufacturing (p. 450)
- Mechanics of Materials (p. 452)

- Micro- and Nano-Engineering (p. 455)
- Nuclear and Radiological Engineering (p. 457)
- Thermal, Fluid and Energy Systems (p. 461)

International Plan

Mechanical Engineering majors may choose to participate in the Georgia Tech International Plan. Students who complete the requirements of the International Plan have the degree designation noted on their transcripts and on their diploma. The International Plan has specific requirements which must be completed including:

1. a minimum of 26 weeks abroad in educational, research, or work internships,
2. a language requirement,
3. courses specifically designated for global economics, international affairs, and global competency, and
4. a capstone project, typically one which is based on the student’s ME capstone design experience.

Complete requirements may be found at http://oie.gatech.edu/content/international-plan.

Cooperative Plan

Since 1912, Georgia Tech has offered an Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with mechanical engineering majors complete the same coursework on campus that is completed by non-co-op students. Most co-op students begin the program as sophomores or juniors and are classified as full-time students regardless of whether they are attending classes on campus or are full-time at an employer’s location. Co-op employment opportunities exist across the USA, and even in foreign countries. Depending on the chosen country, proficiency in a foreign language is usually necessary. Mechanical engineering students have worked in countries such as Germany, China, and Japan.

Students who participate in the co-op program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation. For more information about the Cooperative Program, go to www.coop.gatech.edu (http://www.coop.gatech.edu).

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

Research Option

The School of Mechanical Engineering offers the ‘Research Option’ (RO) under the BSME degree program. In order to graduate with a BSME (RO) degree, students must:

- Complete at least nine units of supervised research over at least two (preferably three) terms. The research must either be for pay (ME 4698) or credit (ME 4699). Up to six hours of research for credit may be used towards the BSME free elective requirements.
- Write an undergraduate thesis or other substantial, written report showing results of the research. This is usually done during the graduating term.
At least six of the nine required credit hours of research should be on the same topic. A research proposal must be approved by a faculty advisor and one other faculty member. This proposal will be written in LMC 4701 which serves as a pre-requisite for LMC 4702. Completion of the Research Option is noted on students’ transcripts.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider.

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give the student hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These efforts will foster the student’s career interests and expand their job prospects with certain employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on the thesis project, the advisor, and the student’s work ethic.

During the first year of graduate studies, students may be encouraged to continue for the PhD. In many cases, students may be working on an interesting topic of study as part of master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Music Technology - Electrical and Computer Engineering: Signal Processing

The Bachelor of Science in Music Technology teaches students the fundamentals of musicianship and audio technology. Students learn to create new music with technology, develop new technologies for making music, and conduct scientific research that expands our knowledge of how both humans and machines engage with music. Student projects span areas such as robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

Bachelor of Science in Music Technology students will need to consult with the undergraduate advisor to choose a concentration or minor.

The Electrical and Computer Engineering Track allows students to develop in-depth audio engineering and/or signal processing skills as applied to music technology. The processing of analog and digital signals is one of the core areas of music technology and related to fields such as music information retrieval, audio effects, and sound synthesis. Students use their Breadth Block (http://www.music.gatech.edu/curriculum) to take prescribed coursework in the School of Electrical and Computer Engineering.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 4701</td>
<td>Scientific Foundations of Health</td>
<td></td>
</tr>
<tr>
<td>LMC 4702</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1301</td>
<td>Introduction to Computing</td>
<td></td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td>Humanities</td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>or INTA 120</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>or POL 110</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>or PUBP 300</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 21</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>or ECON 21</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>or ECON 21</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS</td>
<td>Humanities</td>
<td>6</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 10</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 11</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 12</td>
<td>Fundamentals of Musicianship III</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 13</td>
<td>Fundamentals of Musicianship IV</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 15</td>
<td>Laptop Orchestra</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2525</td>
<td>Introduction Audio Technology I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Ensemble Requirement</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Major Requirements
Bachelor of Science in Music Technology - General

The Bachelor of Science in Music Technology teaches students the fundamentals of musicianship and audio technology. Students learn to create new music with technology, develop new technologies for making music, and conduct scientific research that expands our knowledge of how both humans and machines engage with music. Student projects span areas such as robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

Bachelor of Science in Music Technology students will need to consult with the undergraduate adviser to choose a concentration or minor.

Students in the General Concentration follow the rigorous Bachelor of Science in Music Technology curriculum. This standard curriculum lends itself most easily to using the hours of the Breadth Block (http://www.music.gatech.edu/curriculum) to pursue a minor in another School on campus – and students might find these two minors to be especially interesting:

Computing and People: Allows students to gain added expertise in computing as it relates to people. The minor requires 15 credit hours of coursework in the College of Computing.

Industrial Design: Allows students to strengthen skills and understanding of creative problem solving as it relates to design. The minor requires 15 credit hours of coursework in the School of Industrial Design.

While Computing and Industrial Design are good fits for this degree, they are not the only minors possible. For example, students could also pursue

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2526</td>
<td>Introduction to Audio Technology II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 4630</td>
<td>Music Recording and Mixing</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 3770</td>
<td>Project Studio: Technology</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 3771</td>
<td>Project Studio: Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 4677</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Upper Division Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Choose one from the following for MUSI Upper Division Elective:

- MUSI 4450 Integrating Music Into Multimedia
- MUSI 4456 Music Technology History and Repertoire
- MUSI 4457 Computational Music and Audio Analysis
- MUSI 4458 Computer Music Composition
- MUSI 4459 Digital Signal Processing for Music
- MUSI 4705 Music Technology Capstone I
- MUSI 4706 Music Technology Capstone II

Concentration: ECE/Signal Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>ECE 2026</td>
<td>Introduction to Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3084</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Select 6 hours:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 4445</td>
<td>Audio Engineering</td>
<td>2</td>
</tr>
<tr>
<td>or ECE 4:Fundamentals of Digital Signal Processing</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>or ECE 4:Applications of Digital Signal Processing</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>or ECE 4:Audio Engineering Laboratory</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives

Free Electives | 9 |

Total Credit Hours | 122 |

1. **Students are required to satisfy a 4-course music ensemble requirement.** Course options include any four courses from the following list: MUSI 3018 or MUSI 3019 or MUSI 3121 or MUSI 3131 or MUSI 3231 or MUSI 3241 or MUSI 3251 or MUSI 3261 or MUSI 3311 or MUSI 3321 or MUSI 3411 or MUSI 3511 or MUSI 3531 or MUSI 3541 or MUSI 3551 or MUSI 3611. The courses may be used as Humanities (if course has been approved for Humanities credit) and/or free electives.

2. **Music Technology majors can choose one of two pathways to use VIP participation to fulfill degree requirements.**

 (1) **The VIP Project Studio Pathway:** Students participate in an advisor-approved VIP team to fulfill their MUSI 3770 or MUSI 3771 Project Studio requirement as well as an upper-division music technology elective and free electives. This pathway requires 5 or 6 semesters of participation in the VIP program, typically beginning in the sophomore year, as follows:

 - **Year 1 (typically sophomore):** At least 1 credit on any VIP team. (The team can change each semester to help find a good match.) These credits will count as free electives.
 - **Year 2 (typically junior):** 2 credits per semester on an advisor-approved VIP team, counted as either 4 MUSI 3770 or 4 MUSI 3771 credits. The team must be the same both semesters and is preferably the same VIP team as in Year 1. An academic advisor in the School of Music must approve the team as meeting learning objectives for MUSI 3770 or 3771. The advisor will determine whether 3770 or 3771 is the most appropriate match.
 - **Year 3 (typically senior):** 2 credits each semester on the same VIP team as in Year 2. 3 of these credits count as a Music Technology upper-division elective. 1 credit counts as a free elective.
 - Any additional VIP credits beyond these count as additional free electives.

 (2) **The VIP Elective Pathway:** Students participate in any VIP team to fulfill an upper-division music technology elective and free electives.

 - Participating in the same VIP team for five or fewer credits results in that many free-elective credits.
 - Participating in the same VIP team for 6 or more credits results in 3 credits that are counted as upper division Music Technology electives and 3 credits that are counted as free electives.
 - Any additional credits count as free electives.
 - Any VIP team is eligible for this pathway. No approval is required by an academic advisor in music technology.
a minor in Film and Media Studies or Technology and Business for their Breadth Block.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1301</td>
<td>Introduction to Computing</td>
<td></td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>or INTA 120</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>or POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>or PUBP 300</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 211</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>or ECON 211</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>or ECON 211</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>MUSI 2010</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2011</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2012</td>
<td>Fundamentals of Musicianship III</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2013</td>
<td>Fundamentals of Musicianship IV</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2015</td>
<td>Laptop Orchestra</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2525</td>
<td>Introduction Audio Technology I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Ensemble Requirement</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>MUSI 2526</td>
<td>Introduction to Audio Technology II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 4630</td>
<td>Music Recording and Mixing</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 3770</td>
<td>Project Studio: Technology</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 3771</td>
<td>Project Studio: Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 4677</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Upper Division Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Choose one of the following for MUSI Upper Division Elective:</td>
<td></td>
</tr>
<tr>
<td>MUSI 4450</td>
<td>Integrating Music Into Multimedia</td>
<td></td>
</tr>
<tr>
<td>or MUSI 4456</td>
<td>Music Technology History and Repertoire</td>
<td></td>
</tr>
<tr>
<td>or MUSI 4450</td>
<td>or MUSI 4456: Music Technology History and Repertoire</td>
<td></td>
</tr>
</tbody>
</table>

MUSI 4457 Computedional Music and Audio Analysis
- or MUSI 4458: Computer Music Composition
- or MUSI 4459: Digital Signal Processing for Music
- or MUSI 6201: Computer Music Composition
- or MUSI 4460: Industrial Signal Processing for Music Analysis and Synthesis

MUSI 4705: Music Technology Capstone I
- or MUSI 4706: Music Technology Capstone II

Non-Major Cluster
- Advisor approved courses 2
- 15 credits

Free Electives
- Free Electives
- 16 credits

Total Credit Hours 122

1. Students are required to satisfy a 4-course music ensemble requirement. Course options include any four from the following list: MUSI 3018 or MUSI 3019 or MUSI 3121 or MUSI 3131 or MUSI 3231 or MUSI 3241 or MUSI 3251 or MUSI 3261 or MUSI 3311 or MUSI 3321 or MUSI 3411 or MUSI 3511 or MUSI 3531 or MUSI 3541 or MUSI 3551 or MUSI 3611. The courses may be used as Humanities (if course has been approved for Humanities credit) and/ or free electives.

2. General track students must have Non-Major Cluster courses approved by advisor. If student is completing a minor for this area and minor requires excess of 15 hours, then overage hours may be used towards free electives.

3. Music Technology majors can choose one of two pathways to use VIP participation to fulfill degree requirements.

1. **The VIP Project Studio Pathway:** Students participate in an advisor-approved VIP team to fulfill their MUSI 3770 or MUSI 3771 Project Studio requirement as well as an upper-division music technology elective and free electives. This pathway requires 5 or 6 semesters of participation in the VIP program, typically beginning in the sophomore year, as follows:

 - **Year 1 (typically sophomore):** At least 1 credit on any VIP team. (The team can change each semester to help find a good match.) These credits will count as free-electives.
 - **Year 2 (typically junior):** 2 credits per semester on an advisor-approved VIP team, counted as either 4 MUSI 3770 or 4 MUSI 3771 credits. The team must be the same both semesters and is preferably the same VIP team as in Year 1. An academic advisor in the School of Music must approve the team as meeting learning objectives for MUSI 3770 or 3771. The advisor will determine whether 3770 or 3771 is the most appropriate match.
 - **Year 3 (typically senior):** 2 credits each semester on the same VIP team as in Year 2. 3 of these credits count as a Music Technology upper-division elective. 1 credit counts as a free elective.
 - Any additional VIP credits beyond these count as additional free electives.

2. **The VIP Elective Pathway:** Students participate in any VIP team to fulfill an upper-division music technology elective and free electives.

 - Participating in the same VIP team for five or fewer credits results in that many free-elective credits.
 - Participating in the same VIP team for 6 or more credits results in 3 credits that are counted as upper division Music Technology electives and 3 credits that are counted as free electives.
 - Any additional credits count as free electives.
 - Any VIP team is eligible for this pathway. No approval is required by an academic advisor in music technology.
Bachelor of Science in Music Technology - Mechanical Engineering: Acoustics and Vibrations

The Bachelor of Science in Music Technology teaches students the fundamentals of musicianship and audio technology. Students learn to create new music with technology, develop new technologies for making music, and conduct scientific research that expands our knowledge of how both humans and machines engage with music. Student projects span areas such as robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

Bachelor of Science in Music Technology students will need to consult with the undergraduate adviser to choose a concentration or minor.

The Mechanical Engineering Track allows students to develop in-depth mechanical engineering skills as applied to music technology. Mechanical engineering is directly related to music technology fields in the areas of robotic musicianship, acoustics, and instrument design. Students use their Breadth Block (http://www.music.gatech.edu/curriculum) to take prescribed credit hours of coursework in the School of Mechanical Engineering focusing on one of the two options below:

Option 1: Acoustics and Vibrations

Option 2: Controls and Robotics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM (p. 93)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 4760</td>
<td>Engineering Acoustics and Noise Control</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4189</td>
<td>Structural Vibrations</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2010</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2011</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2012</td>
<td>Fundamentals of Musicianship III</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2013</td>
<td>Fundamentals of Musicianship IV</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2015</td>
<td>Laptop Orchestra</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2525</td>
<td>Introduction Audio Technology I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Ensemble Requirement</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 4677</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Upper Division Elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Choose one from the following for MUSI Upper Division Elective:

- MUSI 4450 Integrating Music Into Multimedia
- MUSI 4456 Music Technology History and Repertoire or MUSI 6003 Music Technology History and Repertoire
- MUSI 4457 Computational Music and Audio Analysis or MUSI 6004 Computational Music and Audio Analysis
- MUSI 4458 Computer Music Composition or MUSI 6005 Computer Music Composition
- MUSI 4459 Digital Signal Processing for Music or MUSI 6006 Digital Signal Processing for Music Analysis and Synthesis
- MUSI 4705 Music Technology Capstone I | 4 |
- MUSI 4706 Music Technology Capstone II | 4 |

Concentration: ME/Acoustics and Vibrations

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3770</td>
<td>Project Studio: Technology</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 3771</td>
<td>Project Studio: Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 4677</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Upper Division Elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Students are required to satisfy a 4-course music ensemble requirement. Course options include any four from the following list: MUSI 3018 or MUSI 3019 or MUSI 3121 or MUSI 3131 or MUSI 3231 or MUSI 3241 or MUSI 3251 or MUSI 3261 or MUSI 3311 or MUSI 3321 or MUSI 3411 or MUSI 3511 or MUSI 3531 or MUSI 3541 or MUSI 3551 or MUSI 3611. The courses may be used as Humanities (if course has been approved for Humanities credit) and/or free electives.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2010</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2011</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2012</td>
<td>Fundamentals of Musicianship III</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2013</td>
<td>Fundamentals of Musicianship IV</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2015</td>
<td>Laptop Orchestra</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2525</td>
<td>Introduction Audio Technology I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Ensemble Requirement</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2526</td>
<td>Introduction to Audio Technology II</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 4630</td>
<td>Music Recording and Mixing</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 3770</td>
<td>Project Studio: Technology</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 3771</td>
<td>Project Studio: Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MUSI 4677</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI Upper Division Elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Choose one from the following for MUSI Upper Division Elective:

- MUSI 4450 Integrating Music Into Multimedia
- MUSI 4456 Music Technology History and Repertoire or MUSI 6003 Music Technology History and Repertoire
- MUSI 4457 Computational Music and Audio Analysis or MUSI 6004 Computational Music and Audio Analysis
- MUSI 4458 Computer Music Composition or MUSI 6005 Computer Music Composition
- MUSI 4459 Digital Signal Processing for Music or MUSI 6006 Digital Signal Processing for Music Analysis and Synthesis
- MUSI 4705 Music Technology Capstone I | 4 |
- MUSI 4706 Music Technology Capstone II | 4 |

Concentration: ME/Acoustics and Vibrations

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2202</td>
<td>Dynamics of Rigid Bodies</td>
<td>3</td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME 4760</td>
<td>Engineering Acoustics and Noise Control</td>
<td>3</td>
</tr>
<tr>
<td>ME 3017</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4189</td>
<td>Structural Vibrations</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Total Credit Hours 122

1 Students are required to satisfy a 4-course music ensemble requirement. Course options include any four from the following list: MUSI 3018 or MUSI 3019 or MUSI 3121 or MUSI 3131 or MUSI 3231 or MUSI 3241 or MUSI 3251 or MUSI 3261 or MUSI 3311 or MUSI 3321 or MUSI 3411 or MUSI 3511 or MUSI 3531 or MUSI 3541 or MUSI 3551 or MUSI 3611. The courses may be used as Humanities (if course has been approved for Humanities credit) and/or free electives.
Music Technology majors can choose one of two pathways to use VIP participation to fulfill degree requirements.

(1) The VIP Project Studio Pathway: Students participate in an advisor-approved VIP team to fulfill their MUSI 3770 or MUSI 3771 Project Studio requirement as well as an upper-division music technology elective and free electives. This pathway requires 5 or 6 semesters of participation in the VIP program, typically beginning in the sophomore year, as follows:

- **Year 1 (typically sophomore):** At least 1 credit on any VIP team. (The team can change each semester to help find a good match.) These credits will count as free-electives.
- **Year 2 (typically junior):** 2 credits per semester on an advisor-approved VIP team, counted as either 4 MUSI 3770 or 4 MUSI 3771 credits. The team must be the same both semesters and is preferably the same VIP team as in Year 1. An academic advisor in the School of Music must approve the team as meeting learning objectives for MUSI 3770 or 3771. The advisor will determine whether 3770 or 3771 is the most appropriate match.
- **Year 3 (typically senior):** 2 credits each semester on the same VIP team as in Year 2. 3 of these credits count as a Music Technology upper-division elective. 1 credit counts as a free elective.
- **Any additional VIP credits beyond these count as additional free electives.**

(2) The VIP Elective Pathway: Students participate in any VIP team to fulfill an upper-division music technology elective and free electives.

- Participating in the same VIP team for five or fewer credits results in that many free-elective credits.
- Participating in the same VIP team for 6 or more credits results in 3 credits that are counted as upper division Music Technology electives and 3 credits that are counted as free electives.
- Any additional credits count as free electives.
- Any VIP team is eligible for this pathway. No approval is required by an academic advisor in music technology.

Bachelor of Science in Music Technology - Mechanical Engineering: Controls and Robotics

The Bachelor of Science in Music Technology teaches students the fundamentals of musicianship and audio technology. Students learn to create new music with technology, develop new technologies for making music, and conduct scientific research that expands our knowledge of how both humans and machines engage with music. Student projects span areas such as robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

Bachelor of Science in Music Technology students will need to consult with the undergraduate adviser to choose a concentration or minor.

The Mechanical Engineering Track allows students to develop in-depth mechanical engineering skills as applied to music technology. Mechanical engineering is directly related to music technology fields in the areas of robotic musicianship, acoustics, and instrument design. Students use their Breadth Block (http://www.music.gatech.edu/curriculum) to take prescribed credit hours of coursework in the School of Mechanical Engineering focusing on one of the two options below:

- **Option 1:** Acoustics and Vibrations
- **Option 2:** Controls and Robotics

Code	**Title**	**Credit Hours**
APPH 1040 | Scientific Foundations of Health or APPH 10 The Science of Physical Activity and Health | 2
ENGL 1101 | English Composition I | 3
ENGL 1102 | English Composition II | 3
MATH 1552 | Integral Calculus | 4
CS 1371 | Computing for Engineers | 3

Core A - Essential Skills

- **Core D - Science, Math, & Technology**
 - MATH 1551 | Differential Calculus | 2
 - MATH 1553 | Introduction to Linear Algebra | 2
- **Core E - Social Sciences**
 - HIST 2111 | The United States to 1877 | 3
 - or HIST 2112 | The United States since 1877 | 3
 - or INTA 120 | American Government in Comparative Perspective | 3
 - or POL 110 | Government of the United States | 3
 - or PUBP 300 | American Constitutional Issues | 3
- **Core F - Courses Related to Major**
 - MUSI 2010 | Fundamentals of Musicianship I | 3
 - MUSI 2011 | Fundamentals of Musicianship II | 3
 - MUSI 2012 | Fundamentals of Musicianship III | 3
 - MUSI 2013 | Fundamentals of Musicianship IV | 3
 - MUSI 2015 | Laptop Orchestra | 3
 - MUSI 2525 | Introduction Audio Technology I | 3
 - MUSI Ensemble Requirement | 1
- **Major Requirements**
 - MUSI 2526 | Introduction to Audio Technology II | 3
 - MUSI 4630 | Music Recording and Mixing | 3
 - MUSI 3770 | Project Studio: Technology | 4
 - MUSI 3771 | Project Studio: Analysis | 4
 - MUSI 4677 | Music Perception and Cognition | 3
 - MUSI Upper Division Elective | 3

Choose one from the following for MUSI Upper Division Elective:

- MUSI 4450 | Integrating Music Into Multimedia | 3
- MUSI 4456 | Music Technology History and Repertoire or MUSI 4003 | 3
- MUSI 4457 | Computational Music and Audio Analysis or MUSI 4003 | 3
- MUSI 4458 | Computer Music Composition | 3
Bachelor of Science in Music Technology

The undergraduate program in the School of Music leads to a Bachelor of Science in Music Technology. In the program, students understand the role of technology in enabling new ways to access, consume, and create music. Students master the fundamentals of musicianship and audio technology and further develop these skills through a series of hands-on learning experiences across a spectrum of creative and technical domains. Students learn to create new music with technology, develop new technologies for making music, and conduct scientific research that expands our knowledge of how both humans and machines engage with music. Student projects span areas such as robotic musicianship, music informatics, brain music, and computational and cognitive musicology.

The program combines technical and artistic topics to produce graduates who have both a strong technical and creative portfolio. Students choose from a concentration in Mechanical Engineering (with a focus either in Acoustics and Vibrations or Controls and Robotics); a concentration in Electrical and Computer Engineering (with a focus on signal processing); or a general concentration in which they pursue a minor such as Computing and People or Industrial Design.

Please note that a portfolio is required for admission into the BSMT program. For more information, visit http://www.music.gatech.edu/bsmt

- Bachelor of Science in Music Technology - General (p. 466)
- Bachelor of Science in Music Technology - Electrical and Computer Engineering: Signal Processing (p. 465)
• Bachelor of Science in Music Technology - Mechanical Engineering: Acoustics and Vibrations (p. 468)
• Bachelor of Science in Music Technology - Mechanical Engineering: Controls and Robotics (p. 469)

Bachelor of Science in Neuroscience

Students majoring in neuroscience will complete a 120 credit-hour curriculum (plus a required 2-credit class in health). They will learn fundamental principles and up-to-date advances in the field of neuroscience. The program will build on a strong foundation of required courses in the physical sciences and mathematics (chemistry, computer science, calculus, statistics and physics) in order to prepare students with the analytical skills needed to address the complexity of problems in neuroscience. The program will emphasize technological methods and innovations that have been critical, as well as ones needed to continue progress in neuroscience.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

- ENGL 1101 English Composition I 3
- ENGL 1102 English Composition II 3
- MATH 1552 Integral Calculus 4
 or MATH 1551 Calculus for Life Sciences 1

Core B - Institutional Options

- CS 1301 Introduction to Computing 3
 or CS 1315 Introduction to Media Computation 3
 or CS 1371 Computing for Engineers 3

Core C - Humanities

- Any HUM (p. 93) 6

Core D - Science, Math, & Technology

- PHYS 2211 Introductory Physics I 4
- PHYS 2212 Introductory Physics II 4
- MATH 1551 Differential Calculus 2
 or MATH 1552 Introduction to Differential Calculus 2
- MATH 1553 Introduction to Linear Algebra 2
 or MATH 1561 Linear Algebra 4
 or MATH 1562 Linear Algebra with Abstract Vector Spaces 4

Core E - Social Sciences

Select one of the following: 3

- HIST 2111 The United States to 1877 3
 or HIST 2 The United States since 1877 3
 or INTA 1 American Government in Comparative Perspective 3
 or POL 1 Government of the United States 3
 or PUBP American Constitutional Issues 3
- PSYC 1101 General Psychology 3

Any SS (p. 97) 6

Core F - Courses Related to Major

- CHEM 1310 General Chemistry 4
 or CHEM 12 Chemical Principles I 3
- CHEM 1315 Survey of Organic Chemistry 4
 or CHEM 12 Chemical Principles II 4

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1510</td>
<td>Biological Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3511</td>
<td>Survey of Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>NEUR 2001</td>
<td>Principles in Neuroscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Neuroscience Depth Electives

18 credits

Select one research based elective:

- NEUR 4001 Neuroscience Research Project 4

Select one interest area elective:

- BIOL 3450 Cell and Molecular Biology
 & BIOL 3451 Cell and Molecular Biology Lab 6
- PSYC 4090 Cognitive Neuroscience 3
- APPH 3755 Human Physiology
 & APPH 377 Laboratory in Human Physiology 3

Select one statistics elective: 5

- BIOL 4401 Experimental Design and Statistical Methods in Biology 3

6-8 credits of additional Neuroscience electives

Breadth Electives

15

Free Electives

14

Total Credit Hours 122

1. MATH 1553 (2 cr.) is preferred but MATH 1554 (Linear Algebra, 4 cr.) or MATH 1564 (Linear Algebra with Vector Spaces, 4 cr.) can satisfy this requirement with the excess 2 cr. to be applied to free electives.

2. CHEM 2311 is an approved substitution for CHEM 1315 to fulfill Area F only for students who complete a full year of organic chemistry (i.e., both CHEM 2311 and CHEM 2312 or CHEM 2313 must be completed).

3. CHEM 4511 is an approved substitution for CHEM 3511 to fulfill Area F only for students who complete a full year of biochemistry (i.e., both CHEM 4511 and CHEM 4512 must be completed).

4. Four credits of NEUR 4699 credit is only allowed to substitute for NEUR 4001 if completing the Georgia Tech Research Option. The Research Option requires an additional 6 credits of research (an additional 2 credits of NEUR 4699 may be applied to “Additional Neuroscience Electives”; the additional 3 credits of research credit will be applied to Free Electives), and LMC 4701 (1 credit) and LMC 4702 (1 credit) (applied to Free Electives). A research proposal and thesis/report is also required to complete the Research Option.

5. PSYC 2020 may be completed only for students completing the Psychology Breadth Elective option.

Research Option

BS in Neuroscience students are able to complete the Georgia Tech Research Option.

To complete the research option for Neuroscience, the student must:

- Complete ten units of supervised research, over a period of preferably three but at least two terms.
• Research may be for either pay or credit [typically 4698 or 4699] - for BS in Neuroscience, this will be NEUR 4699.
• At least six credit hours must be on the same research project, broadly defined.
• Write an undergraduate thesis or other substantial, written report showing results of the research.
• A research proposal must be approved by a faculty advisor and one other faculty member. The proposal will normally be completed at the end of the student’s first semester of research, but must be approved at latest before the start of their final term of research. An approved proposal is required for admission to the class “Writing an Undergraduate Thesis” (see below).
• The thesis/report must be approved and graded by two faculty members.
• Theses will be published in the Georgia Tech Library.
• Take the two-credit class “Writing an Undergraduate Thesis.” [LMC 4701 and LMC 4702]

http://www.undergradresearch.gatech.edu/research-option/

Bachelor of Science in Nuclear and Radiological Engineering - Nuclear Engineering Concentration

The undergraduate curriculum in nuclear and radiological engineering is structured to meet the needs of both the student who contemplates employment immediately after graduation and the student planning to pursue graduate study. It provides maximum flexibility in the form of options for each student to develop his or her unique interests and capabilities. The core curriculum covers the basic principles of nuclear engineering, nuclear reactor core design, reactor systems engineering, nuclear power economics, reactor operations, radiation sources and detection instruments, radiation transport, radiation protection, criticality safety, regulatory requirements, and radioactive materials management.

In addition to the Institute’s academic requirements for graduation with a bachelor’s degree, the following are required for a BS NRE degree.

• A C or better must be earned in:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

• The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.

Program Educational Objectives

The program educational objectives reflect the needs of the program’s constituencies and have been reviewed and validated by our constituents.

• NRE graduates will positively contribute to nuclear and radiological engineering and related fields.

• NRE graduates will conduct themselves with the highest professional and ethical principles that include considerations of public safety and the environment.
• NRE graduates will engage in life long learning through graduate and continuing education, professional development activities, or other career appropriate options.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554</td>
<td>Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1564</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td>2</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

Core B - Institutional Options

Core C - Humanities

Core D - Science, Math, & Technology

Core E - Social Sciences

Core F - Courses Related to Major/Lower Division Courses

Major Requirements
Students must earn a minimum Major GPA of 2.0 (truncated). Major GPA includes all required NRE and ME classes plus classes used for the concentration. If a class is repeated, only the last grade is included in the calculation.

1. Minimum grade C
2. Ethics Overlay may be Humanities or Social Sciences and can be any course from the GT-approved list: http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/ethics/.
3. Students can receive credit for only one of ECON 2100, ECON 2101, ECON 2105 and ECON 2106. The only exception is that students can receive 6 hours credit for both ECON 2105 and ECON 2106.
4. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.
5. Students must satisfy the requirements of EITHER the Nuclear Engineering (NE) Concentration or the Radiological Science and Engineering (RSE) Concentration. NE Concentration requires ME 3345, NRE 4210, and NRE 4214; RSE Concentration requires NRE 4216 and two courses from the following list: NRE 4750, NRE 4803 (Nuclear Safeguards), and NRE 4407. Students may complete both Concentrations using free or engineering electives.
6. Any Math or Science at 2000 level or higher with the exception of selected 1000-level courses: BIOL 1510, BIOL 1520, and CHEM 1212K.
7. Engineering Elective is any class from the College of Engineering at the 2000-level or higher excluding: ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4741, ME 4742, and ME 4753. Also excludes project-type courses such as VIP, and 2699, 2903, 4699, 4903 classes. Cannot duplicate any other material used to satisfy the BSNRE degree requirements.
8. Free 1XXX: Cannot duplicate any other material used to satisfy the BSNE degree requirements.
9. Free 2XXX: At least 9 hours of free electives must be at the 2000 level or above with the exception of 4 hours that may be satisfied with one of the following: BIOL 1510, BIOL 1520, or CHEM 1212K. Cannot duplicate any other material used to satisfy the BSNRE degree requirements.

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. The program is the fourth oldest of its kind in the world and the largest optional co-op program in the country.

Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with nuclear and radiological engineering majors complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as freshman or sophomores and are classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer's location.

Students who participate in the program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor's degree with a Cooperative Plan Designation. Woodruff School students have traditionally been the largest group participating in the program.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, go to http://career.gatech.edu/co-op.

The Undergraduate Professional Internship Program is for nuclear and radiological engineering students who do not participate in the Cooperative Program, but want some career-related experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, see: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu (http://www.workabroad.gatech.edu)), which complements a student's formal education with paid international work experience directly related to nuclear and radiological engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of needed skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu.

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 credit hours.
at Georgia Tech, but before the completion of seventy-five credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider.

Non-Thesis Option
The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option
The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give you hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These events will foster your career interests and expand your selection of possible employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on your thesis project, your advisor, and your work ethic.

During the first year of your graduate studies, you will be encouraged to continue for the PhD. In many cases, you might be working on an interesting topic of study as part of your master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Nuclear and Radiological Engineering - Radiological Science and Engineering concentration

The undergraduate curriculum in nuclear and radiological engineering is structured to meet the needs of both the student who contemplates employment immediately after graduation and the student planning to pursue graduate study. It provides maximum flexibility in the form of options for each student to develop his or her unique interests and capabilities. The core curriculum covers the basic principles of nuclear engineering, nuclear reactor core design, reactor systems engineering, nuclear power economics, reactor operations, radiation sources and detection instruments, radiation transport, radiation protection, criticality safety, regulatory requirements, and radioactive materials management.

In addition to the Institute’s academic requirements for graduation with a bachelor’s degree, the following are required for a BS NRE degree.

- A C or better must be earned in:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.

Program Educational Objectives
The program educational objectives reflect the needs of the program’s constituencies and have been reviewed and validated by our constituents.

- NRE graduates will positively contribute to nuclear and radiological engineering and related fields.
- NRE graduates will conduct themselves with the highest professional and ethical principles that include considerations of public safety and the environment.
- NRE graduates will engage in lifelong learning through graduate and continuing education, professional development activities, or other career appropriate options.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM</td>
<td>(p. 93)</td>
<td>6</td>
</tr>
</tbody>
</table>

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>

Core E - Social Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

Wellness

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
</tbody>
</table>

Core - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

- The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

- • The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.

Program Educational Objectives
The program educational objectives reflect the needs of the program’s constituencies and have been reviewed and validated by our constituents.

- NRE graduates will positively contribute to nuclear and radiological engineering and related fields.
- NRE graduates will conduct themselves with the highest professional and ethical principles that include considerations of public safety and the environment.
- NRE graduates will engage in lifelong learning through graduate and continuing education, professional development activities, or other career appropriate options.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

- • The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.
Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001</td>
<td>Principles and Applications of Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NRE 2120</td>
<td>Elements of Nuclear and Radiological Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Ethics Requirement (p. 101)

Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRE 3026</td>
<td>Experimental Nuclear Reactor Physics</td>
<td>3</td>
</tr>
<tr>
<td>NRE 3112</td>
<td>Nuclear Radiation Detection</td>
<td>3</td>
</tr>
<tr>
<td>NRE 3208</td>
<td>Nuclear Reactor Phys I</td>
<td>3</td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>NRE 3316</td>
<td>Radiation Protection Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NRE 4350</td>
<td>Design Methods & Tools</td>
<td>3</td>
</tr>
<tr>
<td>NRE 4351</td>
<td>Design of Nuclear and Radiological Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-NRE Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 2001</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3710</td>
<td>Circuits and Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3741</td>
<td>Instrumentation and Electronics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>Essentials of Engineering Economy</td>
<td>1</td>
</tr>
<tr>
<td>ME 3322</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3670</td>
<td>Probability and Statistics with Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Radiological Science and Engineering Concentration requirements

Select two courses:
- NRE 4407 Introduction to Radiobiology and Oncology
- NRE 4750 Diagnostic Imaging Physics
- NRE 4803 Nuclear Safeguards

Math/Science Elective

Engineering Elective

Free Electives

Free Electives (1000-level or higher)

Free Electives (2000-level or higher)

Total Credit Hours: 126

No Pass-Fail courses allowed

Students must earn a minimum Major GPA of 2.0 (truncated). Major GPA includes all required NRE and ME classes plus classes used for the concentration. If a class is repeated, only the last grade is included in the calculation.

1. Minimum grade C
2. Ethics Overlay may be Humanities or Social Sciences and can be any course from the GT-approved list: http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/ethics/.
3. Students can receive credit for only one of ECON 2100, ECON 2101, ECON 2105, and ECON 2106. The only exception is that students can receive 6 hours credit for both ECON 2105 and ECON 2106.
4. CHEM 1211K can substitute for CHEM 1310. CHEM 1211K and CHEM 1212K are recommended for pre-health students.

5. Students must satisfy the requirements of EITHER the Nuclear Engineering (NE) Concentration or the Radiological Science and Engineering (RSE) Concentration. NE Concentration requires ME 3345, NRE 4210, and NRE 4214; RSE Concentration requires NRE 4328 and two courses from the following list: NRE 4750, NRE 4803 (Nuclear Safeguards), and NRE 4407. Students may complete both Concentrations using free or engineering electives.

6. Any Math or Science at 2000 level or higher with the exception of selected 1000-level courses: BIOL 1510, BIOL 1520, and CHEM 1212K.

7. Engineering Elective is any class from the College of Engineering at the 2000-level or higher excluding: ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4741, ME 4742, and ME 4753. Also excludes project-type courses such as VIP, and 2699, 2903, 4699, 4903 classes. Cannot duplicate any other material used to satisfy the BSNRE degree requirements.

8. Free 1XXX. Cannot duplicate any other material used to satisfy the BSNRE degree requirements.

9. Free 2XXX: At least 9 hours of free electives must be at the 2000 level or above with the exception of 4 hours that may be satisfied with one of the following: BIOL 1510, BIOL 1520, or CHEM 1212K. Cannot duplicate any other material used to satisfy the BSNRE degree requirements.

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. The program is the fourth oldest of its kind in the world and the largest optional co-op program in the country.

Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with nuclear and radiological engineering majors complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as freshman or sophomores and are classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer’s location.

Students who participate in the program have the opportunity to develop career interests, become more confident in their career choices, and develop human relation skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan Designation. Woodruff School students have traditionally been the largest group participating in the program.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, go to http://career.gatech.edu/co-op.

The Undergraduate Professional Internship Program is for nuclear and radiological engineering students who do not participate in the Cooperative Program, but want some career-related experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before...
they can participate in the program. For more details, see: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu (http://www.workabroad.gatech.edu)), which complements a student’s formal education with paid international work experience directly related to nuclear and radiological engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of needed skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdiscovery.gatech.edu (http://careerdiscovery.gatech.edu).

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 credit hours at Georgia Tech, but before the completion of seventy-five credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master’s degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech’s interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student’s BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give you hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These events will foster your career interests and expand your selection of possible employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on your thesis project, your advisor, and your work ethic.

During the first year of your graduate studies, you will be encouraged to continue for the PhD In many cases, you might be working on an interesting topic of study as part of your master’s degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Nuclear and Radiological Engineering

The undergraduate curriculum in nuclear and radiological engineering is structured to meet the needs of both the student who contemplates employment immediately after graduation and the student planning to pursue graduate study. It provides maximum flexibility in the form of options for each student to develop his or her unique interests and capabilities. The core curriculum covers the basic principles of nuclear engineering, nuclear reactor core design, reactor systems engineering, nuclear power economics, reactor operations, radiation sources and detection instruments, radiation transport, radiation protection, criticality safety, regulatory requirements, and radioactive materials management.

In addition to the Institute’s academic requirements for graduation with a bachelor’s degree, the following are required for a BS NRE degree.

- A C or better must be earned in

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2552</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

- The cumulative GPA of all required NRE and ME classes plus classes used for the concentration must be 2.0 or higher.

Program Educational Objectives

The program educational objectives reflect the needs of the program’s constituencies and have been reviewed and validated by our constituents:

- NRE graduates will positively contribute to nuclear and radiological engineering and related fields.
- NRE graduates will conduct themselves with the highest professional and ethical principles that include considerations of public safety and the environment.
- NRE graduates will engage in life long learning through graduate and continuing education, professional development activities, or other career appropriate options.
- Bachelor of Science in Nuclear and Radiological Engineering - Nuclear Engineering (p. 472)
- Bachelor of Science in Nuclear and Radiological Engineering - Radiological Science and Engineering (p. 474)

Cooperative Plan

Since 1912, Georgia Tech has offered a five-year Undergraduate Cooperative Program to those students who wish to combine career-related experience with classroom studies. The program is the fourth oldest of its kind in the world and the largest optional co-op program in the country.

Students alternate between industrial assignments and classroom studies until they complete three semesters of work. Co-op students with nuclear and radiological engineering majors complete the same coursework on campus that is completed by regular four-year students. Most co-op students begin the program as freshman or sophomores and are classified as full-time students regardless whether they are attending classes on campus or are full-time at an employer’s location.

Students who participate in the program have the opportunity to develop career interests, become more confident in their career choices, and develop human relations skills through their work experience. Graduates of the program receive a bachelor’s degree with a Cooperative Plan
Designation. Woodruff School students have traditionally been the largest group participating in the program.

Students can also complete work assignments in a foreign country as part of the International Cooperative Program. This program is a great opportunity to utilize foreign language skills, gain a global perspective, and experience a diverse culture. Proficiency in a foreign language is necessary to earn the International Cooperative Plan degree designation. For more information on the Cooperative Program, go to http://career.gatech.edu/co-op.

The Undergraduate Professional Internship Program is for nuclear and radiological engineering students who do not participate in the Cooperative Program, but want some career-related experience before graduation. Students generally work for one semester, usually in the summer, with an option for more work. Students must have completed at least thirty hours of coursework at Georgia Tech before they can participate in the program. For more details, see: http://career.gatech.edu/internships.

In addition, there is a Work Abroad Program (www.workabroad.gatech.edu (http://www.workabroad.gatech.edu/)), which complements a student's formal education with paid international work experience directly related to nuclear and radiological engineering. Participating students typically include juniors and seniors. The international work assignments are designed to include practical training, cross-cultural exposure and learning, and the acquisition of needed skills.

For more information about all of the programs in the Center for Career Discovery and Development, visit www.careerdisccovery.gatech.edu (http://careerdisccovery.gatech.edu).

The BS/MS Program

The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 credit hours at Georgia Tech, but before the completion of seventy-five credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master's degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech's interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option

The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student's BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option

The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give you hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These events will foster your career interests and expand your selection of possible employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on your thesis project, your advisor, and your work ethic.

During the first year of your graduate studies, you will be encouraged to continue for the PhD. In many cases, you might be working on an interesting topic of study as part of your master's degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Bachelor of Science in Physics - Astrophysics

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the Bachelor of Science in Physics degree is the traditional preparation of a student for graduate study in physics.

Each of the baccalaureate programs contains the following:

1. courses needed to meet general institutional degree requirements;
2. a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei;
3. technical electives that enable the student to explore areas of his or her choice in greater depth;
4. courses involving undergraduate research, and
5. free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective. Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills
Bachelor of Science in Physics - Business Option

ENGL 1101 English Composition I 3
ENGL 1102 English Composition II 3
MATH 1552 Integral Calculus 4

Core B - Institutional Options
CS 1301 Introduction to Computing 3
or CS 1371 Computing for Engineers

Core C - Humanities
Any HUM (p. 93) 6

Core D - Science, Math, & Technology
PHYS 2211 Introductory Physics I 4
PHYS 2212 Introductory Physics II 4
MATH 1551 Differential Calculus 2
MATH 1553 Introduction to Linear Algebra 2
or MATH 1561 Linear Algebra
or MATH 1562 Linear Algebra with Abstract Vector Spaces

Core E - Social Sciences
Choose one of the following: 3
HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues
Any SS (p. 97) 9

Core F - Courses Related to Major
MATH 2551 Multivariable Calculus 4
MATH 2552 Differential Equations 4
CHEM 1310 General Chemistry 4
or CHEM 1210 Chemical Principles I
PHYS 2213 Introduction to Modern Physics 3
PHYS 3201 Classical Mechanics I 3

Upper-Level Physics
PHYS 3122 Electrostatics and Magnetostatics 3
PHYS 3123 Electrodynamics 3
PHYS 3141 Thermodynamics 3
PHYS 3143 Quantum Mechanics I 3
PHYS 4142 Statistical Mechanics 3
PHYS 4143 Quantum Mechanics II 3
PHYS 4321 Advanced Laboratory I 3
PHYS 4601 Senior Seminar I 1
PHYS 4602 Senior Seminar II 1

Astrophysics Concentration
PHYS 2021 Introduction to Astronomy I 3
or PHYS 2022 Introduction to Astronomy II
PHYS 3021 Nuclear Astrophysics and Stellar Evolution 3
Choose one of the following: 6
PHYS 4147 Relativity
PHYS 4247 Cosmology
PHYS 4347 Fundamentals of Astrophysics
PHYS 4263 Nuclei, Particles, and Fields
Physics Electives 2,3 5
Free Electives 19

Free Electives
Total Credit Hours 122

Student must have 2.0 in all PHYS classes 3000-level or higher

1 If PHYS 2231 is taken, extra hour goes toward Free Electives
2 Any PHYS course or BIOL 4478, CHEM 3411, CHEM 3412,
 CHEM 3511, EAS 2750, EAS 4300, EAS 4430, ECE 4501, MATH 2106,
 MATH 3215, MATH 3235, MATH 4320, MATH 4347 MATH 4348,
 MATH 4581, NRE 3301, NRE 4610
3 Minimum of one class in PHYS 3211, PHYS 3226, PHYS 4322
4 If PHYS 2232 is taken, extra hour goes toward Free Electives

Research Option in Physics

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in Physics. The purpose of this program is to prepare students who plan to go on to graduate research after their BS degree. This option includes three or four semesters of focused research in the student’s junior and senior years. Students who complete this option receive a designation on their transcript. For an undergraduate to fulfill the Research Option in the School of Physics, the student must fulfill the following requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4698</td>
<td>Undergraduate Research Assistantship 1</td>
<td>9</td>
</tr>
<tr>
<td>or PHYS 4699 Undergraduate Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing 2</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing 3</td>
<td>1</td>
</tr>
<tr>
<td>Research Thesis 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 11

1 At least three credits must be PHYS 4699.
2 LMC 4701: Undergraduate Research Proposal Writing - typically taken during the first or second semester of research.
LMC 4702: Undergraduate Research Thesis Writing - taken during the term in which the thesis is completed.
3 Write and submit an undergraduate research thesis to the School of Physics based on the student’s research that is approved by the student’s research advisor.

Course requirements are detailed in brochures available from the School of Physics. For specific questions, students should contact the Associate Chair for Undergraduate Studies in the School of Physics.

Bachelor of Science in Physics - Business Option

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the Bachelor of Science in Physics degree is the traditional preparation of a student for graduate study in physics.

Each of the baccalaureate programs contains the following:

1. courses needed to meet general institutional degree requirements;
2. a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and
magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei;

3. technical electives that enable the student to explore areas of his or her choice in greater depth;
4. courses involving undergraduate research, and
5. free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective. Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor’s degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPh 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPh 10</td>
<td>The Science of Physical Activity and Health</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Any HUM</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>3</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2551</td>
</tr>
<tr>
<td>MATH 2552</td>
</tr>
<tr>
<td>CHEM 1310</td>
</tr>
<tr>
<td>or CHEM 12</td>
</tr>
<tr>
<td>PHYS 2213</td>
</tr>
<tr>
<td>PHYS 3201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper-Level Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3122</td>
</tr>
<tr>
<td>PHYS 3123</td>
</tr>
<tr>
<td>PHYS 3141</td>
</tr>
<tr>
<td>PHYS 3143</td>
</tr>
<tr>
<td>PHYS 4142</td>
</tr>
<tr>
<td>PHYS 4143</td>
</tr>
<tr>
<td>PHYS 4321</td>
</tr>
<tr>
<td>PHYS 4601</td>
</tr>
<tr>
<td>PHYS 4602</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics or Technical Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any PHYS or Technical Electives</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
</tr>
<tr>
<td>or MGT 3000</td>
</tr>
<tr>
<td>MGT 3101</td>
</tr>
<tr>
<td>or MGT 3155</td>
</tr>
<tr>
<td>or PSYC 2230</td>
</tr>
</tbody>
</table>

Choose one of the following: 6

MGT 3062	Financial Management	
MGT 3078	Finance and Investments	
MGT 3300	Marketing Management I	
MGT 3660	International Business	
MGT 4015	Advanced Managerial Accounting	
MGT 4026	Financial Reporting and Analysis I	
MGT 4028	Financial Analysis and Reporting of Technology Firms	
MGT 4030	International Accounting	
MGT 4190	Strategic Quality Management and Competitiveness	
MGT 4191	The Entrepreneurship Forum	
MGT 4192	Impact Speaker Series Forum	
MGT 4193	Servant Leadership, Values & Systems	
MGT 4194	Social Enterprise and Entrepreneurship	
MGT 4303	Personal Selling and Sales Management	
MGT 4304	Strategic Brand Management	
MGT 4307	Strategic Marketing	
MGT 4335	International Marketing	
MGT 4610	Law, Management, and Economics	
MGT 4670	Entrepreneurship	

<table>
<thead>
<tr>
<th>Free Electives</th>
</tr>
</thead>
</table>
Research Option in Physics

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in Physics. The purpose of this program is to prepare students who plan to go on to graduate research after their BS degree. This option includes three or four semesters of focused research in the student's junior and senior years. Students who complete this option receive a designation on their transcript. For an undergraduate research experience, culminating in an undergraduate thesis, integrated research in the student's junior and senior years. Students who complete this option must fulfill the following requirements:

1. courses needed to meet general institutional degree requirements;
2. a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei;
3. technical electives that enable the student to explore areas of his or her choice in greater depth;
4. courses involving undergraduate research, and
5. free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective. Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Course requirements are detailed in brochures available from the School of Physics. For specific questions, students should contact the Associate Chair for Undergraduate Studies in the School of Physics.

Bachelor of Science in Physics - General

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the Bachelor of Science in Physics degree is the traditional preparation of a student for graduate study in physics. Each of the baccalaureate programs contains the following:

1. courses needed to meet general institutional degree requirements;
2. a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei;
3. technical electives that enable the student to explore areas of his or her choice in greater depth;
4. courses involving undergraduate research, and
5. free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective. Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Course requirements are detailed in brochures available from the School of Physics. For specific questions, students should contact the Associate Chair for Undergraduate Studies in the School of Physics.

Bachelor of Science in Physics - General

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the Bachelor of Science in Physics degree is the traditional preparation of a student for graduate study in physics. Each of the baccalaureate programs contains the following:
Core F - Courses Related to Major

MATH 2551 Multivariable Calculus
MATH 2552 Differential Equations
CHEM 1310 General Chemistry
or CHEM 1320 General Chemistry I

PHYS 2213 Introduction to Modern Physics
PHYS 3201 Classical Mechanics I
Upper-Level Physics

PHYS 3122 Electrostatics and Magnetostatics
PHYS 3123 Electrodynamics
PHYS 3141 Thermodynamics
PHYS 3143 Quantum Mechanics I
PHYS 4142 Statistical Mechanics
PHYS 4143 Quantum Mechanics II
PHYS 4321 Advanced Laboratory I
PHYS 4601 Senior Seminar I
PHYS 4602 Senior Seminar II

Physics or Technical Electives

Any PHYS or Technical Electives
Any SS (p. 97)

Free Electives

Free Electives

Total Credit Hours

122

Student must have 2.0 in all PHYS classes 3000-level or higher

1. If PHYS 2231 is taken, extra hour goes toward Free Electives

2. Any PHYS course or BIOL 4478, CHEM 3411, CHEM 3412, CHEM 3511, EAS 2750, EAS 4300, EAS 4430, ECE 4501, MATH 2106, MATH 3215, MATH 3235, MATH 4320, MATH 4347 MATH 4348, MATH 4581, NRE 3301, NRE 4610

3. Minimum of one class in PHYS 3211, PHYS 3226, PHYS 4322

4. Maximum of six credit hours below 3000-level

5. Maximum of nine credit hours PHYS 2699 or PHYS 4699

6. If PHYS 2232 is taken, extra hour goes toward Free Electives

Research Option in Physics

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in Physics. The purpose of this program is to prepare students who plan to go on to graduate research after their BS degree. This option includes three or four semesters of focused research in the student's junior and senior years. Students who complete this option receive a designation on their transcript. For an undergraduate to fulfill the Research Option in the School of Physics, the student must fulfill the following requirements:

- Fulfill the following requirements:
 - Student must have 2.0 in all PHYS classes 3000-level or higher
 - At least three credits must be PHYS 4699.
 - LMC 4701: Undergraduate Research Proposal Writing - typically taken during the first or second semester of research.
 - LMC 4702: Undergraduate Research Thesis Writing - taken during the term in which the thesis is completed.
 - Write and submit an undergraduate research thesis to the School of Physics based on the student's research that is approved by the student's research advisor.

Course requirements are detailed in brochures available from the School of Physics. For specific questions, students should contact the Associate Chair for Undergraduate Studies in the School of Physics.

Bachelor of Science in Physics

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the Bachelor of Science in Physics degree is the traditional preparation of a student for graduate study in physics.

Each of the baccalaureate programs contains the following:

1. courses needed to meet general institutional degree requirements;
2. a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei;
3. technical electives that enable the student to explore areas of his or her choice in greater depth;
4. courses involving undergraduate research, and
5. free electives, about fifteen percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. Students should contact their academic advisor for assistance in planning programs of study with emphasis directed toward a particular objective. Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.
A total of 120 credit hours (exclusive of wellness) and a grade-point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Physics: Undergraduate Information (http://www.physics.gatech.edu/content/undergraduate-program)

- Bachelor of Science in Physics - General (p. 480)
- Bachelor of Science in Physics - Astrophysics (p. 477)
- Bachelor of Science in Physics - Business Option (p. 478)

Research Option in Physics

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in Physics. The purpose of this program is to prepare students who plan to go on to graduate research after their BS degree. This option includes three or four semesters of focused research in the student's junior and senior years. Students who complete this option receive a designation on their transcript. For an undergraduate to fulfill the Research Option in the School of Physics, the student must fulfill the following requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4698</td>
<td>Undergraduate Research Assistantship</td>
<td>9</td>
</tr>
<tr>
<td>or PHYS 4699</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>LMC 4701</td>
<td>Undergraduate Research Proposal Writing</td>
<td>1</td>
</tr>
<tr>
<td>LMC 4702</td>
<td>Undergraduate Research Thesis Writing</td>
<td>1</td>
</tr>
<tr>
<td>Research Thesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 11

1. At least three credits must be PHYS 4699.
2. LMC 4701: Undergraduate Research Proposal Writing-typically taken during the first or second semester of research.
3. LMC 4702: Undergraduate Research Thesis Writing-taken during the term in which the thesis is completed.
4. Write and submit an undergraduate research thesis to the School of Physics based on the student's research that is approved by the student's research advisor.

Course requirements are detailed in brochures available from the School of Physics. For specific questions, students should contact the Associate Chair for Undergraduate Studies in the School of Physics.

Bachelor of Science in Psychology - Business Option

The curriculum is technically oriented and stresses quantitative and experimental approaches to the study of behavior. The undergraduate curriculum is based on a strong emphasis in the sciences and mathematics and provides an excellent preparation for graduate school in psychology, medical school, law school, and other professional and academic graduate programs. In addition, many students with the BS degree in psychology choose to enter a variety of fields, including computer software design, human resources, marketing, human factors, system design, personnel selection and training, and management.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM or PHYS</td>
<td>Differential Calculus</td>
<td>8</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 15 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or MATH 15 Linear Algebra with Abstract Vector Spaces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

Choose one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>! 3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td>4</td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>2</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1510</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 151 Honors Biological Principles</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL 1520</td>
<td>Introduction to Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 152 Honors Introduction to Organismal Biology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PSYC 2020</td>
<td>Psychological Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Choose two of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>Human Development Over the Life Span</td>
<td>6</td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2230</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2240</td>
<td>Personality Theory</td>
<td></td>
</tr>
</tbody>
</table>

Major Requirements

Choose 8 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td>! 4</td>
</tr>
<tr>
<td>PSYC 4020</td>
<td>Biopsychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4025</td>
<td>Learning and Memory</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 4041</td>
<td>Human Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 4031</td>
<td>Applied Experimental Psychology</td>
<td>4</td>
</tr>
<tr>
<td>or PSYC 46 Senior Thesis II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC Electives
Choose 15 credits from the following: 2,3,7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2103</td>
<td>Human Development Over the Life Span</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2220</td>
<td>Industrial/Organizational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2230</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2240</td>
<td>Personality Theory</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2270</td>
<td>Introduction to Engineering Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2280</td>
<td>Psychology of Creativity and Art</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2400</td>
<td>Psychology and Contemporary Issues in Society</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>Experimental Analysis of Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4010</td>
<td>Human Abilities</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4020</td>
<td>Biopsychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4025</td>
<td>Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4041</td>
<td>Human Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4050</td>
<td>History and Systems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4090</td>
<td>Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4100</td>
<td>Behavioral Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4260</td>
<td>Psychology of Aging</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4270</td>
<td>Psychological Testing</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4600</td>
<td>Senior Thesis I</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Business Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2101</td>
<td>Accounting I: Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 3010</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 315</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>or PSYC 222</td>
<td>Industrial/Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose one of the following: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3062</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4015</td>
<td>Advanced Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4026</td>
<td>Financial Reporting and Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4028</td>
<td>Financial Analysis and Reporting of Technology Firms</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4030</td>
<td>International Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4190</td>
<td>Strategic Quality Management and Competitiveness</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4191</td>
<td>The Entrepreneurship Forum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4192</td>
<td>Impact Speaker Series Forum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4193</td>
<td>Servant Leadership, Values & Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4194</td>
<td>Social Enterprise and Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4303</td>
<td>Personal Selling and Sales Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4304</td>
<td>Strategic Brand Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4307</td>
<td>Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4335</td>
<td>International Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4610</td>
<td>Law, Management, and Economics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4670</td>
<td>Entrepreneurship</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>Experimental Analysis of Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4010</td>
<td>Human Abilities</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4020</td>
<td>Biopsychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4025</td>
<td>Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4041</td>
<td>Human Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4050</td>
<td>History and Systems</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4090</td>
<td>Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4100</td>
<td>Behavioral Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4260</td>
<td>Psychology of Aging</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4270</td>
<td>Psychological Testing</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4600</td>
<td>Senior Thesis I</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 4699</td>
<td>Undergraduate Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 122

Pass/fail only allowed for Free Electives.

At least 39 hours of upper division (3000/4000 level) coursework required for the degree.

At least 21 hours of 3000/4000 level psychology courses must be taken summed across major requirements and PSYC electives.

1. CHEM 1211K or CHEM 1212K or CHEM 1310 or PHYS 2211 or PHYS 2212 or PHYS 2231 or PHYS 2232.
2. Maximum of three credit hours of PSYC 2699 or PSYC 4699 (combined) can be counted towards PSYC electives.
3. Minimum grade of C required.
4. If PSYC 4020 (3 credit hour course) is taken for major field requirement choice, then one additional hour of PSYC elective is required.
5. If PSYC 4025 (3 credit hour course) is taken for major field requirement choice, then one additional hour of PSYC elective is required.
6. Extra 1 credit hour from ECON 2106 applied to Free Electives.
7. PSYC 2220 can be used as either a Business Option elective or a PSYC elective, but cannot be used to fulfill both requirements.

International Plan

Psychology's International Plan follows the Institute model to develop a global competence within the student's major program of study. It thus integrates the student's international studies and experiences with the School's quantitative and experimental approaches to the study of behavior.

In addition to the requirements for the BS in Psychology, students must complete the following:

1. take three international courses, including one from each of the following categories: international relations, global economics, and a course on a specific country or region;
2. spend two consecutive terms abroad engaged in fulfilling psychology electives (must be approved by the School of Psychology prior to enrolling in courses), free electives, humanities, and/or social science electives;
3. demonstrate language proficiency equivalent to two years of college-level language study (to be determined by testing); and,
4. incorporate the international experience within the capstone course or the senior thesis.

Research Option

The curriculum is technically oriented and stresses quantitative and experimental approaches to the study of behavior. The undergraduate curriculum is based on a strong emphasis in the sciences and mathematics and provides an excellent preparation for graduate school in psychology, medical school, law school, and other professional and academic graduate programs. The Research Plan in the School of
Psychology provides additional research experience for those students seeking to continue their education in graduate school.

Bachelor of Science in Psychology - General

The curriculum is technically oriented and stresses quantitative and experimental approaches to the study of behavior. The undergraduate curriculum is based on a strong emphasis in the sciences and mathematics and provides an excellent preparation for graduate school in psychology, medical school, law school, and other professional and academic graduate programs. In addition, many students with the BS degree in psychology choose to enter a variety of fields, including computer software design, human resources, marketing, human factors, system design, personnel selection and training, and management.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellness</td>
<td></td>
</tr>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10A</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core A - Essential Skills</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core B - Institutional Options</td>
<td></td>
</tr>
<tr>
<td>CS 1301</td>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>or CS 1315</td>
<td>Introduction to Media Computation</td>
<td></td>
</tr>
<tr>
<td>or CS 1371</td>
<td>Computing for Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core C - Humanities</td>
<td></td>
</tr>
<tr>
<td>Any HUM</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core D - Science, Math, & Technology</td>
<td></td>
</tr>
<tr>
<td>CHEM or PHYS 1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra with Abstract Vector Spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core E - Social Sciences</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or PSYC 2015</td>
<td>Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core F - Courses Related to Major</td>
<td></td>
</tr>
<tr>
<td>BIOL 1510</td>
<td>Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 151</td>
<td>Honors Biological Principles</td>
<td></td>
</tr>
<tr>
<td>BIOL 1520</td>
<td>Introduction to Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 152</td>
<td>Honors Introduction to Organismal Biology</td>
<td></td>
</tr>
<tr>
<td>Choose two of the following: 3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>Human Development Over the Life Span</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Requirements</td>
<td></td>
</tr>
<tr>
<td>Choose 8 credits from the following: 3,5,6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4020</td>
<td>Biopsychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4025</td>
<td>Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>PSYC 4041</td>
<td>Human Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 4031</td>
<td>Applied Experimental Psychology 3</td>
<td>4</td>
</tr>
<tr>
<td>or PSYC 466</td>
<td>Senior Thesis II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSYC Electives</td>
<td></td>
</tr>
<tr>
<td>Choose 15 credits from the following: 2,3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>Human Development Over the Life Span</td>
<td></td>
</tr>
<tr>
<td>PSYC 2210</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2220</td>
<td>Industrial/Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2230</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2240</td>
<td>Personality Theory</td>
<td></td>
</tr>
<tr>
<td>PSYC 2270</td>
<td>Introduction to Engineering Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 2280</td>
<td>Psychology of Creativity and Art</td>
<td></td>
</tr>
<tr>
<td>PSYC 2400</td>
<td>Psychology and Contemporary Issues in Society</td>
<td></td>
</tr>
<tr>
<td>PSYC 2699</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 2803</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>Experimental Analysis of Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 4010</td>
<td>Human Abilities</td>
<td></td>
</tr>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4020</td>
<td>Biopsychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4025</td>
<td>Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>PSYC 4041</td>
<td>Human Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 4050</td>
<td>History and Systems</td>
<td></td>
</tr>
<tr>
<td>PSYC 4090</td>
<td>Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>PSYC 4100</td>
<td>Behavioral Pharmacology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4260</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 4270</td>
<td>Psychological Testing</td>
<td></td>
</tr>
<tr>
<td>PSYC 4600</td>
<td>Senior Thesis I</td>
<td></td>
</tr>
<tr>
<td>PSYC 4699</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>

Pass-fail only allowed for Free Electives.

At least 39 hours of upper division (3000/4000 level) coursework are required.

At least 21 hours of 3000/4000 level psychology courses must be taken across major requirements and PSYC electives.

1 CHEM 1211K or CHEM 1212K or CHEM 1310 or PHYS 2211 or PHYS 2212 or PHYS 2231 or PHYS 2232.

2 Maximum of three credit hours of PSYC 2699 or PSYC 4699.
system design, personnel selection and training, and management.

computer software design, human resources, marketing, human factors,

BS degree in psychology choose to enter a variety of fields, including

mathematics and provides an excellent preparation for graduate school

curriculum is based on a strong emphasis in the sciences and

The curriculum is technically oriented and stresses quantitative and

Bachelor of Science in Psychology

Psychology provides additional research experience for those students

seeking to continue their education in graduate school.

International Plan

Psychology's International Plan follows the Institute model to develop
a global competence within the student's major program of study. It
thus integrates the student's international studies and experiences with
the School's quantitative and experimental approaches to the study of
behavior.

In addition to the requirements for the BS in Psychology, students must
complete the following:

1. take three international courses, including one from each of the
 following categories: international relations, global economics, and a
course on a specific country or region;
2. spend two consecutive terms abroad engaged in fulfilling psychology
 electives (must be approved by the School of Psychology prior to
 enrolling in courses), free electives, humanities, and/or social science
 electives;
3. demonstrate language proficiency equivalent to two years of college-
 level language study (to be determined by testing); and,
4. incorporate the international experience within the capstone course
 or the senior thesis.

Research Option

The curriculum is technically oriented and stresses quantitative and
experimental approaches to the study of behavior. The undergraduate
curriculum is based on a strong emphasis in the sciences and
mathematics and provides an excellent preparation for graduate school
in psychology, medical school, law school, and other professional and
academic graduate programs. The Research Plan in the School of
Psychology provides additional research experience for those students
seeking to continue their education in graduate school.

Bachelor of Science in Public Policy

The Bachelor of Science in Public Policy (BS PP) provides an education
that combines strong analytical skills with understanding of a range of
substantive policy issues and the political, social, and cultural forces
that shape public policies. The BS PP core courses provide students with
the broad political, economic, and philosophical foundations of thought
pertinent to public policy, a base of rigorous quantitative and qualitative
analytical approaches, and a solid understanding of the political and
social dynamics that structure policy debates and policy outcomes.

The curriculum moves from disciplinary foundations (in politics,
economics, philosophy, and organization theory) to methods of research
and data analysis, and to detailed studies of particular policy problems.
Students choose two clusters in environment and energy policy, science
and technology policy, social and urban policy, philosophy, or politics and
policy, and can select electives in additional areas such as information
and telecommunication policy, bioengineering and ethics, and regional
development policy. All students have opportunities for internships,
research, and study abroad or exchange programs. The BS PP program
culminates in a senior-year two-semester capstone "task force" in which
students work in teams with outside clients (e.g., Centers for Disease
Control, Marcus Autism Center, Multiple Sclerosis Society, Atlanta Food
Bank) on actual policy problems.

The program's emphasis on the development of problem-solving and
analytical skills constitutes a strong comparative advantage for BS
Bachelor of Science in Public Policy

PP graduates, many of whom move on to law school, management consulting, public sector policy analysis, or nonprofit management.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040</td>
<td>Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 1050</td>
<td>The Science of Physical Activity and Health</td>
<td></td>
</tr>
</tbody>
</table>

Core A - Essential Skills

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1712</td>
<td>Mathematics for Management II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Integral Calculus</td>
<td></td>
</tr>
</tbody>
</table>

Core B - Institutional Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1315</td>
<td>Introduction to Media Computation</td>
<td>3</td>
</tr>
</tbody>
</table>

Core C - Humanities

Any HUM (p. 93) | 6

Core D - Science, Math, & Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lab Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1711</td>
<td>Finite Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1552</td>
<td>Integral Calculus</td>
<td></td>
</tr>
<tr>
<td>& MATH 151</td>
<td>and Introduction to Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

Core E - Social Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>Any SS (p. 97)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Core F - Courses Related to Major

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 2025</td>
<td>Philosophical Analysis of Policy Choices</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 2010</td>
<td>Political Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 2030</td>
<td>Organizations and Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Sci, Computing, or Engineering Elective | 6

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3020</td>
<td>Applied Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3030</td>
<td>Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3120</td>
<td>Statistical Analysis for Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3130</td>
<td>Research Methods and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4010</td>
<td>Policy Task Force</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4020</td>
<td>Policy Task Force II</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 2651</td>
<td>Public Policy Internship</td>
<td>3</td>
</tr>
<tr>
<td>or PUBP 465</td>
<td>Public Policy Internship</td>
<td></td>
</tr>
</tbody>
</table>

Clusters

Students must select nine hours each from two clusters. See Cluster Electives below for options.

Non-Major Cluster

Any POL, PHIL, or PUBP course | 3

Free Electives

Free Electives | 17

Total Credit Hours | 122

Pass-fail only allowed for Free Electives.

1 Must be chosen from the following list: any AE, CEE, ECE, ISYE course, AE 1770/CEE 1770/ME 1770, BC 3630, BIOL 2335, BIOL 2344, BIOL 4755, CHEM 2211, CHEM 2311, CHEM 2312, CHEM 2380, CHEM 3380, COA 6764, CS 6764, CP 4510, CS 1171, CS 1316, CS 1331, CS 1332, CS 6754/ME 6754, EAS 2420, EAS 2600, EAS 2655, EAS 2750, EAS 4420, EAS 4430, EAS 4450, EAS 4602, ECE 2030, ID 3103, ID 4103, LMC 2700, LMC 2730, LMC 3402, LMC 3710, LMC 6312, ME 2016, MGT 2200, MGT 2251, MGT 4051, MGT 4058, MUSI 4630, PHYS 2030, PHYS 2213, PHYS 3123, PHYS 3141, PHYS 3266, PHYS 4142, PSYC 2020, PSYC 2270, PSYC 3011, PSYC 3020, PSYC 3031, PSYC 3040, PSYC 3790, PSYC 4010, PSYC 4031, PSYC 4050, PSYC 4090, PSYC 4270.

2 Minimum grade of C required.

3 MATH 1111 and MATH 2804 not allowed.

Cluster Electives

Environmental and Energy Policy Cluster

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 4176</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3315</td>
<td>Environmental Policy and Politics</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>Sustainability, Technology, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4338</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6300</td>
<td>Earth Systems</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6310</td>
<td>Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6312</td>
<td>Economics of Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6314</td>
<td>Policy Tools for Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6330</td>
<td>Environmental Law</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6760</td>
<td>Negotiation and Conflict Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Science and Technology Policy Cluster

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 3127</td>
<td>Science, Technology, and Human Values</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3502</td>
<td>Information and Communications Technology Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4111</td>
<td>Internet and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4214</td>
<td>Gender, Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4410</td>
<td>Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4414</td>
<td>Technology, Innovation, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4416</td>
<td>Critical Issues in Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4756</td>
<td>Technology Forecasting and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6402</td>
<td>Research Policy and Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6415</td>
<td>Technology, Regions, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6417</td>
<td>Critical Perspectives on Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6421</td>
<td>Development of Large-scale Socio-technical Systems</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6501</td>
<td>Information Policy and Management</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6740</td>
<td>Innovation, the State and Industrial Development</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6741</td>
<td>Geography of Innovation</td>
<td>3</td>
</tr>
</tbody>
</table>
BS/MS Public Policy

The School of Public Policy offers a BS/MS program for students enrolled in the undergraduate program who demonstrate an interest in and ability for additional education beyond the BS degree.

Students in the BS/MS program remain undergraduates until they meet requirements for the undergraduate degree, at which point they receive their BS degree and change to graduate status. Students are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech (i.e., at the end of their first year), and if they show appropriate progress in their degree program thereafter. Admissions decisions will be based on GPA and judgments of the faculty who have served as advisors or instructors. Continuation in the program requires the student to maintain a GPA of 3.0 or higher in public policy courses. Students participating in this program will be eligible for the six semester credit-hour Graduate Course Option, which allows students completing both the bachelor’s and master’s in the same discipline to use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

The graduate-level credits required in the BS/MS Program are usually as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6753</td>
<td>Comparative Science and Technology Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6777</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
</tbody>
</table>

Social and Urban Policy Cluster

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3201</td>
<td>Introduction to Social Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3214</td>
<td>African American Politics</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4200</td>
<td>Social Policy Issues</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4211</td>
<td>Urban Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4212</td>
<td>Women and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4214</td>
<td>Gender, Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6604</td>
<td>Methods of Urban Policy Analysis and Planning</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6606</td>
<td>Urban Development Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Philosophy Cluster

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 3102</td>
<td>Ancient Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3103</td>
<td>Modern Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3105</td>
<td>Ethical Theories</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3109</td>
<td>Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3113</td>
<td>Logic and Critical Thinking</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3115</td>
<td>Philosophy of Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3127</td>
<td>Science, Technology, and Human Values</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3790</td>
<td>Introduction to Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4110</td>
<td>Theories of Knowledge</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4174</td>
<td>Perspectives in Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4176</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4752</td>
<td>Philosophical Issues in Computation</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 4790</td>
<td>Semi-Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 6010</td>
<td>Biotechnology and Research Ethics</td>
<td>2</td>
</tr>
</tbody>
</table>

BS/MS Information

Contact the BS PP program director for further information.

Doctor of Philosophy with a Major in Aerospace Engineering

The School of Aerospace Engineering offers a doctoral degree. The PhD degree is a research degree.

The degree requires fifty semester hours of coursework beyond the bachelor’s degree; however, the main emphasis is on the research leading to a PhD dissertation. The candidate must pass a qualifying examination and present a thesis proposal and a thesis defense. A GPA of 3.25 is required to graduate with a PhD degree. All coursework, including Special Problems, must be taken on a letter-grade basis. The programs of study for both the master’s and doctoral degrees are very flexible and can be tailored, in agreement with the student’s advisor, to meet the candidate’s professional goals.

1. NOTE: This course should be taken as an undergraduate instead of PUBP 3130 and will count for both programs.

2. Students are required to develop, in consultation with their advisor, a six credit hour concentration in an area or specialty relevant to public policy and management (e.g. environmental policy, science and technology policy, urban policy, economic development, information and communications policy, policy evaluation, public management).

BS/MS Information (http://www.spp.gatech.edu/graduate/five-year-bsms-program)
For further details governing the graduate program, access the Aerospace Engineering Graduate Handbook at www.ae.gatech.edu (http://www.ae.gatech.edu). Graduate students may specialize in the following areas: aerodynamics and fluid mechanics, aeroelasticity and structural dynamics, flight mechanics and control, propulsion and combustion, structural mechanics and materials behavior, and system design and optimization. Further information on these areas of specialization and research can be found at www.ae.gatech.edu/research (http://www.ae.gatech.edu/research).

Doctor of Philosophy with a Major in Algorithms, Combinatorics, and Optimization

One of the most rapidly growing areas of research in applied mathematics, computer science, and operations research has been dealing with discrete structures. This has been most evident in the fields of combinatorics, discrete optimization, and the analysis of algorithms. Increasingly, work in each of these subjects has come to depend on knowledge of all of them. Indeed, many of the most significant advances have resulted from the efforts of researchers in more than one, if not all three, of these areas.

In response to these developments, Georgia Tech has introduced a doctoral degree program in Algorithms, Combinatorics, and Optimization (ACO). This multidisciplinary program is sponsored jointly by the School of Mathematics, the School of Industrial and Systems Engineering, and the College of Computing. Faculty for the program are drawn from these three sponsoring units, as well as from the School of Electrical and Computer Engineering and the College of Business.

The ACO program is arranged to bring together the study of discrete structures and the design and analysis of algorithms in areas such as graph theory, integer programming, combinatorial optimization, and polyhedral theory. It is intended for students possessing a strong background in one or more of the fields represented by the three sponsoring units. Each student in the program has a single home department chosen from the School of Mathematics, the School of Industrial and Systems Engineering, and the College of Computing. Courses for the program are drawn from all three of these units, and include study in such areas as combinatorial methods, algebraic structures, probability, the analysis of algorithms, computational complexity, linear programming, discrete optimization, and convex analysis.

The College of Computing is one of the sponsors of the multidisciplinary program in Algorithms, Combinatorics, and Optimization (ACO), an approved doctoral degree program at Georgia Tech. The other sponsoring units are the Stewart School of Industrial and Systems Engineering and the School of Mathematics. The degree program is administered by an oversight committee drawn primarily from the sponsoring units.

The study of discrete structures is a rapidly growing area in computer science, applied mathematics, and operations research, most obviously in the analysis of algorithms, combinatorics, and discrete optimization. Collaborative work among the three traditionally separate disciplines is already common. The doctorate in Algorithms, Combinatorics, and Optimization will prepare students for careers in this exciting and expanding field.

Students are expected to be well prepared in at least one of the three fields represented by the sponsoring units (computer science, mathematics, and operations research). Each student in the program is admitted through one of the three sponsoring units, which serves as the home department. Coursework is drawn from all three disciplines. The research advisor may be any member of the ACO program faculty, which is drawn from electrical and computer engineering, management, and other disciplines in addition to the three sponsoring units.

PhD A.C.O. Information (http://www.aco.gatech.edu)

Doctor of Philosophy with a Major in Applied Physiology

The School of Biological Sciences offers a multidisciplinary and integrative PhD program in Applied Physiology focused on the study of human movement and mobility, with research concentrations in biomechanics, neuromechanics, motor control and behavior, muscle cellular and systems physiology, and exercise physiology. Applied physiology refers to the study of normal and abnormal regulation and integration of mechanisms across all levels of biological organization (molecules to cells to organs to organ systems). The course of graduate study focuses on original, independent research culminating in the doctoral dissertation.

All students are required to complete the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Minor Concentration</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Specialized Focus Area</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Dissertation Research</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Doctor of Philosophy with a Major in Architecture

The program leading to the Doctor of Philosophy degree in the College of Design has been developed to enable students of exceptional ability to undertake advanced study and original research in the fields of study within the College of Design. Currently the program includes several areas of research emphasis:

1. Design Computation
2. Building Technology & Performance
3. Architecture, History & Society
4. Architecture, Culture & Behavior

Design Computation

Digital-based information technologies have profoundly affected architectural discourse and practice. New types of representation and manufacturing, emergent materials and technologies, innovating modes of collaboration and project delivery, all constitute a profoundly new discourse that has revolutionized the ways architects design, think and talk about architecture, design and buildings. The Design Computation area addresses this emergent all encompassing computational basis for architectural design by inquiring on a variety of related sub-areas including generative and parametric design, digital fabrication, prototyping and robotics, building information modeling (BIM), immersive visualization and virtual reality, databases and user interfaces, formal
Building Technology & Performance
The Ph.D. specialization in Building Technology & Performance advances the use of building physics, building technology, mathematics, controls, modeling, and simulation for the design and operation of high-performing buildings. The technical performance of buildings is the result of the complex interplay of highly variable boundary conditions with the physical behavior of many components operating in multiple domains. The capture of this interplay at appropriate resolution and aggregation with subsequent use in design and operational decisions is the major focus of our work. Research results generate new building performance knowledge in fields such as energy, sustainability, comfort, health, daylighting, productivity and other performance aspects.

Architecture, History, and Culture
The Ph.D. specialization in Architecture, History & Society promotes critical and scholarly reflection in architecture and urban design, with a special focus on issues linking theory and practice. Ongoing work extends a distinguished record of faculty and alumni scholarship in the field based upon the unique range of disciplines and professions available within the College of Design and Georgia Tech. While highlighting modern and contemporary architecture, faculty interests vary significantly by subject area, period, region, and methodological emphasis. These continuously evolving interests are dedicated to understanding the built environment as a form of cultural production. In different ways and with various techniques, faculty contribute to a growing field of cross-cultural studies and interdisciplinary scholarship that use rigorous concepts from humanistic, social scientific, and technical disciplines often considered to be outside the purview of architectural history and theory, to better understand the material, spatial, and intellectual dimensions of the physical world.

Architecture, Culture, and Behavior
The field of Architecture, Culture & Behavior explores how individual, social, organizational, and cultural behavior, performance, and experience relate to the design of buildings and urban space. We develop tools and methods to describe and quantify the properties of built form, model performance and evaluate design and their impacts on individual experience and organizational functioning. Underlying themes of inquiry include spatial cognition; the relationship between built space and social networks; the relationship between built space and the morphology of behaviors; the evolution of building types in relation to the changing programmatic requirements of their occupant organizations; the perceptual and functional implications of design languages. Particular studies explore a range of built environments: healthcare facilities that support higher quality care; workplace design that supports organizational culture and productivity; museum design that supports informal learning; urban design that supports active and vibrant communities.

For further details on the program, contact:
Robin Tucker, Academic Advising Manager
robin.tucker@design.gatech.edu

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core courses on Introduction to Architecture Research</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Select Five 3-credit courses in an area of research specialization within the School.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Select an additional 12 credits at the 6000 level and above chosen in consultation with the advisor.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Qualifying Paper
In the second year of their studies students complete a qualifying paper, a paper of publishable standard that makes a contribution to knowledge.

Comprehensive Examination in the Architecture Major
At the end of the second year of their studies students take a comprehensive examination covering both the core curriculum and their area of specialization.

Thesis Topic Proposal
In their third year of studies students are expected to defend a PhD topic proposal. Upon successful defense of the proposal they are admitted to candidacy and proceed to work on their doctoral theses. The development of a thesis topic normally requires students to register for at least six credits of COA 8999.

Minor Field of Studies
In order to graduate students must also satisfy minimum Institute requirements regarding the minor field of study, as described in the relevant link provided in section 2 above. At this time (2010) students satisfy the minor by taking nine credit hours in related courses 6000 level and above, in a field of studies outside the School of Architecture to be determined in consultation with their advisor. This means that the minimum total number of course credits necessary in order to complete the program is forty-five: thirty-six for the major and nine for the minor.

Doctoral Thesis
The preparation of a Doctoral thesis normally requires a minimum of 6 credits COA 9000. The defense of the doctoral thesis is the final step in the program. A successful defense results in the student being recommended for the award of the PhD degree.

Time to Completion of degree
The minimum requirement to complete the PhD with a major in Architecture is seventy-two credits, which is equivalent to six semesters or three years of full time study. We strive to ensure that the average time required to complete the PhD degree is no longer than four years. However, students who teach or work as GRAs, particularly those who...
seek to build a strong record of research, publications and teaching, sometimes take longer.

Doctor of Philosophy with a Major in Bioengineering

The Bioengineering PhD degree requires a thesis based on independent study of a bioengineering research topic under the guidance of a bioengineering program faculty member.

The Georgia Tech Interdisciplinary Bioengineering (BioE) Graduate Program was established in 1992. Over 170 students have graduated from the program in a broad spectrum of research by our ninety participating faculty (http://www.bioengineering.gatech.edu/faculty) from the Colleges of Engineering, Computing, Sciences, and Architecture as well as Emory University School of Medicine.

The BioE Program is interdisciplinary in that it is not a standalone academic unit like most departments or schools at Georgia Tech. This interdisciplinary graduate program offers advanced courses in bioengineering, engineering specialties, and life sciences combined with training in cutting-edge bioengineering research. Bioengineering research focuses on the development of new or improved physical and mathematical concepts and techniques that may be applied to problems in medicine and biology, including the fundamental study of biological phenomena and development of new medical devices. The Bioengineering Program offers master's and doctoral degrees through participating Schools in the College of Engineering and the College of Computing. The curriculum involves engineering and life sciences coursework and provides flexibility to concentrate in specific areas to develop multidisciplinary and integrated training.

Eight different academic units from the Colleges of Engineering and Computing make up the program. However, the BioE Program provides the degree requirements for students accepted into the program. This approach allows a flexible, integrative, and individualized degree program that enforces depth and breadth in coursework, a solid bioengineering research experience, and yet is reflective of the disciplinary background of the student's home school. Importantly, the BioE Program provides research opportunities for students with any participating program faculty, allowing tremendous diversity and flexibility for research topics and advisors.

Additional information on the Bioengineering Program, including how to apply and a comparison between the Bioengineering Program and traditional engineering programs, can be found at www.bioengineering.gatech.edu (http://www.bioengineering.gatech.edu).

Objective of the Program

The mission of the Georgia Tech Bioinformatics PhD Program is to educate and prepare graduate students to reach the forefront of leadership in the field of bioinformatics and computational biology; and to integrate research and education on the use of information technologies in biology and medicine. Thus, the program leading to a PhD in Bioinformatics is an interdisciplinary program spanning a variety of academic departments at Georgia Tech.

Bioinformatics is a multidisciplinary field in which life sciences, computer science, physical sciences, and engineering are merged to solve both fundamental and applied problems in biology and medicine. The outcomes of bioinformatics and computational biology particularly include:

- new and global perspectives into the organization and function of biological systems (fundamental biology);
- new and novel targets for drug discovery and development; and
- genetic/proteomic profiling for pharmaco-genomics or personalized medicine.

Thus, Bioinformatics is emerging as a strategic discipline at the frontier between Biology, Biochemistry, Biomedicine, Bioengineering, Computer Science and Mathematics, impacting fundamental science, medicine, biotechnology, and society.

With its broad mission statement, this program at Georgia Tech has the following focus / strength areas:

- Development of software tools, algorithms, and databases for gene identification, protein structural prediction, clustering analysis, and data mining.
- Application of bioinformatics to disease diagnosis, classification, prognosis, and treatment.
- Application of bioinformatics to fundamental biology and systems biology.

The requirements for each student in the PhD program in Bioinformatics include the successful completion of a set of core courses in Biology, Biochemistry, Mathematics, and Computer Science, while the main emphasis of the program is on the successful completion of an original and independent research project. Each student must also complete a minor program of study in accordance with Institute policies.

PhD Bioinformatics (http://bioinformatics.gatech.edu)

Doctor of Philosophy with a Major in Bioinformatics

Each PhD student will acquire a thorough knowledge of a selected area of specialization, a broad knowledge of the field, and competence in the basic sciences. The main emphasis is on the successful completion of an original and independent research project. The purpose of our PhD program is to prepare highly qualified scientists who have excellent, up-to-date training in the fields of biology or bioinformatics, who are actively involved in scientific research, are capable of making significant contributions to their scientific field, possess all the necessary skills for effective oral and written communication with colleagues, and can successfully compete in the job market for postdoctoral and research scientist level positions in academia, science-related industries, and a wide range of other careers.
Doctor of Philosophy with a Major in Biomedical Engineering

The Joint Biomedical Engineering PhD program is offered through the Wallace H. Coulter (WHC) Department of Biomedical Engineering at Georgia Tech and Emory University. The degree is conferred jointly by Georgia Tech and Emory. The curriculum is based on an integration of life sciences, engineering, and mathematics. The goal is to enable students to postulate and solve biomedical problems quantitatively and with a systems perspective. Both Georgia Tech and Emory faculty provide an integrative teaching medium for students by team teaching courses.

The curriculum will facilitate individual flexibility and depth of study through coursework selected by the student (and thesis advisor) in specific categories: BME Integrative Core, Engineering/ Bioscience Fundamentals, and BME Advanced Graduate Seminar. Other requirements include a bioethics course, a teaching course, a teaching practicum, and a nine-hour minor program of study outside the student’s thesis research area. The resulting total minimum number of required hours is 35. It is anticipated (although not required) that students may take other elective coursework to fulfill the requirements of their individual research projects and/or training grants.

Soon after enrollment, students are matched with a thesis advisor based upon mutual interest. After successfully passing the qualifying examination, students submit a request for approval of their Thesis Reading Committee. Upon successful completion of all degree requirements, students will be awarded the PhD degree by the graduate schools of Georgia Tech and Emory.

Minimum Prerequisites

BS in Engineering or Life Sciences
One year of calculus-based physics
One semester of organic chemistry (two semesters recommended)
Calculus through differential equations

Biomedical Information (http://www.bme.gatech.edu)

Foreign Study Programs

An additional option for the joint biomedical engineering degree is offered between the WHC Department of Biomedical Engineering at Georgia Tech & Emory University and Peking University in Beijing, China. The curriculum is the same with the addition of global perspectives courses. Students spend the majority of their time in the program on the "home" campus (either Atlanta or Beijing) with one year abroad for research with a faculty co-advisor. This partnership provides the opportunity to create a new paradigm for global biomedical engineering education and research. The program offers a unique means for U.S. and Chinese students who want to learn and work in a global economy and in global health settings. Program graduates will be prepared to become global leaders of innovation who can contribute to cultural, political, economic and health concerns in their home countries and around the world.

Doctor of Philosophy with a Major in Building Construction

The Doctor of Philosophy degree program in the School of Building Construction (BC) was approved by the Board of Regents in October 2011; the degree awarded is the Doctor of Philosophy with a major in Building Construction.

For more information, contact:

Academic Advisor
School of Building Construction
Georgia Institute of Technology
Atlanta, Georgia 30332-0680
404.385.7089
www.bc.gatech.edu (http://www.bc.gatech.edu)

The program of study requires a minimum of two years of full-time residency (not fewer than four semesters excluding summer) devoted to coursework and other preparation for advancement to candidacy. A total of 60 credit hours will be required for this PhD degree beyond the master's degree.

Programs of study must include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 7100</td>
<td>Quantitative Methods for Construction Research</td>
<td>3</td>
</tr>
<tr>
<td>BC 7200</td>
<td>Advanced Readings in BC in Preparation for the PhD Comprehensive Examination</td>
<td>6</td>
</tr>
<tr>
<td>BC 8000</td>
<td>PhD Seminar for Students with Building Construction Emphasis</td>
<td>1</td>
</tr>
<tr>
<td>BC 8100</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Electives

Select a minimum of twelve credit hours. 12

Minor

Select a minimum of 9 credit hours. 9

Thesis

BC 8999 Doctoral Thesis Preparation 12
BC 9000 Doctoral Thesis 14

Total Credit Hours 60

1 A minimum of twelve credit hours of concentration electives, chosen from a list of approved electives (revised every semester by the faculty in the School of Building Construction). This list is composed of graduate courses offered by other graduate programs at Georgia Tech.

The major and minor requirements are minimums; the particular field of study may require additional work.

Additional requirements will be established by the PhD advisor, in consultation with the BC Graduate Faculty on a case-by-case basis, in order to ensure each student is taking courses which can directly assist them toward gaining advanced proficiency in their chosen area of research.

A program of study must be approved by the student’s PhD Advisor. Each student will have a plan of study to ensure that the student’s educational goals may be achieved while meeting the academic policies of the Institute and the PhD program. The Building Construction PhD program will enable students of exceptional ability and with a strong interest in research to undertake advance study in the field of building construction and facility management; it will also build off existing...
collaborations between the School and other academic units in the Institute to encourage interdisciplinary scholarship.

A student must choose a minor field of study that is most relevant to her or his research, with the major field being in Building Construction. The minor field must be outside of the School of Building Construction, must include at least nine hours of coursework, taken on a letter grade basis of "B" or better, and must be approved by the PhD Advisor, working in consultation with BC Graduate Faculty in the School of Building Construction, and the Office of Graduate Studies and Admissions. Although the student's plan of study will be approved, the student must additionally submit a letter and receive approval for the completion of the coursework on the chosen minor.

An overview of program requirements includes:

- A Program of Study must be approved by the student's PhD Advisor. Additional requirements may be set by the Graduate Faculty in the School of Building Construction.
- The student must have a minor field of study; the minor field must be outside of the School of Building Construction and must include at least nine hours of coursework. The minor must be approved by the PhD Advisor, working in consultation with BC Graduate Faculty, and the Office of Graduate Studies.
- Complete a Qualifying Paper, if applicable.
- Pass a PhD comprehensive (qualifying) examination consisting of written and oral portions.
- Complete a PhD proposal and orally defend the proposal. The student is considered a PhD candidate at that time.
- Complete a PhD dissertation and orally defend the dissertation.

To remain in good standing in the program, a student must be enrolled in a minimum of 6 credit hours of coursework (not including independent study) per semester during completion of the required four semesters in residence. Exceptions to this requirement will be allowed upon approval of the BC Graduate Faculty.

After or while taking the required six credit hours of Advanced Readings in Building Construction (BC 7200), that will prepare the student for the Comprehensive Examinations, the student must register for a minimum of twelve hours of Doctoral Thesis Preparation (BC 8999); generally these hours are taken in the third year of study in preparation for the Dissertation Proposal. Typically, an additional year or more is required to complete the dissertation. During semesters the student is working on the dissertation, he/she must register for a minimum of 3 credit hours of Doctoral Thesis Preparation (BC 9000). In total, a minimum of 14 credit hours of BC 9000 are required for graduation, and a minimum of 26 credit hours of thesis hours are required. Satisfaction of the requirements for the PhD degree includes successful public defense of the dissertation.

Concentration Electives

To include the study of: history and precedent in the field; theory and concepts and their evolution; current debate; and methods of analysis and inquiry.

Minor Field of Study

To include the study of: relevant history and precedent in the field; relevant theory; current debate; and methods of analysis and inquiry.

Thesis Preparation

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 8999</td>
<td>Doctoral Thesis Preparation (minimum)</td>
<td>12</td>
</tr>
<tr>
<td>BC 9000</td>
<td>Doctoral Thesis (minimum)</td>
<td>14</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Curriculum Overview

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 7100</td>
<td>Quantitative Methods for Construction Research</td>
<td>3</td>
</tr>
<tr>
<td>BC 7200</td>
<td>Advanced Readings in BC in Preparation for the PhD Comprehensive Examination</td>
<td>6</td>
</tr>
<tr>
<td>BC 8000</td>
<td>PhD Seminar for Students with Building Construction Emphasis</td>
<td>1</td>
</tr>
<tr>
<td>BC 8100</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
</tbody>
</table>

Doctor of Philosophy with a Major in Chemical Engineering

The School of Chemical & Biomolecular Engineering offers graduate programs involving advanced-level coursework and independent research leading to MS and PhD degrees in chemical engineering. The MS degree may also be obtained by coursework only. Course selection for both the MS and doctoral degrees is quite flexible, with individual plans of study developed for each student. Research opportunities exist in a broad range of areas of importance to chemical engineers and society, including catalysis, reaction kinetics, complex fluids, microelectronics, microfluidics, optimization, bioinformatics, polymers, sustainable development, pulp and paper, separations, CO2 capture, biomedicine, solar energy, thermodynamics, MEMS, environmental science, reaction engineering, cancer diagnostics and therapeutics, biofuels, air quality, modeling, and process synthesis and control. Furthermore, the School of Chemical & Biomolecular Engineering participates with several other schools in offering MS and PhD degrees in Bioengineering and Paper Science and Engineering.

Chemical and Biomolecular Engineering Website (http://www.chbe.gatech.edu)

Doctor of Philosophy with a Major in Chemistry

The goal of the doctoral program is to provide proficient knowledge in a specialized area of chemistry, with particular emphasis being placed on original, independent, and scholarly research. Students working toward a PhD must complete fifteen credit hours of courses and a series of seminar courses. Students should complete all course requirements in the first year of graduate study and present a seminar in the second year. The PhD candidacy examination consists of a series of examinations in the major area based on a reading assignment from the recent literature and an original research proposal to be completed by the end of the second year. Independent research for the PhD is demonstrated by completion of published work.

Chemistry Website (http://www.chemistry.gatech.edu)
Doctor of Philosophy with a Major in City and Regional Planning

Georgia Tech has been awarding doctoral degrees in the field of City and Regional Planning since 1985, producing distinguished academics and scholars who work in universities and other research settings.

PhD students pursue advanced studies and research on issues most critical to the field of City and Regional Planning. The PhD program engages extensively with other programs, research centers, and colleges as it delivers its major and minor fields of study. Program graduates are expected to be well qualified to serve in a range of settings such as universities, planning consultancies, research and development firms, government agencies, and advanced practice.

Successful applicants have exceptional potential as scholars and fit with the School’s research capabilities. Most applicants have completed an accredited master’s degree in City and Regional Planning or a related field and have backgrounds in their proposed area of specialization. The program does admit capable applicants lacking this preparation, but these applicants may be required to undertake remedial work. Students are generally admitted for first enrollment for the fall semester only.

The program requires Graduate Record Examination (GRE) test scores taken within the last five years. Scores are expected to be well above the average. Non-native speakers of English are expected to have a minimum IB TOEFL score of at least 620/261/102 (paper, computer, and internet tests, respectively). Prior study in the United States does not waive this requirement.

For more information about the PhD program, contact:

Academic Advisor
Graduate Student Admissions, Advising, and Graduation Clearance
School of City and Regional Planning
College of Design
Georgia Institute of Technology
Atlanta, Georgia 30332-0155
Email: crp@design.gatech.edu

Doctor of Philosophy with a Major in Civil Engineering

The Ph.D. program in the School of Civil and Environmental Engineering is offered to students with an excellent academic background and a capacity for independent research. Doctoral candidates tailor a highly individualized Program of Study (typically 50 credit hours of courses beyond the bachelor's degree) to develop expertise in their major specialization area. As part of the Program of Study, candidates must complete a Minor Field of Study (http://www.ce.gatech.edu/academics/graduate). To demonstrate the ability for independent research, the candidate must pass a qualifying examination, a thesis proposal, and a thesis defense. Candidates are required to complete a doctoral thesis reporting the results of original and independent research that derives from the scientific method and demonstrates creativity and technical expertise in the principles and methods essential to modern Civil & Environmental Engineering.

Major Areas of Specialization are:

- Construction and Infrastructure Systems Engineering
- Environmental Engineering
- Geosystems Engineering
- Structural Engineering, Mechanics and Materials
- Transportation Systems Engineering
- Water Resources Engineering

The Computational Science and Engineering (CSE) program is an interdisciplinary program addressing the body of knowledge, skills, and practices associated with the study of computer-based models of natural phenomena and engineered systems. Students will be required to obtain a breadth of knowledge across a set of core areas, depth of knowledge in a specific computational specialization (e.g., numerical computing), and knowledge to apply computational techniques in a domain of application. Students will be expected to integrate principles from mathematics, computing, science, and engineering to be able to create significant computational artifacts (e.g., software), and to complete independent research that advances the state-of-the-art in the CSE discipline.

The CSE Ph.D. degree program is an interdisciplinary program offered by the College of Computing, the College of Engineering, and the College of Sciences. Once admitted, students follow the CSE program's degree requirements and curriculum.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 6001</td>
<td>Introduction to Computational Science and Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CSE 6140</td>
<td>Computational Science and Engineering Algorithms</td>
<td>1</td>
</tr>
<tr>
<td>CSE 6643</td>
<td>Computational Data Analysis: Learning, Mining, and Computation</td>
<td>1</td>
</tr>
<tr>
<td>CSE 6730</td>
<td>Modeling and Simulation: Foundations and Implementation</td>
<td>1</td>
</tr>
<tr>
<td>CSE/ISYE 6740</td>
<td>High Performance Computing</td>
<td>1</td>
</tr>
<tr>
<td>CSE 6220</td>
<td>Computation Specialization</td>
<td>9</td>
</tr>
</tbody>
</table>

The computational specialization includes at least nine hours of courses that increase the student’s depth of understanding of computational methods in a specific area, as approved by the student's academic advisor. These courses must go beyond “using computers” to deepen understanding of computational methods, preferably in the context of some application domain.
At least nine hours of PhD courses must be courses that do not carry the CS/CSE course designation. These hours may be taken in CEE. Hours taken as part of the computation and/or application specialization can be used to fulfill this requirement.

The application specialization includes at least nine hours of courses that increase depth of understanding in an application field; these need not be computation-focused courses.

A qualifying examination must be attempted by the end of the second year of enrollment in the CSE doctoral program (normally taken after the student completes CSE core coursework). A qualifying examination committee shall be appointed by the CSE program coordinator for each student and is responsible for making an overall recommendation concerning the outcome of the qualifying examination.

Students are required to complete a doctoral thesis reporting the results of independent research that advances the state-of-the-art in the computational science and engineering discipline. The thesis must be successfully defended to the student’s thesis committee.

For more information about the Computer Science PhD program, visit www.cc.gatech.edu (http://www.cc.gatech.edu).

Doctor of Philosophy with a Major in Digital Media

The Digital Media PhD was inaugurated in fall 2004 and is one of the first of its kind worldwide. The program educates research-oriented theorists/practitioners who bring the traditions of the humanities and arts to the design of digital media. The program provides the theoretical and practical foundations for research and leadership careers in academia and industry, critically engaging with the design, use, and role of digital media in culture.

Graduates of the program are prepared to work in industry, public service, and universities, shaping the emerging digital genres and expanding our understanding and mastery of the representational power of the computer.

The PhD program accepts 3-5 new candidates each year.

For more information visit: http://dm.lmc.gatech.edu/program/phd-program/

The core curriculum is designed to cover three fundamental areas:

1. critical history, theory, and practice of using of computing technologies for expressive purposes
2. advanced principles of interaction design
3. applied research methods in digital media

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6310</td>
<td>The Computer as an "Expressive Medium"</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6313</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6316</td>
<td>Historical Approaches to Digital Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6399</td>
<td>Discovery & Invention</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6650</td>
<td>Project Studio (repeat 2 times)</td>
<td>6</td>
</tr>
<tr>
<td>LMC 6800</td>
<td>Digital Media Master's Project or LMC 7000</td>
<td>6</td>
</tr>
<tr>
<td>LMC 8000</td>
<td>Proseminar in Media Theory</td>
<td>3</td>
</tr>
<tr>
<td>LMC 8001</td>
<td>Proseminar in Digital Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 9000</td>
<td>Doctoral dissertation in Digital Media</td>
<td>6</td>
</tr>
</tbody>
</table>

Minor Concentration

<table>
<thead>
<tr>
<th>Minor Concentration</th>
<th>Code(s)</th>
<th>Title(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6311</td>
<td>Visual Culture and Design</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6312</td>
<td>Design, Technology & Representation</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6314</td>
<td>Design of Networked Media</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6315</td>
<td>Product Production</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6317</td>
<td>Interactive Narrative/Fiction</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6318</td>
<td>Experimental Media</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6319</td>
<td>Intellectual Property Policy and Law</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6213</td>
<td>Edu Applications New</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6215</td>
<td>Issues in Media Studies</td>
</tr>
<tr>
<td>Minor Concentration2,3</td>
<td>LMC 6320</td>
<td>Globalization and New Media</td>
</tr>
</tbody>
</table>
Planned Curriculum and Sample Schedule

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year

Fall

- ECON 7004 Mathematics for Economists 3
- ECON 7012 Microeconomic Theory I 3
- ECON 7022 Econometrics I 3
- Required Elective 3

Credit Hours 12

Spring

- ECON 7013 Microeconomic Theory II 3
- ECON 7023 Econometrics II 3
- ECON 7025 Empirical Research Methods 3
- Required Elective 3

Credit Hours 12

Second Year

Fall

- Major Economics Field, Course I 3
- Minor Economics Field, Course I 3
- Elective 6

Credit Hours 12

Spring

- Major Economics Field, Course II 3
- Minor Economics Field, Course II 3
- Elective 6

Credit Hours 12

Third Year

Fall

- Dissertation Research 6

Credit Hours 6

Spring

- Dissertation Research 6

Credit Hours 6

Fourth Year

Fall

- Dissertation Research 6

Credit Hours 6

Spring

- Dissertation Research 6

Credit Hours 6

Total Credit Hours 72

1 Require Elective Options: ECON 7015, ECON 7031, ECON 7032, ECON 8997, CETL 8713, CETL 8717, or course approved by Director of Graduate Studies.

Doctor of Philosophy with a Major in Earth and Atmospheric Sciences

In the doctoral program at the School of Earth and Atmospheric Sciences, students are engaged primarily in original, independent research that culminates in the doctoral dissertation. In this School, students can specialize in atmospheric chemistry, aerosols, and clouds; dynamics of weather and climate; geochemistry; geophysics; oceanography; paleoclimate; planetary science; and remote sensing. With approval of the School’s faculty, multidisciplinary programs of study are also permitted. In each area of specialization, doctoral students are required to complete a faculty-approved set of core courses and a comprehensive examination. Students are also required to complete nine credit hours of coursework in an academic minor.

Doctor of Philosophy with a Major in Economics

Our curriculum features 24 credit hours of first year core courses, at least 30 credit hours of fields, and electives, and at least 24 credit hours of dissertation research (see Requirements tab). Thus, the minimum number of credit hours to be fulfilled is 72. Students receive rigorous training in microeconomic theory and quantitative methods during their first year of study.

We offer three specialization fields:

- Environmental Economics
- Industrial Organization and
- International Economics
Our fields build on our set of core courses, providing students with opportunities to explore research topics within three distinct but related areas. Each field provides an equal mix of theory and practice, consisting of two 3 credit hour courses.

Students are required to have a major and at least one minor in fields offered by the School of Economics. Occasionally, the School of Economics will offer elective courses that complement our field courses. In addition, students are allowed to take elective courses outside of Economics subject to the approval of the Director of Graduate Studies. A set of elective courses taken in another discipline will constitute a minor in that particular discipline if at least two courses are taken from this discipline.

Students must also register each semester for Dissertation Research, starting in the fall semester of the third year. In such a semester, students must register for at least six credit hours of Dissertation Research. Students must complete a minimum of 24 Dissertation Research credit hours to graduate.

Preliminary Examinations:

Students must take two preliminary examinations during the summer after the first year in the program in microeconomics (covering ECON 7012 and ECON 7013) and econometrics (ECON 7022 and ECON 7023) and earn a pass in both. Students will have two attempts for both exams. Should a student not pass one or both exams after two attempts, he or she will no longer remain in the PhD program, but will be able to earn a master’s degree by completing six more credit hours.

Third year paper:

Each student must complete an original research paper by the end of the summer after the third year in the program. The paper has to answer an original research question. Should a student fail to complete the paper on time, he or she will be asked to leave the program.

Doctor of Philosophy with a Major in Electrical and Computer Engineering

Programs leading to the master’s and doctoral degrees in Electrical and Computer Engineering are provided by the School. Technical interest areas include bioengineering, computer systems and software, digital signal processing, electrical energy, electromagnetics, electronic design and applications, microsystems, optics and photonics, systems and controls, telecommunications, and VLSI systems and digital design.

The doctoral degree program is research-oriented and highly individualized. Typically, at least four years of study beyond the bachelor’s degree are required to complete the doctoral program.

PhD Information (http://www.ece.gatech.edu/academics/graduate/phdreq.html)

Doctor of Philosophy with a Major in Engineering Science and Mechanics

The Ph.D. program in the School of Civil and Environmental Engineering is offered to students with an excellent academic background and a capacity for independent research. Doctoral candidates tailor a highly individualized Program of Study (typically 50 credit hours of courses beyond the bachelor’s degree) to develop expertise in their major specialization area. As part of the Program of Study, candidates must complete a Minor Field of Study (http://www.ce.gatech.edu/academics/graduate graduate). To demonstrate the ability for independent research, the candidate must pass a qualifying examination, a thesis proposal, and a thesis defense. Candidates are required to complete a doctoral thesis reporting the results of original and independent research that derives from the scientific method and demonstrates creativity and technical expertise in the principles and methods essential to modern Civil & Environmental Engineering.

Doctor of Philosophy with a Major in Environmental Engineering

The Ph.D. program in the School of Civil and Environmental Engineering is offered to students with an excellent academic background and a capacity for independent research. Doctoral candidates tailor a highly individualized Program of Study (typically 50 credit hours of courses beyond the bachelor’s degree) to develop expertise in their major specialization area. As part of the Program of Study, candidates must complete a Minor Field of Study (http://www.ce.gatech.edu/academics/graduate graduate). To demonstrate the ability for independent research, the candidate must pass a qualifying examination, a thesis proposal, and a thesis defense. Candidates are required to complete a doctoral thesis reporting the results of original and independent research that derives from the scientific method and demonstrates creativity and technical expertise in the principles and methods essential to modern Civil & Environmental Engineering.

Doctor of Philosophy with a Major in History and Sociology of Technology and Science

The School offers a program of graduate study in the history and sociology of technology and science at both the master’s and doctoral levels. The two-year master’s program consists of foundation courses in history, social theory, and research methods, as well as more specialized reading and research seminars. The program emphasizes the understanding of technology and science within a broad social and historical context. Students develop a strong general background in history and sociology, and acquire skills in research, social analysis, and writing.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Research Paper (Special Problems) ¹</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Exam (normally taken in the third academic year) ²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

¹ Completion of a satisfactory research paper is essential for those students wishing to proceed to doctoral candidacy.

² The examinations cover material from three fields of study, which will be determined by a student’s selection of history or sociology as the area of concentration.

In addition to satisfactory performance in the comprehensive examinations, students pursuing the degree in history must also...
pass a foreign language examination (normally in French, German, or Spanish) before being admitted to candidacy for the PhD. For students in sociology, an advanced sociological methods course replaces the language requirement. Having met these requirements, the candidate will submit a dissertation proposal, which must meet the approval of his or her dissertation committee. The candidate will then proceed to the final requirement for the degree: the completion of the PhD dissertation and its successful defense by oral examination.

Doctor of Philosophy with a Major in Human-Centered Computing

Human-Centered Computing (HCC) is the interdisciplinary science of designing computational artifacts that better support human endeavors. HCC students examine issues - such as computer-supported collaborative work and learning, human-computer interaction, human-robot interaction, learning sciences and technology, and mobile and ubiquitous computing - that lie at the intersection of human concerns (such as anthropology, cognitive science, human factors, industrial design, media studies, psychology, and sociology) and computing studies (such as artificial intelligence, computational perception, databases, graphics, information security, networks, programming languages, and robotics).

Students must complete a core of the three courses described below. The required courses will help students develop the first two of the four competencies that must be demonstrated; these competency areas are

- computing concepts and skills,
- evaluation of HCC systems,
- written research communication, and
- oral research communication.

In consultation with their advisors, students must also complete at least three elective courses, including at least one outside the area of HCC specialization. Areas of elective study may include, but are not restricted to,

- artificial intelligence,
- cognitive science,
- collaboration,
- human-computer interaction,
- information security,
- learning sciences and technology,
- software,
- software engineering, and
- visualization.

Students must also pass a written and oral qualifier (comprehensive examination) and submit and receive approval for a dissertation topic and committee. Students may then be admitted to candidacy.

For more information about the HCC program, visit www.cc.gatech.edu (http://www.cc.gatech.edu).

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6451</td>
<td>Introduction to Human-Centered Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Students who need to develop skills in programming take CS 4452.

Second Year

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 7455</td>
<td>Issues in Human-Centered Computing</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Select at least three elective courses including at least one outside the area of HCC specialization.

Minor

Select at least nine credit hours outside the College of Computing.

Total Credit Hours

27

1. CS 7455 delves deeply into theoretical, methodological, conceptual, and technical issues.

Concurrently, each student develops a research portfolio under the supervision of a faculty advisor. The submission of a conference- or journal-quality paper, and a conference-style presentation, satisfies the competencies of written and oral research communications.

Doctor of Philosophy with a Major in Industrial Engineering - System Informatics & Control Track

Code Title Credit Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6810</td>
<td>Systems Monitoring and Prognostics</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 7201</td>
<td>Production and Service Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 7204</td>
<td>Informatics in Production & Service Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Methods Core

Select three of the following:

- ISYE 6661 Optimization I: Linear Programming
- ISYE 6761 Stochastic Processes I
- ISYE 7406 Data Mining and Statistical Learning
- ECE 6550 Linear Systems and Controls

Methods Breadth

Select at least three courses from at least two of the areas:

Stochastics and Simulation

- ISYE 6644 Simulation
- ISYE 6831 Advanced Simulation
- ISYE 6656 Queuing Theory
- ISYE 6762 Stochastic Processes II

Statistics

- ISYE 6402 Time Series Analysis
- ISYE 6405 Statistical Methods for Manufacturing Design and Improvement
- ISYE 6412 Theoretical Statistics
- ISYE 6413 Design and Analysis of Experiments
- ISYE 6420 Introduction to Theory and Practice of Bayesian Statistics
- ISYE 7401 Advanced Statistical Modeling
- ISYE 7405 Multivariate Data Analysis
Doctor of Philosophy with a major in Industrial Engineering

Doctor of Philosophy with a Major in Industrial Engineering - Applied Statistics Track

The emphasis in this track is on the use of statistics as a science that is employed in a technological environment. Within this context, a student takes fundamental coursework in mathematics, probability and statistics suitable to conduct advanced work and research in a variety of application domains. Among these are quality systems, manufacturing, production, and simulation.

Doctor of Philosophy with a Major in Industrial Engineering - Supply Chain Engineering Track

This program focuses on the design and analysis of manufacturing, distribution, and transportation systems. Students take fundamental coursework in optimization, stochastics, and statistics in order to build a firm base from which to deal with the myriad of issues that arise in settings involving modern supply chain systems modeling and analysis: production and inventory systems, vehicle routing and scheduling, warehousing, and logistics.

Doctor of Philosophy with a Major in Industrial Engineering - Economic Decision Analysis Track

Engineering economic decision analysis is a broad-based area of study that concentrates on both theoretical approaches and the applied methodologies in various decision-making domains within an economic environment. Typical settings that attract students to this program include multicriteria decision-making, capital budgeting, auctions, portfolio analysis and selection, economic forecasting, utility theory, and quantitative finance.

Doctor of Philosophy with a Major in Industrial Engineering - System Informatics & Control Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6810</td>
<td>Systems Monitoring and Prognostics</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 7201</td>
<td>Production and Service Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 7204</td>
<td>Informatics in Production & Service Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Methods Core

Select three of the following:

- ISYE 6661 Optimization I: Linear Programming
- ISYE 6761 Stochastic Processes I
- ISYE 7406 Data Mining and Statistical Learning
- ECE 6550 Linear Systems and Controls

Methods Breadth

Select at least three courses from at least two of the areas:

- Stochastics and Simulation
 - ISYE 6644 Simulation
 - ISYE 6831 Advanced Simulation
 - ISYE 6656 Queuing Theory
 - ISYE 6762 Stochastic Processes II

- Statistics
 - ISYE 6402 Time Series Analysis
 - ISYE 6405 Statistical Methods for Manufacturing Design and Improvement
 - ISYE 6412 Theoretical Statistics
 - ISYE 6413 Design and Analysis of Experiments
 - ISYE 6420 Introduction to Theory and Practice of Bayesian Statistics
Doctor of Philosophy with a Major in International Affairs, Science and Technology

The PhD in International Affairs, Science and Technology program provides a unique opportunity for students with backgrounds in either social sciences or science and technology to deepen their understanding of international affairs through the advanced study of sub-fields such as international relations theory, international security, international political economy, comparative politics, and methods for social scientific research. There is widespread recognition that a number of important problems in international affairs – such as how to control the proliferation of weapons of mass destruction, or how to promote economic growth in the developing world – cannot properly be understood without an appreciation of the scientific and technological issues involved. At the same time, it is evident that neither the development nor the impact of new technologies is confined within state or national boundaries. Scientific innovation increasingly depends on international collaboration, while the consequences of those innovations, for example in terms of their environmental impact, similarly demand international coordination to be monitored and regulated. Graduates of this research-oriented program will be well placed to embark on careers in academic research, or to move into the policy world where their dual expertise will be rare and highly valued.

The PhD program is founded upon a broad, rigorous, and student-centered curriculum. All students must complete INTA 6102 and INTA 6003. Because students come from a wide range of backgrounds, they may petition to substitute or pass-out of certain core requirements based upon previous experiences and coursework and under the guidance and approval of the dissertation committee. However, reduction in credit is limited to a total of nine credit hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 6102</td>
<td>International Relations Theory</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6003</td>
<td>Empirical Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>INTA 9000</td>
<td>Doctoral Thesis</td>
<td>18</td>
</tr>
</tbody>
</table>

Devoted Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 8010</td>
<td>International Affairs, Science and Technology Ph.D. Proseminar</td>
<td>1</td>
</tr>
<tr>
<td>INTA 8000</td>
<td>Seminar in Science, Technology and International Affairs I</td>
<td>3</td>
</tr>
<tr>
<td>INTA 8001</td>
<td>Seminar in Science, Technology and International Affairs II</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Tracks

Each of the predesigned tracks includes a core class and two electives. These tracks are considered core classes and must be completed before examinations.

Select two of four concentration tracks from the following: 18

- International Affairs and Security
- Globalization and Development
- Comparative and Regional Studies
- Student-created (Unique Track): Graduate Program Director- and Faculty-approved Track

Elective

- Approved Methodology Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6201</td>
<td>Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6202</td>
<td>Warehousing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6203</td>
<td>Transportation and Supply Chain Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 6557</td>
<td>Manufacturing Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 6222</td>
<td>Manufacturing Processes and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 6223</td>
<td>Automated Manufacturing Process Planning</td>
<td>3</td>
</tr>
<tr>
<td>ME 6225</td>
<td>Metrology and Measurement Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 6754</td>
<td>Engineering Data Base Management Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 31

It is recommended that students complete the domain and methods core courses before they sit for the comprehensive examination.

A student is not admitted to candidacy until all of the stated course requirements in the Program of Study have been completed.
Select three related INTA 6000/8000-level courses. ¹ 9

Advanced Methods or Language Requirement

Advanced Methods or Language Requirement ² 0-18

Total Credit Hours 58-76

¹ Students must complete a minor concentration that focuses on an approved topic in the field of science, technology, and international affairs. This may be satisfied by completing three related INTA courses at the 6000 and 8000 levels in international innovation or security or three courses in other Schools of the Ivan Allen College, or in colleges or interdisciplinary fields of the Institute or elsewhere.

² Students must also satisfy either the language or advanced methods requirement. The language requirement is satisfied through demonstrated competency (reading proficiency only) in one language other than English (equivalent of four semesters of college-level coursework or an equivalent exam). The advanced methods requirement may be satisfied through completion of two semesters of coursework (in addition to core requirements) of advanced statistics, methods, and/or computer science taken either within the School or in other colleges of the Institute.

Breakdown of Hours Required for Degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 9000</td>
<td>Doctoral Thesis</td>
<td>18</td>
</tr>
<tr>
<td>INTA 6102</td>
<td>International Relations Theory</td>
<td>3</td>
</tr>
<tr>
<td>INTA 6003</td>
<td>Empirical Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>INTA 8010</td>
<td>International Affairs, Science and Technology</td>
<td>1</td>
</tr>
</tbody>
</table>
| INTA | Seminar in Science, Technology and Ph.D. Proseminar
| 8000/8001 | International Affairs I | 6 |
| | Track courses | 18 |
| | Minor concentration | 9 |
| | Advanced Methods or Language Requirement | 0-18 |
| | Total Credit Hours | 58-76 |

Other requirements for the PhD include admission to candidacy for the degree through a qualification process that includes successful completion of two comprehensive examinations in specified fields of international affairs; submission and oral defense of a Science, Technology, and International Affairs Field Exam Paper on an approved topic; and submission and defense of a dissertation prospectus that must be approved and supervised by the dissertation committee composed of relevant experts in the fields and a member external to the school. Finally, students must complete and successfully defend a doctoral dissertation.

Doctor of Philosophy with a major in Machine Learning

The Doctor of Philosophy with a major in Machine Learning program has the following principal objectives, each of which supports an aspect of the Institute’s mission:

1. Create students that are able to advance the state of knowledge and practice in machine learning through innovative research contributions.

2. Create students who are able to integrate and apply principles from computing, statistics, optimization, engineering, mathematics and science to innovate, and create machine learning models and apply them to solve important real-world data intensive problems.

3. Create students who are able to participate in multidisciplinary teams that include individuals whose primary background is in statistics, optimization, engineering, mathematics and science.

4. Provide a high quality education that prepares individuals for careers in industry, government (e.g., national laboratories), and academia, both in terms of knowledge, computational (e.g., software development) skills, and mathematical modeling skills.

5. Foster multidisciplinary collaboration among researchers and educators in areas such as computer science, statistics, optimization, engineering, social science, and computational biology.

6. Foster economic development in the state of Georgia.

7. Advance Georgia Tech’s position of academic leadership by attracting high quality students who would not otherwise apply to Tech for graduate study.

The academic requirements for the PhD in Machine Learning consist of 10 courses, passing the qualifying examination, and successfully defending a PhD thesis. Five of the courses are designated as “core”; students are expected to take these courses in their first two years in the program. The five remaining courses are chosen from a long, diverse list of electives. The qualifying examination consists of a focused literature review that takes place over the course of a semester, for which the student receives course credit.

The central goal of the PhD program is to train students to perform original, independent research. The most important part of the curriculum is the successful defense of a PhD Dissertation, which demonstrates this research ability. The academic requirements are designed in service of this goal.

The curriculum for the PhD in Machine Learning is truly multidisciplinary, containing courses taught in eight schools across three colleges at Georgia Tech: the Schools of Computational Science and Engineering, Computer Science, and Interactive Computing in the College of Computing; the Schools of Industrial and Systems Engineering, Electrical and Computer Engineering, and Biomedical Engineering in the College of Engineering; and the School of Mathematics in the College of Science.

The academic requirements for the PhD in Machine Learning consist of 10 courses, passing the qualifying examination, and successfully defending a PhD thesis. Five of the courses are designated as “core”; students are expected to take these courses in their first two years in the program. The five remaining courses are chosen from a long, diverse list of electives. The qualifying examination consists of a focused literature review that takes place over the course of a semester, for which the student receives course credit.

Summary of General Requirements for a PhD in Machine Learning

- Core curriculum (5 courses, 15 hours).
- Area electives (5 courses, 15 hours).
- Responsible Conduct of Research (RCR) (1 course, 1 hour, pass/fail). Georgia Tech requires that all PhD students complete an RCR requirement that consists of an online component and in-person training. The online component is completed during the student's first semester enrolled at Georgia Tech. The in-person training is satisfied
by taking PHIL 6000 or their associated academic program's in-house RCR course.

- Qualifying examination (1 course, 3 hours). This consists of a one-semester independent literature review followed by an oral examination.
- Doctoral minor (3 courses, 9 hours).
- Research Proposal. The purpose of the proposal is to give the faculty an opportunity to give feedback on the student's research direction, and to make sure they are developing into able communicators.
- PhD Dissertation.

Almost all of the courses in both the core and elective categories are already taught regularly at Georgia Tech. However, two core courses (designated in the next section) are being developed specifically for this program. The proposed outlines for these courses can be found in the Appendix. Students who complete these required courses as part of a master's program will not need to repeat the courses if they are admitted to the ML PhD program.

Core Courses

Machine Learning PhD students will be required to complete courses in five different areas. With the exception of the Foundations course, each of these area requirements can be satisfied using existing courses from the College of Computing or Schools of ECE, ISyE, and Mathematics.

Mathematical Foundations of Machine Learning. This will be a new course cross-listed between the College of Computing (CS) and Schools of ECE and ISyE. This required course is the gateway into the program, and will cover the key subjects from applied mathematics needed for a rigorous graduate program in ML. Particular emphasis will be put on advanced concepts in linear algebra and probabilistic modeling. A formal course proposal has been submitted to the graduate committees in the schools listed above; the outline of the material from this proposal can be found in the Appendix. The new course should have a CS/CSE/ECE/ISYE 7740 designation.

Intermediate Statistics. The purpose of this requirement is to expose students to the main concepts in mathematical statistics. It can be met through any one of the three courses listed below. While these courses emphasize different material, they are all centered on mathematical analysis of fundamental problems in statistics.

- ISYE 6412, Theoretical Statistics
- ECE 7251, Signal Detection and Estimation
- MATH 6262, Statistical Estimation

Machine Learning: Theory and Methods. This course serves as an introduction to the foundational problems, algorithms, and modeling techniques in machine learning. Each of the courses listed below treats roughly the same material using a mix of applied mathematics and computer science, and each has a different balance between the two.

- CS 7616, Pattern Recognition
- CSE/ISYE 6740, Computational Data Analysis
- ECE 6254, Statistical Machine Learning
- ECE 6273, Methods of Pattern Recognition with Applications to Voice

Probabilistic Graphical Models and ML in High Dimensions. This will be a new course cross-listed between the College of Computing (CS) and schools of CSE and ECE. The course will provide students with an introduction to the theory and practice of graphical models, one of the most dominant frameworks in machine learning and artificial intelligence. Similar courses have been taught as special topics courses in the School of CSE, including CSE 8803ML (Machine Learning II: Advanced Topics) and CS 8803PGM (Introduction to Probabilistic Graphical Models). A formal course proposal has been submitted to the graduate committees in the schools listed above; the outline of the material from this proposal can be found in the Appendix. The course should be designated CS/CSE/ECE 7741.

Optimization. Optimization plays a crucial role in both developing new machine learning algorithms and analyzing their performance. The three courses below all provide a rigorous introduction to this topic; each emphasizes different material and provides a unique balance of mathematics and algorithms.

- ECE 8823, Convex Optimization: Theory, Algorithms, and Applications
- ISYE 6661, Linear Optimization
- ISYE 6663, Nonlinear Optimization
- ISYE 6669, Deterministic Optimization
- ISYE 7683, Advanced Nonlinear Programming

Electives

In addition to meeting the five core area requirements, each student is required to complete five elective courses. These courses are required for getting a complete breadth in ML. These courses must be chosen from at least two of the five subject areas listed below.

i. Statistics and Applied Probability: To build breadth and depth in the areas of statistics and probability as applied to ML.

- AE 6505, Kalman Filtering
- BMED 6700, Biostatistics
- ECE 6558, Stochastic Systems
- ECE 6601, Random Processes
- ECE 6605, Information Theory
- ISYE 6404, Nonparametric Data Analysis
- ISYE 6413, Design and Analysis of Experiments
- ISYE 6414, Regression Analysis
- ISYE 6416, Computational Statistics
- ISYE 6420, Bayesian Statistics
- ISYE 6761, Stochastic Processes I
- ISYE 6762, Stochastic Processes II
- ISYE 7400, Adv Design-Experiments
- ISYE 7401, Adv Statistical Modeling
- ISYE 7405, Multivariate Data Analysis
- MATH 6263, Testing Statistical Hypotheses
- MATH 6266, Statistical Linear Modeling
- MATH 6267, Multivariate Statistical Analysis
- MATH 7244, Stochastic Processes and Stochastic Calculus I
- MATH 7245, Stochastic Processes and Stochastic Calculus II

ii. Advanced Theory: To build a deeper understanding of foundations of ML.

- CS 7280, Network Science
- CS 7510, Graph Algorithms
- CS 7520, Approximation Algorithms
- CS 7530, Randomized Algorithms
- CS 7535, Markov Chain Monte Carlo Algorithms
- CS 7540, Spectral Algorithms
Doctor of Philosophy with a major in Machine Learning

- CS 7545, Machine Learning Theory
- ECE 6283, Harmonic Analysis and Signal Processing
- ECE 6555, Linear Estimation
- ISYE 7682, Convexity
- MATH 6112, Advanced Linear Algebra
- MATH 6221, Advanced Classical Probability Theory
- MATH 6580, Introduction to Hilbert Space
- MATH 7338, Functional Analysis
- MATH 7586, Tensor Analysis
- MATH 88XX, Special Topics: Mathematical Foundations of Learning Theory
- MATH 88XX, Special Topics: High Dimensional Probability and Statistics

iii. Applications: To develop a breadth and depth in variety of applications domains impacted by/with ML.

- AE 6373, Advanced Design Methods
- AE 8803, Machine Learning for Control Systems
- AE 8803, Nonlinear Stochastic Optimal Control
- BMED 6780, Medical Image Processing
- BMED 8813BH, Biomedical and Health Informatics
- BMED 8813MH, mHealth Informatics
- BMED 8813MLB, Machine Learning in Biomedicine
- BMED 8823ALG, OMICS Data and Bioinformatics Algorithms
- CS 6440, Introduction to Health Informatics
- CS 6465, Computational Journalism
- CS 6474, Social Computing
- CS 6475, Computational Photography
- CS 6476, Computer Vision
- CS 6601, Artificial Intelligence
- CS 7450, Information Visualization
- CS 7476, Advanced Computer Vision
- CS 7630, Autonomous Robots
- CS 7636, Computational Perception
- CS 7646, Machine Learning for Trading
- CS 7650, Natural Language Processing
- CSE 6141, Massive Graph Analysis
- CSE 6240, Web Search and Text Mining
- CSE 6242, Data and Visual Analytics
- CSE 6301, Algorithms in Bioinformatics and Computational Biology
- ECE 4580, Computational Computer Vision
- ECE 6255, Digital Processing of Speech Signals
- ECE 6258, Digital Image Processing
- ECE 6260, Data Compression and Modeling
- ECE 6273, Methods of Pattern Recognition with Application to Voice
- ECE 6550, Linear Systems and Controls
- ECE 8813, Network Security
- ISYE 6421, Biostatistics
- ISYE 6810, Systems Monitoring and Prognosis
- ISYE 7201, Production Systems
- ISYE 7204 Info Prod & Ser Sys
- ISYE 7203, Logistics Systems
- HS 6000, Healthcare Delivery
- MATH 6759, Stochastic Processes in Finance
- MATH 6783, Financial Data Analysis

iv. Computing and Optimization: To provide more breadth and foundation in areas of math, optimization and computation for ML.

- CS 6505, Computability and Algorithms
- CS 6550, Design and Analysis of Algorithms
- CSE 6140, Computational Science and Engineering Algorithms
- CSE 6643, Numerical Linear Algebra
- CSE 6644, Iterative Methods for Systems of Equations
- CSE 6710, Numerical Methods I
- CSE 6711, Numerical Methods II
- ISYE 6645, Monte Carlo Methods
- ISYE 6662, Discrete Optimization
- ISYE 6664, Stochastic Optimization
- ISYE 6679, Computational methods for optimization
- ISYE 7686, Advanced Combinatorial Optimization
- ISYE 7687, Advanced Integer Programming

v. Platforms: To provide breadth and depth in computing platforms that support ML and Computation.

- CS 6421, Temporal, Spatial, and Active Databases
- CS 6430, Parallel and Distributed Databases
- CS 6290, High-Performance Computer Architecture
- CSE 6220, High Performance Computing
- CSE 6230, High Performance Parallel Computing

Qualifying Examination

The purpose of the Qualifying Examination is to judge the candidate's potential as an independent researcher.

The Ph.D. qualifying exam consists of a focused literature review that will take place over the course of one semester. At the beginning of the second semester of their second year, a qualifying committee consisting of three members of the ML faculty will assign, in consultation with the student and the student's advisor, a course of study consisting of influential papers, books, or other intellectual artifacts relevant to the student's research interests. The student's focus area and current research efforts (and related portfolio) will be considered in defining the course of study.

At the end of the semester, the student will submit a written summary of each artifact which highlights their understanding of the importance (and weaknesses) of the work in question and the relationship of this work to their current research. Subsequently, the student will have a closed oral exam with the three members of the committee. The exam will be interactive, with the student and the committee discussing and criticizing each work and posing questions related to the student's current research to determine the breadth of student's knowledge in that specific area.

The success of the examination will be determined by the committee's qualitative assessment of the student's understanding of the theory, methods, and ultimate impact of the assigned syllabus.

The student will be given a passing grade for meeting the requirements of the committee in both the written and the oral part. Unsatisfactory performance on either part will require the student to redo the entire
qualifying exam in the following semesteryear. Each student will be allowed only two attempts at the exam.

Students are expected to perform the review by the end of their second year in the program.

Doctoral Dissertation

The primary requirement of the PhD student is to do original and substantial research. This research is reported for review in the PhD dissertation, and presented at the final defense. As the first step towards completing a dissertation, the student must prepare and defend a Research Proposal. The proposal is a document of no more than 20 pages in length that carefully describes the topic of the dissertation, including references to prior work, and any preliminary results to date. The written proposal is submitted to a committee of three faculty members from the ML PhD program, and is presented in a public seminar shortly thereafter. The committee members provide feedback on the proposed research directions, comments on the strength of writing and oral presentation skills, and might suggest further courses to solidify the student’s background. Approval of the Research Proposal by the committee is required at least six months prior to the scheduling of the PhD defense. It is expected that the student complete this proposal requirement no later than their fourth year in the program. The PhD thesis committee consists of five faculty members: the student’s advisor, three additional members from the ML PhD program, and one faculty member external to the ML program. The committee is charged with approving the written dissertation and administering the final defense. The defense consists of a public seminar followed by oral examination from the thesis committee.

Minor

The minor will follow the standard Georgia Tech requirement: 9 hours outside the student’s home unit, with a GPA in those courses of at least 3.0. These courses are in addition to the other core and elective requirements. The courses for the minor should form a cohesive program of study, outside the area of ML, that is approved by the Faculty Advisory Committee. Typical programs will consist of three courses from the same school (any school at the Institute) or three courses from the same elective area in the courses listed above. The courses should all be from the same School or from the same elective area in the courses listed above. Programs that do not meet this criteria cannot be approved by the Graduate Committee.

Doctor of Philosophy with a Major in Management

The PhD program in Management is designed to produce graduates who can make scholarly contributions to their chosen fields. Most graduates undertake careers as researchers, scholars and teachers, in academic environments.

The doctoral program in the Scheller College of Business is intended for full-time students who will complete their entire doctoral program prior to leaving campus. Full-time residence in or near Atlanta is expected. The doctoral program is strongly research-oriented and emphasizes early and effective involvement in research, with students experiencing considerable personal attention and close interaction with faculty. The PhD program complements and reflects the technological emphasis of the Institute and places considerable weight on learning outside the classroom. The tutorial model is the basic educational approach employed throughout the program.

All doctoral students take comprehensive examinations in their area of study. After successful completion of the comprehensive examination and the formal approval of his or her dissertation, the student becomes a candidate for the degree. On completion of the dissertation, the student must take a final oral examination as prescribed in the general regulations of the Graduate Division.

Applicants to the doctoral program in management should note that supplementary application materials are required by the College of Business in addition to those required by Georgia Tech’s Office of Graduate Admissions and Enrollment Services.

Applications and viewbooks are available online at www.mgt.gatech.edu/phd (http://www.mgt.gatech.edu/phd).

For more information, call 404.894.8722 or contact the:

Scheller College of Business Graduate Office
Georgia Institute of Technology
Atlanta, Georgia 30308-0520

Doctor of Philosophy with a Major in Materials Science and Engineering

The Doctor of Philosophy degree is directed to attain proficiency in the pursuit of independent scholarly work. The degree comprises coursework in the general principles of materials, with emphasis on metallurgy, polymers, ceramics, paper science and engineering, or functional electronic materials. Additional requirements include specialized courses both in the area of the doctoral thesis and in one or two other areas, passing qualifying examinations, and an independent research investigation.

PhD Degree Requirements (http://www.mse.gatech.edu/graduate)

Doctor of Philosophy with a Major in Mathematics

The doctoral program in Mathematics requires 30 credit hours of graduate-level coursework (6000-level or above) in mathematics and an additional 9 credit hours of coursework towards a minor. Work on a master's thesis (thesis hours) may not be counted toward this requirement, but coursework for the master's degree may be counted. The coursework is subject to breadth requirements guaranteeing exposure to five areas of mathematics (these requirements are discussed more fully on the School of Mathematics website).

Prior to admission to candidacy for the doctoral degree, each student must pass the comprehensive examination, which consists of written exams and an oral examination in the student’s proposed area of specialization. Doctoral students must also satisfy the Institute’s requirements with respect to the dissertation and final oral examination.

PhD Mathematics Website (http://www.math.gatech.edu/graduate/doctoral-programs)

Doctor of Philosophy with a Major in Mechanical Engineering

The doctoral program is designed with great latitude to capitalize on variations in experience and interests of individual students. The PhD degree recognizes proficiency and high achievement in research.
Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3.

ME: Graduate Website (http://www.me.gatech.edu)

Doctor of Philosophy with a Major in Music Technology

The PhD in Music Technology is a full-time residential program. Students accepted into the PhD program in Music Technology are expected to hold a Masters degree in Music Technology or from an allied field, such as computing, music, engineering, or media arts and sciences. All applicants must demonstrate mastery of core masters-level material covered in Music Technology. This includes proficiency in: Music theory, performance, composition, and/or analysis; Music Information Retrieval, Digital Signal Processing and Synthesis; Interactive Music Systems Design; and Music Cognition.

Proficiency will be assessed through review of a portfolio of the applicant’s work and an interview process. Students may waive the requirement to enroll in specific courses by appealing to the Music Technology Graduate Program Committee. Such appeals will typically be granted only if the student has already taken the same course at Georgia Tech or has taken a substantially equivalent course at another institution, and if the student has earned an exceptional grade in that course.

The Graduate Record Examination (GRE) is required for all applicants. A minimum TOEFL score of 600 (paper-based), 250 (computer-based), or 100 (Internet-based) is required for all non-native English speaking applicants.

School of Music (http://www.music.gatech.edu)

Program of Study

Requirements of the Ph.D. with a major in Music Technology will include completion of core courses, a minor, elective coursework, a qualifying paper, comprehensive exams and a dissertation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 6001</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6003</td>
<td>Music Technology History and Repertoire</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6202</td>
<td>Digital Signal Processing for Music Analysis and Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 8001</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 8002</td>
<td>Apprentice Teaching</td>
<td>6</td>
</tr>
</tbody>
</table>

Required Music Technology Research Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 7100</td>
<td>Music Technology Research Laboratory</td>
<td>12</td>
</tr>
</tbody>
</table>

Required Music Technology Creative Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 6002</td>
<td>Computer Supported Interactive Music</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6004</td>
<td>Technology Ensemble</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6203</td>
<td>Project Studio in Music Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Field of Study

The medical physics option in the doctoral program is designed for students with a specific interest in the fields of medical physics and leads to a Doctor of Philosophy with a major in Nuclear Engineering. Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3.

Doctor of Philosophy with a Major in Nuclear Engineering - Nuclear Enterprise Management Option

The graduate program in nuclear and radiological engineering leads to the degrees of

- Master of Science in Nuclear Engineering,
- Master of Science in Medical Physics,
- Master of Science, and
- Doctor of Philosophy.

The specialization in Nuclear Enterprise Management in the doctoral program is designed for students with a specific interest in leadership and management careers throughout the nuclear industry and leads to a Doctor of Philosophy with a major in Nuclear Engineering.
Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3.

Doctor of Philosophy with a Major in Nuclear Engineering

The graduate program in nuclear and radiological engineering/medical physics leads to the degrees of

- Master of Science in Nuclear Engineering,
- Master of Science in Medical Physics,
- Master of Science, and
- Doctor of Philosophy.

The doctoral program is designed with great latitude to capitalize on variations in experience and interests of individual students (e.g., nuclear power engineering, radiological engineering, and medical physics). Candidates for the Doctor of Philosophy degree must earn a graduate grade-point average of at least 3.3.

Students may select:

Doctor of Philosophy with a Major in Nuclear Engineering - Medical Physics Option

Doctor of Philosophy with a Major in Nuclear Engineering - Nuclear Enterprise Management Option

Doctor of Philosophy with a major in Ocean Science and Engineering

The mission of the graduate program in Ocean Science and Engineering (OSE) is to educate the next generation of transdisciplinary ocean scientists and engineers by combining the basic and applied sciences with innovative ocean technologies, and to advance interdisciplinary research at the frontiers of the physical, biological, chemical and human dimensions of ocean systems.

Georgia Tech's transdisciplinary PhD OSE program is designed to train and prepare PhD level scientists to identify and solve foundational and applied problems in the ocean sciences and engineering. Training such students involves ensuring that students are well versed in a diverse set of quantitative toolkits in addition to having developed expert-level knowledge and experience in applying quantitative methods. Hence, the program training defines core topics across the three Schools and the essential knowledge required by the students. The expectations exceed that of traditional PhDs in science or engineering as OSE requires an additional layer of integration between the science and engineering and involves research immersion. The program delivery is organized around four priorities:

Priority 1. Develop an OSE student & faculty community at GT.
Priority 2. Prepare students to perform high-quality research in OSE.
Priority 3. Support students as they become independent OSE experts.
Priority 4. Align students’ research with job opportunities in academia, government and industry.

The PhD degree in OSE requires a minimum of 32 semester hours of coursework to cover the core topics articulated in the essential knowledge list (EKL). Students will be considered "in good academic standing” if they are making satisfactory progress toward completion of the degree, and have met a cumulative grade point average (GPA) equal or greater to 3.2 for the number of credits that they have attempted.

Students enrolled in the OSE program are expected to be trained and knowledgeable in at least three core topics of ocean science and engineering (one in each School). This training is available through courses provided in the different schools participating in the program. The core topics are:

CEE:
- Coastal & Ocean Mechanics
- Environmental Biotechnology

BIO:
- Marine Ecology & Conservation
- Biological & Microbial Oceanography

EAS:
- Physical and Chemical Oceanography
- Ocean & Climate

For each of the three selected topics the students will choose one or two courses for a total of 4 core courses around which they will build their Essential Knowledge List (EKL). The EKL will provide the foundation for the Comprehensive Exam to be taken by all students by the end of the second year. Depending on the student background, the program of study may require taking additional courses to fulfill the core topic requirement, or may partially lessen the course load if the student can demonstrate to have acquired the necessary foundation in one of the topics (this applies for example to students with a Master degree relevant to any of the Research Themes). An EKL containing the selection of core topics and associated courses must be completed and approved by the OSE Graduate Studies Committee (GSC) by the end of the first semester.

The OSE PhD program requires completion of four 3-hour credit courses between the ones listed below. Student must choose at least one core topic and one class from each school. First year students must also attend the OSE Seminar (2 credit hours).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 8802</td>
<td>Special Topics (OSE Seminar)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Four courses spanning at least 3 courses, at least one from each School:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEE Core Topics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal and Ocean Mechanics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEE 6261 Environmental Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 8803 Special Topics (Coastal Mechanics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology Core Topics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marine Ecology and Conservation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 6417 Marine Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 6221 Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological and Microbial Oceanography:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 6410 Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 6221 Biological Oceanography</td>
<td></td>
</tr>
</tbody>
</table>
Doctor of Philosophy with a Major in Oceanography

Earth and Atmospheric Sciences Core Topics:

- Physical and Chemical Oceanography
 - EAS 6305 Physical and Chemical Oceanography
 - EAS 6122 Biogeochemical Cycles
 - EAS 6490 Advanced Environmental Data Analysis

Ocean and Climate:

- EAS 6140 Thermodynamics of Atmospheres and Oceans
- EAS 8803 Special Topics (Climate and Global Change)

Ethics/RCR Training Requirement

OSE Specialization: 9

Elective courses that increase depth of understanding in the research theme chosen by PhD candidate

Minor: 9

Courses outside the students' selected themes

Total Credit Hours 32

Doctor of Philosophy with a Major in Operations Research

The PhD Program in Operations Research is intended for qualified individuals with strong mathematical/quantitative skills who are interested in the theory and application of complex mathematical and/or simulation models to solve problems involving operational systems. The Program encompasses fundamental methodological coursework in subjects that include mathematical optimization, stochastic and probabilistic methods, statistical modeling and analysis, design and analysis of algorithms, computational and numerical methods, and others. Admission is based largely on prior academic accomplishments/records, GRE scores, and credible letters of reference.

Doctor of Philosophy with a Major in Paper Science and Engineering

The Institute of Paper Science and Technology supports the PhD degree programs offered by the Georgia Institute of Technology. The Paper Science and Engineering (PSE) program provides students with a multidisciplinary graduate education in the science and engineering involved in the production of paper, tissue, and other products from natural fiber and related industries. The processing and consolidation of natural fiber into a paper web involve complex chemical and mechanical processes. The advantages of a multidisciplinary approach in research and education supporting this field have long been recognized. The Georgia Tech PSE program integrates the former Institute of Paper Science and Technology multidisciplinary graduate program with the science and engineering programs available at Georgia Tech.

The PhD degree in PSE is a unique multidisciplinary degree covering basic engineering and science disciplines involved in the production and consolidation of wood fiber products. Students are enrolled in the participating Georgia Tech school (referred to as the "home school") and, upon completion of degree requirements, the home school recommends the award of its PhD degree with an emphasis in paper science and engineering. Degrees are being offered by the Schools of Chemical and Biomolecular Engineering, Chemistry and Biochemistry, Mechanical Engineering, and Materials Science and Engineering.

The paper industry continues to evolve through considerable consolidation and reorganization, and the need for innovation in the science and engineering of pulp and paper technology from plant biology to chemical treatment and processes involved in paper production is greater than ever. The PSE program provides research results and equips students with a unique set of skills to lead in this effort.

For more information visit www.ipst.gatech.edu/degree_progs/index.html (http://www.ipst.gatech.edu/degree_progs).

Doctor of Philosophy with a Major in Physics

Physics: Graduate Information (http://www.physics.gatech.edu/graduate-program)

The PhD degree in physics requires:

1. Successful completion of a set of core physics courses;
2. Demonstration of competency in written English;
3. Presentation of a thesis proposal;
4. Successful completion of set of courses in a ‘minor’ subject;
5. A written PhD thesis

Students are admitted to candidacy why they have completed the first three steps above. The core physics courses required by the School are devoted to coursework as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 6101</td>
<td>Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6103</td>
<td>Electromagnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6105</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6124</td>
<td>Mathematical Methods of Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6107</td>
<td>Statistical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6104</td>
<td>Electromagnetism II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6106</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 8901</td>
<td>Special Problems</td>
<td>3</td>
</tr>
</tbody>
</table>

The School requires every doctoral student to take two lecture-type graduate physics courses not including those previously listed. In some cases, these may be used to satisfy the Institute requirement that every doctoral student earn 9 credit hours in a minor course of study in a scientific subfield different from the subfield of his or her PhD thesis research. Alternatively, these credit hours are earned in a school other than physics. Finally, each student must prepare a written dissertation that summarizes the PhD research and present a public, oral defense of the dissertation to a Thesis Exam Committee.

Doctor of Philosophy with a Major in Psychology

Doctor of Philosophy with a Major in Psychology (Specialization in Cognition and Brain Science)

The Cognitive and Brain Science specialty area for the Psychology PhD program trains students to develop a thorough understanding...
of diverse aspects of cognition. Students learn about theories of cognitive phenomena and about the neurobiological bases of cognition and behavior. Students study the major methods used to measure various components of cognition. These components include attention, sensation and perception, working memory, episodic memory, cognitive control, language, metacognition, spatial cognition, and problem solving. Faculty research interests include these areas of cognition as they exist in humans, as well as aspects of comparative psychology (animal behavior and cognition). Some faculty members’ research interests include human cognitive neuroscience, measuring brain activity during cognition with electrophysiological or imaging techniques in persons with or without neurological dysfunction. The program is closely connected to faculty with interests in the Cognitive Aging program, including an emphasis on understanding effects of aging on cognitive mechanisms and how aging influences neural functioning and cognition.

Doctor of Philosophy with a Major in Psychology (Specialization in Cognitive Aging)

The Cognitive Aging specialty area in the Psychology PhD program emphasizes training students about cognition in adulthood. Students gain an understanding of the biological, psychological, and social aspects of aging as they relate to cognitive development over the adult life span. Areas of interest of the faculty include age differences and age changes in basic cognitive mechanisms (such as working memory, episodic memory, attention, speed of processing, and language), higher-order cognition (including adult intellectual development), and practical and contextual aspects of cognition (such as knowledge acquisition, skill development, everyday problem solving, metacognition, emotion regulation, and social cognition). The program is closely connected to faculty with interests in human factors and aging (in the Engineering Psychology program), cognitive neuroscience of aging (in the Cognitive and Brain Sciences program), and aging issues in work and careers (in the Industrial/Organizational Psychology program).

Doctor of Philosophy with a Major in Psychology (Specialization in Engineering Psychology)

The Engineering Psychology PhD program focuses on understanding the capabilities and limitations of human performance from the perspective of perception, cognition, and movement control and applying this knowledge to the design of systems and environments that accommodate those capabilities and limitations.

Doctor of Philosophy with a Major in Psychology (Specialization in Industrial/Organizational Psychology)

The Industrial/Organizational Psychology (I/O) PhD program concentrates on research related to the psychology of work and the workplace. Students develop specialized I/O knowledge, skills, and experiences through an individually tailored program of seminars, elective courses, participation in laboratory- and field-based research projects, and training in local organizations.

Doctor of Philosophy with a Major in Psychology (Quantitative Psychology)

The Quantitative Psychology Program emphasizes the interface between quantitative methods and psychological issues. Graduates will be trained as quantitative specialists, with a substantial background in psychology. The exact focus of the student’s studies depend on the current interests of the faculty and the student. Current faculty interests and course offerings include psychometric methods, item response theory, structural equation modeling, multivariate statistics, factor analysis, and multilevel modeling, as well as many other topics in psychological methods and statistics.

Doctor of Philosophy with a Major in Public Policy (Joint Degree with Georgia State University)**

The joint doctoral program in public policy combines the strengths of Georgia State University's Andrew Young School of Policy Studies and the Georgia Institute of Technology's School of Public Policy.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 8200</td>
<td>Advanced Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8205</td>
<td>Advanced Research Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8211</td>
<td>Microeconomic Theory and Applications</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8500</td>
<td>Research Seminar in Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8510</td>
<td>Logic of Policy Inquiry</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8520</td>
<td>Scope and Theory of Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8813</td>
<td>Special Topics (Advanced Topics in Analysis and Evaluation)</td>
<td>3</td>
</tr>
</tbody>
</table>

This core is supplemented with in-depth study of a substantive area of public policy. The Georgia Tech program focuses on science and technology policy, environmental and energy policy, and urban and regional economic development policy. The joint program includes several additional majors, including health policy, policy and program evaluation, and public finance. Students may pursue concentrations with groups of courses already developed by the faculty or an individualized concentration with the written approval of the student’s advisor and the Graduate Committee.

In the Georgia Tech program, the major area of concentration consists of four courses and has a capstone seminar at the PhD level that majors are required to complete. The minor concentration is a three-course area of study, preferably taken outside the School of Public Policy.

Other requirements for the PhD include completion of the one-year residency requirement; admission to candidacy for the degree through successful completion of qualifying exams and a dissertation proposal; and completion and successful defense of a doctoral dissertation (9 credit hours).

In summary, the credits required for the PhD are usually as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Major</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Qualifiers - Written Exam</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Colloquium - Oral exam: presentation of dissertation proposal</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>
Doctor of Philosophy with a Major in Public Policy

The PhD in Public Policy is a research-oriented program that prepares students for advanced professional work or for academic careers. Georgia Tech houses two PhD programs in Public Policy, including one offered jointly with Georgia State University. The programs stress intellectual and methodological rigor, building upon the theory and applications of political and organizational analysis, research design, quantitative analysis, and economics.

Financial Aid

Most PhD students receive financial assistance, chiefly through sponsored research projects and teaching assistantships.

PhD Information (http://www.spp.gatech.edu/doctorate/requirements)

All students must have completed the equivalent of the core courses for the Master of Science in Public Policy (p. 550) before they begin the doctoral core curriculum. The doctoral core curriculum consists of six three-credit-hour courses (seven in the joint program). These courses are designed to provide students with a theoretical and methodological foundation for conducting public policy research.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>PUPB 8200</td>
<td>Advanced Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PUPB 8205</td>
<td>Advanced Research Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PUPB 8211</td>
<td>Microeconomic Theory and Applications</td>
<td>3</td>
</tr>
<tr>
<td>PUPB 8500</td>
<td>Research Seminar in Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUPB 8510</td>
<td>Logic of Policy Inquiry</td>
<td>3</td>
</tr>
<tr>
<td>PUPB 8520</td>
<td>Scope and Theory of Public Policy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Major</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Qualifiers - Written Exam</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Colloquium - oral exam: presentation of dissertation proposal</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>54</td>
</tr>
</tbody>
</table>

In the Georgia Tech program, the major area of concentration consists of four courses and has a capstone seminar at the PhD level that majors are required to complete. The minor concentration is a three-course area of study, preferably taken outside the School of Public Policy.

Other requirements for the PhD include completion of the one-year residency requirement; admission to candidacy for the degree through successful completion of qualifying exams and a dissertation proposal; and completion and successful defense of a doctoral dissertation (9 credit hours).

In summary, the credits required for the PhD are usually as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Major</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Qualifiers - Written Exam</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Colloquium - oral exam: presentation of dissertation proposal</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>54</td>
</tr>
</tbody>
</table>
Qualifiers - Written Exam 3
Colloquium - oral exam: presentation of dissertation proposal 3
Dissertation 9
Total Credit Hours 57

This total assumes that a student already has satisfied the core requirements of the master’s degree (at most an additional twenty-five hours).

Doctor of Philosophy with a Major in Quantitative BioSciences

Participating Schools
School of Biological Sciences
School of Chemistry and Biochemistry
School of Earth and Atmospheric Sciences
School of Mathematics
School of Physics
School of Psychology

Objective of the Program
The mission of the Georgia Tech PhD program in Quantitative Biosciences (QBioS) is to enable the discovery of scientific principles underlying the dynamics, structure, and function of living systems. The QBioS program is designed to provide PhD graduates with the skills and expert knowledge necessary to move directly into academia, industry and/or government, where they can apply their specific domain expertise and broadly relevant modeling tools.

The PhD program in Quantitative Biosciences is offered by the College of Sciences. Students select a home school within the College of Sciences and can select a thesis advisor from the entire list of program faculty, irrespective of School. QBioS PhD students will pursue thesis research across a broad range of research themes spanning molecular and cellular systems, chemical biology, behavior and applied physiology, ecology, evolution and earth systems. The diverse faculty will ensure that students are prepared for quantitative challenges in the biosciences, whether in the analysis of big data, analysis of complex models, and iterative design of theory and experiments.

We welcome applications from high-quality undergraduate students, who are:

1. trained in the physical sciences (e.g., physics, earth systems and chemistry), mathematics, computer science, and engineering, who would like to transition to a career focusing on interface research in the biosciences;
2. trained in the biosciences (e.g., integrative biology, physiology, ecology, evolution, neuroscience, biochem, molecular & cellular biology) with particular strengths and interests in quantitative analysis and modeling.

In addition, students with Masters degrees in those thematic areas are strongly encouraged to apply.

For more information visit www.qbios.gatech.edu (http://www.qbios.gatech.edu)

Doctor of Philosophy with a Major in Robotics

Program website: http://phdrobotics.gatech.edu

Program requirements: http://phdrobotics.gatech.edu/program

Students pursuing a PhD in Robotics must take 36 credit hours of core research and elective courses, pass a comprehensive qualifying exam with written and oral components, and successfully complete, document, and defend a piece of original research culminating in a doctoral thesis. Students select a home school, such as ECE, AE, ME, or IC, and apply for admission to the PhD program in robotics through that home school.

Dual Degree MCRP/JD in Planning Law (Cooperative Program with Georgia State University)

The Planning Law dual degree supports the interests of students who wish to pursue study in the fields of both law and city and regional planning, provides a focal point for exploring the connections between the two disciplines through the research and instruction between the two programs; and provides an educational opportunity that reflects the fact that land management law and city and regional planning have become increasingly integrated and interdisciplinary in nature. The program promotes a broader educational experience for today’s land use law or planning professionals, by providing expertise in both disciplines.

The cooperative J.D./MCRP program will permit students to use credit hours earned in one program to satisfy some of the elective course requirements of the other program, thus permitting them to earn both degrees in a shorter time than would be possible pursuing both degrees separately.

- MCRP + JD (http://www.planning.gatech.edu/mcrp-jd)

Dual Degree MCRP/Master of Science in Public Policy

The dual MS degree program in Public Policy and City and Regional Planning prepares students for policy analysis and planning work at the national, state, and local levels. Graduates work in public, private, and non-profit settings building on the complementary perspectives and skills of the two professions.

In addition to providing interdisciplinary professional training, the dual degree also provides the opportunity to step toward Ph.D. programs in either Public Policy or Planning with an emphasis on Urban, Environmental, or Economic Development Policy.

PUBP MS Information (http://spp.gatech.edu/masters)

All students must complete a minimum combined requirement of 75 credit hours for the dual degree program. Students receive both degrees.
Required Core Courses for MSPP/MCRP Dual Degree

MS in Public Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6001</td>
<td>Introduction to Public Policy</td>
<td>1</td>
</tr>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6012</td>
<td>Fundamentals of Policy Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6201</td>
<td>Public Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBP 6014 Organization Theory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PUBP 6017 Public Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBP 6018 Policy Implementation and Administration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 19

MCRP

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 6002</td>
<td>Introduction to Fields of Planning</td>
<td>2</td>
</tr>
<tr>
<td>CP 6012</td>
<td>Theory and History of Planning</td>
<td>4</td>
</tr>
<tr>
<td>CP 6016</td>
<td>Growth Management Law and Implementation</td>
<td>3</td>
</tr>
<tr>
<td>CP 6024</td>
<td>Quantitative and Computer Methods</td>
<td>4</td>
</tr>
<tr>
<td>CP 6052</td>
<td>Applied Planning Studio</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credit Hours: 17

Core Course Options for Dual Degree Students

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3-4</td>
</tr>
<tr>
<td>CP 6025</td>
<td>Advanced Planning Methods</td>
<td></td>
</tr>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td>3</td>
</tr>
<tr>
<td>CP 6031</td>
<td>Economic Analysis for Planning</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 6-7

Concentration/Specialization

Students also select one concentration from among MSPP program offerings, each of which involves at least twelve credit hours. Either the Public Policy concentration or the City and Regional Planning specialization must be in the area of Economic Development; Urban and Regional Policy; or Environmental Policy, Planning and Management.

Dual Degree MCRP/MSCE

Transportation Planning/Transportation Systems Engineering

The dual Master of City and Regional Planning and Master of Science in Civil Engineering degree program is designed to meet the need of planning agencies and transportation departments for staff who combine expertise in city and regional planning and transportation systems engineering. The program consists of coursework in city and regional planning, transportation systems engineering, and transportation planning. It is administered jointly by the School of City and Regional Planning and the School of Civil and Environmental Engineering.

Dual Degree Information [here](https://planning.gatech.edu/mcrp-msce)

Dual MS Program in ECE Georgia Tech & Korea Advanced Institute of Science and Technology

Students may pursue dual MS degrees from the Korea Advanced Institute of Science and Technology (KAIST) and from Georgia Tech. KAIST offers one of the top engineering programs in Korea and the Far East. All lectures at KAIST are given in English to better serve a growing number of students from overseas. While earning their dual degrees, students spend two semesters each at both Georgia Tech and KAIST. Students completing this dual degree program earn the MSECE from Georgia Tech and the MS in Electrical Engineering from KAIST.

MS Information [here](http://www.ece.gatech.edu/academics/graduate/msreq.html)

Dual MS Program in ECE GT Lorraine and European Partner Universities

Georgia Tech offers several dual master’s degree programs for students interested in a global educational experience. Each program leads to two MS degrees, one from Georgia Tech and the other from a partner school.

Programs coordinated by Georgia Tech-Lorraine include partner schools in France such as Supelec, ENSEEIHT, Institut d’Electronique de Microélectronique et de Nanotechnologies, and Groupe des Ecoles des Mines and a partner school in Germany, TU-Munich. These programs typically entail three semesters of coursework and a required internship in an industrial setting.

Georgia Tech-Lorraine [here](http://www.georgiatech-metz.fr)

MS Information [here](http://www.ece.gatech.edu/academics/graduate/msreq.html)

Dual MS Program in ECE with the Politecnico di Torino (Italy)

Georgia Tech offers several dual master’s degree programs for students interested in a global educational experience. Each program leads to two MS degrees, one from Georgia Tech and the other from a partner school.

The Politecnico di Torino is Georgia Tech’s newest European Dual Master’s Degree partner. Students from Georgia Tech and from the Politecnico di Torino can pursue dual master’s degrees from both institutions: a non-thesis master’s degree from the School of Electrical and Computer Engineering at Georgia Tech and a thesis master’s degree from the School of Information Technologies at the Politecnico di Torino located in Torino, Italy. Both degrees can be earned in two years with two semesters spent at Georgia Tech.
MS Information (http://www.ece.gatech.edu/academics/graduate/msreq.html)

Graduate Embedded Certificate in Astrobiology

The Astrobiology Graduate Certificate Program is part of an initiative linking the schools of Earth and Atmospheric Sciences, Chemistry and Biochemistry, Biological Sciences, Aerospace Engineering, and International Affairs. The purpose of the certificate program is to expand opportunities for students in the interdisciplinary field of ‘astrobiology’, and to forge innovative links between astrobiology research at Georgia Tech, mission technology, and science communication. The 12-credit certificate program is open to graduate students enrolled in any degree program at the Georgia Institute of Technology. There are no prerequisites for entering the certificate program.

For more information, click here (https://astrobiology.gatech.edu/graduate-certificate).

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 8001</td>
<td>Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EAS 8802</td>
<td>Special Topics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cognate course</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AE 6353</td>
<td>Orbital Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 6450</td>
<td>Rocket Propulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 6451</td>
<td>Electric Propulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL/EAS 6765</td>
<td>Geomicrobiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 6410</td>
<td>Microbial Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 6428</td>
<td>Population Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 6600</td>
<td>Evolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 6607</td>
<td>Molecular Biology of Microbes: Disease, Nature, and Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 6720</td>
<td>Environmental Microbial Genomics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 6572</td>
<td>Macromolecular Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 6582</td>
<td>Biophysical Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 6122</td>
<td>Biogeochemical Cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 6130, 6200, 6216, 6370, 6375, 6380</td>
<td>Earth System Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (Origin of Complex Life: Cells to Societies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Topics</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 7111</td>
<td>Molecular Evolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 8744</td>
<td>Microbial Symbiosis & Microbiomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 8803</td>
<td>Special Topics (Origin of Complex Life: Cells to Societies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 8803</td>
<td>Special Topics (Chemistry of the Origins & Early Evolution of Life)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

- Students may submit documentation to use a course not listed above.
- All courses must be completed with a ‘B’ grade or higher.

Graduate Embedded Certificate in BioRobotics

The Biorobotics Certificate program is offered through the School of Electrical and Computer Engineering. The program, an initiative resulting from the NSF Research Traineeship (NRT) program in healthcare robotics, is open to graduate students enrolled in any degree program at the Georgia Institute of Technology. The motivation for developing this certificate program is to encourage the development of bold, new, transformative, and scalable models for STEM graduate training in robotics.

The Biorobotics Certificate will equip each student with the fundamentals of robotics coupled with engineering, biological science, and ethics. It is an interdisciplinary program that expands opportunities for students in emerging field of biorobotics.

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 7785</td>
<td>Introduction to Robotics Research</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or BMED 771</td>
<td>Introduction to Robotics Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or ME 7785</td>
<td>Introduction to Robotics Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 8750</td>
<td>Robotics Research Foundation I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or BMED 875</td>
<td>Multidisciplinary Robotics Research I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or ME 8750</td>
<td>Robotics Research Foundation I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Graduate Embedded Certificate in Geographic Information Systems

The Certificate in GIS is highly consistent with Georgia Tech's mission of equipping graduate students with technological expertise related to their chosen field of employment. Specific professional fields in which GIS is an important skillset include land use planning and development, environmental management, transportation planning and engineering, and economic development, among other fields.

For more information, click here (https://planning.gatech.edu/graduate-certificates).

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 6521</td>
<td>Advanced Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>Select two (2) skills courses:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CP 6531</td>
<td>Introduction to Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>CP 6541</td>
<td>Environmental Analysis Using GIS</td>
<td></td>
</tr>
<tr>
<td>CP 6542</td>
<td>Transport & GIS</td>
<td></td>
</tr>
<tr>
<td>CP 6551</td>
<td>Spatial Analysis of Socioeconomic Data</td>
<td></td>
</tr>
<tr>
<td>Select one (1) policy context course:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CP 6612</td>
<td>Introduction to Land Use Planning</td>
<td></td>
</tr>
<tr>
<td>CP 6213</td>
<td>Urb Env Plan & Design</td>
<td></td>
</tr>
<tr>
<td>CP 6311</td>
<td>Introduction to Transportation Planning</td>
<td></td>
</tr>
<tr>
<td>CP 6412</td>
<td>Foundations of Local Economic Development Planning and</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 12

Graduate Embedded Certificate in Industrial Design Fundamentals

The graduate certificate in Industrial Design Fundamentals is offered to degree seeking masters and doctoral students in the College of Design. Upon successful completion of the Certificate, students will matriculate through the MID program. The Certificate is also intended as an entry point into the Ph.D. program for doctoral students without a Design background. Additionally, it will be offered to MS-HCI-ID applicants looking to create a design portfolio.

Upon successful completion of this certificate students are expected to:

- Apply user centered design methods to assignments
- Develop basic design skills of drawing, prototyping and presentation
- Create a design portfolio of class projects

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 6102</td>
<td>Graduate Studio A</td>
<td>4</td>
</tr>
<tr>
<td>ID 6104</td>
<td>Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ID 6105</td>
<td>Brand and Visual Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6109</td>
<td>Human Factors and Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>ID 6103</td>
<td>Graduate Studio B</td>
<td>4</td>
</tr>
<tr>
<td>ID 6106</td>
<td>3D Design Methods</td>
<td>2</td>
</tr>
<tr>
<td>ID 6107</td>
<td>Integrated Product Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6108</td>
<td>Survey of Industrial Design History</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 24

Graduate Embedded Certificate in Mechanical Properties of Materials

Graduate students conducting research within the Mechanical Properties Research Laboratory (MPRL) are strongly encouraged to pursue the multidisciplinary certificate in Mechanical Properties of Materials, administered through the College of Engineering. This certificate is awarded along with the graduate degree, and denotes a specialty in mechanical properties and affiliation with the MPRL that may be useful in seeking future employment opportunities in addition to providing a well-balanced educational program.

A multidisciplinary certificate program consisting of coursework in which graduate students from participating Schools in the College of Engineering may participate to obtain an in-depth understanding of mechanical behavior and properties. The program is entitled "A Certificate in Mechanical Properties of Materials" and is administered through the Mechanical Properties Research Laboratory (MPRL) to graduate students in participating Schools in the College of Engineering.

The courses in the certificate program provide students with fundamentals of mechanical behavior as well as with advanced practical information on design and materials selection. As such, it supports
their research programs in the MPRL and various academic units. This certificate program also meets the needs of industry for high-level practitioners for which materials/mechanics considerations are primary design obstacles.

This multidisciplinary certificate presently involves faculty members from the Schools of Aerospace Engineering, Materials Science and Engineering, and Mechanical Engineering, though others outside of these schools can qualify if they meet the requirements of the certificate program.

In consultation with his/her advisor, the student selects courses that constitute a coherent sequence from an approved list (see attached forms). The student then sends the proposed program to the MPRL Director for review and approval. Upon successful completion of the program, a recommendation is forwarded by the MPRL Director to the Dean of Engineering for final approval similar to other existing certificate programs.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Fundamentals of Fracture Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE/AE 7772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Fatigue of Materials and Structures</td>
<td></td>
</tr>
<tr>
<td>CEE/AE 7774</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other courses</td>
<td>9</td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Advanced Fracture Mechanics</td>
<td></td>
</tr>
<tr>
<td>CEE/AE 7773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/AE 7775</td>
<td>Topics in Fracture and Fatigue of Metallic and Material</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Composite Structures</td>
<td></td>
</tr>
<tr>
<td>ME 6203</td>
<td>Inelastic Deformation of Solids</td>
<td></td>
</tr>
<tr>
<td>MSE 7210</td>
<td>Dislocation and Deformation Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Mechanics of Polymer Solids and Fluids</td>
<td></td>
</tr>
<tr>
<td>CHBE 7771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/CEE/</td>
<td>Mechanical Behavior of Composites</td>
<td></td>
</tr>
<tr>
<td>CHBE/ 4791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Damage and Failure in Composites</td>
<td></td>
</tr>
<tr>
<td>CEE/AE 7791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Polymer Structure, Physical Properties and Characteriz</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 6768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 6796/6796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/MSE/</td>
<td>Structure-Property Relationships in Materials</td>
<td></td>
</tr>
<tr>
<td>AE/CHBE 8803</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics in Manufacturing</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 12

1. Not allowed if ME 7774 is taken as a core course.
2. Special Topics courses as approved by certificate administration.

Graduate Embedded Certificate in Micro Electro Mechanical Systems

Micro Electro Mechanical Systems (MEMS) is an interdisciplinary field related to technologies used to fabricate nano to microscale devices and system-on-a-chip. The MEMS devices and systems embed electrical, mechanical, chemical, and hybrid mechanisms to realize devices and systems for a broad array of applications such as physical sensors, biomedical systems, and complex multi-functional nano-micro systems. MEMS combine expertise from many disciplines, including but not limited to all fields of engineering, biology, chemistry, informatics, medicine, and physics. Typical MEMS devices combine sensing, processing and/or actuating functions. They typically combine two or more electrical, mechanical, biological, magnetic, optical or chemical properties on a single microchip.

The objective of the program is to provide a means for students interested in this interdisciplinary field a mechanism to obtain a concentration in MEMS and to gain acknowledgement for this achievement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBE/ECE/</td>
<td>Introduction to MEMS</td>
<td>3</td>
</tr>
<tr>
<td>ME 6229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHBE/ECE/</td>
<td>Microelectromechanical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ME 6460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two (2):</td>
<td>6</td>
</tr>
<tr>
<td>CHBE 6710</td>
<td>Microfluidics & Appl</td>
<td></td>
</tr>
<tr>
<td>ECE 6422</td>
<td>Interface IC Design for MEMS and Sensors</td>
<td></td>
</tr>
<tr>
<td>ECE 6450</td>
<td>Introduction to Microelectronics Technology</td>
<td></td>
</tr>
<tr>
<td>ECE 6200</td>
<td>Biomedical Applications of Microelectromechanical Systems</td>
<td></td>
</tr>
<tr>
<td>ME 6124</td>
<td>Finite-Element Method: Theory and Practice</td>
<td></td>
</tr>
<tr>
<td>ME 6449</td>
<td>Acoustic Transducers and Signal Analysis</td>
<td></td>
</tr>
<tr>
<td>ME 6776</td>
<td>Integrated Low-cost Microelectronics Systems Packaging</td>
<td></td>
</tr>
<tr>
<td>ME 8833</td>
<td>Special Topics in Thermal Sciences (Thin Film Properties)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 12

Graduate Embedded Certificate in Modeling and Computer Simulation

Graduate Embedded Certificate in Public Policy

The School of Public Policy offers a certificate in public policy to Ph.D. students from other Schools around campus. The goal of the certificate program is to provide a basic but well-rounded introduction to public policy thinking to Georgia Tech graduate students. The program is designed to address the needs of scientists, engineers, management scholars and others who seek to be more aware of policy, regulatory, ethical, and societal implications of science, technology and innovation.
The program will provide breadth and context for those entering employment in any sector. The courses in the program explore the processes through which policy is made.

Although this certificate is not available to policy students, the courses are open to all graduate students, creating an opportunity for students to gain value from divergent perspectives.

For more information, click here (https://spp.gatech.edu/graduate/certificates/pubp).

Graduate Embedded Certificate in Remote Sensing

Graduate Embedded Certificate in Science, Technology, and Society

Graduate Certificate in Science, Technology, and Society Science, Technology and Society (STS) - also called Science and Technology Studies - is an interdisciplinary field of study that seeks to understand how science and technology shape society and culture and how society and culture, in turn, shape the development of science and technology. The STS Graduate Certificate is designed for students already enrolled in a graduate degree program at Georgia Tech, in any college or program. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The certificate program helps students to:

• Understand the social, cultural, and epistemic dynamics of science and technology
• Explore these dynamics across world societies and cultures
• Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
• Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

For more information, click here (https://www.iac.gatech.edu/academics/graduate/certificates/certificate_sts).

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6012</td>
<td>Fundamentals of Policy Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6201</td>
<td>Public Policy Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Analytical Methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td></td>
</tr>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Economic Development

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6602</td>
<td>Economic Development Analysis and Practice</td>
<td></td>
</tr>
<tr>
<td>PUBP 6606</td>
<td>Urban Development Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6415</td>
<td>Technology, Regions, and Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6600</td>
<td>Foundations of Local Economic Development Planning and Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6740</td>
<td>Innovation, the State and Industrial Development in International Perspective</td>
<td></td>
</tr>
<tr>
<td>PUBP 6741</td>
<td>Geography of Innovation</td>
<td></td>
</tr>
</tbody>
</table>

Economics for Public Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td></td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td></td>
</tr>
</tbody>
</table>

Ethics and Values

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td></td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td></td>
</tr>
</tbody>
</table>

Environmental & Energy Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6310</td>
<td>Environmental Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 6312</td>
<td>Economics of Environmental Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6314</td>
<td>Policy Tools for Environmental Management</td>
<td></td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td></td>
</tr>
<tr>
<td>PUBP 6327</td>
<td>Sustainability and Environmental Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6701</td>
<td>Energy Technology Policy</td>
<td></td>
</tr>
</tbody>
</table>

Information Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6111</td>
<td>Internet and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6501</td>
<td>Information Policy and Management</td>
<td></td>
</tr>
<tr>
<td>PUBP 6502</td>
<td>Information and Communications Technology Policy</td>
<td></td>
</tr>
</tbody>
</table>

Public Administration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6014</td>
<td>Organization Theory</td>
<td></td>
</tr>
<tr>
<td>PUBP 6017</td>
<td>Public Management</td>
<td></td>
</tr>
<tr>
<td>PUBP 6018</td>
<td>Policy Implementation and Administration</td>
<td></td>
</tr>
<tr>
<td>PUBP 6226</td>
<td>Business and Government</td>
<td></td>
</tr>
</tbody>
</table>

Science and Technology Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6401</td>
<td>Science, Technology, and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 6402</td>
<td>Research Policy and Management</td>
<td></td>
</tr>
<tr>
<td>PUBP 6403</td>
<td>Scientific Careers and Workplaces</td>
<td></td>
</tr>
<tr>
<td>PUBP 6417</td>
<td>Critical Perspectives on Science and Technology</td>
<td></td>
</tr>
<tr>
<td>PUBP 6440</td>
<td>Science, Technology, and Regulation</td>
<td></td>
</tr>
<tr>
<td>PUBP 6753</td>
<td>Comparative Science and Technology Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 12

Graduate Embedded Certificate in Remote Sensing

Graduate Embedded Certificate in Science, Technology, and Society

Graduate Certificate in Science, Technology, and Society Science, Technology and Society (STS) - also called Science and Technology Studies - is an interdisciplinary field of study that seeks to understand how science and technology shape society and culture and how society and culture, in turn, shape the development of science and technology. The STS Graduate Certificate is designed for students already enrolled in a graduate degree program at Georgia Tech, in any college or program. This certificate is for graduate students who would like to demonstrate additional competence in some aspect of STS or special competence in STS in their home discipline. The certificate is open to students in good standing in any graduate program at Georgia Tech.

The certificate program helps students to:

• Understand the social, cultural, and epistemic dynamics of science and technology
• Explore these dynamics across world societies and cultures
• Develop sensitivity to issues of gender, race, and justice across areas of knowledge, including: engineering, medicine, environment, cognition, security, innovation, design
• Employ STS approaches as scholars or practitioners (e.g. engineers, scientists, or policy makers)

For more information, click here (https://www.iac.gatech.edu/academics/graduate/certificates/certificate_sts).

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS/PUBP/LMC</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Official STS electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6121</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>HTS 6123</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
<tr>
<td>PUBP/LMC</td>
<td>Social Justice, Critical Theory, and Philosophy 6748 of Design</td>
<td></td>
</tr>
</tbody>
</table>
Students may choose 2-3 STS electives or 2 STS electives and up to 1 other elective subject to student interest and STS Coordinator approval.

2 May also take INTA 8803 with the title of Science, Technology, & Security

3 May also take INTA 8803 with title Social & Cultural Studies of Biomedicine

Graduate Stand-Alone Certificate in Sustainable Energy and Environmental Management

The Certificate in Sustainable Energy and Environmental Management (CSEEM) curriculum is a multidisciplinary program with courses taught in schools across Georgia Tech including Public Policy, Business, City and Regional Planning, Civil and Environmental Engineering, and Economics, among others.

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required courses</td>
<td>PUBP 6312</td>
<td>Economics of Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PUBP 8803</td>
<td>Special Topics (Sustainable Energy & Environmental Management)</td>
<td>3</td>
</tr>
<tr>
<td>Quantitative Methods course</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sustainable Energy and Environmental Management or Policy & Management course</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6218</td>
<td>Quantitative Models in Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6530</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8200</td>
<td>Advanced Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8205</td>
<td>Advanced Research Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6352</td>
<td>Utility Regulation and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8813</td>
<td>Special Topics (Big Data & Public Policy)</td>
<td>3</td>
</tr>
<tr>
<td>CETL 6490</td>
<td>Advanced Environmental Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CP 6541</td>
<td>Environmental Analysis Using GIS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6203</td>
<td>Data Analytics in Business</td>
<td>3</td>
</tr>
<tr>
<td>MSE 6759</td>
<td>Materials in Environmentally Conscious Design and Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6300</td>
<td>Earth Systems</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6310</td>
<td>Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6326</td>
<td>Environmental Values and Policy Goals</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6327</td>
<td>Sustainability and Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6330</td>
<td>Environmental Law</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6350</td>
<td>Energy Policy & Markets</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6701</td>
<td>Energy Technology Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics (Sustainability & Environmental Policy)</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics (Smart Cities)</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics (Environmental Finance)</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8833</td>
<td>Special Topics (Utility Regulation & Policy)</td>
<td>3</td>
</tr>
<tr>
<td>AE</td>
<td>Special Topics (Energy Efficiency and Environmental Impacts)</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6531</td>
<td>Environmental Systems I</td>
<td>3</td>
</tr>
<tr>
<td>BC 6002</td>
<td>Issues in Sustainable Construction Technology</td>
<td>3</td>
</tr>
<tr>
<td>BC 6731</td>
<td>Zero Energy Housing</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4300</td>
<td>Environmental Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4395</td>
<td>Environmental Systems Design Project</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4620</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6314</td>
<td>Fundamentals of Environmental Modeling and Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6345</td>
<td>Sustainable Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6390</td>
<td>Air Pollutant Formation and Control</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6625</td>
<td>Transportation, Energy, and Air Quality</td>
<td>3</td>
</tr>
<tr>
<td>CEE 6790</td>
<td>Air Pollution Physics and Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 8833</td>
<td>Special Topics in Organic Chemistry (Fundamentals and Challenges for a Sustainable Chemical Enterprise)</td>
<td>3</td>
</tr>
<tr>
<td>CP 6190</td>
<td>Introduction to Climate Change Planning</td>
<td>3</td>
</tr>
<tr>
<td>CP 6213</td>
<td>Urb Env Plan & Design</td>
<td>3</td>
</tr>
<tr>
<td>CP 6214</td>
<td>Environmental Planning and Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>CP 6217</td>
<td>Climate Change and the City</td>
<td>3</td>
</tr>
<tr>
<td>CP 6233</td>
<td>Sustainable Urban Development</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6132</td>
<td>Introduction to Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>EAS 6135</td>
<td>Introduction to Complex Environmental Systems</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (Climate and Global Change)</td>
<td>3</td>
</tr>
<tr>
<td>EAS 8803</td>
<td>Special Topics (Environmental Geochemistry)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6380</td>
<td>Economics of Natural Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECON 7032</td>
<td>Macroeconomics of Innovation</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6116</td>
<td>The Environment in World History</td>
<td>3</td>
</tr>
<tr>
<td>INTA 8803</td>
<td>Special Topics (Energy & International Security)</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6369</td>
<td>Sustainable Business Practicum</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6359</td>
<td>Business Strategies For Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6012</td>
<td>Fundamentals of Policy Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6017</td>
<td>Public Management</td>
<td>3</td>
</tr>
</tbody>
</table>
with industry at the national, European, and international levels; it shares similar strategic goals as those of Georgia Tech; it has complimentary resources that fully support students and faculty; and it participates in a number of important academic and economic projects within Europe and abroad.

This joint Ph.D. program will afford graduate students from each university the opportunity to: study and conduct research at an international peer engineering, science and computer research institution; gain confidence in working as a member of an international team; and live and study in an environment outside of their home country.

PhD Information (http://www.ece.gatech.edu/academics/graduate/phdreq.html)

M.Arch/MCRP Dual Degree

The dual Master of Architecture and Master of City and Regional Planning degree program trains those who wish to engage directly in the process of city building. The program is meant to meet the needs of planning agencies, consultants, institutions, and architectural firms for graduates who can deal competently with the complexities of urban areas.

Dual Degree Information (http://www.planning.gatech.edu/academics/dualdegrees/architecture)

M.D./Ph.D. Program

The Coulter Department of Biomedical Engineering participates with the Emory University School of Medicine and the Georgia Health Sciences University to offer students an opportunity to combine their M.D. with a PhD in Biomedical Engineering or Bioengineering. Prospective students should contact the medical school of interest to begin the exploration and application processes.

Master of Architecture (M.Arch.)

The M.Arch. Program, leading to the Master of Architecture as the first professional degree, is oriented toward the professional practice of architecture and is fully accredited by the National Architectural Accrediting Board (NAAB). This degree option provides flexibility for students who have an undergraduate degree with a major in architecture as well as those who have a degree in a field other than architecture. The M.Arch. Program requires a minimum of 60 credit hours and a maximum of 102 credit hours of study, depending upon the applicant’s prior education in architecture and the amount of advanced standing credit granted upon admission to the program.

Normally, a student admitted to the program with maximum advanced standing can expect to complete the program within two academic years of full-time study. A student admitted to the program with no advanced standing can expect the program to require three and one-half academic years of full-time study. Graduates from four-year undergraduate programs in architecture similar to that at Georgia Tech can normally expect to complete the program in two academic years, provided they have pursued architecturally related elective coursework during their undergraduate years. Specific information regarding applications for advanced standing and degree requirements is available from the School of Architecture.

Multidisciplinary studies are strongly encouraged in all of the master’s programs in architecture. These studies may be part of a formal dual degree program, including architecture and city and regional planning.
Other multidisciplinary studies are possible within the College of Design, the Institute, or at other Atlanta area colleges and universities, such as Emory University and Georgia State University. Coursework outside the School of Architecture frequently includes city and regional planning, public policy, history, philosophy, real estate development, engineering, and studio art.

The deadline for applications is December 31st for all applicants for the following fall semester. Each applicant must have an outstanding undergraduate record and must submit a portfolio of creative work. The Graduate Record Examination (GRE) is required for all applicants. The TOEFL is the only acceptable language test for admission to Georgia Tech. A score of 90 is required by Georgia Institute of Technology, with a minimum section score of 19 in each section of the test, however, the School of Architecture only accepts TOEFL scores near 100 for all foreign applicants. All applicants should be aware that each program in the School of Architecture has specific application requirements; therefore, all applicants should consult the relevant requirements for their chosen degree programs; by visiting the School of Architecture website or contacting an academic advisor.

The minimum requirements for the M.Arch. degree, for a student with a previous degree in architecture (2-year program), are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 6069</td>
<td>Advanced Architectural Design I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6070</td>
<td>Advanced Architectural Design II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6071</td>
<td>Architecture Design and Research Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 6072</td>
<td>Architectural Design and Research Studio 2</td>
<td>6</td>
</tr>
<tr>
<td>Building Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 6251</td>
<td>Building Structures I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6230</td>
<td>Construction Technology and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6252</td>
<td>Building Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6352</td>
<td>Theory of Architecture 2</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6532</td>
<td>Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>History/Theory/Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 6350</td>
<td>Theory of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6315</td>
<td>Practice of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 7151</td>
<td>History of Urban Form</td>
<td>3</td>
</tr>
<tr>
<td>Professional Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

The maximum requirements for the M.Arch. degree, for a student with a previous degree in a discipline other than architecture (3.5-year program), are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 6024</td>
<td>Architecture Core I Studio</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 6026</td>
<td>Architecture Core II Studio</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 6027</td>
<td>Architecture Core III Studio</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 6069</td>
<td>Advanced Architectural Design I</td>
<td>6</td>
</tr>
<tr>
<td>Media + Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 670</td>
<td>Advanced Architectural Design II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 671</td>
<td>Architecture Design and Research Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 672</td>
<td>Architectural Design and Research Studio 2</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 674</td>
<td>Architecture Modeling & Media I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 675</td>
<td>Architecture Modeling & Media II</td>
<td>3</td>
</tr>
<tr>
<td>Building Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 679</td>
<td>Construction Technology and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6531</td>
<td>Environmental Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6532</td>
<td>Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6730</td>
<td>Construction Technology and Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6752</td>
<td>Building Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6753</td>
<td>Building Structures I</td>
<td>3</td>
</tr>
<tr>
<td>History/Theory/Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 675</td>
<td>Theory of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6752</td>
<td>Theory of Architecture 2</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6755</td>
<td>Practice of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>Practice Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Professional Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>

M.Arch. (3.5 Year Program) (http://www.arch.gatech.edu/master-architecture)

M.Arch. (2-year Program) (http://www.arch.gatech.edu/master-architecture)

Master of Biomedical Innovation and Development

This new BioID master’s program will bring together students from mechanical, electrical and computer, human factors, systems analysis and manufacturing backgrounds to learn and work in multi-disciplinary teams on clinically relevant needs for new techniques and medical products. This masters program is composed of thirty-six (36) credit hours over three (3) contiguous semesters with seven (7) required courses, two (2) graduate electives, and a two-semester clinically focused team master’s project. The faculty, composed of GT biomedical engineering and management professors, clinical/hospital faculty and industry professionals, will create a multi disciplinary teaching approach to educate graduate students from multiple engineering and science backgrounds. The first class of 20 to 40 students will matriculate in the fall of 2013.

Master of Business Administration - Global Business

As the business world becomes increasingly global, executives must understand and actively manage its impact on current business
operations and future business trends. Georgia Tech’s MBA - Global Business (Global Executive MBA) program trains executives to take leadership positions in businesses that have global aspirations. Whether you want to work overseas or grow your company at home, understanding how global issues are increasingly affecting every type of business is essential. The MBA - Global Business program will prepare you to effectively lead your business in a global environment of increasing complexity and technological sophistication.

Rigorous Curriculum
The MBA - Global Business program enhances traditional MBA coursework to include international perspectives on finance, operations, economics, technology, and marketing. The core MBA curriculum is supplemented with coursework on global markets, global trade, global supply chain, and global organizations. The curriculum takes advantage of Georgia Tech’s unique academic strengths and international presence.

International Business Experience
Designed to be a truly international experience, the MBA - Global Business program includes two trips overseas to gain firsthand knowledge of key issues in international commerce. These destinations vary from year to year, but focus on regions of emerging importance such as China, India, Latin America, and Eastern Europe. Through lectures and company visits, these international trips examine the cultural, social, and economic aspects of each location. A year-long global strategy capstone project ties together the international residencies and classroom learning to provide an integrative experience across all aspects of the curriculum.

Who Should Apply
Qualified candidates for the MBA-Global Business program have ten to fifteen years of professional experience (a minimum of five years is required), during which they have demonstrated increased responsibility, professional growth, and leadership.

These candidates are highly motivated to develop the business skills that are critical for leaders in a global setting. Industry background, company size, and titles of participants vary, allowing students to gain a broad understanding of global issues and scenarios.

Admission
Applications are reviewed and accepted throughout the year. Priority will be given to applications received prior to April 1. After that date, applications received will be reviewed on a space-available basis. Taking the GMAT may be required based on a review of your application portfolio. For additional information on admission requirements, please contact us at GlobalEMBA@gatech.edu.

Contact information
MBA - Global Business
Georgia Tech College of Business
800 West Peachtree Street
Suite 310
Atlanta, GA 30308
Phone: 404.385.2254
Fax: 404.894.1464
MBA – Global Business Website (http://mgt.gatech.edu/exec_ed/program/gemba)

Program of Study
The MBA - Global Business degree is a specialized MBA degree requiring fifty semester credit hours of study. It consists of a fixed sequence of courses over a seventeen-month period with a new class beginning each fall semester and graduating at the end of the following fall semester. Classes are held on select weekends (Friday evening and all day Saturday), allowing participants to minimize time away from their jobs. In addition, there are four residencies, including two week long sessions at Georgia Tech and two trips abroad. To graduate, students must earn a cumulative grade point average of at least 2.7. To remain on good standing during the program, students must earn the minimum satisfactory cumulative grade point average of 2.7. Any student receiving three or more grades of U, D, or F, in any combination, may be dismissed from the program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMBA 6010</td>
<td>Cross-cultural Communications for Management</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6021</td>
<td>Data Analysis for Business</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6031</td>
<td>Leadership and Organizational Behavior</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6040</td>
<td>Economic Analysis of Decisions in a Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6050</td>
<td>Financial and Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6061</td>
<td>Information Systems for Global Organizations</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6071</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6081</td>
<td>Manufacturing and Service Management</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6090</td>
<td>Marketing and Consumer Behavior</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6131</td>
<td>Strategic Management Theory and Analysis</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6160</td>
<td>National and International Regulation of Business</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6230</td>
<td>International Business Negotiations</td>
<td>1</td>
</tr>
<tr>
<td>MOT 6133</td>
<td>Ethical Decision Making</td>
<td>1</td>
</tr>
<tr>
<td>IMBA 6101</td>
<td>Product Strategies for Global Markets</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6121</td>
<td>Managing the Global Workforce</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6140</td>
<td>Comparative Management Systems</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6250</td>
<td>International Finance</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6260</td>
<td>Global Supply Chain and Electronic Commerce</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6430</td>
<td>Business Strategies for Sustainability</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6311</td>
<td>Analysis of Global Environments</td>
<td>4</td>
</tr>
<tr>
<td>IMBA 6401</td>
<td>Global Strategy Project I</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6411</td>
<td>Global Strategy Project II</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6420</td>
<td>Global Strategy Project II</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours 50

Master of Business Administration (MBA)

Georgia Tech’s Scheller College of Business offers the MBA for the 21st century, building business leaders who are innovative, entrepreneurially-minded, analytically-skilled, and can leverage
technology in a global setting. Highly qualified candidates from all academic and professional backgrounds enter the program, which is designed to foster teamwork, diversity, and a closely knit network.

The MBA program is offered in full-time, evening, and weekend executive formats. For the full-time and weekend executive MBA programs, entry is in the fall semester only. For the evening program, admission is offered in both fall and spring semesters. Some of the primary advantages of the MBA program include a close community that promotes enriched student-faculty relationships; classmates with diverse educational and work experiences; small class sizes that foster networking and a true understanding of the business environment; an innovative curriculum that keeps pace with the rapidly changing environment of business and technology. Scheller College's location within the Tech Square innovation ecosystem, a globally recognized nexus of innovation and entrepreneurial activity in the heart of Midtown Atlanta, provides MBA students access to some of the most dynamic companies and startups. In addition, a dual degree option gives students the opportunity to combine the MBA with Georgia Tech engineering, computing and design masters and Ph.D. programs.

During the summer term between the first and second academic years, full-time MBA students intern with companies ranging from Fortune 500 Companies and major consulting/finance firms to entrepreneurial ventures, innovation centers, and start-ups. These summer internships enhance permanent employment opportunities.

The full-time and evening MBA programs requires 54 hours; 21 semester hours are core classes. Core courses develop a common body of knowledge essential to all MBA students. The remainder of the curriculum consists of electives, which provide flexibility for students to build competence in one or more immersive tracks and concentration areas. This freedom permits students to customize a curriculum directed toward their own educational and career goals.

MBA elective areas include accounting, entrepreneurship, finance, business analytics, leadership, information technology management, law, international business, marketing, operations management, organizational behavior, sustainability, real estate strategic management, and leading innovation.

More information, applications, and viewbooks may be found at: http://scheller.gatech.edu/MBA.

Scheller College of Business
MBA Program Office
Georgia Institute of Technology
Atlanta, Georgia 30308-0520
phone: 404.894.8722

• Request a Full-Time MBA Viewbook (http://www.scheller.gatech.edu/request-more-information.html?register&program=Full-time+MBA)
• Request an Evening MBA Viewbook (http://www.scheller.gatech.edu/request-more-information.html?register&program=Evening+MBA)
• Request an Executive MBA Viewbook (https://www.scheller.gatech.edu/request-more-information.html?register&program=Executive+MBA)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 6000</td>
<td>Financial and Managerial Accounting I (LG)</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6504</td>
<td>Principles of Finance (LG)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 6502</td>
<td>Leading People and Organizations (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6503</td>
<td>Managing Information Resources (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6509</td>
<td>Legal and Ethical Considerations in Business (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6508</td>
<td>Strategic Management (LG)</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6507</td>
<td>Business Communications (PF)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6506</td>
<td>Managerial Economics (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6505</td>
<td>Marketing Management (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6501</td>
<td>Operations Management (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6500</td>
<td>Analytical Tools for Decisions (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6510</td>
<td>Leadership Development Workshop (LG)</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 6510P</td>
<td>Leadership Development Preparation</td>
<td>0</td>
</tr>
<tr>
<td>MGT 6507</td>
<td>Experiential Graduate Management Elective (LG)</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6509</td>
<td>Graduate Management Elective (LG)</td>
<td>24</td>
</tr>
<tr>
<td>MGT 6503</td>
<td>Graduate Management Elective (PF)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 54

Master of Business Administration in Management of Technology

As technology alters the business landscape at an unprecedented pace, the Master of Business Administration – Management of Technology (Executive MBA in Management of Technology or EMBA-MOT) program will help you stay ahead of the curve and the competition. Leverage your technology background for competitive advantage as you learn to cope with the challenges presented by rapid innovation, shorter product life cycles, and emerging technologies.

No one understands innovation and technical experts like Georgia Tech, and the professors in our top-ranked business school know how to enhance your technical knowledge and increase your business savvy. In addition to gaining a foundation in business through MBA core courses, you will learn how to manage innovation and organizational change, conduct technology forecasting, and identify promising emerging technologies.

Through the EMBA-MOT program, you will gain the leadership and communication skills that are essential to maintain an upward trajectory in your career. The program will complement your technology background and help you leverage it for advancement. You will learn not only to speak the language of business fluently, but also to think and plan strategically. You will gain the confidence to communicate with senior leadership and manage teams of technical professionals at home and abroad. As more and more technical jobs are outsourced to employees in newly industrialized countries such as China and India, the role of the technical professional in the U.S. is rapidly changing. You may find that your role is shifting from performing technical duties to managing an international workforce or multiple vendors. The EMBA-MOT program will equip you to handle these new challenges while improving the performance of your company.

At the conclusion of the seventeen-month program, you will go on an international study tour of China, which includes visits to global research and development centers and meetings with executives from top companies. The trip also includes cultural excursions and networking.
Who Should Apply
Candidates should have a minimum of five years of professional work experience, a baccalaureate degree from an accredited institution, and a record of positive career growth and achievements through positions of increasing responsibility. The Executive MBA in Management of Technology program is particularly well-suited for technical professionals as well as for professionals working in companies strongly impacted by technology and/or increasing demands for innovative new products and services.

Admission
Applications are reviewed and accepted throughout the year. Priority will be given to applications received prior to April 1. After that date, applications will be reviewed on a space-available basis. Taking the GMAT may be required based on a review of your application portfolio. For additional information on admission requirements, please contact us as emba-mot@gatech.edu.

Contact Information
MBA – Management of Technology
Georgia Tech College of Business
800 West Peachtree St. NW
Atlanta, GA 30308-0520
Phone: 404.385.2254
Fax: 404.894.1464
MBA – Management of Technology Website (http://scheller.gatech.edu/exec_ed/program)

Program of Study
The MBA - Global Business degree is a specialized MBA degree requiring fifty semester credit hours of study. It consists of a fixed sequence of courses over a seventeen-month period with a new class beginning each fall semester and graduating at the end of the following fall semester. Classes are held on select weekends (Friday evening and all day Saturday), allowing participants to minimize time away from their jobs. In addition, there are four residencies, including two week long sessions at Georgia Tech and two trips abroad. To graduate, students must earn a cumulative grade point average of at least 2.7. To remain on good standing during the program, students must earn the minimum satisfactory cumulative grade point average of 2.7. Any student receiving three or more grades of U, D, or F, in any combination, may be dismissed from the program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMBA 6010</td>
<td>Cross-cultural Communications for Management</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6021</td>
<td>Data Analysis for Business</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6031</td>
<td>Leadership and Organizational Behavior</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6040</td>
<td>Economic Analysis of Decisions in a Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6050</td>
<td>Financial and Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>IMBA 6061</td>
<td>Information Systems for Global Organizations</td>
<td>2</td>
</tr>
<tr>
<td>IMBA 6071</td>
<td>Financial Management</td>
<td>3</td>
</tr>
</tbody>
</table>

IMBA 6081 Manufacturing and Service Management 2
IMBA 6090 Marketing and Consumer Behavior 3
IMBA 6131 Strategic Management Theory and Analysis 2
IMBA 6160 National and International Regulation of Business 2
IMBA 6230 International Business Negotiations 1
MOT 6133 Ethical Decision Making 1

Specialization Courses
MOT 6106 Processes of Technological Innovation 2
MOT 6111 Organizational Transformation Methods 2
MOT 6115 Forecasting and Analysis of Emerging Technologies 2
MOT 6128 Venture Financing 2
MOT 6129 International Business and Finance 2
IMBA 6430 Business Strategies for Sustainability 2

International Residency
IMBA 6311 Analysis of Global Environments 4

Capstone Project
MOT 6132 Management of Technology Project I 2
MOT 6134 Management of Technology Project II 2
MOT 6122 Management of Technology Project III 2

Total Credit Hours 50

Master of City and Regional Planning
The Master of City and Regional Planning (MCRP) degree program prepares students to excel as professionals capable of understanding and resolving complex urban planning problems. The curriculum gives students both a broad understanding of the urban and regional environment and a foundation of skills needed to plan for this environment.

The MCRP program strives for a careful balance between the theoretical, historical, and conceptual knowledge about urban and regional development on the one hand, and the acquisition of practical skills and methods of analysis on the other. The program offers six specializations as well as dual degree programs with architecture, civil engineering, law, and public policy.

The curriculum is a two-year, fifty-five-semester-hour program. The curriculum requirements include seven core courses, a specialization, electives, and an internship. Two options exist for completing the curriculum: the thesis or the applied research option paper.

The core courses are designed to impart fundamental planning knowledge applicable to wide sectors of the discipline. These include courses examining planning theory, planning methods, planning law, economic analysis, and planning practice. Students must earn a grade of C or better in all core courses to meet the core course requirements.

In the specialization coursework and the internship, the student develops skills focused on a particular aspect of city and regional planning. To enable students to focus their education on a consistent and cumulative body of knowledge, the program offers six specializations: economic development, environment and health planning management, housing and community development, land use planning, transportation planning, and urban design.
In addition to the core and specialization areas, the curriculum includes electives that can be used to deepen the student’s knowledge in a specialization or to broaden exposure to additional areas of planning. Students may take electives within the school, within the College of Design, in other schools at Georgia Tech (e.g., Architecture, Civil and Environmental Engineering, Public Policy, Information Systems, Earth and Atmospheric Sciences), or at other area universities such as Georgia State University or Emory University. Through the cross-registration system, students are allowed to enroll in a number of courses that are not offered at Georgia Tech.

The applied studio course allows students to synthesize their planning knowledge and skills in a real-world situation ranging from neighborhood to metropolitan regions. Our studios are conducted locally throughout Atlanta, which provides an excellent laboratory, as well as nationally and internationally. Finally, a thesis or applied research paper provides an opportunity for focused study in the student’s major area of specialization.

Students are admitted to the MCRP program to begin studies in the fall term only. With rare exceptions, involving transfer students and dual degree students, applicants will be considered for spring term admission. Applications must be completed by January 15 to ensure consideration for merit-based financial aid, and by February 15 if no financial aid is sought.

For more information about the MCRP program, contact:

Academic Advisor
Graduate Student Admissions, Advising, and Graduation Clearance
School of City and Regional Planning
College of Design
Georgia Institute of Technology
Atlanta, Georgia 30332-0155
Email: crp@design.gatech.edu

Master of City and Regional Planning (http://www.planning.gatech.edu/academics/mcrp/overview)

Master of Industrial Design (MID)

Industrial design is the professional service of creating and developing concepts and specifications that optimize the function, value, and appearance of products and systems for the mutual benefit of both user and manufacturer. The industrial designer’s work touches all of our lives in the form of home products and furnishings, communication devices, healthcare equipment, rehabilitation technologies, and a myriad of other consumer and industrial products and services. While giving form to the artifacts, system, or service to the person through considering appropriate aesthetics and ergonomics, technical processes, requirements for manufacture, marketing opportunities, and economic constraints.

At the graduate-level, Georgia Tech’s Master of Industrial Design (MID) focuses on an inclusive design approach that is dedicated to the creation and development of products, systems, services and environments that are usable by all segments of the population. With the growing diversity of the population, inclusive design is becoming increasingly important to designers of tomorrow to ensure that design is responsive to the individual and collective needs of all people.

Capitalizing on Georgia Tech’s rich traditions in technology and research, the MID program stresses a user-centered design process and evidence-based design practice that offers students unique opportunities to explore the design of new and existing technologies. Faculty members, who are practicing designers and experts in their fields, maintain active research programs in tangible products within communication technologies, enabling environments, supportive product systems, rehabilitation technologies, and healthcare systems technologies.

The Georgia Tech MID program offers a well-rounded course of study with early emphasis on exercising design principles and developing project-based design skills. Design projects stress realistic design situations, where students can have the opportunity to be involved in sponsored and/or funded projects. Within this model, the program encourages students to expand individual disciplinary talents and respond to changing opportunities in the field.

Students who have an undergraduate degree in industrial design from an undergraduate ID program similar to Georgia Tech’s can complete a two-year program consisting of 48 graduate credits.

Students who do not have an undergraduate degree in industrial design will need to successfully complete an additional 28 undergraduate industrial design credits, which at a minimum includes one year of undergraduate industrial design studios, Advanced Sketching, History of Industrial Design, Industrial Design Computing I and II, and Professional ID Practices. These classes are the minimum requirements students with a previous degree other than industrial design need before proceeding into the graduate-level studios and coursework.

All graduate students will be reviewed each year for satisfactory progress. Credit toward the MID degree will be granted for courses in which a grade of C or higher is earned.

ID Graduate Studies Information (http://www.id.gatech.edu/academics/graduate/overview)

The minimum requirements for the two-year MID degree for a student with a previous degree in industrial design are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 6100</td>
<td>Introduction to Graduate Studies in Industrial Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6101</td>
<td>Human Centered Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6211</td>
<td>Graduate Studio One</td>
<td>4</td>
</tr>
<tr>
<td>ID 6216</td>
<td>Service Design, Brand and Value Creation</td>
<td>3</td>
</tr>
<tr>
<td>ID 8803</td>
<td>Intro to Thesis Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select one:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ID 6212</td>
<td>Grad Studio Two: Health and Wellness</td>
<td></td>
</tr>
<tr>
<td>ID 6213</td>
<td>Grad Studio Two: Interactive Products</td>
<td></td>
</tr>
<tr>
<td>Graduate Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 16 credit hours approved by the school chair.</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Thesis/Non-Thesis

Select one of the following: 12

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 7000</td>
<td>Master's Thesis</td>
</tr>
<tr>
<td>ID 6400</td>
<td>Master’s Project (Non-Thesis)</td>
</tr>
</tbody>
</table>

Total Credit Hours 48
Master of Real Estate Development

Real estate development is a multidisciplinary activity that synthesizes the physical and design components of the development of land and buildings with financial, marketing, planning and policy aspects. The Master of Real Estate Development at Georgia Tech is a collaborative academic program offering a technical, design-based degree that also explores the business, planning, and policy components of responsible real estate development to provide students the knowledge demanded for the sustainable utilization of the land. The program leverages courses and faculty from three Schools in the College of Design, the School of Architecture, the School of Building Construction and the School of City and Regional Planning, while pursuing broader, future collaboration with College of Business, the School of Civil and Environmental Engineering, and the School of Public Policy.

The Master of Real Estate Development (MRED) is offered to professionals to further existing real estate careers, professionals looking to change career direction, and full-time students with undergraduate degrees in real estate, construction, architecture, landscape architecture, planning, or engineering.

The MRED is be a 30-credit hour program made available to full-time students and working professionals, with the opportunity for full-time students to complete the degree in 12 to 18 months. Instruction includes regular classroom courses, studio-based real estate development courses, and case studies involving real estate development projects.

Website: https://bc.gatech.edu/master-real-estate-development

This degree encompasses the full spectrum of disciplines involved in real estate development.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 6175</td>
<td>Real Estate Development and Construction</td>
<td>3</td>
</tr>
<tr>
<td>BC 6575</td>
<td>Real Estate Production Finance</td>
<td>3</td>
</tr>
<tr>
<td>BC 6350</td>
<td>Design and Construction Law</td>
<td>3</td>
</tr>
<tr>
<td>CP 6640</td>
<td>Applied Real Estate Development Methods</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6151</td>
<td>Theories of Urban Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Approved Electives (select four courses):

- BC 6375 Trends & Pol For Res Dev
- BC 6675 Residential Design and Construction
- ARCH 6226 Green Construction
- CP 6016 Growth Management Law and Implementation
- CP 6105 Land Conservation
- CP 6112 Introduction to Land Use Planning
- CP 6611 Principles of Real Estate Finance and Development
- CP 6233 Sustainable Urban Development
- MGT 6082 Fundamentals of Real Estate Development

Capstone

All work executed in the College becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse credit for any project executed outside the precincts of the College or otherwise executed without proper coordination with the instructor.

Master of Science (Undesignated)

The undesignated master’s degree (MS) enables you to pursue a program of highly interdisciplinary coursework. For the undesignated degree, the major area is a coherent field of interest in the Woodruff School, but courses taken in the major area need not all have ME designations. Examples of major areas are acoustics and dynamics, bioengineering, materials science, MEMS, and thermal sciences. The list of major areas is limited only by the current interests of the faculty in the Woodruff School. The requirement for a major area is motivated by the need to have some coherent area of special expertise.

Master of Science in Aerospace Engineering

At the graduate-level, the School of Aerospace Engineering offers master’s and doctoral degrees. In addition, the School offers a distance learning-based master’s degree.

The master’s degree may be earned by completing 33 semester hours of coursework, which must include 3 credit hours of Special Problems research credit. Alternatively, the candidate may elect to complete twenty-four semester hours of coursework along with nine hours of MS thesis work. In the latter option, the candidate must propose a thesis topic, complete the thesis, and successfully defend it before being awarded the degree. A GPA of 2.7 is required to graduate with an MS degree. All coursework, including Special Problems, must be taken on a letter-grade basis. The program of study for the master’s degree is very flexible and can be tailored, in agreement with the student’s advisor, to meet the candidate’s professional goals.

For further details governing the graduate program, access the Aerospace Engineering Graduate Handbook at http://www.ae.gatech.edu. Graduate students may specialize in the following areas: aerodynamics and fluid mechanics, aeroelasticty and structural dynamics, flight mechanics and control, propulsion
and combustion, structural mechanics and materials behavior, and system design and optimization. Further information on these areas of specialization and research can be found at www.ae.gatech.edu/research (http://www.ae.gatech.edu/research).

Non-Thesis Option

A GPA of 2.7 is required to graduate with an MS degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coursework</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 30 credit hours of coursework in Aerospace Engineering</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Select 3 credit hours of Special Problems research credit</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

1 Must be taken on a letter-grade basis

Thesis Option

A GPA of 2.7 is required to graduate with an MS degree

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coursework</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 24 credit hours of coursework in Aerospace Engineering</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 9 credit hours of MS thesis work</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Propose a thesis topic, complete the thesis, and successfully defend the thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

1 Must be taken on a letter-grade basis

BS/MS Honors Program

A combined BS/MS honors program is also offered that prepares students for graduate studies and research. Please see www.ae.gatech.edu (http://www.ae.gatech.edu) for more information.

Master of Science in Analytics

The Master of Science in Analytics is an interdisciplinary program that combines statistics, operations research, computing, and business by melding the world-class expertise of the College of Engineering’s Stewart School of Industrial & Systems Engineering, the College of Computing’s School of Computational Science and Engineering, and the Scheller College of Business. By combining the strengths of these nationally ranked programs, graduates will be afforded the opportunity to integrate analytic skills in a unique and interdisciplinary way that yields deep insights into analytics problems.

Analytics is defined as “the scientific process of transforming data into insight for making better decisions.” Tying together the new opportunities made possible by big data and computing, advanced quantitative methods from statistics and operations research, and the need for better business intelligence and decision support, analytics has quickly become a key facet of business strategy. The MS Analytics program’s graduates will be able to move directly into business, industry, and government positions where they can apply the practical knowledge they have gained to immediately benefit their employers.

Students earning the MS Analytics degree will be able to understand and integrate fundamental principles and advanced concepts across the core analytics disciplines of computing, statistics, operations research, and business. Trained by world-class faculty in all of these areas, students will learn

- identification and framing of problems;
- acquisition, management, and utilization of large and fast-moving streams of data;
- creation, analysis, solution, and interpretation of mathematical models using appropriate methodology; and
- the integration of these interdisciplinary skills to enable graduates to successfully develop and execute analytics projects.

In addition to an integrated breadth of study covering the core areas of analytics, students will satisfy one of the specialized tracks to give them depth in an analytics area of specialization:

Analytical Tools Track

The Analytical Tools track provides students with a greater understanding of the quantitative methodology of analytics: how to select, build, solve, and analyze models using methodology such as parametric and non-parametric statistics, regression, forecasting, data mining, machine learning, optimization, stochastics, and simulation.

Business Analytics Track

The Business Analytics track provides students with a deeper understanding of the practice of using analytics in business and industry: how to understand, frame, and solve problems in marketing, operations, finance, management of information technology, human resources, and accounting in order to develop and execute analytics projects within businesses.

Computational Data Analytics Track

The Computational Data Analytics track provides students with a deeper understanding of the practice of dealing with so-called “big data”- how to acquire, preprocess, store, manage, analyze, and visualize data arriving at high volume, velocity, and variety

Prerequisites

The prerequisites of the MS Analytics program include:

1. Interest in analytics, and a high level of ability that has been demonstrated within past performance on appropriate coursework and/or industry experience as well as standardized testing (GRE or GMAT);
2. Basic mathematical background - at least one college-level course in each of calculus, basic linear algebra, and probability and statistics;
3. Basic computing background - at least one college-level course (or equivalent basic knowledge) in computer programming using a high-level language such as Python;
4. A bachelor’s degree or equivalent; and
5. Institute requirements for admission to graduate study.
Applicants who do not satisfy these prerequisites might still be admitted, as long as they will have all of the prerequisites by the time they start the program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 6040</td>
<td>Computing for Data Analysis: Methods and Tools</td>
<td>3</td>
</tr>
<tr>
<td>MGT 8803</td>
<td>Introduction to Business for Analytics</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6501</td>
<td>Introduction to Analytics Modeling</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Core

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 6242</td>
<td>Data and Visual Analytics</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6203</td>
<td>Data Analytics in Business</td>
<td>3</td>
</tr>
</tbody>
</table>

Statistics

Select two courses from the approved list ²

Operations Research

Select one course from the approved list ²

Elective Courses

Select 6-15 credit hours. ¹, ³

Applied Analytics Practicum

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6748</td>
<td>Applied Analytics Practicum</td>
<td>6</td>
</tr>
<tr>
<td>CSE 6748</td>
<td>Applied Analytics Practicum</td>
<td>6</td>
</tr>
<tr>
<td>MGT 6748</td>
<td>Applied Analytics Practicum</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours 36

1. Any 6000-level or higher Spanish course and up to one (1) graduate course not taught in the target language (as approved by advisor). Students may complete a 6-credit thesis option, a 3-to-6-credit internship abroad option, or use graduate electives.

Master of Science in Applied Languages and Intercultural Studies

BS/MS Applied Languages and Intercultural Studies eligibility requirements:

1. Recommendation of two Modern Languages faculty members
2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated through official GT transcript (as of 2019-20 Spanish coursework)
3. Oral proficiency level of at least Intermediate High according to American Council of the Teaching of Foreign Languages (ACTFL) standards and OPI assessment procedures. This will be determined by in-person interview or ACTFL phone test.
4. Students must apply by March 15 of their junior year, so as to be accepted into the program and enroll in the graduate version of the required Intercultural Seminar (Capstone) course in the spring of their senior year.
5. Student acceptance will be recommended by a Graduate Committee comprised of members of the language programs to which students apply.
6. Students must maintain at least a 3.0 GPA throughout the MS ALIS program.

Program of Study and BS/MS ALIS Curriculum:

Following the model of other BS/MS degrees at Georgia Tech, ALIS majors meeting and maintaining eligibility requirements for continuing with the BS/MS ALIS may double count up to 6 credit hours of language study at the 4000 level or higher toward both degrees. BS/MSALIS students must complete at least 146 hours (total hours for BSALIS = 122 credit hours and total hours for MSALIS = 30 credit hours equal 152 credit hours) for the Master of Science in Applied Languages and Intercultural Studies degree. This includes completing the required Intercultural Seminar (Capstone) course in the spring of the senior year.

The Master of Science in Analytics is also offered online.

For more information, visit: Online Master of Science in Analytics (https://pe.gatech.edu/degrees/analytics).

The Master of Science in Analytics is also offered online.

For more information, visit: Online Master of Science in Analytics (https://pe.gatech.edu/degrees/analytics).
hours with 6 credit hours being shared = 146 credit hours. Students may
double count a 6000-level elective (3 hours) and 6000-level Intercultural
Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3
credits of this requirement will be completed at undergraduate level),
of which 18 or more must be in the target language, while one advisor-
approved course not in the target language is allowed (3 credit hours of
graduate level coursework taken at the undergraduate level will satisfy
both BSALIS ML elective and a MSALIS elective requirement). BS/MS
students must also complete Intercultural Seminar (6500) that will satisfy
both the undergraduate and graduate seminar requirement.

• Master of Science in Applied Languages and Intercultural Studies -
 Spanish (p. 524)

Additional languages will be added as they are approved by the Graduate
Curriculum Committee

BS/MS Applied Languages and Intercultural Studies
eligibility requirements:
1. Recommendation of two Modern Languages faculty members
2. Grade of 3.0 or higher in all BS-ALIS coursework as demonstrated
 through official GT transcript (as of 2019-20 Spanish coursework)
3. Oral proficiency level of at least Intermediate High according to
 American Council of the Teaching of Foreign Languages (ACTFL)
 standards and OPI assessment procedures. This will be determined by
 in-person interview or ACTFL phone test.
4. Students must apply by March 15 of their junior year, so as to be
 accepted into the program and enroll in the graduate version of the
 required Intercultural Seminar (Capstone) course in the spring of their
 senior year.
5. Student acceptance will be recommended by a Graduate Committee
 comprised of members of the language programs to which students
 apply.
6. Students must maintain at least a 3.0 GPA throughout the MS ALIS
 program.

Program of Study and BS/MS ALIS Curriculum:
Following the model of other BS/MS degrees at Georgia Tech, ALIS
majors meeting and maintaining eligibility requirements for continuing
with the BS/MS ALIS may double count up to 6 credit hours of language
study at the 4000 level or higher toward both degrees. BS/MSALIS
students must complete at least 146 hours (total hours for BSALIS = 122
credit hours and total hours for MSALIS = 30 credit hours equal 152 credit
hours with 6 credit hours being shared = 146 credit hours. Students may
double count a 6000-level elective (3 hours) and 6000-level Intercultural
Seminar (3 hours) toward undergraduate and graduate requirements.

BS/MS ALIS students also 21 take credit hours of graduate electives (3
credits of this requirement will be completed at undergraduate level),
of which 18 or more must be in the target language, while one advisor-
approved course not in the target language is allowed (3 credit hours of
graduate level coursework taken at the undergraduate level will satisfy
both BSALIS ML elective and a MSALIS elective requirement). BS/MS
students must also complete Intercultural Seminar (6500) that will satisfy
both the undergraduate and graduate seminar requirement.

Master of Science in Architecture
The School of Architecture's Master of Science (MS) Program is a non-
professional program requiring a minimum of 30 semester hours of
advanced study and is oriented toward advanced practice, scholarship
and research. Applicants may have previous degrees in architecture or
other related fields. The program accepts students with a professional
degree in a design or design-related field, as well as students with a
baccalaureate degree in a non-design field who wish to pursue an area of
study offered in the Master of Science in Architecture degree.

Concentrations:
1. Advanced Production (p. 199)
2. Building Information Systems (p. 200)
3. Design Computation (p. 201)
4. Health and Design (p. 202)
5. High Performance Buildings (p. 203)

Multidisciplinary studies are strongly encouraged in all of the master's
programs in architecture. These studies may be part of a formal dual
degree program, including architecture and city and regional planning.
Other multidisciplinary studies are possible within the College of Design,
the Institute, or at other Atlanta area colleges and universities, such as
Emory University and Georgia State University. Coursework outside the
School of Architecture frequently includes city and regional planning,
public policy, history, philosophy, real estate development, engineering,
and studio art.

The deadline for applications is December 31st for all applicants for
the following fall semester. Each applicant must have an outstanding
undergraduate record and must submit a portfolio of creative work. The
Graduate Record Examination (GRE) is required for all applicants. The
TOEFL is the only acceptable language test for admission to Georgia
Tech. A score of 90 is required by Georgia Institute of Technology, with
a minimum section score of 19 in each section of the test, however,
the School of Architecture only accepts TOEFL scores near 100 for all
foreign applicants. All applicants should be aware that each program
in the School of Architecture has specific application requirements;
therefore, all applicants should consult the relevant requirements for their
chosen degree programs; by visiting the School of Architecture website
or contacting an academic advisor.

For further details on the program, see www.arch.gatech.edu (http://
www.arch.gatech.edu) or contact an academic advisor in the School of
Architecture.

MS Information (http://www.arch.gatech.edu/master-science-
architecture)
• Master of Science in Architecture - Advanced Production (p. 199)
• Master of Science in Architecture - Building Information Systems
 (p. 200)
• Master of Science in Architecture - Design Computation (p. 201)
• Master of Science in Architecture - Health and Design (p. 202)
• Master of Science in Architecture - High Performance Buildings
 (p. 203)

Master of Science in Bioengineering
The Georgia Tech Interdisciplinary Bioengineering Graduate Program
was established in 1992. Over 170 students have graduated from the
program in a broad spectrum of research by our ninety participating faculty (http://www.bioengineering.gatech.edu/faculty) from the Colleges of Engineering, Computing, Sciences, and Architecture as well as Emory University School of Medicine.

The BioE Program is interdisciplinary in that it is not a standalone academic unit like most departments or schools at Georgia Tech. Rather, eight different academic units from the Colleges of Engineering and Computing make up the program.

However, the BioE Program provides the degree requirements for students accepted into the program. This approach allows a flexible, integrative, and individualized degree program that enforces depth and breadth in coursework, a solid bioengineering research experience, and yet is reflective of the disciplinary background of the student’s home school. Importantly, the BioE Program provides research opportunities for students with any participating program faculty, allowing tremendous diversity and flexibility for research topics and advisors.

Students who wish to pursue a Master’s degree in Bioengineering may also do so through the College of Computing. The specific requirements differ from those of the computer science master’s program, and while the degree is granted from the College, applications for this program are processed through the Bioengineering Center of the Office of Interdisciplinary Programs.

Additional information is available at www.bioengineering.gatech.edu (http://bioengineering.gatech.edu).

Master of Science in Bioinformatics

This is a three-semester, focused professional master’s degree program combining 37 credit hours of courses in computer science, advanced molecular biology and biochemistry, statistics, and bioinformatics. A full-time summer internship in a corporate or academic bioinformatics group is an essential part of the curriculum. With input and assistance from corporate partners, the program is geared to training and placing graduates into lucrative jobs in the high-demand specialty field of bioinformatics. More information is available from the graduate coordinator of the MS Bioinformatics program.

Bioinformatics Website (http://bioinformatics.gatech.edu)

Master of Science in Biology

The School of Biological Sciences offers two distinct programs leading to the M.S. in Biology degree. The M.S. in Biology (non-thesis) is intended for students who plan to pursue advanced training in one aspect of modern biology. The M.S. in Biology (with thesis) is intended for students wishing to obtain a strong background in modern biology and independent research experience in preparation for a wide range of career options, or further training leading to the PhD in biology. Students admitted to the Masters degree program in the School of Biological Sciences are enrolled in a non-thesis program of study. If a student wishes to obtain a Masters degree with Thesis, he or she may petition the Graduate Committee for approval along with support from their thesis advisor.

Biology Graduate Programs Website (http://www.biology.gatech.edu/graduate-programs)
The overall balance of bioscience, data science, and engineering courses is determined by the student and his/her academic advisor and should factor the student’s prior knowledge, professional objectives and research interests if the thesis option is pursued. Courses must be documented on the Program of Study form and must be approved by the Graduate Program Committee.

BS/MS Option
Students completing both a bachelor’s and master’s in biomedical engineering at Georgia Tech may use up to six credit hours of graduate-level coursework in the major discipline for both degrees. To qualify for this option, students must complete the undergraduate degree with a cumulative GPA of 3.5 or higher and complete the master’s degree within a two-year period from the award date of the bachelor’s degree.

Master of Science in Building Construction and Facility Management
The master’s degree program in the School of Building Construction focuses on management-based education for industry professionals seeking executive leadership positions in the industry. Our graduate training offers a holistic approach to business processes, integrating coursework, seminars, and hands-on learning to equip today’s industry professionals with the resources they need to excel in their professional careers. The program consists of two concentrations:

1. Building Construction
2. Facility Management

The Building Construction concentration offers two tracks of study in construction management and program management.

Students can complete either a thesis or non-thesis option for the degree.

Students in the program come from a variety of backgrounds, often with experience in facility management, construction, architecture, engineering, city planning, management, or business. The program is tailored to meet the needs of professionals by offering evening classes, giving students the flexibility of continuing to work while taking courses.

Thesis Option
The curriculum for graduate study with the Thesis Option consists of the following 30 semester hours:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Common Core Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Research Methods Course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Non-Thesis Option
The curriculum for graduate study with the Non-Thesis Option substitutes twelve semester hours of thesis for coursework and consists of the following 30 semester hours:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Common Core Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Common Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Capstone Project Course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Students applying for a MS in Building Construction and Facility Management (MSBCFM) will declare a concentration of interest at application and be directed into a set of core courses and electives totaling 30 credit hours that provide depth in the particular area chosen. All MSBCFM students will have common preparation in technology, leadership, communications, accounting and finance, plus two approved electives and a required elective that is a required course from the other concentration. Common electives consist of two courses to be chosen by the student with input from the advisor, from a list of three available courses (i.e., BC 6600 Fac Mgt Financial Analy, BC 6685 Leadership in Des&Constr, BC 6005 Special Topics: Tech Apps in the Cons Industry/ NCP attached). Further, a capstone project course will be required so students will be exposed to different perspectives (e.g., owner, contractor, facility manager) in the industry.

The Graduate Record Exam (GRE) or Graduate Management Admission Test (GMAT) is required for all students. The application can be completed online at http://www.grad.gatech.edu/apply. Applicants are also asked to submit a resume of professional accomplishments.

International applicants must also submit a minimum TOEFL score of 100 (internet-based test) and financial documentation of support.

The Facility Management Concentration
The graduate concentration in Facility Management offers a clear understanding of this complex field and its theoretical concepts. It focuses on developing and fine-tuning the management skills necessary for success in the facility management industry. Courses explore the many facets of integrated facility management including asset management, project management, facility operations and maintenance, energy management, workplace design and consulting, facility technology integration, design and construction, and real estate development. The program is accredited by the International Facility Management Association (IFMA) Foundation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 6100</td>
<td>Professional Trends in Facility Management</td>
<td>3</td>
</tr>
<tr>
<td>BC 6200</td>
<td>Maintenance Management of Built Assets</td>
<td>3</td>
</tr>
<tr>
<td>BC 6300</td>
<td>Safety and Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>BC 6500</td>
<td>Real Estate Asset and Income Property Management</td>
<td>3</td>
</tr>
<tr>
<td>Required Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Common Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
The Building Construction Concentration

The graduate concentration in Building Construction focuses on the activities and processes that deliver a building, from concept inception or need from an owner, to the design by architects and engineers, to the actual construction of the building by the contractor and subcontractors. This graduate concentration has two tracks: **Construction Management** (the contractor’s perspective), and **Program Management** (the owner’s perspective).

The Construction Management Track (within the Building Construction concentration)

The Construction Management track educates students to understand, analyze, select, and manage the most appropriate and effective project delivery systems for constructing a facility, from the contractor’s perspective. The curriculum emphasizes integrated problem-solving through state-of-the-art technical and management techniques. A variety of project delivery systems, that can be used independently or integrated, are examined. The delivery methods explored include the design-build system, the construction management/agent method, the hybrid bridging and partnering system; the negotiated select team method, as well as the traditional delivery method.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 6025</td>
<td>Construction Management</td>
<td>3</td>
</tr>
<tr>
<td>BC 6250</td>
<td>Value Management for Integrated Facility Design and Construction</td>
<td>3</td>
</tr>
<tr>
<td>BC 6550</td>
<td>Design and Construction Processes for Integrated Services</td>
<td>3</td>
</tr>
<tr>
<td>BC 6650</td>
<td>Advanced Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Required Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Common Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BC 6850</td>
<td>Building Construction and Facility Management Capstone</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 30

School of Building Construction (http://www.bc.gatech.edu/content/master-science-building-construction-and-facility-management)

Master of Science in Chemical Engineering

The School of Chemical & Biomolecular Engineering offers graduate programs involving advanced-level coursework and independent research leading to MS and PhD degrees in chemical engineering. The MS degree may also be obtained by coursework only. Course selection for both the MS and doctoral degrees is quite flexible, with individual plans of study developed for each student. Research opportunities exist in a broad range of areas of importance to chemical engineers and society, including catalysis, reaction kinetics, complex fluids, microelectronics, microfluidics, optimization, bioinformatics, polymers, sustainable development, pulp and paper, separations, CO2 capture, biomedicine, solar energy, thermodynamics, MEMS, environmental science, reaction engineering, cancer diagnostics and therapeutics, biofuels, air quality, modeling, and process synthesis and control. Furthermore, the School of Chemical & Biomolecular Engineering participates with several other schools in offering MS and PhD degrees in Bioengineering and Paper Science and Engineering.

Chemical and Biomolecular Engineering Website (http://www.chbe.gatech.edu)

Master of Science in Chemistry

Two different programs of study leading to a master’s degree are offered by the School of Chemistry and Biochemistry. The formal requirements for the MS degree (thesis option) are twenty-four credit hours of approved coursework beyond the bachelor’s degree, along with an approved master’s thesis. The formal requirement for the MS degree (non-thesis option) is thirty credit hours of approved coursework beyond the bachelor’s degree. The MS degree (non-thesis option) is a terminal degree in this department. Current research includes multidisciplinary initiatives in biomolecular structure, molecular biophysics, computational and theoretical chemistry, materials chemistry, nanotechnology, bio-organic chemistry, photochemistry and photobiology, polymer chemistry, sensors, and environmental chemistry.

Chemistry Website (http://www.chemistry.gatech.edu)
Master of Science in Civil Engineering

The School of Civil & Environmental Engineering (CEE) offers a challenging graduate program that encompasses advanced study and research leading to the degree of Master of Science in Civil Engineering.

Major Areas of Specialization

- Construction and Infrastructure Systems Engineering
- Environmental Engineering
- Geosystems Engineering
- Structural Engineering, Mechanics and Materials
- Transportation Systems Engineering
- Water Resources Engineering

Non-Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Specialization</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Specialization</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>CEE 7000</td>
<td>Master’s Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Joint BS/MS Degree Program - Civil Engineering

The joint BS/MS program is designed to attract the best-of-the-best undergraduate students and is especially intended for students who demonstrate an interest in, and ability for, additional education beyond the bachelor’s degree.

Students will be eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech and appropriate progress in their degree program. As a practical matter, students should apply for the program at least three semesters prior to graduation in order to take graduate-level courses prior to receiving their BS degree. Students must have a Georgia Tech GPA of 3.5 or higher for admission into the BS/MS Program in Civil Engineering.

This program is available only to those completing a Bachelor’s degree with the School of Civil and Environmental Engineering

Students in the joint BS/MS program remain undergraduates until they meet the requirements for the bachelor’s degree, at which point they will receive the BSCE or BSEnvE degree. Their status will then be changed to graduate status. Graduate school application fees and the GRE requirements are waived.

Once admitted, a GPA of at least 3.0 must be maintained to remain in the program. Additionally, students in the BS/MS program are eligible to use the Graduate Course Option (p. 107) even if their cumulative grade-point average is below 3.5 at the time they complete their bachelor’s degree.

Master of Science in Computational Science and Engineering

The Master of Science in Computational Science and Engineering (CSE) Program is an interdisciplinary program offered by the College of Computing, the College of Engineering, and the College of Sciences. The CSE program addresses the body of knowledge, skills, and practices associated with the study of computer-based models of natural phenomena and engineered systems. Students will be required to obtain a breadth of knowledge across a set of core areas in the CSE discipline, depth of knowledge in a specific computational specialization (e.g., numerical computing), and knowledge to apply computational techniques in a domain of application. Students will be expected to integrate principles from mathematics, computer science, and engineering to be able to create significant computational artifacts (e.g., software).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Curriculum</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Select four of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE/MATH 6643 Numerical Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6140 Computational Science and Engineering Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6730 Modeling and Simulation: Foundations and Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE/ISYE 6740 Computational Data Analysis: Learning, Mining, and Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6220 High Performance Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Select a specialization minor that includes one applications area.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Select at least six hours of non-CS/CSE courses.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Course or Thesis Option</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

1 A specialization minor is required consisting of twelve hours of coursework relevant to the CSE discipline that includes one applications area; this must include at least six hours of courses that do not carry the CS/CSE course designation.

2 Students must either complete 6 additional hours of approved coursework (course option) or an MS thesis (thesis option) that is defended to the student’s thesis committee who is responsible for overseeing the student’s research. Students must acquire the approval of their proposed program of study in their first semester of enrollment in the CSE program from both the student’s home unit coordinator and the CSE program director.
Master of Science in Computer Science

The program for the Master of Science in Computer Science (MSCS) prepares students for more highly productive careers in industry. Graduates receive the MSCS for completing one of three options in the program as described in this section. Students may apply to the program if they possess a bachelor’s degree in computer science from an accredited institution. Students without a bachelor’s degree in computer science are encouraged to apply as well, with the understanding that they will be required to complete remedial coursework appropriate to their background in addition to the requirements of the MSCS degree. All applicants are evaluated according to their prior academic record, scores on the Graduate Record Examination, a personal statement, and letters of recommendation. Applicants are selected for fall semester admission only. The application deadline is February 1. However, all applicants are encouraged to apply as early as possible because the selection process may begin well before the deadline.

Students entering the program must demonstrate a core competency in computing equivalent to undergraduate-level courses in the following areas:

- systems, design and analysis of algorithms,
- formal languages and automata theory,
- databases,
- networking and communications,
- computer architecture, and
- human-computer interaction.

This requirement can be satisfied by having taken undergraduate courses as a part of an undergraduate degree, taking remedial courses in the MS CS program, or by examination. Students may specialize in areas of their choice. Every student must complete at least one specialization as a part of his or her degree program. The current eleven specialization areas are:

- Computer Graphics, Computing Systems
- High-Performance Computing, Human-Computer Interaction
- Interactive Intelligence
- Machine Learning
- Modeling and Simulations
- Scientific Computing
- Social Computing
- Visual Analytics.

A student who is enrolled in another graduate program of the Institute may pursue an MSCS while that student is also pursuing his or her degree in the other major. To be granted permission to pursue the MSCS, a student must submit to the MS program coordinator of the College of Computing the material required for admission to the MSCS program. This includes transcripts, letters of recommendation, and GRE General Test. If the student is approved by the College to pursue the MSCS, the student will be notified in writing. At no time will a student outside the College be allowed to pursue a concurrent degree without prior permission of the MS program coordinator of the College of Computing.

A student enrolled in the MS degree program in computer science who wishes to be admitted to the PhD program in computer science should apply via the same process as external students. It is expected that such a student will have at least two letters of recommendation from College of Computing faculty.

For more information about the MS CS program, visit www.cc.gatech.edu (http://www.cc.gatech.edu).

Program of Study

The College’s master’s degree requirements supplement the Institute’s master’s requirements listed in this catalog:

- Students must achieve a grade-point average of at least 3.0 to graduate, and no course grades below C will count toward graduation. Students must take all master’s degree coursework on a letter-grade basis.
- Undergraduate courses required for the BSCS degree may not be used toward the MSCS degree. In addition, no graduate credit will be given for 3000 level courses or lower-level courses.
- No course may be used to satisfy the requirements of two degrees. In addition, no graduate credit will be given for CS courses with a number lower than 4140.
- A maximum of 6 hours may be taken at the 4000-level and/or with a subject code other than CS or CSE. See exceptions under the Project and Thesis options below.
- The maximum total credit hours of Special Problems (CS or CSE 89xx) that may be applied toward the MSCS degree is 3. These courses must be within the CoC.
- There is no maximum number of Special Topics (CS or CSE 88xx) courses that may be used towards the degree.
- Each student must complete the requirements for one specialization. Click here (p. 531) for specialization requirements.
- Students may choose from one of three options in pursuing the MSCS degree, including:

Course Option

This option requires the student to complete 30 hours of coursework.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Course Credit Hours (no MS project or thesis hours)</td>
<td>30</td>
</tr>
<tr>
<td>CS and CSE (minimum 24 credit hours)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>CS and CSE 6000-8000 Level Courses (minimum 24 credit hours)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>6000/8000 Level Courses (minimum 24 credit hours)</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Project Option

This option requires the student to complete 21 credit hours of coursework and a 9 credit hour project. The project requires approval by a faculty advisor and the MS program coordinator in the semester prior to its inception.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Coursework Credit Hours</td>
<td>21</td>
</tr>
<tr>
<td>MSCS Project hours (CS 6999)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CS and CSE Courses (minimum of 15 credit hours)</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
CS and CSE 6000-8000 Level Courses (minimum of 15 credit hours) 1

1 May not include MS project or thesis hours.

Thesis Option
This option requires the student to complete 18 credit hours of coursework and a 12 credit hour thesis. The thesis process is defined elsewhere in this catalog.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Coursework Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>MS Thesis Credit Hours</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>CS and CSE Courses (minimum of 15 credit hours) 1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CS and CSE 6000-8000 Level Courses (minimum of 15 credit hours) 1</td>
<td>15</td>
</tr>
</tbody>
</table>

1 May not include MS project or thesis hours.

The student must obtain advance approval of the thesis proposal by the faculty advisor and MSCS coordinator. See your academic advisor for more information about the thesis process.

Specializations
Computational Perception and Robotics

Core Courses
Algorithms: Pick one (1) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td>3</td>
</tr>
<tr>
<td>CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 6520</td>
<td>Computational Complexity Theory</td>
<td></td>
</tr>
<tr>
<td>CS 6550</td>
<td>Design and Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 7520</td>
<td>Approximation Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 7530</td>
<td>Randomized Algorithms</td>
<td></td>
</tr>
<tr>
<td>CSE 6140</td>
<td>Computational Science and Engineering</td>
<td></td>
</tr>
</tbody>
</table>

And, pick one (1) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6601</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 7641</td>
<td>Machine Learning</td>
<td></td>
</tr>
</tbody>
</table>

Electives
Pick three (3) courses from Perception and Robotics, with at least one from each:

Perception

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 6476</td>
<td>Introduction to Computer Vision GR</td>
<td></td>
</tr>
<tr>
<td>CS 7499</td>
<td>3D Reconstruction and Mapping in Computer Vision, Robotics, and Augmented Reality</td>
<td></td>
</tr>
<tr>
<td>CS 7636</td>
<td>Computational Perception</td>
<td></td>
</tr>
<tr>
<td>CS 7650</td>
<td>Natural Language</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>Special Topics (Multiview Geometry in Computer Vision)</td>
<td></td>
</tr>
</tbody>
</table>

Robotics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 7630</td>
<td>Autonomous Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 7631</td>
<td>Autonomous Multi-Robot Systems</td>
<td></td>
</tr>
</tbody>
</table>

Electives: select three (3) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6457</td>
<td>Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 6475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 6476</td>
<td>Introduction to Computer Vision GR</td>
<td></td>
</tr>
<tr>
<td>CS 6485</td>
<td>Visualization Methods for Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 6764</td>
<td>Geometric Modeling</td>
<td></td>
</tr>
<tr>
<td>CS 7490</td>
<td>Advanced Computer Graphics</td>
<td></td>
</tr>
<tr>
<td>CS 7491</td>
<td>3D Complexity Techniques for Graphics, Modeling, and Animation</td>
<td></td>
</tr>
<tr>
<td>CS 7492</td>
<td>Simulation of Biological Systems</td>
<td></td>
</tr>
<tr>
<td>CS 7496</td>
<td>Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 7497</td>
<td>Virtual Environments</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

Computer Graphics

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6491</td>
<td>Foundations of Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td>3</td>
</tr>
<tr>
<td>or CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

Electives: select three (3) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6475</td>
<td>Computational Photography</td>
<td></td>
</tr>
<tr>
<td>CS 6476</td>
<td>Introduction to Computer Vision GR</td>
<td></td>
</tr>
<tr>
<td>CS 6485</td>
<td>Visualization Methods for Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 6764</td>
<td>Geometric Modeling</td>
<td></td>
</tr>
<tr>
<td>CS 7490</td>
<td>Advanced Computer Graphics</td>
<td></td>
</tr>
<tr>
<td>CS 7491</td>
<td>3D Complexity Techniques for Graphics, Modeling, and Animation</td>
<td></td>
</tr>
<tr>
<td>CS 7492</td>
<td>Simulation of Biological Systems</td>
<td></td>
</tr>
<tr>
<td>CS 7496</td>
<td>Computer Animation</td>
<td></td>
</tr>
<tr>
<td>CS 7497</td>
<td>Virtual Environments</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

Computing Systems

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td>3</td>
</tr>
<tr>
<td>or CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

And, pick two (2) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6210</td>
<td>Advanced Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CS 6241</td>
<td>Design and Implementation of Compilers</td>
<td></td>
</tr>
<tr>
<td>CS 6250</td>
<td>Computer Networks</td>
<td></td>
</tr>
<tr>
<td>CS 6290</td>
<td>High-Performance Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>CS 6300</td>
<td>Software Development Process</td>
<td></td>
</tr>
<tr>
<td>CS 6390</td>
<td>Programming Language Design</td>
<td></td>
</tr>
<tr>
<td>CS 6400</td>
<td>Database Systems Concepts and Design</td>
<td></td>
</tr>
</tbody>
</table>

Electives: pick three (3) of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6035</td>
<td>Introduction to Information Security</td>
<td></td>
</tr>
<tr>
<td>CS 6200</td>
<td>Graduate Introduction to Operating Systems</td>
<td></td>
</tr>
<tr>
<td>CS 6220</td>
<td>Big Data Systems and Analytics</td>
<td></td>
</tr>
<tr>
<td>CS 6235</td>
<td>Real-Time System Concepts and Implementation</td>
<td></td>
</tr>
<tr>
<td>CS 6238</td>
<td>Secure Computer Systems</td>
<td></td>
</tr>
<tr>
<td>CS 6260</td>
<td>Applied Cryptography</td>
<td></td>
</tr>
<tr>
<td>CS 6262</td>
<td>Network Security</td>
<td></td>
</tr>
<tr>
<td>CS 6263</td>
<td>Intro to Cyber-Physical Systems Security</td>
<td></td>
</tr>
<tr>
<td>CS 6291</td>
<td>Embedded Software Optimizations</td>
<td></td>
</tr>
</tbody>
</table>

Georgia Institute of Technology 531
High-Performance Computing

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6140</td>
<td>Computational Science and Engineering Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CSE 6220</td>
<td>High Performance Computing</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick three (3) of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6221</td>
<td>Multicore Computing: Concurrency and Parallelism on the Desktop</td>
<td>3</td>
</tr>
<tr>
<td>CSE 6230</td>
<td>High-Performance Parallel Computing: Tools and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or CSE 6230</td>
<td>High Performance Parallel Computing: Tools and Applications</td>
<td>3</td>
</tr>
<tr>
<td>CSE 6241</td>
<td>Design and Implementation of Compilers</td>
<td>3</td>
</tr>
<tr>
<td>CSE 6290</td>
<td>High-Performance Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 8803</td>
<td>Special Topics (Parallel Numerical Algorithms)</td>
<td>3</td>
</tr>
<tr>
<td>or CSE 8803</td>
<td>Special Topics (Computational Creativity)</td>
<td>3</td>
</tr>
<tr>
<td>CSE 6236</td>
<td>Parallel and Distributed Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CSE 8803</td>
<td>Special Topics (Hot Topics in Parallel Computing)</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Human-Centered Computing

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 6451</td>
<td>Introduction to Human-Centered Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 6452</td>
<td>Prototyping Interactive Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 7455</td>
<td>Issues in Human-Centered Computing</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Interactive Intelligence

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take one (1) of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 6300</td>
<td>Software Development Process</td>
<td>3</td>
</tr>
<tr>
<td>CS 6301</td>
<td>Advanced Topics in Software Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td></td>
</tr>
<tr>
<td>CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
<tr>
<td>Take two (2) of:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CS 6601</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 7620</td>
<td>Case-Based Reasoning</td>
<td></td>
</tr>
<tr>
<td>CS 7637</td>
<td>Knowledge-Based AI</td>
<td></td>
</tr>
<tr>
<td>CS 7641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick two (2) courses from:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 6440</td>
<td>Information to Health Informatics</td>
<td></td>
</tr>
<tr>
<td>CS 6460</td>
<td>Educational Technology Conceptual Foundations</td>
<td></td>
</tr>
<tr>
<td>CS 6465</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 6471</td>
<td>Computational Social Science</td>
<td></td>
</tr>
<tr>
<td>CS 6750</td>
<td>Human-Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>CS 7632</td>
<td>Game Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 7634</td>
<td>AI Storytelling in Virtual Worlds</td>
<td></td>
</tr>
<tr>
<td>CS 7650</td>
<td>Natural Language</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>Special Topics (Advanced Game AI)</td>
<td></td>
</tr>
<tr>
<td>Cognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 6795</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 7610</td>
<td>Modeling and Design</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>Special Topics (Computational Creativity)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

Machine Learning

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick one (1) of:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td></td>
</tr>
<tr>
<td>CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 6520</td>
<td>Computational Complexity Theory</td>
<td></td>
</tr>
<tr>
<td>CS 6550</td>
<td>Design and Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 7510</td>
<td>Graph Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 7520</td>
<td>Approximation Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 7530</td>
<td>Randomized Algorithms</td>
<td></td>
</tr>
<tr>
<td>CSE 6140</td>
<td>Computational Science and Engineering Algorithms</td>
<td></td>
</tr>
<tr>
<td>Pick one (1) of:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CS 7641</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CSE 6740</td>
<td>Computational Data Analysis: Learning, Mining, and Computation</td>
<td></td>
</tr>
</tbody>
</table>

Modeling and Simulations

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6730</td>
<td>Modeling and Simulation: Foundations and Implementation</td>
<td>3</td>
</tr>
<tr>
<td>Pick one (1) of:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CSE 6220</td>
<td>High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>ISYE 6644</td>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>MATH 6640</td>
<td>Applied Computational Methods for Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Pick three (3) of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6220</td>
<td>High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>CSE 6236</td>
<td>Parallel and Distributed Simulation</td>
<td></td>
</tr>
<tr>
<td>CSE/CHBE</td>
<td>Special Topics (Quantum Information, 8803)</td>
<td></td>
</tr>
<tr>
<td>ISYE 6644</td>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>INTA 6742</td>
<td>Modeling, Simulation and Military Gaming</td>
<td></td>
</tr>
</tbody>
</table>
| MATH 6640 | Applied Computational Methods for Partial Differential Equations | | Total Credit Hours: 15
Scientific Computing

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>CSE/MATH</td>
<td>Numerical Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>6643</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pick one (1) of:</td>
<td>3</td>
</tr>
<tr>
<td>CSE/MATH</td>
<td>Iterative Methods for Systems of Equations</td>
<td></td>
</tr>
<tr>
<td>6644</td>
<td>Applied Computational Methods for Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 6640</td>
<td>Applied Computational Methods for Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>CS/CSE</td>
<td>High-Performance Parallel Computing: Tools and Applications</td>
<td></td>
</tr>
<tr>
<td>6230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS/CSE</td>
<td>Special Topics (Parallel Numerical Algorithms)</td>
<td></td>
</tr>
<tr>
<td>8803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 6140</td>
<td>Computational Science and Engineering Algorithms</td>
<td></td>
</tr>
<tr>
<td>CSE 6220</td>
<td>High Performance Computing</td>
<td></td>
</tr>
<tr>
<td>CSE/MATH</td>
<td>Iterative Methods for Systems of Equations</td>
<td></td>
</tr>
<tr>
<td>6644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 8803</td>
<td>Special Topics (Algorithms for Medical Imaging and Inverse Problems)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics (Computational Chemistry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Computational Methods for Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Social Computing

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>CS 6470</td>
<td>Design of Online Communities</td>
<td>3</td>
</tr>
<tr>
<td>CS 6474</td>
<td>Social Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pick one (1) of:</td>
<td>3</td>
</tr>
<tr>
<td>CS 6465</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 6471</td>
<td>Computational Social Science</td>
<td></td>
</tr>
<tr>
<td>CS 7460</td>
<td>Collaborative Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>CS 6238</td>
<td>Secure Computer Systems</td>
<td></td>
</tr>
<tr>
<td>CS 6250</td>
<td>Computer Networks</td>
<td></td>
</tr>
<tr>
<td>CS 6456</td>
<td>Principles of User Interface Software</td>
<td></td>
</tr>
<tr>
<td>CS 6505</td>
<td>Computability, Algorithms, and Complexity</td>
<td></td>
</tr>
<tr>
<td>CS 6515</td>
<td>Introduction to Graduate Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 6675</td>
<td>Advanced Internet Computing Systems and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 6750</td>
<td>Human-Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>CS 7210</td>
<td>Distributed Computing</td>
<td></td>
</tr>
<tr>
<td>CS 7270</td>
<td>Networked Applications and Services</td>
<td></td>
</tr>
<tr>
<td>CS 7270</td>
<td>Networked Applications and Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Visual Analytics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>CS 7450</td>
<td>Information Visualization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pick one (1) of:</td>
<td></td>
</tr>
<tr>
<td>CSE 6740</td>
<td>Computational Data Analysis: Learning, Mining, and Computation</td>
<td></td>
</tr>
<tr>
<td>CSE 6242</td>
<td>Data and Visual Analytics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>CS 6456</td>
<td>Principles of User Interface Software</td>
<td></td>
</tr>
<tr>
<td>CS 6465</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 6485</td>
<td>Visualization Methods for Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>CS 6750</td>
<td>Human-Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>CS 6795</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CSE 6242</td>
<td>Data and Visual Analytics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Topics (Visual Data Analytics)</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>Special Topics (Visual Data Analytics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

The Master of Science in Computer Science is also offered online.

For more information, visit: Online Master of Science in Computer Science (http://www.omscs.gatech.edu/program-information). (https://pe.gatech.edu/georgia-tech-online)

Master of Science in Cybersecurity

The Master of Science in Cybersecurity degree program requires 32 credit hours of coursework (including a 5 credit practicum project course). Two of the core courses, which students in each specialization will take, will provide a broad overview of technology and policy dimensions of cybersecurity. The third flexible core course will provide breadth because it must come from a specialization separate from the one in which a student is enrolled. Finally, a practicum project (5 credit hours) with common learning objectives across all participating units will be a core requirement. Each participating unit will decide required and elective courses for the MS Cybersecurity degree specialization offered by it (a total of 18 credit hours). These requirements have been defined by the participating units and are described in the next section.

Although all three participating schools will offer a single degree, MS Cybersecurity, the focus of the degree (e.g., technology or policy) will depend on the specialization defined by the offering unit. In particular, each unit will offer the following specializations for the MS degree in Cybersecurity.

- The School of Computer Science (CS) offers the MS Cybersecurity degree with a technology specialization.
The School of Electrical and Computer Engineering (ECE) offers the MS Cybersecurity degree with a cyber-physical and energy systems specialization.

The School of Public Policy (PUBP) offers the MS cybersecurity degree with a policy specialization.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6035</td>
<td>Introduction to Information Security</td>
<td>3</td>
</tr>
<tr>
<td>PUBP/CS/ MGT 6725</td>
<td>Information Security Policies and Strategies</td>
<td>3</td>
</tr>
<tr>
<td>CS/ECE/ PUBP 6727</td>
<td>Cyber Security Practicum</td>
<td>5</td>
</tr>
<tr>
<td>Elective</td>
<td>CS/PUBP/ECE 6000-level</td>
<td>3</td>
</tr>
<tr>
<td>Specialization Requirements (see below for specialization specific requirements)</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 32

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 8813</td>
<td>Special Topics (Introduction to Cyber-Physical Systems Security)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 8803</td>
<td>Special Topics (Computational Aspects of Cyber-Physical Systems or Cyber Physical Design and Analysis)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two courses:
- ECE 6550 Linear Systems and Controls
- ECE 6607 Computer Communication Networks
- ECE 6615 Sensor Networks
- ECE 6102 Dependable Distributed Systems
- ECE 6323 Power System Protection
- ECE 8813 Special Topics (Advanced Computer Security)
- ECE 8813 Special Topics (Network Forensics)
- ECE 8813 Special Topics (Smart Grids)
- ECE 8803 Special Topics (Advanced Topics in Malware)
- ECE 8873 Special Topics (Advanced Hardware Oriented Security and Trust)

Total Credit Hours: 18

The Master of Science in Cybersecurity is also offered online.

For more information, visit: Online Master of Science in Cybersecurity (https://pe.gatech.edu/degrees/cybersecurity).

Master of Science in Digital Media

The Digital Media graduate program at Georgia Tech provides students with a foundation in digital media design and making, a theoretical background in digital media, and the opportunity to practice what is learned in studio courses, labs, and research. Here at Georgia Tech, we focus on the cultural context of digital media making, where graduate students learn to make with meaning. The resources, facilities and industry connections established and maintained by the program make our students some of the most sought-after graduates in the field today.
The MS DM program accepts roughly 20-25 full-time students each fall term. MS DM students come from a range of educational backgrounds and have diverse intellectual and creative objectives. Many have work experience in a professional field. The program welcomes a socially diverse and international student body. For more information visit: http://dm.lmc.gatech.edu/program/ms-program/

To graduate with the Master of Science in Digital Media, students must take a minimum of 36 credit hours while meeting the following requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6310</td>
<td>The Computer as an "Expressive Medium"</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6399</td>
<td>Discovery & Invention</td>
<td>3</td>
</tr>
</tbody>
</table>

First Year - Spring Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6313</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Fall and/or Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6650</td>
<td>Project Studio (may be taken multiple times)</td>
<td>6</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives</td>
<td>15</td>
</tr>
</tbody>
</table>

Project or Thesis

Select one of the following:

- LMC 6800 Digital Media Master's Project
- LMC 7000 Digital Media Master's Thesis

Summer Internship

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer Internship</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credit Hours 36

1 Students are invited to repeat the same Project studio for all four semesters of the program and to do their Masters Project/Thesis in a related area. Please note that all MS students are required to take two (2) sections of LMC 6650, each for 3 credit hours.

2 Students may choose from elective courses in DM or related disciplines, such as Architecture, Industrial Design, Cognitive Science, Computing, Management, or Policy Studies. If a student chooses to take more than three elective courses outside DM, the student must obtain approval from the DM Director of Graduate Studies.

3 8-10 week full-time internship between the first and second year.

BS/MS Degree Program

Students who wish to pursue the BS/MS combination in LMC and DM must apply to the School after completing at least sixty-four credit hours of work toward an LMC degree that includes the Interaction Design thread. Applicants should have a 3.5 GPA.

Students admitted to the program take a total of twelve credit hours of graduate coursework during their final undergraduate year. Six credit hours of that work, in DM media courses, will replace any 4000-level course and will count for both undergraduate and graduate credit. During the summer term after their fourth year, students will participate in an approved internship program. During the fifth year, students will take a total of twenty-four credit hours, including either LMC 6800 or LMC 7000, and with no more than three courses taken outside the DM program.

Master of Science in Earth and Atmospheric Sciences

Students can choose a program of study leading to either the designated master's degree (with thesis) or the undesignated master's degree (without thesis). General requirements for both degrees are found in this catalog under "Information for Graduate Students." In either program of study, students can specialize in atmospheric chemistry, aerosols, and clouds; dynamics of weather and climate; geochemistry; geophysics; oceanography; paleoclimate; planetary science; and remote sensing. With approval of the School's faculty, multidisciplinary programs of study are also permitted. Students entering the master's degree program need an academic background that includes a minimum of one year of university-level courses in calculus, chemistry, and physics. Students who lack this academic background are required to complete appropriate remedial courses, for which they will not receive graduate credit.

Students can satisfy the requirements for the designated master's degree by completing a faculty-approved set of courses and a master's thesis in earth and atmospheric sciences. With approval of the School chair, students can satisfy the requirements for the undesignated master's degree by completing a faculty-approved set of courses and a 3 credit hour Special Problems course. This course must take the form of a research project supervised by the student's advisor and culminating in a written final report.

BS/MS Earth and Atmospheric Sciences

EAS offers a BS/MS Program. EAS majors may apply to the BS/MS program after completing at least thirty semester credit hours at Georgia Tech with a GPA of at least 3.5.

Students admitted to the program must maintain a cumulative GPA of at least 3.0.

As part of the program, students may use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

To apply, complete the BS/MS application form, a biographical statement, and two letters of recommendation.

EAS Undergraduate Information (https://www.eas.gatech.edu/undergrad/5-year-bsms)

Master of Science in Economics

The School of Economics offers a Master of Science degree for those desiring to pursue economics at an advanced level. It is grounded in applied economic theory and econometrics. The program allows for two tracks to graduate: Internship, and Coursework.

Internship Option

Minimum course credit hours at 6000 to 9000 level: 21

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 6105</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6106</td>
<td>Microeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6140</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6160</td>
<td>Econometric Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Economics Electives</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Coursework Option
Minimum course credit hours at 6000 to 9000 level: 21

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 6105</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6106</td>
<td>Microeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6140</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 6160</td>
<td>Econometric Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Economics electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Total Credit Hours: 30

Within those 30 credit hours, the student can choose 12 credit hours of elective courses in complementary areas such as Mathematics, Statistics, Industrial Engineering, Civil Engineering, International Affairs, various areas in Management, or Public Policy, among other areas, or in Economics. The selection of these electives will be based on the student's chosen areas of concentration. The SOE Director of Graduate Studies along with the Academic Advisor will grant approvals for these courses.

BS/MS in Economics
Students with a GPA of 3.25 or higher in ECON courses are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of 75 semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis. Admissions decisions will be based on GPA and judgments of the Graduate Committee and faculty who have served as advisors or instructors. Continuation in the program will require the B.S. student to maintain a GPA of 3.25 or higher in their ECON courses. The program will not penalize students who opt out after the bachelor's degree.

Students in the BS-MS ECON program will take 6 hours of ECON electives at the 6000 level which will be used toward ECON electives in the BS in Economics program and may be used toward core requirements or electives in the MS in Economics program. Prior to enrolling in 6000-level ECON courses, students will be required to complete ECON 3110 Advanced Microeconomics, ECON 3120 Advanced Macroeconomics, and ECON 3161 Econometrics.

Eligible Georgia Tech undergraduates normally apply for this program during their junior year. Contact the Electrical and Computer Engineering Graduate Affairs Office for program information, eligibility requirements, and applications.

Master of Science in Engineering Science and Mechanics
The School of Civil & Environmental Engineering (CEE) offers a challenging graduate program that encompasses advanced study and research leading to the degree of Master of Science in Engineering Science and Mechanics. Students seeking this degree must have a Bachelor of Science in engineering or the physical sciences.

Non-Thesis Option
21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Thesis Option
21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CEE 7000</td>
<td>Master’s Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
Master of Science in Environmental Engineering

The School of Civil & Environmental Engineering (CEE) offers a challenging graduate program that encompasses advanced study and research leading to the degree of Master of Science in Environmental Engineering.

Non-Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environmental Engineering Core Courses</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environmental Engineering Core Courses</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>CEE 7000 Master’s Thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

Non-Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environmental Engineering Core Courses</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

Thesis Option

21 of the 30 credit hours of coursework must be at the 6000 level or higher

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environmental Engineering Core Courses</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>CEE 7000 Master’s Thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

Joint BS/MS Degree Program - Environmental Engineering

The joint BS/MS program is designed to attract the best-of-the-best undergraduate students and is especially intended for students who demonstrate an interest in, and ability for, additional education beyond the bachelor’s degree.

Students will be eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech and appropriate progress in their degree program. As a practical matter, students should apply for the program at least three semesters prior to graduation in order to take graduate-level courses prior to receiving their BS degree. Students must have a Georgia Tech GPA of 3.5 or higher for admission into the BS/MS Program in Environmental Engineering.

This program is available only to those completing a Bachelor’s degree within the School of Civil and Environmental Engineering.

The key components of this program are intense interaction among students and faculty, including mentoring and undergraduate research, and careful advising and course planning to enable students to begin challenging coursework in their fourth year of study.

Students in the joint BS/MS program remain undergraduates until they meet the requirements for the bachelor’s degree, at which point they will receive the BSEnvE or BSCE degree. Their status will then be changed to graduate status. Graduate school application fees and the GRE requirements are waived.

Once admitted, a GPA of at least 3.0 must be maintained to remain in the program. Additionally, students in the BS/MS program are eligible to use the Graduate Course Option (http://catalog.gatech.edu/academics/undergraduate/credit-tests-scores/undergraduate-students-taking-graduate-courses) even if their cumulative grade-point average is below 3.5 at the time they complete their bachelor’s degree.

Master of Science in Geographic Information Science and Technology

Geographic Information Science (GIS) is an emerging field of study centered on the acquisition, management, analysis, and dissemination of information that is spatially-referenced to locations on, above, and below the surface of the earth. This field is highly trans-disciplinary with substantial and growing importance in a number of traditional academic disciplines and related professions including city and regional planning, architecture, civil and environmental engineering, earth and atmospheric sciences, environmental science, demography, logistics, management, public policy and sustainability studies. Full-time students can complete the 34 credit-hour curriculum in one calendar year including two semesters of full-time coursework and a capstone project course offered during the summer. Part-time students may complete the program in two or three academic years plus one summer session for the capstone project course.

For more information about the MS-GIST program, contact:

MS-GIST Program Director
School of City and Regional Planning
College of Design
Georgia Institute of Technology
Atlanta, Georgia 30332-0155
Email: crp@design.gatech.edu

- Master of Science in Geographic Information Science and Technology (http://www.planning.gatech.edu/master-science-geographic-information-science-and-technology)
The components of the current MSGIST curriculum are:

Prerequisite Course

A basic understanding of GIS technology is required as a prerequisite of the degree program.

This may be achieved through one of four options:

- CP 4510 Geographic Information Systems or
- CP 6514 Introduction to Geographic Information Systems or
- Equivalent coursework at another institution (as evaluated by the program coordinator)
- One year of equivalent professional experience (as evaluated by the program coordinator)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 6006</td>
<td>Visualization for Planners</td>
<td>1</td>
</tr>
<tr>
<td>CP 6024</td>
<td>Quantitative and Computer Methods</td>
<td>4</td>
</tr>
<tr>
<td>CP 6521</td>
<td>Advanced Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CP 6531</td>
<td>Introduction to Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>CP 6581</td>
<td>Programming for Geographic Information</td>
<td>3</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 6591</td>
<td>GIS Professionalization</td>
<td>1</td>
</tr>
<tr>
<td>CP 6592</td>
<td>Capstone Project Research</td>
<td>1</td>
</tr>
<tr>
<td>CP 6595</td>
<td>GIS Systems Design and Management</td>
<td>3</td>
</tr>
<tr>
<td>CP 6596</td>
<td>GIS Capstone Project</td>
<td></td>
</tr>
</tbody>
</table>

Specialized GIS Courses

Select two: 1

- CP 6570 Socioeconomic GIS
- CP 6541 Environmental Analysis Using GIS
- CP 6542 Transport & GIS

Free Electives 2

- INFO 530 Geographic Information Systems for Public Health (in the Emory School of Public Health) can be used here.
- Students can select two additional courses as free electives. These will typically include additional specialized GIS courses or courses in GIS-related substantive areas such as city planning, architecture, public policy, civil engineering, or environmental engineering.

Total Credit Hours 34

1 At least one course per semester in Fall and Spring
2 (Chinese, French, German, Japanese, Russian, Spanish), at least one course per semester in Fall and Spring.
3 6000-level in LMC or ML
4 May include a combination of coursework, MS Thesis, an internship or practicum, or independent project (LMC or ML-oriented)

Other program guidelines:

- Required courses, electives, and culminating project should indicate a clear area of specialization in a linguistic, cultural, thematic, or disciplinary area of inquiry.
- Students must take a minimum of 6 credit hours each in ML and LMC. They may take a maximum of 18 credit hours in one School for their individualized program of study.
- Students may enroll in Internships (domestic or abroad), Language Practicum courses (domestic or abroad), or Intercultural Seminar for up to 6 credits each. In total, students may count no more than 12 credits of courses in these categories toward the degree. Students may enroll in no more than 3 credits of MS Thesis in Summer Semester.
- 3 credits of elective coursework can be undertaken in another unit, as per approval by graduate advisor.

Master of Science in Health Systems

The focus of the Health Systems is to develop, apply, and disseminate new knowledge with respect to the analysis, planning, implementation, demonstration, and evaluation of operational and managerial systems for the delivery of healthcare services to the public.

MS Health Systems Information (http://www.isye.gatech.edu/academics/graduate/masters.php#mshs)
Master of Science in History and Sociology of Technology and Science

The School offers a program of graduate study in the history and sociology of technology and science at both the master’s and doctoral levels. The two-year master’s program consists of foundation courses in history, social theory, and research methods, as well as more specialized reading and research seminars. The program emphasizes the understanding of technology and science within a broad social and historical context. Students develop a strong general background in history and sociology, and acquire skills in research, social analysis, and writing. The basic curriculum of thirty credit hours consists of fifteen credit hours of required mandatory courses, plus fifteen credit hours of electives for those who do not wish to proceed to the PhD, or plus nine credit hours of electives and six credit hours of special problems (research paper) for those who wish to proceed to the PhD. The curriculum has been changed to establish two tracks, a History Track and a Sociology Track.

History Track – Curriculum

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>HTS 6001</td>
<td>Proseminar in Social Theory</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6002</td>
<td>Proseminar in the History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HTS 6101</td>
<td>Social and Political History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6102</td>
<td>Social and Political History of Europe</td>
<td></td>
</tr>
<tr>
<td>HTS 6103</td>
<td>Social and Political History of the Nonwestern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6743</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HTS 7001</td>
<td>Foundations of Socio-historical Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Select five of the following:</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>HTS 6101</td>
<td>Social and Political History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6102</td>
<td>Social and Political History of Europe</td>
<td></td>
</tr>
<tr>
<td>HTS 6103</td>
<td>Social and Political History of the Nonwestern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6106</td>
<td>Business Organizations and Political Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6110</td>
<td>Gender, Science, and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6111</td>
<td>Technology and Modern Culture</td>
<td></td>
</tr>
<tr>
<td>HTS 6112</td>
<td>Studies in Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>HTS 6113</td>
<td>Development, Technology and Science</td>
<td></td>
</tr>
<tr>
<td>HTS 6114</td>
<td>Topics in the History of Science</td>
<td></td>
</tr>
<tr>
<td>HTS 6115</td>
<td>Sociology of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6116</td>
<td>The Environment in World History</td>
<td></td>
</tr>
<tr>
<td>HTS 6117</td>
<td>Urbanization</td>
<td></td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6119</td>
<td>Race and Ethnicity</td>
<td></td>
</tr>
<tr>
<td>HTS 6120</td>
<td>Inequality, Science and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6121</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>HTS 6122</td>
<td>History of Medicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6123</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 30

Notes

- Students who have taken either HTS 6101, HTS 6102, or HTS 6103 to satisfy their mandatory course requirements may take one or both of the other courses, if they are offered, as an elective.
- As this is a multidisciplinary degree, students in the history track can take electives from the sociology track, with the agreement of their advisor.
- Electives may include no more than 6 credit hours of HTS 890X (Special Problems) or HTS 6801 combined. Students who wish to proceed to the PhD must take at least 3 hours of HTS 6801.
- Electives must include at least 12 credit hours within The School of History and Sociology.

Sociology Track - Curriculum

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>HTS 6001</td>
<td>Proseminar in Social Theory</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6002</td>
<td>Proseminar in the History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6743</td>
<td>Science, Technology & Society: Core Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HTS 7001</td>
<td>Foundations of Socio-historical Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>Select five of the following:</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>HTS 6103</td>
<td>Social and Political History of the Nonwestern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6106</td>
<td>Social and Political History of the Nonwestern World</td>
<td>3</td>
</tr>
<tr>
<td>HTS 6108</td>
<td>Business Organizations and Political Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6110</td>
<td>Gender, Science, and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6111</td>
<td>Technology and Modern Culture</td>
<td></td>
</tr>
<tr>
<td>HTS 6112</td>
<td>Studies in Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>HTS 6113</td>
<td>Development, Technology and Science</td>
<td></td>
</tr>
<tr>
<td>HTS 6114</td>
<td>Topics in the History of Science</td>
<td></td>
</tr>
<tr>
<td>HTS 6115</td>
<td>Sociology of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6116</td>
<td>The Environment in World History</td>
<td></td>
</tr>
<tr>
<td>HTS 6117</td>
<td>Urbanization</td>
<td></td>
</tr>
<tr>
<td>HTS 6118</td>
<td>Sci Tech and the Economy</td>
<td></td>
</tr>
<tr>
<td>HTS 6120</td>
<td>Inequality, Science and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 6121</td>
<td>Science, Technology and Security</td>
<td></td>
</tr>
<tr>
<td>HTS 6122</td>
<td>History of Medicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6123</td>
<td>Social and Cultural Studies of Biomedicine</td>
<td></td>
</tr>
<tr>
<td>HTS 6124</td>
<td>Science and Technology Beyond Borders</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 33

Notes

1 This course is chosen from a wide variety of courses available in other programs on campus and at Georgia State University, in consultation with their advisor.
Notes
• Students may be required to take a second course in Advanced Sociological Methods if required to do so by their advisor.
• As this is a multidisciplinary degree students in the sociology track can take electives from the history track, with the agreement of their advisor.
• Electives may include no more than 6 credit hours of HTS 890X (Special Problems) or HTS 6801 combined. Students who wish to proceed to the PhD must take at least 3 hours of HTS 6801.
• Electives must include at least 12 credit hours within The School of History and Sociology.

Master of Science in Human-Computer Interaction

The interdisciplinary Master of Science in Human-Computer Interaction (HCI) degree program is a cooperative effort of the School of Interactive Computing; the School of Literature, Media and Communication; the School of Industrial Design, and the School of Psychology. The program provides students with the practical and interdisciplinary skills and theoretical understanding they will need to become leaders in the design, implementation, and evaluation of the computer interfaces of the future.

Course of Study

The HCI master’s degree is a four-semester program consisting of a total of thirty-six credit hours. Each student is required to complete a set of four core courses, a set of elective courses based on their academic background and interests, a set of area specialization courses based on the academic unit in which they reside, and a Master’s project. The specific courses for each student will be determined by the HCI program coordinator in consultation with the academic unit. The area specialization courses are determined by the academic unit in which the student resides. The areas of specialization are: Interactive Computing; Digital Media (DM, through the School of Literature, Media and Communication); Industrial Design; and Psychology.

<table>
<thead>
<tr>
<th>Specialization</th>
<th>Fixed Core Credit Hours</th>
<th>Elective Credit Hours</th>
<th>Project Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Computing</td>
<td>9</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Digital Media</td>
<td>9</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Industrial Design</td>
<td>9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Psychology</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Each student is required to maintain a 3.0 grade point average across credit hours used to fulfill degree requirements, a minimum grade of “B” in Fixed Core, Specialization, and Project credit hours, and a minimum grade of “C” in Elective credit hours.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>Human-Computer Interaction Foundations 1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>CS/PSYC 6755</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PSYC 6023</td>
<td>Psychological Research Methods for HCI 1,3</td>
<td>4</td>
</tr>
</tbody>
</table>

Specializations:

Interactive Computing Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS/ID/LMC/PSYC 6753</td>
<td>Human-Computer Interaction-Professional Preparation and Practice (one credit hour Fall of first year and one credit hour Fall of second year) 1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 A minimum grade of “B” is required in each of the Fixed Core classes.
2 Course must be taken during first semester.
3 Students are expected to take PSYC 6755/CS 6755 and PSYC 6023 during the same semester.

Design-Evaluation-and Cognitive Modeling

Select 6 credit hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6150</td>
<td>Computing for Good</td>
<td>3</td>
</tr>
<tr>
<td>CS 6440</td>
<td>Information to Health Informatics</td>
<td></td>
</tr>
<tr>
<td>CS 6451</td>
<td>Introduction to Human-Centered Computing</td>
<td></td>
</tr>
<tr>
<td>CS 6455</td>
<td>User Interface Design and Evaluation</td>
<td></td>
</tr>
<tr>
<td>CS 6457</td>
<td>Video Game Design and Programming</td>
<td></td>
</tr>
<tr>
<td>CS 6460</td>
<td>Educational Technology: Conceptual Foundations</td>
<td></td>
</tr>
<tr>
<td>CS 6461</td>
<td>CS Education Research</td>
<td></td>
</tr>
<tr>
<td>CS 6465</td>
<td>Computational Journalism</td>
<td></td>
</tr>
<tr>
<td>CS 6470</td>
<td>Design of Online Communities</td>
<td></td>
</tr>
<tr>
<td>CS 6474</td>
<td>Social Computing</td>
<td></td>
</tr>
<tr>
<td>CS 6770</td>
<td>Mixed Reality Experience Design or LMC 6</td>
<td></td>
</tr>
<tr>
<td>CS 6763</td>
<td>Design of Design Environments</td>
<td></td>
</tr>
<tr>
<td>CS 6795</td>
<td>Introduction to Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>CS 7450</td>
<td>Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 7460</td>
<td>Collaborative Computing</td>
<td></td>
</tr>
<tr>
<td>CS 7632</td>
<td>Game Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 7633</td>
<td>Human-Robot Interaction</td>
<td></td>
</tr>
<tr>
<td>CS 7790</td>
<td>Cognitive Modeling</td>
<td></td>
</tr>
<tr>
<td>CS 7803</td>
<td>Design Games</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>Design Games</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>DV, Data Visualization Principles and Application</td>
<td></td>
</tr>
</tbody>
</table>

References:

CS 8803 | Introduction to Bio Informatics | 4 |
Master of Science in Human-Computer Interaction

Digital Media (DM) Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6310</td>
<td>The Computer as an "Expressive Medium"</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6313</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6399</td>
<td>Discovery & Invention</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6000- or 8000-level courses</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

A minimum grade of "B" is required in each of the Digital Media Specialization classes.

Industrial Design Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 6101</td>
<td>Human Centered Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 8802</td>
<td>Visual Communication for Interaction</td>
<td>2</td>
</tr>
<tr>
<td>Select one of the following courses:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ID 6212</td>
<td>Grad Studio Two: Health and Wellness</td>
<td>3</td>
</tr>
<tr>
<td>ID 6213</td>
<td>Grad Studio Two: Interactive Products</td>
<td>3</td>
</tr>
</tbody>
</table>

A minimum grade of "B" is required in each of the Industrial Design Specialization classes.

Psychology Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 6022</td>
<td>Psychological Statistics for HCI (Fall or Spring)</td>
<td>4</td>
</tr>
<tr>
<td>Select 6 credit hours from the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PSYC 6011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 6012</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 6013</td>
<td>Biopsychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 6014</td>
<td>Sensation and Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC</td>
<td>Human Abilities 1</td>
<td>6017/4270</td>
</tr>
<tr>
<td>PSYC 6041</td>
<td>Current Topics in Cognitive Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 6060</td>
<td>Psychology of Aging</td>
<td>6060/4260</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychological Testing 2</td>
<td>6270/4270</td>
</tr>
<tr>
<td>PSYC 7101</td>
<td>Engineering Psychology I: Methods</td>
<td></td>
</tr>
<tr>
<td>PSYC 7102</td>
<td>Engineering Psychology II: Displays, Controls, and Workspace</td>
<td></td>
</tr>
<tr>
<td>PSYC</td>
<td>Seminar in Experimental Psychology</td>
<td>8000/4050</td>
</tr>
</tbody>
</table>

A minimum grade of "B" is required in each of the Psychology Specialization classes.

Elective Courses:

- 12 credit hours for Interactive Computing
- 12 credit hours for Digital Media
- 9 credit hours for Industrial Design
- 11 credit hours for Psychology

Any Specialization course may be taken to fulfill an Elective course requirement for any of the four degree tracks. Other approved Electives appear in the list below.

For each area of specialization (track), a certain number of Elective credits must be taken outside of the area:

- Interactive Computing: at least 9 non-CS elective credits must be taken
- Industrial Design, Digital Media, and Psychology: at least 6 non-track elective credits must be taken

A maximum of 3 credit hours of Special Problems in HCI (CS/ID/LMC/PSYC 8903) may count toward the Elective course requirement.

A minimum grade of "B" is required in each of the Industrial Design Specialization classes.
A minimum grade of “C” is required in each of the Elective classes used to satisfy degree requirements.

Aerospace Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 6551</td>
<td>Cognitive Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AE 6721</td>
<td>Evaluation of Human Integrated Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Computer Science

(Note: These courses are still approved electives, but they have been combined with the next section to create a single list of approved Computer Science courses.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 6150</td>
<td>Computing for Good</td>
<td>3</td>
</tr>
<tr>
<td>CS 6300</td>
<td>Software Development Process</td>
<td>3</td>
</tr>
<tr>
<td>CS 6440</td>
<td>Information to Health Informatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 6451</td>
<td>Introduction to Human-Centered Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 6452</td>
<td>Prototyping Interactive Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 6455</td>
<td>User Interface Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>CS 6456</td>
<td>Principles of User Interface Software</td>
<td>3</td>
</tr>
<tr>
<td>CS 6457</td>
<td>Video Game Design and Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 6460</td>
<td>Educational Technology: Conceptual Foundations</td>
<td>3</td>
</tr>
<tr>
<td>CS 6465</td>
<td>Computational Journalism</td>
<td>3</td>
</tr>
<tr>
<td>CS 6470</td>
<td>Design of Online Communities</td>
<td>3</td>
</tr>
<tr>
<td>CS 6474</td>
<td>Social Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS/ID 6763</td>
<td>Design of Design Environments</td>
<td>3</td>
</tr>
<tr>
<td>CS 6770</td>
<td>Mixed Reality Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>or LMC 6341</td>
<td>Mixed Reality Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 6795</td>
<td>Introduction to Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 7450</td>
<td>Information Visualization</td>
<td>3</td>
</tr>
<tr>
<td>CS 7460</td>
<td>Collaborative Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 7465</td>
<td>Educational Technology: Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>CS 7470</td>
<td>Mobile and Ubiquitous Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 7497</td>
<td>Virtual Environments</td>
<td>3</td>
</tr>
<tr>
<td>CS 7610</td>
<td>Modeling and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 7632</td>
<td>Game Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 7633</td>
<td>Human-Robot Interaction</td>
<td>3</td>
</tr>
<tr>
<td>CS 7790</td>
<td>Cognitive Modeling</td>
<td>4</td>
</tr>
<tr>
<td>or PSYC 771</td>
<td>Cognitive Modeling</td>
<td></td>
</tr>
<tr>
<td>CS 8803:ANI,Animal Interaction</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 8803</td>
<td>DG, Design Games</td>
<td>3</td>
</tr>
<tr>
<td>CS 8803</td>
<td>IBI, Introduction to Bio Informatics</td>
<td>3</td>
</tr>
<tr>
<td>CS 8803</td>
<td>MAS, Mobile Apps and Services</td>
<td>3</td>
</tr>
<tr>
<td>CS 8803</td>
<td>VDA, Visual Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>CS 8903</td>
<td>Special Problems</td>
<td>1-21</td>
</tr>
<tr>
<td>CS 8803</td>
<td>CC, Computational Creativity</td>
<td>3</td>
</tr>
<tr>
<td>CS 8803</td>
<td>TD, Technology & Poverty</td>
<td>3</td>
</tr>
<tr>
<td>INTA 8803</td>
<td>TD, Technology & Poverty</td>
<td>3</td>
</tr>
<tr>
<td>CS 8803</td>
<td>HI, Personal Health Informatics</td>
<td>3</td>
</tr>
</tbody>
</table>

International Affairs

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 8803</td>
<td>Computers, Communications, and International Development</td>
<td>3</td>
</tr>
<tr>
<td>INTA/CS 8803</td>
<td>Technology and Poverty</td>
<td></td>
</tr>
</tbody>
</table>

Industrial Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 6100</td>
<td>Introduction to Graduate Studies in Industrial Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6101</td>
<td>Human Centered Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6213</td>
<td>Grad Studio Two: Interactive Products</td>
<td>4</td>
</tr>
<tr>
<td>ID 6214</td>
<td>Strategic Design Language</td>
<td>3</td>
</tr>
<tr>
<td>ID 6216</td>
<td>Service Design, Brand and Value Creation</td>
<td>3</td>
</tr>
<tr>
<td>ID 6215</td>
<td>Service Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 6509</td>
<td>Computation, Creativity and Design Cognition</td>
<td>3</td>
</tr>
<tr>
<td>ID 6510</td>
<td>Design for Interaction: Working with New Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ID 6515</td>
<td>Interface Prototyping: Exploring Tools & Theories</td>
<td>3</td>
</tr>
<tr>
<td>ID 6420</td>
<td>Advanced Sketching</td>
<td>3</td>
</tr>
<tr>
<td>ID 6271</td>
<td>Healthcare Design of the Future</td>
<td>3</td>
</tr>
<tr>
<td>ID/CS 6763</td>
<td>Design of Interactive Environments</td>
<td>3</td>
</tr>
<tr>
<td>ID 6800</td>
<td>Investigations of Universal Design in the Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ID 6820</td>
<td>Web Design, Usability and Accessibility</td>
<td>3</td>
</tr>
<tr>
<td>ID 8802</td>
<td>Visual Communication for Interaction</td>
<td>2</td>
</tr>
<tr>
<td>ID 8903</td>
<td>Special Problems in Human-Computer Interaction</td>
<td>3</td>
</tr>
</tbody>
</table>

Industrial and Systems Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6413</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6414</td>
<td>Statistical Modeling and Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6739</td>
<td>Basic Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6772</td>
<td>Management of Technology II</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 7210</td>
<td>Real-time Interactive Simulation</td>
<td>3</td>
</tr>
</tbody>
</table>

Literature, Media, and Communication (Digital Media)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 6215</td>
<td>Issues in Media Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6310</td>
<td>The Computer as an "Expressive Medium"</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6311</td>
<td>Visual Culture and Design</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6312</td>
<td>Design, Technology & Representation</td>
<td>3</td>
</tr>
<tr>
<td>LMC 6313</td>
<td>Principles of Interaction Design</td>
<td>3</td>
</tr>
</tbody>
</table>
Management of Technology (MOT)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 6056</td>
<td>Electronic Commerce-Conducting Business on the Internet</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6057</td>
<td>Business Process Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6059</td>
<td>Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6086</td>
<td>Entrepreneurial Finance and Private Equity</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6111</td>
<td>Innovation and Entrepreneurial Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6165</td>
<td>Venture Creation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6326</td>
<td>Collaborative Product Development</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6359</td>
<td>Business Strategies For Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6450</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6772</td>
<td>MOT II: Managing Resources of the Technological Firm</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6799</td>
<td>Legal Issues in Technology Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6899</td>
<td>Technology Ventures</td>
<td>3</td>
</tr>
<tr>
<td>MGT 8803</td>
<td>Big Data Analytics in Business</td>
<td>3</td>
</tr>
</tbody>
</table>

Music

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 6001</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6002</td>
<td>Computer Supported Interactive Music</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6003</td>
<td>Music Technology History and Repertoire</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6004</td>
<td>Technology Ensemble</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6103</td>
<td>Music Recording and Mixing</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6203</td>
<td>Project Studio in Music Technology</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 7100</td>
<td>Music Technology Research Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Psychology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 6011</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 6012</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 6014</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 6022</td>
<td>Psychological Statistics for HCI</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 6041</td>
<td>Current Topics in Cognitive Aging</td>
<td>1</td>
</tr>
<tr>
<td>PSYC 7101</td>
<td>Engineering Psychology I: Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 7102</td>
<td>Engineering Psychology II: Displays, Controls, and Workspace</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 7104</td>
<td>Psychomotor and Cognitive Skill Learning and Performance</td>
<td>3</td>
</tr>
<tr>
<td>PSYC/CS 7790</td>
<td>Cognitive Modeling</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 8040</td>
<td>Seminar in Engineering Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 8903</td>
<td>Special Problems in Human-Computer Interaction</td>
<td>3</td>
</tr>
</tbody>
</table>

Public Policy

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6111</td>
<td>Internet and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6401</td>
<td>Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Research Project (6 credit hours)

Each student completes this requirement, under the supervision of a faculty member, typically during the last two semesters of their program. Students must submit a project proposal and a final report and present their work to program coordinators and other MS - HCI students late during the semester of graduation.

Select one of the following:
- CS 6998 HCI Master's Project
- LMC 6998 HCI Master's Project
- PSYC 6998 HCI Master's Project
- ID 6998 HCI Master's Project

1 repeatable; up to 6 credits

A minimum grade of “B” is required in the project course.

Other expectations

All students are expected to complete a corporate internship in an HCI-relevant position between their second and third semesters.

Master of Science in Industrial Engineering

The School of Industrial and Systems Engineering (ISYE) offers eight master's degrees:
The program includes core courses in the following:

- Master of Science in Industrial Engineering (MS IE);
- Master of Science in Operations Research (MS OR);
- Master of Science in Supply Chain Engineering (MS SCE);
- Master of Science in Statistics (MS STAT);
- Master of Science in Health Systems (MS HS);
- Master of Science in Quantitative and Computational Finance (MS QCF);
- Master of Science in International Logistics (MS IL) that is part of the executive program; and
- Master of Science in Computational Science and Engineering (MS CSE).

Three of these programs are interdisciplinary:

- MS QCF (joint with School of Mathematics, College of Business),
- MS STAT (joint with School of Mathematics) and
- MS SCE (joint with College of Computing, School of Mathematics).

All proposed master’s degree programs require thirty semester credit hours with the exception of MS IL and MS QCF (thirty-six credit hours) and MS HS (thirty-three credit hours). None of these MS programs contains a thesis option.

A student seeking a master’s degree must have a bachelor’s degree and typically one earned in engineering, science, mathematics, or some other field that provides an adequate background for the successful completion of one of ISyE’s programs. Students having backgrounds from unaccredited degree programs or in programs that are found lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master’s degrees includes strong performance in probability, statistics, linear algebra, and calculus.

Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)

Master of Science in International Affairs

The Master of Science in International Affairs degree program is adaptable to the interests and needs of students who seek to enter professional careers requiring advanced training in international affairs or who intend to continue study at the doctoral level. The program emphasizes both traditional theoretical knowledge of international relations and strategic planning and analysis.

For more information about the MSIA program, visit http://www.grad.gatech.edu/inta.

The program includes core courses in the following:

- International relations theory
- Comparative politics
- International political economy
- International security
- Empirical research methods

Students must also choose two of four elective tracks to in order to focus their studies. The four track options are:

- Comparative and Regional Studies
- Globalization and Development
- International Affairs and Security
- Science and Technology

Students also have the opportunity to design the program to meet their individual interests through elective offerings in the School and interdisciplinary work in the other schools in the Ivan Allen College as well as the Colleges of Sciences, Management, Architecture and Engineering. Overseas programs and internships are encouraged and facilitated by the School.

Three (3) credit hours of technology literacy is required and is satisfied by successfully completing (B or higher) at least one semester of classes with content including at least one of the following while in the Master’s program:

- programming computers;
- database design and operation;
- development and operation;
- data analysis (if part of statistics courses, at least two quarters or two semesters);
- simulation model design and use;
- development and use of geographic information or cartography systems; or
- operation of large computer systems/ computer networks.

In addition to 42 semester credit hours of coursework, students must demonstrate foreign language familiarity and economics. These abilities are essential tools for professional or scholarly work in international affairs. Students must satisfy these requirements before graduating from the program, either through previous undergraduate work or during the Master’s program.

Foreign language familiarity is defined as a minimum of two years of college-level work in a single language. This requirement can be fulfilled while in residence or can be demonstrated through an examination taken in the School of Modern Languages.

Economics literacy is satisfied by successful completion of a course or courses in microeconomic and macroeconomic principles and a course in international economics undertaken while at Georgia Tech, or by successful completion of equivalent courses at another institution, either during undergraduate work or while in the Master’s program.

The School’s master’s degree requirements supplement the Institute’s master’s degree requirements listed in the General Catalog. Students must achieve a grade-point average of at least 3.0 to graduate, and no course below grade C will count toward graduation.

Master of Science in International Logistics

The School of Industrial and Systems Engineering (ISYE) offers eight master’s degrees:
• Master of Science in Industrial Engineering (MS IE);
• Master of Science in Operations Research (MS OR);
• Master of Science in Supply Chain Engineering (MS SCE);
• Master of Science in Statistics (MS STAT);
• Master of Science in Health Systems (MS HS);
• Master of Science in Quantitative and Computational Finance (MS QCF);
• Master of Science in International Logistics (MS IL) that is part of the executive program; and
• Master of Science in Computational Science and Engineering (MS CSE).

Three of these programs are interdisciplinary:
• MS QCF (joint with School of Mathematics, College of Business),
• MS STAT (joint with School of Mathematics) and
• MS SCE (joint with College of Computing, School of Mathematics).

All proposed master's degree programs require thirty semester credit hours with the exception of MS IL and MS QCF (thirty-six credit hours) and MS HS (thirty-three credit hours). None of these MS programs contains a thesis option.

A student seeking a master's degree must have a bachelor's degree and typically one earned in engineering, science, mathematics, or some other field that provides an adequate background for the successful completion of one of ISyE's programs. Students having backgrounds from unaccredited degree programs or in programs that are found lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master's degrees includes strong performance in probability, statistics, linear algebra, and calculus.

Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)

Master of Science in Materials Science and Engineering

The School of Materials Science and Engineering provides an array of options to both the Undergraduate and Graduate students. The Graduate degrees offered include a MS in Materials Science and Engineering with three program options (thesis, non-thesis, and industrial internship).

MS MSE Information (http://www.mse.gatech.edu/graduate)

BS/MS Option

The School of Materials Science and Engineering (MSE) offers a BS/MS program for outstanding students who want to obtain a graduate degree in addition to their BS degree. The advanced degree provides the additional knowledge and specialization needed to further facilitate a technical career. As a participant in this program, students have an opportunity to work with individual faculty members on projects in one of the traditional or innovative research areas in MSE. See www.mse.gatech.edu (http://www.mse.gatech.edu) for more details.

Master of Science in Mathematics

The School of Mathematics provides opportunities for study in a wide range of mathematical disciplines. First-year graduate sequences include algebra, analysis, differential equations, geometry, numerical analysis, probability, quantitative finance, statistics, and topology in addition to courses in methods of applied mathematics.

MS Mathematics Information (https://www.math.gatech.edu/graduate/masters-programs)

A program of study leading to a master’s degree in mathematics consists of 30 credit hours and must include at least twelve credit hours at the 6000 level or above in mathematics, with courses in at least three different fields of Mathematics, as follows.

Students must maintain an overall grade-point average of at least 2.7 and receive a grade of C or better in each mathematics course in the program of study.

Non-thesis Option

All courses required by number for the Bachelor of Science in Applied Mathematics or Discrete Mathematics do not carry degree credit for graduate mathematics majors, and may not be used to fulfill these degree requirements including:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6701</td>
<td>Math Methods of Applied Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6702</td>
<td>Math Methods of Applied Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4107</td>
<td>Introduction to Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4318</td>
<td>Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4640</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

Analysis Concentration

Select at least two of the following: 1,2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6321</td>
<td>Functions of a Complex Variable I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6337</td>
<td>Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6338</td>
<td>Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6580</td>
<td>Introduction to Hilbert Spaces</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7340</td>
<td>Operator Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7337</td>
<td>Harmonic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7338</td>
<td>Functional Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Areas

Select at least one class in two areas. 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6000-level or higher</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Non-Thesis Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6000-level or higher</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
6000-level or higher Free Electives 12
Total Credit Hours 30

1 One of these two classes must be MATH 6337 or MATH 6338
2 Minimum grade of B or better required.

Thesis Option

All courses required by number for the Bachelor of Science in Applied Mathematics or Discrete Mathematics do not carry degree credit for graduate mathematics majors, and may not be used to fulfill these degree requirements including:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6701</td>
<td>Math Methods of Applied Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6702</td>
<td>Math Methods of Applied Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3012</td>
<td>Applied Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4107</td>
<td>Introduction to Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4318</td>
<td>Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320</td>
<td>Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4640</td>
<td>Numerical Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

Analysis Concentration

Select at least two of the following: 1,2 6

- MATH 6321 Functions of a Complex Variable I
- MATH 6337 Real Analysis I
- MATH 6338 Real Analysis II
- MATH 6580 Introduction to Hilbert Spaces
- MATH 7334 Operator Theory
- MATH 7337 Harmonic Analysis
- MATH 7338 Functional Analysis

Areas

Select at least one class in two areas. 2 6

- MATH 9000 Doctoral Thesis
- Additional 4000-level or higher Coursework 9

Total Credit Hours 30

1 One of these two classes must be MATH 6337 or MATH 6338
2 Minimum grade of B or better required.

Discrete Mathematics and Algebra

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6014</td>
<td>Graph Theory and Combinatorial Structures</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6121</td>
<td>Modern Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6122</td>
<td>Modern Abstract Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7016</td>
<td>Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7018</td>
<td>Probabilistic Methods in Combinatorics</td>
<td>3</td>
</tr>
</tbody>
</table>

Geometry and Topology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6441</td>
<td>Algebraic Topology I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6442</td>
<td>Algebraic Topology II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6455</td>
<td>Differential Geometry I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6456</td>
<td>Differential Geometry II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6457</td>
<td>Geometry and Topology I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6458</td>
<td>Introduction to Geometry and Topology II</td>
<td>3</td>
</tr>
</tbody>
</table>

Differential Equations

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6307</td>
<td>Ordinary Differential Equations I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6308</td>
<td>Ordinary Differential Equations II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6341</td>
<td>Partial Differential Equations I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6342</td>
<td>Partial Differential Equations II</td>
<td>3</td>
</tr>
</tbody>
</table>

Probability and Mathematical Statistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6241</td>
<td>Probability I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6242</td>
<td>Probability II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7244</td>
<td>Stochastic Processes and Stochastic Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 7245</td>
<td>Stochastic Processes and Stochastic Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6262</td>
<td>Advanced Statistical Inference I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6263</td>
<td>Advanced Statistical Inference II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6266</td>
<td>Linear Statistical Models</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6267</td>
<td>Multivariate Statistical Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Numerical Analysis

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6640</td>
<td>Applied Computational Methods for Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6643</td>
<td>Numerical Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6644</td>
<td>Iterative Methods for Systems of Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6645</td>
<td>Numerical Approximation Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6646</td>
<td>Numerical Methods for Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Master of Science in Mechanical Engineering

The Woodruff School has a challenging graduate program that encompasses advanced study and research leading to the degree of Master of Science in Mechanical Engineering for qualified graduates with backgrounds in engineering, mechanics, mathematics, physical sciences, and life sciences. Most graduate coursework is elective, but the program of study must meet the Woodruff School’s requirements of breadth, depth, and level. Graduate degrees in mechanical engineering can be completed through a combination of studies at Georgia Tech-
Lorraine, Georgia Tech Savannah, via video and online course offerings, or by attending classes at the Atlanta campus.

ME: Graduate Website (http://www.me.gatech.edu)

The BS/MS Program
The Woodruff School offers a BS/MS program for those students who demonstrate an interest in and ability for additional education beyond the BS degree. Woodruff School students with a GPA of 3.5 or higher are eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech, but before the completion of seventy-five semester credit hours, including transfer and advanced placement credits. Students who have more than 75 credit hours will be considered for the program on a case-by-case basis.

Participants in the BS/MS Program in the Woodruff School can obtain a master's degree in mechanical engineering, nuclear engineering, medical physics, or in Georgia Tech's interdisciplinary bioengineering graduate program. There are two options to consider:

Non-Thesis Option
The Non-Thesis Option is completed by taking 10 classes according to the MS degree requirements. In many cases, two courses can be counted towards both a student's BS and MS degrees, thereby streamlining the process. With proper planning, most MS non-thesis degrees could be completed in one year.

Thesis Option
The Thesis Option involves working with a faculty member on a project in a wide range of research topics being investigated by Woodruff School faculty members. This will give you hands-on experience in working with a faculty mentor; the opportunity to work in a laboratory or a research environment; and the chance to perform theoretical and experimental work. These events will foster your career interests and expand your selection of possible employers. In some cases, a student will receive a graduate research assistantship, which includes a stipend and a tuition waiver. The time to graduation depends on your thesis project, your advisor, and your work ethic.

During the first year of your graduate studies, you will be encouraged to continue for the PhD. In many cases, you might be working on an interesting topic of study as part of your master's degree research that could provide the basis for doctoral research.

BS/MS Information (https://www.me.gatech.edu/undergraduate/bsms)

Master of Science in Medical Physics

The graduate program in medical physics leads to the degree of Master of Science in Medical Physics (MS MP) and a Doctor of Philosophy as an option under the PhD program in nuclear engineering. The program focuses on the application of radiation to medicine, particularly in the diagnosis and treatment of human disease. In addition to the traditional on-campus MS program, a distance learning program leading to the MS MP degree is also offered to accommodate the needs of professionals in the field. A large number of medical physics practitioners in government and industry participate in the video-based program.

Three credit hours for graduate courses taken as an undergraduate at Georgia Tech and used for credit toward an undergraduate degree in science or engineering may also be included in the MS MP program of study if the student graduated with an undergraduate grade-point average of at least 3.5. Medical physics students must earn a graduate grade-point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree.

Master of Science in Music Technology

Technology has always driven cultural and social transformations in the manner in which we make, perform, distribute and listen to music. Recent technological developments in areas such as artificial intelligence, brain and cognitive science, robotics, education and networking have fundamentally changed musical practices and created a need in the industry and academia for well-educated music and audio technologists able to design, develop, and creatively employ the next generation of musical software and hardware for composition, performance, recording and distribution. The Georgia Tech School of Music's Master of Science in Music Technology program prepares students for careers in professional software, hardware and audio companies, the arts and entertainment industries, as well as in the education/academic markets. This interdisciplinary degree program enables students to extend their skills in areas such as music, computing, electrical engineering, mechanical engineering, and industrial design, all within in a research-focused program that emphasizes the intersections between technical innovation and creative practice.

The Master of Science in Music Technology is a four-semester program for a total of 48 credit hours. Applicants will be admitted to the program with an undergraduate degree in music, computing, engineering, or a related degree. Applicants will have to demonstrate their musical background in performance, composition and/or theory, as well as basic skills in computing and/or engineering in order to be admitted to the program. The School of Music's graduate admissions committee reviews applications and a portfolio of applicant creative and technical work to determine an applicant's qualifications. Upon acceptance, each student will be assigned a faculty advisor who will consult and approve student's course selections. After the first year of study and with the approval of their faculty advisor, students will choose between two academic tracks:

Project Track: Students will complete a set of requirements that will include at least 18 music technology course credit hours, 18 elective course credit hours, and 12 research credit hours leading to the development of a final MS project in Music Technology.

Thesis Track: Students will complete a set of requirements that will include at least 18 music technology course credit hours, 12 elective course credit hours, 12 research hours and 6 Thesis Preparation credit hours, leading to the completion and submission of an MS Thesis in Music Technology.

Curriculum Requirements (by track)

Project Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 6001</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6003</td>
<td>Music Technology History and Repertoire</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6202</td>
<td>Digital Signal Processing for Music Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Synthesis</td>
<td></td>
</tr>
</tbody>
</table>

Required Music Technology Research Courses
MUSI 7100 Music Technology Research Laboratory 12
Required Music Technology Creative Course 3
MUSI 6002 Computer Supported Interactive Music
MUSI 6004 Technology Ensemble
MUSI 6203 Project Studio in Music Technology
Additional Music Technology Electives 6
MUSI 6005 Music Ensemble for Graduate Students
MUSI 6103 Music Recording and Mixing
MUSI 6104 Integrating Music into Multimedia
MUSI 6105 Digital Media Production and Mastering
MUSI 6106 Audio Software Engineering
MUSI 6301 Music Interface Design
MUSI 6302 The Musical Mind
MUSI 6303 Network Music
MUSI 6304 Computer Music Composition
MUSI 8001 Research Methods
MUSI 8002 Apprentice Teaching
Additional Elective Courses (subject to advisor approval) 1 18
Total Credit Hours 48

1 Elective courses may include additional Music courses and/or courses in other academic units that are approved by the student's advisor.

Thesis Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Music Technology Core Courses</td>
<td></td>
</tr>
<tr>
<td>MUSI 6001</td>
<td>Music Perception and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6003</td>
<td>Music Technology History and Repertoire</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6202</td>
<td>Digital Signal Processing for Music Analysis and Synthesis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Required Music Technology Research Courses</td>
<td></td>
</tr>
<tr>
<td>MUSI 7100</td>
<td>Music Technology Research Laboratory</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Required Music Technology Creative Course</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 6002</td>
<td>Computer Supported Interactive Music</td>
<td></td>
</tr>
<tr>
<td>MUSI 6004</td>
<td>Technology Ensemble</td>
<td></td>
</tr>
<tr>
<td>MUSI 6203</td>
<td>Project Studio in Music Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Music Technology Electives</td>
<td>6</td>
</tr>
<tr>
<td>MUSI 6005</td>
<td>Music Ensemble for Graduate Students</td>
<td></td>
</tr>
<tr>
<td>MUSI 6103</td>
<td>Music Recording and Mixing</td>
<td></td>
</tr>
<tr>
<td>MUSI 6104</td>
<td>Integrating Music into Multimedia</td>
<td></td>
</tr>
<tr>
<td>MUSI 6105</td>
<td>Digital Media Production and Mastering</td>
<td></td>
</tr>
<tr>
<td>MUSI 6106</td>
<td>Audio Software Engineering</td>
<td></td>
</tr>
<tr>
<td>MUSI 6201</td>
<td>Computational Music and Audio Analysis</td>
<td></td>
</tr>
<tr>
<td>MUSI 6301</td>
<td>Music Interface Design</td>
<td></td>
</tr>
<tr>
<td>MUSI 6302</td>
<td>The Musical Mind</td>
<td></td>
</tr>
<tr>
<td>MUSI 6303</td>
<td>Network Music</td>
<td></td>
</tr>
<tr>
<td>MUSI 6304</td>
<td>Computer Music Composition</td>
<td></td>
</tr>
<tr>
<td>MUSI 8001</td>
<td>Research Methods</td>
<td></td>
</tr>
<tr>
<td>MUSI 8002</td>
<td>Apprentice Teaching</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Elective Courses (subject to advisor approval) 1</td>
<td>12</td>
</tr>
</tbody>
</table>

Thesis Credit Hours
MUSI 7000 Master's Thesis 6
Total Credit Hours 48

1 Elective courses may include additional Music courses and/or courses in other academic units that are approved by the student's advisor.

For more information see · http://gtcmt.gatech.edu/?p=2530

Master of Science in Nuclear Engineering

The graduate program in nuclear and radiological engineering/medical physics leads to the degrees of
- Master of Science in Nuclear Engineering,
- Master of Science in Medical Physics,
- Master of Science, and
- Doctor of Philosophy.

In nuclear and radiological engineering, students with a bachelor's degree in engineering pursue the Master of Science in Nuclear Engineering degree, while students with a Bachelor of Science degree in other fields enroll for the Master of Science degree. Depending on the career objectives of the student, the Woodruff School may encourage a thesis as part of the Master of Science program. Nuclear and radiological engineering students must earn a graduate grade-point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree.

Master of Science in Operations Research

The School of Industrial and Systems Engineering (ISYE) offers eight master's degrees:
- Master of Science in Industrial Engineering (MS IE);
- Master of Science in Operations Research (MS OR);
- Master of Science in Supply Chain Engineering (MS SCE);
- Master of Science in Statistics (MS STAT);
- Master of Science in Health Systems (MS HS);
- Master of Science in Quantitative and Computational Finance (MS QCF);
- Master of Science in International Logistics (MS IL) that is part of the executive program; and
- Master of Science in Computational Science and Engineering (MS CSE).

Three of these programs are interdisciplinary:
- MS QCF (joint with School of Mathematics, College of Business),
- MS STAT (joint with School of Mathematics) and
- MS SCE (joint with College of Computing, School of Mathematics).

All proposed master's degree programs require thirty semester credit hours with the exception of MS IL and MS QCF (thirty-six credit hours) and MS HS (thirty-three credit hours). None of these MS programs contains a thesis option.
A student seeking a master’s degree must have a bachelor’s degree and typically one earned in engineering, science, mathematics, or some other field that provides an adequate background for the successful completion of one of ISyE’s programs. Students having backgrounds from unaccredited degree programs or in programs that are found lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master’s degrees includes strong performance in probability, statistics, linear algebra, and calculus.

Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)

Master of Science in Paper Science and Engineering

The Institute of Paper Science and Technology supports the MS degree programs offered by the Georgia Institute of Technology. The Paper Science and Engineering (PSE) program provides students with a multidisciplinary graduate education in the science and engineering involved in the production and properties of paper, tissue, and other products from natural fiber and related industries. The processing and consolidation of natural fiber into a paper web involve complex chemical and mechanical processes. The advantages of a multidisciplinary approach in research and education supporting this field have long been recognized. The Georgia Tech PSE program integrates the former Institute of Paper Science and Technology multidisciplinary graduate program with the science and engineering programs available at Georgia Tech.

The MS degree in PSE is a unique multidisciplinary degree covering basic engineering and science disciplines involved in the production and consolidation of wood fiber products. Students are enrolled in the participating Georgia Tech school (referred to as the "home school") and, upon completion of degree requirements, the home school recommends the award of its MS degree with an emphasis in paper science and engineering. Degrees are being offered by the Schools of Chemical and Biomolecular Engineering, Chemistry and Biochemistry, Mechanical Engineering, and Materials Science and Engineering.

The paper industry continues to evolve through considerable consolidation and reorganization, and the need for innovation in the science and engineering of pulp and paper technology from plant biology to chemical treatment and processes involved in paper production is greater than ever. The PSE program provides research results and equips students with a unique set of skills to lead in this effort.

For more information, visit www.ipst.gatech.edu/degree_progs/index.html (http://www.ipst.gatech.edu/degree_progs).

Master of Science in Physics

Physics: Graduate Information (http://www.physics.gatech.edu/graduate-program)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 6101</td>
<td>Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6103</td>
<td>Electromagnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6104</td>
<td>Electromagnetism II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6105</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6106</td>
<td>Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 6107</td>
<td>Statistical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>8000- level Special Problems or Master's Practicum research</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses

Select six credit hours from either of the following:

- Physics lecture courses at the 4000-level or higher
- Graduate courses at the 6000-level or higher from a school other than Physics

Total Credit Hours 30

1. With a Physics faculty member

Master of Science in Psychology

The School of Psychology does not accept students seeking a terminal master’s degree. The master’s degree coursework prepares the student for continuation of graduate work toward a PhD. Most students require two to three calendar years to complete the master’s degree.

PSYC: Graduate Information (http://psychology.gatech.edu/graduate/graduate-programs)

Master of Science in Public Policy

The Master of Science in Public Policy is designed for students with strong analytical backgrounds, such as those received in engineering, natural science, or an analytically oriented social science or humanities curriculum. Graduate studies in public policy focus on areas in which either the consequences of scientific and technological activity have significant public policy implications, or technical and scientific information is a significant input to the policy-making process. Current areas of specialization for the School include science and technology policy, environmental and energy policy, information and telecommunication policy, and regional economic development policy.

PUBP MS Information (http://spp.gatech.edu/masters)

The MS in Public Policy requires forty-six credit hours of study, including either:

- three credit hours devoted to producing a professional policy research paper or team research project or
- nine credit hours for a thesis.

In general, it is expected that students planning to enter employment upon completing the degree will choose the paper or project option, while students planning to continue their graduate work will choose the thesis option.

The program requires a twenty-five-credit-hour core curriculum consisting of five substantive elements:
1. policy and organizational analysis;
2. ethics, philosophy, and public policy;
3. economics and public finance;
4. methods of analysis, including quantitative analysis and research design; and
5. a capstone course in public policy analysis.

In addition, there is a required one-credit hour introductory graduate seminar in public policy. Based on prior coursework or a test-out exam, students may request up to 6 credit hours of exemptions from core courses. In individual cases, students may be required to take pre-core preparatory courses to be ready for graduate studies in particular methodological or analytical areas.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6001</td>
<td>Introduction to Public Policy</td>
<td>1</td>
</tr>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6012</td>
<td>Fundamentals of Policy Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6201</td>
<td>Public Policy Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:
- PUBP 6014 Organization Theory
- PUBP 6017 Public Management
- PUBP 6018 Policy Implementation and Administration

Total Credit Hours: 25

Students must achieve a grade of B or higher in all core courses. In addition to elective courses in the School of Public Policy, students may develop their own programs of study by taking courses in other Georgia Tech schools, including those in the Ivan Allen College and the Colleges of Architecture, Management, Sciences, and Engineering. A summer internship, work experience, or co-op assignment between the first and second years offers students insight into a research or professional setting related to their career interests.

For the MSPP, students are encouraged to pursue one or more concentrations. A concentration consists of at least three 3-credit hour courses, of which at least one is the School of Public Policy. Students can pursue concentrations within groups already developed by the faculty (see above). Or, students can pursue an individualized concentration, with the written approval of the proposed concentration program of study by their advisor.

BS/MS Public Policy

The School of Public Policy offers a BS/MS program for students enrolled in the undergraduate program who demonstrate an interest in and ability for additional education beyond the BS degree.

Students in the BS/MS program will remain undergraduates until they meet requirements for the undergraduate degree, at which point they will receive their BS degree and be changed to graduate status. Students will be eligible to apply for the program after completion of 30 semester credit hours at Georgia Tech (i.e., at the end of their first year), and if they show appropriate progress in their degree program thereafter. Any student in good standing in the BS PP program is eligible to apply to the program. Admissions decisions will be based on GPA and judgments of the faculty who have served as advisors or instructors. Continuation in the program will require the student to maintain a GPA of 3.0 or higher in public policy courses. The program will not penalize students who opt out after the bachelor’s degree. Students participating in this program will be eligible for the six semester credit-hour Graduate Course Option, which allows students completing both the bachelor’s and master’s in the same discipline to use up to 6 credit hours of graduate-level coursework in the major discipline for both degrees.

The graduate-level credits required in the BS/MS Program are usually as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6001</td>
<td>Introduction to Public Policy</td>
<td>1</td>
</tr>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6201</td>
<td>Public Policy Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:
- PUBP 6014 Organization Theory
- PUBP 6017 Public Management
- PUBP 6018 Policy Implementation and Administration

Total Credit Hours: 37

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6001</td>
<td>Introduction to Public Policy</td>
<td>1</td>
</tr>
<tr>
<td>PUBP 6010</td>
<td>Ethics and the Policy Profession</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6112</td>
<td>Research Design in Policy Science</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6114</td>
<td>Applied Policy Methods and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6116</td>
<td>Microeconomic Analysis in Public Policymaking</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6118</td>
<td>Public Finance Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 6201</td>
<td>Public Policy Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:
- PUBP 6014 Organization Theory
- PUBP 6017 Public Management
- PUBP 6018 Policy Implementation and Administration

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6801</td>
<td>Research Paper</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 43

1. This course should be taken as an undergraduate instead of PUBP 3130 and will count for both programs
2. Students are required to develop, in consultation with their advisor, a six credit hour concentration in an area or specialty relevant to public policy and management (e.g. environmental policy, science and technology policy, urban policy, economic development, information and communications policy, policy evaluation, public management).

Contact the BS PP program director for further information.
BS/MS Information (http://www.spp.gatech.edu/graduate/five-year-bsms-program)

Master of Science in Quantitative and Computational Finance

The School of Industrial and Systems Engineering (ISYE) offers eight master’s degrees:

- Master of Science in Industrial Engineering (MS IE);
- Master of Science in Operations Research (MS OR);
- Master of Science in Supply Chain Engineering (MS SCE);
- Master of Science in Statistics (MS STAT);
- Master of Science in Health Systems (MS HS);
- Master of Science in Quantitative and Computational Finance (MS QCF);
- Master of Science in International Logistics (MS IL) that is part of the executive program; and
- Master of Science in Computational Science and Engineering (MS CSE).

Three of these programs are interdisciplinary:

- MS QCF (joint with School of Mathematics, College of Business),
- MS STAT (joint with School of Mathematics) and
- MS SCE (joint with College of Computing, School of Mathematics).

All proposed master’s degree programs require thirty semester credit hours with the exception of MS IL and MS QCF (thirty-six credit hours) and MS HS (thirty-three credit hours). None of these MS programs contains a thesis option.

A student seeking a master’s degree must have a bachelor’s degree and typically one earned in engineering, science, mathematics, or some other field that provides an adequate background for the successful completion of one of ISyE’s programs. Students having backgrounds from unaccredited degree programs or in programs that are found lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master’s degrees includes strong performance in probability, statistics, linear algebra, and calculus. Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 6078</td>
<td>Basic Finance and Investments</td>
<td>3</td>
</tr>
<tr>
<td>MGT 6081</td>
<td>Derivative Securities</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6635</td>
<td>Numerical Methods in Finance</td>
<td>3</td>
</tr>
<tr>
<td>ISYE/MATH</td>
<td>Stochastic Processes in Finance</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE/MATH</td>
<td>Design and Implementation of Systems to</td>
<td>3</td>
</tr>
<tr>
<td>6767</td>
<td>Support</td>
<td></td>
</tr>
<tr>
<td>ISYE/MGT</td>
<td>Fixed Income Securities</td>
<td>3</td>
</tr>
</tbody>
</table>

Foundational and Technical Electives (Select 3 courses) 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6673</td>
<td>Financial Optimization Models</td>
<td></td>
</tr>
<tr>
<td>MATH 6235</td>
<td>Stochastic Processes in Finance II</td>
<td></td>
</tr>
<tr>
<td>MGT 6090</td>
<td>Commercial Bank Management</td>
<td></td>
</tr>
<tr>
<td>ISYE/MATH</td>
<td>Statistical Techniques of Financial Data</td>
<td></td>
</tr>
<tr>
<td>6783</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE/MATH</td>
<td>The Practice of Quantitative and</td>
<td></td>
</tr>
<tr>
<td>6785</td>
<td>Computational Finance</td>
<td></td>
</tr>
<tr>
<td>MGT 7061</td>
<td>Empirical Finance</td>
<td></td>
</tr>
</tbody>
</table>

Free electives (Select 3 courses at 6000-level or higher) 9

Total Credit Hours 36

Master of Science in Statistics

The School of Mathematics offers the degree of Master of Science in Statistics (MS STAT) in cooperation with the School of Industrial and Systems Engineering. It is available for applicants having the BS in mathematics; students with engineering backgrounds should enter the same program through the School of Industrial and Systems Engineering. Prerequisites include work in probability, statistics, linear algebra, calculus, and optimization. The program requires 30 credit hours of coursework. There is no thesis option.

The School of Industrial and Systems Engineering (ISYE) offers eight master’s degrees:

- Master of Science in Industrial Engineering (MS IE);
- Master of Science in Operations Research (MS OR);
- Master of Science in Supply Chain Engineering (MS SCE);
- Master of Science in Statistics (MS STAT);
- Master of Science in Health Systems (MS HS);
- Master of Science in Quantitative and Computational Finance (MS QCF);
- Master of Science in International Logistics (MS IL) that is part of the executive program; and
- Master of Science in Computational Science and Engineering (MS CSE).

Three of these programs are interdisciplinary:

- MS QCF (joint with School of Mathematics, College of Business),
- MS STAT (joint with School of Mathematics) and
- MS SCE (joint with College of Computing, School of Mathematics).

All proposed master’s degree programs require thirty semester credit hours with the exception of MS IL and MS QCF (thirty-six credit hours) and MS HS (thirty-three credit hours). None of these MS programs contains a thesis option.

A student seeking a master’s degree must have a bachelor’s degree and typically one earned in engineering, science, mathematics, or some other field that provides an adequate background for the successful completion of one of ISyE’s programs. Students having backgrounds from unaccredited degree programs or in programs that are found lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master’s degrees includes strong performance in probability, statistics, linear algebra, and calculus. Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)
lacking in relative substance can expect to first take preliminary coursework in order to elevate their preparation to the level required. The prerequisite coursework for the various master’s degrees includes strong performance in probability, statistics, linear algebra, and calculus.

Every MS curriculum is based on core classes offered from the School of ISyE, as well as electives offered by ISyE and other Georgia Tech schools in engineering and science. The MS SCE, MS QCF, and MS IL are professional degree programs with separate curriculums from the other regular MS degrees.

MS Human-Integrated Systems (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)
MS Statistics ISYE (http://www.isye.gatech.edu/academics/graduate/masters.php#msie)
MS Statistics Math (https://www.math.gatech.edu/ms-statistics)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4261</td>
<td>Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4262</td>
<td>Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6413</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6414</td>
<td>Statistical Modeling and Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Statistics Electives (Select 5 courses)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>MATH 4317</td>
<td>Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 6262</td>
<td>Advanced Statistical Inference I</td>
<td></td>
</tr>
<tr>
<td>MATH 6263</td>
<td>Advanced Statistical Inference II</td>
<td></td>
</tr>
<tr>
<td>MATH 6266</td>
<td>Linear Statistical Models</td>
<td></td>
</tr>
<tr>
<td>MATH 6267</td>
<td>Multivariate Statistical Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE 6402</td>
<td>Time Series Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE 6404</td>
<td>Nonparametric Data Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE 6405</td>
<td>Statistical Methods for Manufacturing Design and Improvement</td>
<td></td>
</tr>
<tr>
<td>ISYE 6412</td>
<td>Theoretical Statistics</td>
<td></td>
</tr>
<tr>
<td>ISYE 6416</td>
<td>Computational Statistics</td>
<td></td>
</tr>
<tr>
<td>ISYE 6421</td>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>ISYE 6761</td>
<td>Stochastic Processes I</td>
<td></td>
</tr>
<tr>
<td>ISYE 6762</td>
<td>Stochastic Processes II</td>
<td></td>
</tr>
<tr>
<td>ISYE/ MATH 6781</td>
<td>Reliability Theory</td>
<td></td>
</tr>
<tr>
<td>ISYE/ MATH 6783</td>
<td>Statistical Techniques of Financial Data</td>
<td></td>
</tr>
<tr>
<td>ISYE 6805</td>
<td>Reliability Engineering</td>
<td></td>
</tr>
<tr>
<td>ISYE 7400</td>
<td>Advanced Design of Experiments</td>
<td></td>
</tr>
<tr>
<td>ISYE 7401</td>
<td>Advanced Statistical Modeling</td>
<td></td>
</tr>
<tr>
<td>ISYE 7405</td>
<td>Multivariate Data Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE 7406</td>
<td>Data Mining and Statistical Learning</td>
<td></td>
</tr>
<tr>
<td>ISYE 7441</td>
<td>Linear Statistical Models I</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Master of Science in Supply Chain Engineering

The Master of Science in Supply Chain Engineering is a new professional graduate degree program created to meet the growing demand for business-savvy engineers who can design and synchronize highly complex global supply chains. The program’s intensive 12-month curriculum delivers academic knowledge in analytic methods, supply chain engineering, and enterprise management while building professional practice skills and real-world industry experience.

Program applicants may come from a wide range of academic, business, and geographical backgrounds, but they will share a common motivation: to pursue a highly focused graduate education experience in supply chain engineering and to subsequently explore immediate career opportunities with global enterprises.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6333</td>
<td>Operations Research for Supply Chain Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6334</td>
<td>Operations Research for Supply Chain Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6335</td>
<td>Supply Chain Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6336</td>
<td>Supply Chain Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6337</td>
<td>Supply Chain Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6338</td>
<td>Supply Chain Strategy</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6339</td>
<td>Supply Chain Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6340</td>
<td>Supply Chain Engineering Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6341</td>
<td>Capstone Project for Supply Chain Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6342</td>
<td>Capstone Project for Supply Chain Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

BS/MS Program

A combined BS/MS program that will allow students to graduate with a Bachelor of Science in Industrial Engineering and a Master of Science in Supply Chain Engineering. Contact the School of Industrial Engineering for more information.

Master of Science in Urban Design (MSUD)

The Master of Science in Urban Design (MSUD) degree is oriented to those who wish to expand upon their previous professional education and professional experience, as architects, landscape architects, city planners, or civil engineers, and to enter urban design practices either in private firms or public agencies. The MSUD Program is housed in the School of Architecture and is run jointly by the School of Architecture and the Georgia Tech School of City and Regional Planning. It offers an intensive and richly interdisciplinary experience, with required courses in urban design, architecture and city planning, with additional opportunities in civil and environmental engineering, real estate development, heritage preservation, and other fields. Students in the MSUD Program are in daily
contact with architecture and planning students and faculty throughout the College of Design.

Qualifications Needed to Apply

Applicants to the MSUD Program are limited to those with prior accredited professional degrees in

- architecture (M.Arch or B.Arch),
- landscape architecture (BLA or MLA),
- City and Regional Planning (M.CRP or equivalent), or
- Civil Engineering (BCE or equivalent).

Professional degrees from other countries are acceptable with proper documentation with the understanding that the MSUD cannot serve, in itself, as a professional degree in the US. It is preferable that applicants have a year or more of professional experience.

Applicants must demonstrate their ability to graduate study in urban design by submitting the following in their application package:

1. A design portfolio, including academic and professional work, demonstrating experience and ability to engage professional level urban design problems. The portfolio must be submitted in digital form.

2. Graduate Record Examination (GRE) scores, taken within the past five years, and professional degree grade point records and averages to demonstrate overall ability to engage graduate studies. In general, minimums are 60th percentile or higher for the GRE sections and 3.0 GPA or higher. GRE scores are required for all international applicants, regardless of the language of their first degree.

3. Tests of English as a Foreign Language (TOEFL) scores, with a minimum scores of 600 (paper), 250 (computer) or 100 (internet) are required for students whose first language is not English.

The MSUD Program only admits students for the fall semester, unless the student plans to participate in one of the College of Design urban design-oriented international summer programs prior to the first semester in the MSUD Program.

The course of study for the Master of Science in Urban Design (MSUD) includes a set of required core courses, totaling 30 credit hours, and professional electives, totaling 9 credit hours. The total minimum credit hour requirement for the MSUD degree is thirty-nine credit hours.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 7013</td>
<td>Urban Design Studio 1</td>
<td>6</td>
</tr>
<tr>
<td>BC 6975</td>
<td>The Evolution of a Deal</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6151</td>
<td>Theories of Urban Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 7014</td>
<td>Urban Design Studio 2</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 7151</td>
<td>History of Urban Form</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 6447</td>
<td>Urban Ecological Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 7015</td>
<td>Urban Design Studio 3</td>
<td>6</td>
</tr>
<tr>
<td>ARCH Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>39</td>
</tr>
</tbody>
</table>

Students have the option of completing requirements during Year 1 Summer with Modern Architecture Modern Cities (includes 6 hours of independent study and 6 hours of electives) or Independent Study in Atlanta.

1 The 9 credit hours of elective courses are organized into six subject areas, reflecting important areas of urban design practice. Students will be advised to take these electives, either in concentrated areas or in distributed subjects, based on their prior professional degrees, professional experience and career interests.

These elective areas are as follows:

- Urban Design History, Theory and Practice electives provide depth in several aspects of urban design history, theory and practice. These are especially appropriate for students with strong technical backgrounds, who wish to engage broader aspects of urban design practice.
- Sustainable Development electives provide an introduction, as well as policy and technical depth, to issues of sustainable urbanism from a variety of perspectives, ranging from building to city to regional and scales.
- Transportation Planning electives are courses in the existing Transportation Dual Degree Program between City and Regional Planning and Civil and Environmental Engineering. Students also may enroll, with permission, in other transportation planning and design courses in the Georgia Tech School of Civil and Environmental Engineering.
- Real Estate and Economic Development electives provide additional depth in real estate development and economic development. Students may also cross enroll, with permission, in the Georgia State University Robinson College of Business. In addition, students may select to complete the Real Estate Certificate Program at Georgia State University.
- Digital Media electives respond to the rapidly growing need in urban design practice to bridge among GIS, CAD, 3-D Modeling and Animation. The strengths in the College of Design GIS Center and the Digital Buildings Laboratory provide substantial opportunities in this area, and these opportunities are expanding rapidly.
- Heritage Preservation electives address an area of urban design practice that has not had significant academic attention. These electives are based on opportunities for students to cross enroll, with permission, at GSU for courses in the Heritage Preservation Program in the College of Arts and Sciences. In addition, students may select to complete the Historic Preservation Certificate Program at Georgia State University.

For additional information and links see: www.arch.gatech.edu/urban-design/msud (http://www.arch.gatech.edu)

Master of Science with a Major in Management

The undesignated Master of Science degree program serves students whose educational and career goals may not be best served by the MBA program. Under these circumstances, the student may pursue a specially tailored master’s-level curriculum that satisfies the American Assembly of Collegiate Schools of Business (AACSB) common body of knowledge requirements and provides a coherent concentration of elective courses chosen in consultation with an academic advisor. This specialized degree program is designed primarily for students who are admitted to Georgia Tech in approved foreign education programs, but may also be completed
by students in the PhD program who are unable to complete the full doctoral degree. Admission to this program must be approved by the MBA Admissions Committee prior to enrollment.

Master of Sustainable Energy and Environmental Management

The Master of Sustainable Energy and Environmental Management (MSEEM) curriculum is a multidisciplinary program with courses taught in schools across Georgia Tech including Public Policy, Business, City and Regional Planning, Civil and Environmental Engineering, and Economics, among others. MSEEM can be completed either full time (4-4-2 courses in a single year) or part time (2-2-1 courses each year for 2 years).

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 6312</td>
<td>Economics of Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 8803</td>
<td>Special Topics (Sustainable Energy and Environmental Management Policy and Management)</td>
<td>3</td>
</tr>
<tr>
<td>Professional Paper</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

1. Hours must include two (2) quantitative courses, three (3) SEEM courses, and one (1) policy & management course.

Other program guidelines:

- A course may not be used to satisfy the requirements of more than one Master degree.
- All courses must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements must be completed with a grade of C (2.00) or better.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Aerospace Engineering

The School of Aerospace Engineering offers a minor in aerospace engineering for students majoring in all disciplines (other than AE) at Georgia Tech.

In partnership with other units on campus, the School also offers interdisciplinary minors in the areas of energy systems, and scientific and engineering computing.

The AE minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above). All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C or higher.

Minor Program of Study & Guidelines

By students in the PhD program who are unable to complete the full doctoral degree. Admission to this program must be approved by the MBA Admissions Committee prior to enrollment.

Master of Sustainable Energy and Environmental Management

The Master of Sustainable Energy and Environmental Management (MSEEM) curriculum is a multidisciplinary program with courses taught in schools across Georgia Tech including Public Policy, Business, City and Regional Planning, Civil and Environmental Engineering, and Economics, among others. MSEEM can be completed either full time (4-4-2 courses in a single year) or part time (2-2-1 courses each year for 2 years).

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 2010</td>
<td>Thermodynamics & Fluids Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>AE 3030</td>
<td>Aerodynamics</td>
<td>4</td>
</tr>
<tr>
<td>AE 3330</td>
<td>Introduction to Aerospace Vehicle Performance</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Guidelines and Exceptions

A. A maximum of 3 credit hours of AE 3355/AE 4355 may be applied to satisfy the Minor.

B. Maximum of 1 credit hour of research credit (AE 2699/AE 4699) may be used.

C. No more than 6 credit hours of Special Topics courses may be included.

D. If one credit hour research is taken, then only 5 credit hours of Special Topics is allowed.

E. No Special Problems or Internship coursework may be used.

F. Students may not use AE 3515 to satisfy their Minor requirements if they use ME 3015 or ECE 3085 to satisfy their Major requirements.

G. A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

H. It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Architectural History

The College of Design is no longer accepting students into this minor. Please contact the academic department for questions.

The College of Design offers certificate programs in Architectural and Design History, City and Regional Planning, and Music, as well as undergraduate minor programs in Architectural History, Music, and a multidisciplinary minor in Design/Arts History. Academic advisors in the relevant programs should be consulted for details.
Undergraduate Minor in Multidisciplinary Design/Arts History

The College of Design offers a minor for students in all disciplines at Georgia Tech. The program, which is separate from the minor in Architectural History offered by the School of Architecture, requires completion of one of three available core survey sequences in the history of design (ARCH 2111 and 2112 or ARCH 4105 and 4106) or COA 2241 and 2242 or ID 2202) in addition to four courses from at least three lists of courses in: history of architecture, the history of industrial design, the history of the city/landscape/garden, history of art and foreign study, and music history. Architecture and Industrial Design program students must select a core survey course outside their major, or select two additional electives from approved lists. Interested students should consult with your academic advisor for more details.

The Architectural History minor must comprise at least 18 semester hours, of which at least 12 semester hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 2111</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2112</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 4105</td>
<td>History of Arch I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4106</td>
<td>History of Arch II</td>
<td>3</td>
</tr>
<tr>
<td>Select four courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 2115</td>
<td>Modern Architecture and Art in Europe, America and Australia: Nineteenth and Twentieth Centuries</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4113</td>
<td>History of Renaissance and Mannerist Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4114</td>
<td>Medieval Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4117</td>
<td>Architecture and the Arts and Crafts Movement</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4118</td>
<td>American Academic Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4119</td>
<td>Architecture of Frank Lloyd Wright</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4120</td>
<td>Atlanta Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4123</td>
<td>European Modernism</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4124</td>
<td>History of Architecture in the United States</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4125</td>
<td>French Architecture from Ledoux to LeCorbusier</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4821</td>
<td>Special Topics in History and Theory</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4822</td>
<td>Special Topics in History and Theory</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4823</td>
<td>Special Topics in History and Theory</td>
<td>3</td>
</tr>
<tr>
<td>COA 3115</td>
<td>Art and Architecture in Italy</td>
<td>3</td>
</tr>
<tr>
<td>COA 3116</td>
<td>Art and Architecture in Italy II</td>
<td>3</td>
</tr>
</tbody>
</table>

- Cross registration course work in architectural history from other Atlanta universities may be considered on a case by case basis.
- This minor requires an overall GPA of 2.5 and all courses must be satisfied with grade of ‘C’ or higher.
- A maximum of 6 semester hours of Special Topics courses may be included in a minor program or the student may complete 3 semester hours of Special Topics and 3 semester hours of Undergraduate Research. Students may not use 6 semester hours of Undergraduate Research for a minor.

- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
- A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Architecture

The School of Architecture offers an undergraduate minor in Architecture for students in all disciplines at Georgia Tech. Students in the minor will learn to produce models for concrete solutions to "real-world sustainability problems” (social and ecological) and ones for handling complex, multidisciplinary collaboration. The minor requires completion of 15 credit hours, including ARCH 3115 and ARCH 4515.

Interested students should see the Minors Guidelines (p. 107) and consult with an academic advisor for more details.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 3115</td>
<td>Modern Arch and Art Workshop</td>
<td>3</td>
</tr>
<tr>
<td>or ARCH 2111</td>
<td>History of Architecture II</td>
<td></td>
</tr>
<tr>
<td>ARCH 2111</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 3231</td>
<td>Environmental Systems and Design Integration I</td>
<td>3</td>
</tr>
<tr>
<td>or ARCH 2211</td>
<td>Construction Technology and Design Integration I</td>
<td></td>
</tr>
<tr>
<td>ARCH 4515</td>
<td>Collaborative Design Workshop</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>Advisor-Approved Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
Minor in Biochemistry

The School of Chemistry and Biochemistry provides many courses that are of interest to students from the Schools of Biology, Chemical and Biomolecular Engineering, and Materials Science and Engineering, and Biomedical Engineering, and students pursuing pre-health tracks. These students develop greater interest in chemistry while taking these courses and the proposed minor provides a means to enhance their knowledge in a structured and documented manner. Given the multi-disciplinary nature of science and engineering today, the option to pursue more in-depth study outside of the major in a manner documented on their transcripts will benefit graduates as they enter a competitive, global, and diverse workforce. The minor is likely to be highly attractive to students who intend to apply to medical, pharmacy, dental and graduate schools.

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>CHEM 4511</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 4512</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>Select 9 credit hours of electives, at least 6 which are upper-division</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. Nine credit hours must be 3000-level or higher.
2. Nine credit hours may be of any combination (3 credit hours each): CHEM 2312 (this course is pre-requisite to CHEM 4511), CHEM 3411 (this course is a pre-requisite to CHEM 4521), CHEM 4521, CHEM 4581, CHEM 4582, CHEM 4699, CHEM 4765, CHEM 4803 (with approval of the associate chair for undergraduate programs or their designate), CHEM 6500-level courses, CHEM 8500-level courses.

• A maximum of 3 credit hours of Special Topics (biochemistry) courses may be included in the minimum 15 credit hours of a minor program and a maximum of 3 credit hours of CHEM 4699 (Independent Research) may be used toward the minor.

• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Biology

A minor in biology is available to all non-biology majors. The minor program provides a concentration in modern biological sciences and is especially valuable for students considering biomedical or environmental fields. The basic requirement is fifteen semester hours in biology, of which nine hours must be at the 3000 level or higher. Further information is available from the School’s undergraduate coordinator.

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Biology electives</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. Nine credit hours must be 3000-level or higher.

• Biology electives includes any BIOS-prefix coursework with some restrictions as noted below.

• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research or Biology TA Experience or Biology Internship. Students may not use 6 credit hours of either Special Problems or Undergraduate Research or Biology TA Experience or Biology Internship for a minor.

• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Biomedical Engineering

The goal of the minor program is to educate students in how to apply engineering fundamentals to solve problems in biology and medicine. The program should be of particular interest to those students who plan to pursue advanced degrees in biomedical engineering and/or medicine.

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Biomedical Engineering electives</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. Nine credit hours must be 3000-level or higher.

• Biomedical Engineering electives includes any BIOS-prefix coursework with some restrictions as noted below.

• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research or Engineering TA Experience or Engineering Internship. Students may not use 6 credit hours of either Special Problems or Undergraduate Research or Engineering TA Experience or Engineering Internship for a minor.

• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
Minor in Chemistry and Biochemistry

Program of Study

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 3753</td>
<td>Fundamentals of Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
</tbody>
</table>

Biosciences

Select at least one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 4100</td>
<td>Exercise Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4200</td>
<td>Kinesiological Basis of Human Movement</td>
<td></td>
</tr>
<tr>
<td>BIOS 3755</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOS 1107</td>
<td>Biological Principles</td>
<td></td>
</tr>
<tr>
<td>BIOS 2600</td>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOS 4570</td>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>CHEM 3511</td>
<td>Survey of Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

Biomedical Engineering

Select at least 9 credit hours from the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED/ME/</td>
<td>Biofluid Mechanics</td>
<td>9</td>
</tr>
<tr>
<td>4757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ME/</td>
<td>Biosolid Mechanics</td>
<td></td>
</tr>
<tr>
<td>4758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ME/</td>
<td>Neuroengineering Fundamentals</td>
<td></td>
</tr>
<tr>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ME/</td>
<td>Biological Networks and Genomics</td>
<td></td>
</tr>
<tr>
<td>4477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ME/</td>
<td>Cell and Tissue Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ME/</td>
<td>Introduction to Medical Image Processing</td>
<td></td>
</tr>
<tr>
<td>4783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ECE/</td>
<td>Drug Design, Development and Delivery</td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ECE/</td>
<td>Introduction to Medical Image Processing</td>
<td></td>
</tr>
<tr>
<td>4783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/ECE/</td>
<td>Engineering Electrophysiology</td>
<td></td>
</tr>
<tr>
<td>4784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/51</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>4751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/500</td>
<td>Diagnostic Imaging Physics</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/CHBE/</td>
<td>Biomedical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED/CHBE/</td>
<td>Biosystems Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE/ME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4782</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. The Chemistry and Biochemistry minor must comprise at least 15 semester hours, of which at least 9 semester hours are upper-division coursework (numbered 3000 or above).
2. No more than 3 semester hours of Special Topics courses may be included in the minimum 15 hours of a minor program.
3. All courses counting toward the minor must be completed with an overall average of at least 2.0. Six of these credit hours must be taken in residence at Georgia Tech.

Minor in Chemistry and Biochemistry

Program of Study

Required courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 232</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>or CHEM 233</td>
<td>Organic and Bioorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 3511</td>
<td>Survey of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 451</td>
<td>Biochemistry I</td>
<td></td>
</tr>
</tbody>
</table>

Select nine (9) credit hours: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3111</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 3411</td>
<td>Physical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 3412</td>
<td>Physical Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 3481</td>
<td>Physical Chemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td></td>
</tr>
<tr>
<td>CHEM 4113</td>
<td>Applications of Inorganic Chemistry in Current Energy Research</td>
<td></td>
</tr>
<tr>
<td>CHEM 4311</td>
<td>Advanced Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 4341</td>
<td>Applied Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>CHEM 4452</td>
<td>Chemistry of the Solid State</td>
<td></td>
</tr>
<tr>
<td>CHEM 4511</td>
<td>Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 4512</td>
<td>Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 4521</td>
<td>Biophysical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 4740</td>
<td>Atmospheric Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 4760</td>
<td>Biocatalysis and Metabolic Engineering</td>
<td></td>
</tr>
<tr>
<td>CHEM 4765</td>
<td>Drug Design, Development, and Delivery</td>
<td></td>
</tr>
<tr>
<td>CHEM 4775</td>
<td>Polymer Science and Engineering I: Formation and Properties</td>
<td></td>
</tr>
<tr>
<td>CHEM 4776</td>
<td>Polymer Science and Engineering II: Analysis, Processing, and Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 4803</td>
<td>Special Topics (with approval of the director of undergraduate studies)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

- A maximum of 6 credit hours of approved Special Topics courses may be included in a minor program.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.
4. All courses counting toward the minor must be completed with on letter-grade basis.

5. Courses required by name and number and/or used to satisfy Core Areas A through E in a student's major degree program may not be used in satisfying the course requirements for a minor. The only exception is if the major School has released specific courses for use toward the minor. Courses used in a minor also may be used to fulfill free electives or technical electives.

Minor in Chemistry

The School of Chemistry and Biochemistry provides many courses that are of interest to students from the Schools of Biology, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, and students pursuing pre-health tracks. These students develop greater interest in chemistry while taking these courses and the proposed minor provides a means to enhance their knowledge in a structured and documented manner. Given the multi-disciplinary nature of science and engineering today, the option to pursue more in-depth study outside of the major in a manner documented on their transcripts will benefit graduates as they enter a competitive, global, and diverse workforce.

The minor is likely to be highly attractive to students to apply to medical, pharmacy, dental schools, and graduate schools.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

<table>
<thead>
<tr>
<th>Program of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Required Courses</td>
</tr>
<tr>
<td>Select 15 credit hours of approved chemistry related courses, at least 9 of which are upper-division.</td>
</tr>
<tr>
<td>CHEM 2211</td>
</tr>
<tr>
<td>CHEM 2311</td>
</tr>
<tr>
<td>CHEM 2312</td>
</tr>
<tr>
<td>CHEM 2380</td>
</tr>
<tr>
<td>CHEM 3111</td>
</tr>
<tr>
<td>CHEM 3211</td>
</tr>
<tr>
<td>CHEM 3380</td>
</tr>
<tr>
<td>CHEM 3411</td>
</tr>
<tr>
<td>CHEM 3412</td>
</tr>
<tr>
<td>CHEM 3481</td>
</tr>
<tr>
<td>CHEM 3511</td>
</tr>
<tr>
<td>CHEM 3700</td>
</tr>
<tr>
<td>CHEM 4113</td>
</tr>
<tr>
<td>CHEM 4311</td>
</tr>
<tr>
<td>CHEM 4341</td>
</tr>
<tr>
<td>CHEM 4452</td>
</tr>
<tr>
<td>CHEM 4699</td>
</tr>
<tr>
<td>CHEM 4740</td>
</tr>
<tr>
<td>CHEM 4776</td>
</tr>
<tr>
<td>CHEM 4803</td>
</tr>
</tbody>
</table>

| Total Credit Hours | 15 |

1. A maximum of 3 credit hours of Special Topics (in chemistry) courses may be included in the minimum 15 credit hours of a minor program and a maximum of 3 credit hours of CHEM 4699 may be used toward the minor.

2. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

3. All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.

4. It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.

Minor in Chinese

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (http://www.catalog.gatech.edu/academics/minors)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

<table>
<thead>
<tr>
<th>Program of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Required Courses</td>
</tr>
<tr>
<td>Select 15 hours of Chinese electives</td>
</tr>
<tr>
<td>CHEM 6000</td>
</tr>
<tr>
<td>CHEM 8000</td>
</tr>
</tbody>
</table>

| Total Credit Hours | 15 |

1. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

2. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

3. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

4. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

5. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

6. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)
another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

- All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or CHIN 2699. Students may not use 6 credit hours of either Special Problems or CHIN 2699 for a minor.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Computational Data Analysis

The Computational Data Analysis minor will provide students with the necessary mathematical and statistical background to develop and apply various data analysis techniques to real world datasets. The minor has three main objectives related to knowledge, skills, and application:

1. provide students with foundational knowledge of topics such as probability and statistics, algorithms and data structures to solve data analysis problems arising in practical applications,
2. develop students’ skill in software development techniques using one or more high level programming languages relevant to data analytics,
3. enable students to effectively apply computational methods to solve exemplar data analysis problems arising in relevant applications.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Program of Study

This minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
</tbody>
</table>

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX 4240</td>
<td>Introduction to Computing for Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CX 4242</td>
<td>Data and Visual Analytics</td>
<td>3</td>
</tr>
</tbody>
</table>

Probability and Statistics

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215</td>
<td>Introduction to Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3225</td>
<td>Honors Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>ECE 3077</td>
<td>Prob/Stats for ECE</td>
<td></td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>Probability with Applications</td>
<td></td>
</tr>
</tbody>
</table>

Computational Methods

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX 4010</td>
<td>Computational Problem Solving for Scientists and Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4150</td>
<td>Genomics and Applied Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>CEE 3010</td>
<td>Geometrics</td>
<td></td>
</tr>
<tr>
<td>CS 3630</td>
<td>Introduction to Perception and Robotics</td>
<td></td>
</tr>
<tr>
<td>CS 4400</td>
<td>Introduction to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 4460</td>
<td>Introduction to Information Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 4495</td>
<td>Computer Vision</td>
<td></td>
</tr>
<tr>
<td>CX 4010</td>
<td>Computational Problem Solving for Scientists and Engineers</td>
<td></td>
</tr>
<tr>
<td>CS 4803</td>
<td>Special Topics (Computational Sustainability)</td>
<td></td>
</tr>
<tr>
<td>EAS 4430</td>
<td>Remote Sensing and Data Analysis</td>
<td></td>
</tr>
<tr>
<td>EAS 4480</td>
<td>Environmental Data Analysis</td>
<td></td>
</tr>
<tr>
<td>ECE 4270</td>
<td>Fundamentals of Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ECE 4560</td>
<td>Introduction to Automation and Robotics</td>
<td></td>
</tr>
<tr>
<td>ECE 4580</td>
<td>Computational Computer Vision</td>
<td></td>
</tr>
<tr>
<td>ECE 4823</td>
<td>Special Topics (Game Theory and Multi-agent Systems)</td>
<td></td>
</tr>
<tr>
<td>ISYE 4311</td>
<td>Capital Investment Analysis</td>
<td></td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>Probabilistic Operations Research</td>
<td></td>
</tr>
<tr>
<td>MGT 4067</td>
<td>Financial Markets: Trading and Structure</td>
<td></td>
</tr>
<tr>
<td>MGT 4068</td>
<td>Fixed Income</td>
<td></td>
</tr>
<tr>
<td>PSYC 4031</td>
<td>Applied Experimental Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

1. CS 1331 prerequisite for the minor required (this course does NOT count toward the 15 credit hours required for minor) and a grade of A or B is required

- A CS Minor application is required
- No Special Problems or Internship coursework may be used towards the CS minor.
- All minor courses must be completed with a grade of C or higher.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Computing and Business

The Computing and Business Minor is offered by the Colleges of Computing and Business. It is a course of study that enables undergraduate students in Computing and Business to learn one another’s language through innovative coursework and interdisciplinary
team projects focused on solving real-world problems presented by the Program’s Corporate Affiliates.

The curriculum of the Minor in Computing and Business requires the completion of 22 semester credit hours.

Computing students will gain an understanding of market forces and the financial implications of IT investments.

Business students will gain an understanding of the relationships among software infrastructure, business processes, organizational structure, and business strategies to effectively manage IT resources, as well as an understanding of the IT capabilities and constraints.

Both Computing and Business students will:

• learn how to identify and leverage emerging technologies to address market and societal needs.
• demonstrate their skills and ability to work in interdisciplinary teams by solving real business problems in capstone projects that involve a mix of Technology and Business issues.
• learn communication, teamwork, and leadership skills that will prepare them for successful careers in a technology-driven business world.

Minor Program of Study & Guidelines (p. 107)

GPA Requirements
The minimum, cumulative GPA required for applicants to the Denning T&M Program is 3.0 based on a minimum of 12 hours earned at Georgia Tech. In order for accepted students to maintain their eligibility to remain in the T&M Program, they must continue to maintain a minimum, cumulative GPA of 2.9 and maintain a minimum 3.0 GPA for the classes required by the Denning T&M curriculum. All courses used to satisfy the requirements of the minor must be taken for a letter grade; pass/fail credit is not allowed and must be completed with the grade of C (2.00) or better.

Program of Study - Business Administration Students Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 2316</td>
<td>Data Manipulation for Science and Industry</td>
<td>3</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>CS 4741</td>
<td>Integrative Management Development-Project Preparation</td>
<td>3</td>
</tr>
<tr>
<td>CS 4742</td>
<td>Integrated Computing and Management Capstone Project</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>22</td>
</tr>
</tbody>
</table>

Application and course descriptions are available at: http://scheller.gatech.edu/centers-initiatives/technology-management-program/index.html

Program of Study - Computer Science and Computational Media Students Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>MGT 3000</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments or MGT 306 Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4741</td>
<td>Integrative Management Development-Project Preparation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4742</td>
<td>Integrated Technology and Management Capstone Project</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>22</td>
</tr>
</tbody>
</table>

Minor in Computing and Devices

Minor in Computing
For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

• Computing & Media
• Computing & People
• Computing & Intelligence
• Computing & Devices
• Computing & Information Internetworks
• Computing & Systems and Architecture
• Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study
The Computing: Devices minor must comprise at least 17 credit hours of computer science coursework of which at least 9 credit hours must be at the 3000 level or higher.

A CS Minor application is required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Prerequisite</td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>2</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS 3251</td>
<td>Computer Networking I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following sequences:</td>
<td>6</td>
</tr>
<tr>
<td>CS 3651</td>
<td>Prototyping Intelligence Appliances (and one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS course from Devices in the Real World)</td>
<td></td>
</tr>
</tbody>
</table>

Minor Program of Study & Guidelines (p. 107)
Minor in Computing and Intelligence

Minor in Computing

For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

- Computing & Media
- Computing & People
- Computing & Intelligence
- Computing & Devices
- Computing & Information Internetworks
- Computing & Systems and Architecture
- Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study

The Computer Science – Intelligence track minor must comprise at least 16 semester hours of computer science coursework of which at least 9 hours must be at the 3000 level or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
</tbody>
</table>

Required Courses

1. No Special Problems or Internship coursework may be used towards the CS minor.
2. A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
3. Only CS courses are included in the minor.
4. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
5. It is the major advisor's responsibility to verify that students are not using any courses required by name and number for their major, that they are not using any core area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Free electives may be used towards minors.
6. A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Computing and Media

Minor in Computing

For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

- Computing & Media
- Computing & People
- Computing & Intelligence
- Computing & Devices
- Computing & Information Internetworks
- Computing & Systems and Architecture
- Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study

The Computer Science – Media track minor must comprise at least 19 credit hours of computer science coursework of which at least 9 credit hours must be at the 3000 level or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 3600</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one CS course each from the following:

- Embodied Intelligence
- Approaches to Intelligence

Total Credit Hours 16

1. Prerequisite must be taken but is not included in the required 16 hours.
2. ECE students with credit for ECE 2035 and either ECE 2020 or ECE 2030 may substitute one CS 3000/4000 level Intelligence Thread course for CS 2110 and complete the minor with 15 hours instead of 16.
3. No Special Problems or Internship coursework may be used towards the CS minor.
4. A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
5. Only CS courses are included in the minor.
6. It is the major advisor's responsibility to verify that students are not using any courses required by name and number for their major, that they are not using any core area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Free electives may be used towards minors.
Program of Study

The Computing: People minor must comprise at least 15 credit hours of computer science coursework of which at least 9 credit hours must be at the 3000 level or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming (1) 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CS 1332</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming (1) 1</td>
<td>1</td>
</tr>
<tr>
<td>CS 2340</td>
<td>Objects and Design</td>
<td>3</td>
</tr>
<tr>
<td>CS 3451</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two CS courses from Human-Centered Technology.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1. CS 1331 prerequisite for the minor required (this course does NOT count toward the 19 credit hours required for minor) and a grade of A or B is required.
2. ECE students with credit for ECE 2035 and either ECE 2020 or ECE 2030 may substitute one CS 3000/4000 level Information Internetworks Thread course for CS 2110 and complete the minor with 18 credit hours instead of 19.

- A CS Minor application is required.
- No Special Problems or Internship coursework may be used towards the CS minor.
- A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
- Only CS courses are included in the minor.
- It is the **major advisor's responsibility** to verify that students are not using any courses required by name and number for their major, that they are not using any core area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Free electives may be used towards minors.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Computing and People

Minor in Computing

For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

- Computing & Media
- Computing & People
- Computing & Intelligence
- Computing & Devices
- Computing & Information Internetworks
- Computing & Systems and Architecture
- Computing & Theory

Minor Program of Study & Guidelines (p. 107)
• Computing & Systems and Architecture
• Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study
The Computing: Systems and Architecture minor must comprise at least 17 credit hours of computer science coursework of which at least 9 hours must be at the 3000 level or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITE</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
<tr>
<td>REQUIRED COURSES</td>
<td>Computer Organization and Programming</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Computer Systems and Networks</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Design of Operating Systems</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Computer Structures: Hardware/Software Codesign of a Processor</td>
<td>2</td>
</tr>
<tr>
<td>Select one 3000-level or higher course from the following:</td>
<td>Systems Software Tools</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced Systems & Architecture</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

1 CS 1331 prerequisite for the minor required (this course does NOT count toward the 17 credit hours required for minor) and a grade of A or B is required

2 ECE students with credit for ECE 2035 and either ECE 2020 or ECE 2030 may substitute one CS 3000/4000 level Information Internetworks Thread course for CS 2110 and complete the minor with 16 credit hours instead of 17.

• A CS Minor application is required.
• No Special Problems or Internship coursework may be used towards the CS minor.
• A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
• Only CS courses are included in the minor.
• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Computing and Theory
Minor in Computing
For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

• Computing & Media
• Computing & People
• Computing & Intelligence
• Computing & Devices
• Computing & Information Internetworks
• Computing & Systems and Architecture
• Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study
The Computing: Theory minor must comprise at least 15 credit hours of computer science coursework of which at least 9 hours must be at the 3000 level or higher.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITE</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
<tr>
<td>REQUIRED COURSES</td>
<td>Data Structures and Algorithms for Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Introduction to Discrete Mathematics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Design and Analysis of Algorithms, Honors</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Automata and Complexity Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1 CS 1331 prerequisite for the minor required (this course does NOT count toward the 15 credit hours required for minor) and a grade of A or B is required

• A CS Minor application is required.
• No Special Problems or Internship coursework may be used towards the CS minor.
• A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
• Only CS courses are included in the minor.
• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy
the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Computing Information Internetworks

Minor in Computing

For those students majoring in disciplines other than computer science who wish to gain a deeper understanding of computing and its applications, the College of Computing offers the minor in computer science. Click here for additional information. (http://www.cc.gatech.edu)

- Computing & Media
- Computing & People
- Computing & Intelligence
- Computing & Devices
- Computing & Information Internetworks
- Computing & Systems and Architecture
- Computing & Theory

Minor Program of Study & Guidelines (p. 107)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td>1</td>
</tr>
<tr>
<td>CS 2110</td>
<td>Computer Organization and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2200</td>
<td>Computer Systems and Networks</td>
<td>4</td>
</tr>
<tr>
<td>CS Electives</td>
<td>Select 9 credit hours of electives, at least 6 of which are upper-division.</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours: 17

1. CS 1331 prerequisite for the minor required (this course does NOT count toward the 17 credit hours required for minor) and a grade of A or B is required
2. ECE students with credit for ECE 2035 and either ECE 2020 or ECE 2030 may substitute one CS 3000/4000 level Information Internetworks Thread course for CS 2110 and complete the minor with 16 credit hours instead of 17.
3. Numbered 3000 or above

- A CS Minor application is required.
- No Special Problems or Internship coursework may be used towards the minor.
- A grade of A or B is required for CS 1301/CS 1315/CS 1371 and CS 1331. All other minor courses must be completed with a grade of C or higher.
- Only CS courses are included in the minor.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

Minor in Earth and Atmospheric Sciences

The School of Earth and Atmospheric Sciences offers a minor with seven different tracks. These specific tracks are designed to give non-majors a background in the environmental and global change issues that face the world. This background both allows a broader exposure and gives a strategic background for many careers. The seven tracks are:

- Climate Change
- Earth System Physics
- Environmental Chemistry
- Environmental Science
- Geophysics
- Meteorology
- Ocean Sciences

Minor Program of Study & Guidelines (p. 107)

EAS Minor Information (https://www.eas.gatech.edu/undergrad/resources-current-undergraduate-students)

Program of Study - Climate Change Track

The EAS minor with a Climate Change track is for students in majors outside of EAS who have an interest in understanding Climate Change and Issues surrounding it. Prerequisites required for some of the classes listed below. This minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>EAS 2750</td>
<td>Physics of the Weather</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4410</td>
<td>Climate and Global Change</td>
<td>3</td>
</tr>
<tr>
<td>EAS Electives</td>
<td>Select three electives with a minimum of 3 credit hours from each of the following areas:</td>
<td>9</td>
</tr>
<tr>
<td>EAS Electives</td>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

EAS Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3110</td>
<td>Energy, Environment, and Society</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3620</td>
<td>Geochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EAS 4350</td>
<td>Paleoclimatology and Paleoceanography</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4655</td>
<td>Atmospheric Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4656</td>
<td>Atmospheric Dynamics Practicum</td>
<td>1</td>
</tr>
</tbody>
</table>
Minor in Earth and Atmospheric Sciences

EAS 4670 Atmospheric Dynamics II 3
EAS 4699 Undergraduate Research 1 3
EAS 4740 Atmospheric Chemistry Laboratory 3

1 A maximum of 3 credit hours of EAS 4699 may be included in the EAS minor program.

Approved Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4440</td>
<td>Economics of Natural Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3315</td>
<td>Environmental Policy and Politics</td>
<td>3</td>
</tr>
</tbody>
</table>

Program of Study - Earth System Physics

The EAS minor with an Earth System Physics track is for students in majors outside of EAS interested in applying physical and mathematical principles to environmental problems. Prerequisites required for some of the classes listed below. This minor must comprise at least 15 semester hours, of which at least 9 semester hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3610</td>
<td>Introduction to Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4655</td>
<td>Atmospheric Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select three of the following:

EAS 2750 Physics of the Weather
EAS 3603 Thermodynamics of Earth Systems
EAS 4312 Geodynamics
EAS 4331 Physical Volcanology
EAS 4360 Space Physics and Space Instrumentation
EAS 4370 Physics of Planets
EAS 4410 Climate and Global Change
EAS 4450 Synoptic Meteorology
EAS 4470 Large-scale Atmospheric Circulations
EAS 4699 Undergraduate Research 1

Total Credit Hours 15

1 A maximum of 3 credit hours of EAS 4699 may be included in the EAS minor program.

Program of Study - Environmental Chemistry

The EAS minor with an Environmental Chemistry track is for students in majors outside of EAS that seek to understand and address environmental problems within the context of chemical systems. Prerequisites required for some of the classes listed below. This minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 1600</td>
<td>Introduction to Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td>or EAS 1601</td>
<td>Habitable Planet</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select 11 credit hours from the following:

EAS 2600 Earth Processes
EAS 2750 Physics of the Weather
EAS 3110 Energy, Environment, and Society
EAS 3620 Geochemistry
EAS 4410 Climate and Global Change
EAS 4420 Environmental Field Methods
EAS 4300 Introduction to Physical and Chemical Oceanography
EAS 4350 Paleoclimatology and Paleoceanography
EAS 4699 Undergraduate Research 1

EAS 4740 Atmospheric Chemistry Laboratory

Total Credit Hours 15

1 A maximum of 3 credit hours of EAS 4699 may be included in the EAS minor program.

Program of Study - Geophysics

The EAS minor with a Geophysics track is for students in majors outside of EAS majoring in science and engineering. Prerequisites required for some of the classes listed below. This minor must comprise at least
15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 2600</td>
<td>Earth Processes</td>
<td>4</td>
</tr>
<tr>
<td>EAS 3610</td>
<td>Introduction to Geophysics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
Select 8 credit hours from the following: 8

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 4312</td>
<td>Geodynamics</td>
<td></td>
</tr>
<tr>
<td>EAS 4314</td>
<td>Seismology</td>
<td></td>
</tr>
<tr>
<td>EAS 4331</td>
<td>Physical Volcanology</td>
<td></td>
</tr>
<tr>
<td>EAS 4360</td>
<td>Space Physics and Space Instrumentation</td>
<td></td>
</tr>
<tr>
<td>EAS 4370</td>
<td>Physics of Planets</td>
<td></td>
</tr>
<tr>
<td>EAS 4699</td>
<td>Undergraduate Research 1</td>
<td></td>
</tr>
<tr>
<td>EAS 4795</td>
<td>Groundwater Hydrology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1 A maximum of 3 credit hours of EAS 4699 may be included in the EAS minor program.

Program of Study - Meteorology
The EAS minor with a Meteorology track is for students in majors outside of EAS majoring in science and engineering. Prerequisites required for some of the classes listed below. This minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 2551</td>
<td>Introduction to Meteorological Analysis</td>
<td>1</td>
</tr>
<tr>
<td>EAS 2750</td>
<td>Physics of the Weather</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4655</td>
<td>Atmospheric Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
Select 8 credit hours from the following: 8

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3603</td>
<td>Thermodynamics of Earth Systems</td>
<td></td>
</tr>
<tr>
<td>EAS 4410</td>
<td>Climate and Global Change</td>
<td></td>
</tr>
<tr>
<td>EAS 4450</td>
<td>Synoptic Meteorology</td>
<td></td>
</tr>
<tr>
<td>EAS 4460</td>
<td>Satellite and Radar Meteorology</td>
<td></td>
</tr>
<tr>
<td>EAS 4470</td>
<td>Large-scale Atmospheric Circulations</td>
<td></td>
</tr>
<tr>
<td>EAS 4480</td>
<td>Environmental Data Analysis</td>
<td></td>
</tr>
<tr>
<td>EAS 4610</td>
<td>Earth System Modeling</td>
<td></td>
</tr>
<tr>
<td>EAS 4655</td>
<td>Atmospheric Dynamics</td>
<td></td>
</tr>
<tr>
<td>EAS 4699</td>
<td>Undergraduate Research 1</td>
<td></td>
</tr>
<tr>
<td>BIOL 4221</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td>BIOL 4417</td>
<td>Marine Ecology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1 A maximum of 3 credit hours of EAS 4699 may be included in the EAS minor program.

1. All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
2. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
3. It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in East Asian Studies
The Minor in East Asian Studies is comprised of courses in history, political science, economics, languages, media, cinema, and literature. The interdisciplinary Ivan Allen College East Asian Studies minor connects study of China, Japan, and Korea and of Southeast Asia. East Asia plays a significant role in world politics and the global economy, and study of the region should be an integral part of a contemporary education. Through interdisciplinary study of history, politics, economics, literature, media, and languages in the regions of East Asia, and to a lesser extent Southeast Asia, students engage in comparative study of societies and values. This minor (jointly administered by Modern
Languages and Literature, Media, and Communication) is designed for undergraduates who will enter a wide range of careers (engineering, science, business, public service, law, teaching, research, etc.).

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 3021</td>
<td>Advanced Language, Popular Music and Culture</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4022</td>
<td>Kungfu Fiction/Pop Cul</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4031</td>
<td>Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3691</td>
<td>Technical and Scientific Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3692</td>
<td>Business Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 3693</td>
<td>Japan Today</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4113</td>
<td>Advanced reading and Listening in Japanese</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4123</td>
<td>Technical and Business Japanese Translation</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4163</td>
<td>Introduction to Japanese Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4165</td>
<td>Critical Readings in Japanese Culture and Arts</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4173</td>
<td>Japanese Culture and Society through Anime</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4183</td>
<td>Japanese Culture and Society through Songs</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4500</td>
<td>Advanced Intercultural Seminar</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4743</td>
<td>Japanese Society and Politics</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 4750</td>
<td>Japanese Discourse and Grammar</td>
<td>3</td>
</tr>
<tr>
<td>KOR 3693</td>
<td>Exploring Modern Korea</td>
<td>3</td>
</tr>
<tr>
<td>KOR 4001</td>
<td>Contemporary Korean</td>
<td>3</td>
</tr>
<tr>
<td>KOR 4002</td>
<td>Selected Readings Of Modern Korean</td>
<td>3</td>
</tr>
</tbody>
</table>

- Only Asia-focused versions of INTA 3101, INTA 3131, and INTA 4050 (i.e. sections taught in the INTA Southeast Asia Study Abroad Program) will count towards the East Asian Studies minor.
- Only these versions of LMC 3256 and LMC 3257 (East Asian Auteurs and Chinese Martial Arts Cinema) can be presented for minor credit.

- The multidisciplinary East Asian Studies minor must consist of 15 credit hours of which at least 9 credit hours are upper-division coursework (numbered 3000 or above) from the approved list on the following page.
- Courses must be taken from at least two schools in the Ivan Allen College. At least one course presented for the minor must be a Chinese, Japanese, or Korean course offered by the School of Modern Languages from the list provided below or approved by a co-coordinator. With the approval of a co-coordinator, a student may count one course taken outside Ivan Allen College of Liberal Arts toward the minor, if approved by a co-coordinator, this course may be taken at another university.
- A multidisciplinary or other minor may contain courses in a student's major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor, provided these courses are not also used to satisfy any course requirement in the student's major degree program.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Economics

The School of Economics offers a Minor in Economics for students in all disciplines at Georgia Tech. The minor program provides a general acquaintance with economic thought and is especially valuable for students considering graduate work in law or management. It should also be attractive to students who wish to broaden their education and to understand the forces that shape the modern world.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 15 credit hours of Economics courses</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1 Nine credit hours must be upper-division coursework (numbered 3000 or above).

• A maximum of 4 credit hours of Special Topics may be included in the Economics minor. Special Problems may not be included in the Economics minor.
• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
• All courses counting toward the minor must be taken on a letter-grade basis and completed with a grade of C (2.00) or better.
• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Energy Systems

The Energy Systems Minor provides students a 15-hour multidisciplinary educational opportunity to study energy systems. The minor includes courses which provide depth in an area relevant to energy that is within the scope of the student’s chosen program. Depth course options available to students may vary depending on the program. Appropriate courses are selected by program faculty to meet the needs of their students. The minor also includes requirements for courses which cut across disciplines. These courses are intended to add breadth of knowledge in areas outside the student’s major but important to energy systems. A terminal “capstone” or project course provides an opportunity for students from multiple disciplines to work together in multidisciplinary teams on a significant project in the energy area. Appropriate projects are either solicited from industry or faculty experts.

The minor is open to all Georgia Tech undergraduate students whose majors have approved the minor. The breadth courses and the capstone project course, courses taken by all students completing the minor, require one or more pre-requisites; specifically, basic economics, mathematics, and lab science courses.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

The minor includes requirements for courses which cut across disciplines. These courses are intended to add breadth of knowledge in areas outside the student’s major but important to energy systems. A terminal “capstone” or project course provides an opportunity for students from multiple disciplines to work together in multidisciplinary teams on a significant project in the energy area.

The breadth courses and the capstone project course, courses taken by all students completing the minor, require one or more prerequisites; specifically, basic economics, mathematics, and lab science courses. The minor must consist of at least 15 credit hours and all courses in the minor also must be 3000 level and above.

A multidisciplinary or other minor may contain courses in a student’s major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor; provided these courses are not also used to satisfy any course requirement in the student’s major degree program.

All courses counting toward the minor must be taken on a letter-grade basis and completed with an overall grade-point average of at least 2.00.

All courses in the minor also must be 3000 level and above.

Program of Study - Track for Aerospace Engineering Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
</tbody>
</table>
or CHEM 1211K Chemical Principles I

Economics
Select one of the following: 3-6
ECON 2100 Economic Analysis and Policy Problems
or ECON 2105 Principles of Macroeconomics & ECON 2110 Principles of Microeconomics

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 6 credit hours related to energy systems: 1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AE 4701</td>
<td>Wind Engineering</td>
<td></td>
</tr>
<tr>
<td>AE 4370</td>
<td>Life Cycle Cost Analysis</td>
<td></td>
</tr>
<tr>
<td>NRE 3208</td>
<td>Nuclear Reactor Physics</td>
<td></td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td></td>
</tr>
<tr>
<td>AE 4461</td>
<td>Introduction to Combustion</td>
<td></td>
</tr>
<tr>
<td>Breadth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following: 2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td></td>
</tr>
<tr>
<td>Capstone Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT 4813</td>
<td>Project in Energy Systems 3</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include engineering courses covering a specific energy technology like solar or relevant engineering science.
3. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Chemical and Biomolecular Engineering Students

Prerequisite Courses
Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

- MATH 1551 Differential Calculus
- MATH 1553 Introduction to Linear Algebra or MATH 1554 Linear Algebra
- MATH 1552 Integral Calculus
- MATH 2551 Multivariable Calculus
- PHYS 2211 Introductory Physics I
- PHYS 2212 Introductory Physics II
- CHEM 1310 General Chemistry or CHEM 1211K Chemical Principles I
- ECON 2100 Economic Analysis and Policy Problems or ECON 2105 Principles of Macroeconomics & ECON 2110 Principles of Microeconomics

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 6 credit hours related to energy systems: 1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CHBE 4020</td>
<td>Chemical Engineering in Nanoscale Systems</td>
<td></td>
</tr>
<tr>
<td>CHBE 4310</td>
<td>Bioprocess Engineering</td>
<td></td>
</tr>
<tr>
<td>CHBE 4760</td>
<td>Biocatalysis and Metabolic Engineering</td>
<td></td>
</tr>
<tr>
<td>CHBE 4803</td>
<td>Special Topics (Electrochemical Energy Storage & Conversion)</td>
<td></td>
</tr>
<tr>
<td>CHBE 6130</td>
<td>Electrochemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Breadth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following: 2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td></td>
</tr>
<tr>
<td>Capstone Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT 4813</td>
<td>Project in Energy Systems 3</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include engineering courses covering a specific energy technology like solar or relevant engineering science.
3. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.
Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Civil and Environmental Engineering Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 1211K Chemical Principles I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>or ECON 2101 The Global Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>& ECON 211 And Principles of Microeconomics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 6 credit hours related to energy systems:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AE 4370</td>
<td>Life Cycle Cost Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4330</td>
<td>Air Pollution Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4450</td>
<td>Introduction to Petroleum Geomechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4803</td>
<td>Marine and Hydrokinetic Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3110</td>
<td>Energy, Environment, and Society</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4410</td>
<td>Climate and Global Change</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 4813</td>
<td>Project in Energy Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student's major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include engineering courses covering a specific energy technology like solar or relevant engineering science.
3. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Electrical and Computer Engineering Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 1211 Chemical Principles I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>or ECON 2101 The Global Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>& ECON 211 And Principles of Microeconomics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth Courses</td>
<td></td>
</tr>
<tr>
<td>ECE 3070</td>
<td>Electromechanical and Electromagnetic Energy Conversion</td>
<td>2</td>
</tr>
<tr>
<td>ECE 3071</td>
<td>Modern Electric Energy Systems</td>
<td>2</td>
</tr>
<tr>
<td>ECE 4320</td>
<td>Power System Analysis and Control</td>
<td>2</td>
</tr>
<tr>
<td>ECE 4321</td>
<td>Power System Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ECE 4325</td>
<td>Electric Power Quality</td>
<td>2</td>
</tr>
<tr>
<td>ECE 4330</td>
<td>Power Electronics</td>
<td>2</td>
</tr>
<tr>
<td>ECE 4335</td>
<td>Electric Machinery Analysis</td>
<td>2</td>
</tr>
<tr>
<td>NRE 3208</td>
<td>Nuclear Reactor Phys I</td>
<td>2</td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Breadth Courses</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td>2</td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Capstone Course</td>
<td></td>
</tr>
<tr>
<td>GT 4813</td>
<td>Project in Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include engineering courses covering a specific energy technology like solar or relevant engineering science.
3. Any course on this list that is taken for ECE elective, engineering elective, or approved elective credit can count for this minor.
4. If used for EE Breadth credit, ECE 3070 and ECE 3071 cannot be used for this minor.

Program of Study - Track for Industrial and Systems Engineering Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 15 Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or CHEM 12 Chemical Principles I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3-6</td>
</tr>
<tr>
<td>or ECON 21 Global Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3-6</td>
</tr>
<tr>
<td>& ECON 21 Principles of Microeconomics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth Courses</td>
<td></td>
</tr>
<tr>
<td>AE/ME 4701</td>
<td>Wind Engineering</td>
<td>6</td>
</tr>
<tr>
<td>ECE 3072</td>
<td>Electrical Energy Systems</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 4803</td>
<td>Special Topics (Energy and Environment)</td>
<td>2</td>
</tr>
<tr>
<td>ME 4011</td>
<td>Internal Combustion Engines</td>
<td>2</td>
</tr>
<tr>
<td>ME 4325</td>
<td>Introduction to Fuel Cell Systems</td>
<td>2</td>
</tr>
<tr>
<td>ME 4823</td>
<td>Special Topics (Mechatronic sys in Hybrid-electric power trains)</td>
<td>2</td>
</tr>
<tr>
<td>ME 4171</td>
<td>Environmentally Conscious Design and Manufacturing</td>
<td>2</td>
</tr>
<tr>
<td>ME 4172</td>
<td>Designing Sustainable Engineering Systems</td>
<td>2</td>
</tr>
<tr>
<td>ME 4803</td>
<td>Special Topics in Mechanical Engineering (Thermal Systems Engineering)</td>
<td>2</td>
</tr>
<tr>
<td>NRE 4610</td>
<td>Introduction to Plasma Physics and Fusion Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Breadth Courses</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td>2</td>
</tr>
<tr>
<td>PUBP 3315</td>
<td>Environmental Policy and Politics</td>
<td>2</td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td>2</td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>Sustainability, Technology, and Policy</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.
Program of Study - Track for Mechanical Engineering Students

Prerequisite Courses
Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 12</td>
<td>Chemical Principles I</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-6</td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td></td>
</tr>
<tr>
<td>or ECON 2101</td>
<td>Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>& ECON 2106</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 6 credit hours related to energy systems:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ME 4011</td>
<td>Internal Combustion Engines</td>
<td></td>
</tr>
<tr>
<td>ME 4315</td>
<td>Energy Systems Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>ME 4325</td>
<td>Introduction to Fuel Cell Systems</td>
<td></td>
</tr>
<tr>
<td>ME 4321</td>
<td>Principles of Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>ME 4823</td>
<td>Special Topics (Mechatronic Systems in Hybrid-Electric Powertrains)</td>
<td></td>
</tr>
<tr>
<td>ME 4823</td>
<td>Special Topics (Renewable Energy Systems)</td>
<td></td>
</tr>
<tr>
<td>ME 4171</td>
<td>Environmentally Conscious Design and Manufacturing</td>
<td></td>
</tr>
<tr>
<td>ME 4172</td>
<td>Designing Sustainable Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>ME 4701</td>
<td>Wind Engineering</td>
<td></td>
</tr>
<tr>
<td>ECE 3071</td>
<td>Modern Electric Energy Systems</td>
<td></td>
</tr>
<tr>
<td>NRE 3208</td>
<td>Nuclear Reactor Phys I</td>
<td></td>
</tr>
<tr>
<td>NRE 4214</td>
<td>Reactor Engineering</td>
<td></td>
</tr>
<tr>
<td>NRE 4610</td>
<td>Introduction to Plasma Physics and Fusion Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Breadth Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy</td>
<td>6</td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 4813</td>
<td>Project in Energy Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours

1 The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).

1. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include engineering courses covering a specific energy technology like solar or relevant engineering science.

2 Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.

3 Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Economics (including EIA, and GEML) Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.
The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1554</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Physics

- PHYS 2211 Introductory Physics I
- PHYS 2212 Introductory Physics II

Chemistry

- CHEM 1310 General Chemistry
- or CHEM 1211K Chemical Principles I

Economics

Select one of the following:
- ECON 2100 Economic Analysis and Policy Problems
- or ECON 2101 The Global Economy
- ECON 2105 Principles of Macroeconomics & ECON 211 and Principles of Microeconomics

Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 4440</td>
<td>Economics of Natural Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4340</td>
<td>Economics of Industrial Competition</td>
<td>3</td>
</tr>
</tbody>
</table>

Breadth Courses

Select 6 credit hours from the following:
- ME 3700 Introduction to Energy Systems Engineering
- PUBP 3350 Energy Policy
- CHEM 3700 The Science of Alternative Energy

Capstone Course

- GT 4813 Project in Energy Systems

Total Credit Hours: 15

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student's major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include economics courses covering economic analysis of complex systems.
3. Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.

Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.
1 The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
 • A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include economics courses covering economic analysis of complex systems.

2 Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.
 • Breadth courses may ordinarily serve as technical or free electives in the student’s program of study. However, courses required by name and number and/or used to satisfy Core Areas A through E cannot be used to satisfy the requirements of a minor.

3 Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Biology Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 12 Chemical Principles I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3-6</td>
</tr>
<tr>
<td>or ECON 21 Economic Global Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 2105 Principles of Macroeconomics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECON 21 Cand Principles of Microeconomics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements

Depth Courses

Select 6 credit hours of depth courses related to energy systems:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4221</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td>BIOL 4410</td>
<td>Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4418</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 4440</td>
<td>Plant Physiology</td>
<td></td>
</tr>
<tr>
<td>CHEM 3511 Survey of Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 4511 Biochemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 4512 Biochemistry II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAS 4410</td>
<td>Climate and Global Change</td>
<td></td>
</tr>
<tr>
<td>EAS 3110</td>
<td>Energy, Environment, and Society</td>
<td></td>
</tr>
</tbody>
</table>

Breadth Courses

Select 6 credit hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3700</td>
<td>Introduction to Energy Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>ECON 3300 Economics of International Energy Markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBP 3350 Energy Policy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capstone Course

GT 4813 Project in Energy Systems

Total Credit Hours 15

1 The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).

2 Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.

3 Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Chemistry and Biochemistry Students

1. Courses at the 1000 level may NOT be used toward the minor.
2. A maximum of 3 credit hours of Special Topics (in biochemistry) courses may be included in the minimum 15 credit hours of a minor program.
3. A maximum of 3 credit hours of CHEM 4699 may be used toward the minor.
4. All courses counting toward the minor must be completed with an overall average GPA of at least 2.0.
5. All courses counting toward the minor must be completed with on a letter grade basis.
6. A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
7. It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy
the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Prerequisite Courses
Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

depth Courses
Select 6 credit hours of depth courses related to energy systems: ¹

- CHEM 3511 Survey of Biochemistry
- CHEM 4113 Applications of Inorganic Chemistry in Current Energy Research
- CHEM 4XX Chemistry Elective
- CHEM E6XX Environmetal Analytical Chemistry

Breadth Courses
Select 6 credit hours from the following: ²

- ME 3700 Introduction to Energy Systems Engineering
- ECON 3300 Economics of International Energy Markets
- PUBP 3350 Energy Policy

Capstone Course
GT 4813 Project in Energy Systems ³

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

Program of Study - Track for Earth and Atmospheric Sciences Students

Prerequisite Courses
Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
- A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to pursue a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include science courses which cover energy science like biomass or other relevant basic science.

- Students should strive to complete the necessary prerequisites and the depth courses prior to enrolling in the breadth courses. However, depth courses may be taken concurrently with the courses taken to meet the breadth requirement.

- Breadth courses may ordinarily serve as technical or free electives in the student’s program of study. However, courses required by name and number and/or used to satisfy Core Areas A through E cannot be used to satisfy the requirements of a minor.

Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Requirements

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 12 Chemical Principles I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>Select one of the following:</td>
<td>3-6</td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to peruse a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include science courses which cover energy science like biomass or other relevant basic science.
3. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Program of Study - Track for Physics and Applied Physics Students

Prerequisite Courses

Students ordinarily pursue the minor upon completion of the needed prerequisites. However, the depth course requirements may be taken as soon as students have met the relevant prerequisites.

The prerequisites needed for one or more of the courses required for the minor (breadth courses and the capstone project course) are (all existing courses):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1551</td>
<td>Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1553</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>or MATH 1555 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1552</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2551</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 12 Chemical Principles I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>Select one of the following:</td>
<td>3-6</td>
</tr>
</tbody>
</table>

1. The Depth Courses may have additional prerequisites; please check the current prerequisites (p. 73).
2. A list of acceptable courses which meet the depth requirement is provided by each major approving the minor. Depth courses may be taken in the student’s major to ensure the depth in that major needed to peruse a multidisciplinary minor. All acceptable depth courses must be consistent with the goals of the minor. Examples of acceptable courses include science courses which cover energy science like biomass or other relevant basic science.
3. Ordinarily, students must complete all minor requirements before they can register for the Project in Energy Systems course.

Additional Guidelines

- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more
than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Engineering and Business

The Engineering and Business Minor is offered by the Colleges of Engineering and Business. It is a course of study that enables undergraduate students in Engineering and Business to learn one another’s language through innovative coursework and interdisciplinary team projects focused on solving real-world problems presented by the Program’s Corporate Affiliates.

The curriculum of the Minor in Engineering and Business requires the completion of 22 semester credit hours.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Program of Study - Track for Business Administration Students

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 3002</td>
<td>Intro to Microelectronics and Nanotechnology Revolution</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110</td>
<td>Creative Decisions and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 3141</td>
<td>Cutting-Edge Eng Seminar</td>
<td>3</td>
</tr>
<tr>
<td>ME 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ME 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>ME 4741</td>
<td>Integrative Management Development - Project Preparation</td>
<td>3</td>
</tr>
<tr>
<td>ME 4742</td>
<td>Integrated Technology and Management Capstone Project</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credit Hours: 22

- Students who are admitted to the T&M Program must satisfy the requirements for a bachelor’s degree in their major.
- The minimum, cumulative GPA required for applicants to the Denning T&M Program is 3.0 based on a minimum of 12 hours earned at Georgia Tech. In order for accepted students to maintain their eligibility to remain in the T&M Program, they must maintain a minimum 3.0 GPA for the classes required by the Denning T&M curriculum. All courses used to satisfy the requirements of the minor must be taken for a letter grade and must be completed with the grade of C (2.00) or better.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Program of Study - Track for College of Engineering Students

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3000</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
<tr>
<td>or MGT 306 Financial Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4741</td>
<td>Integrative Management Development-Project Preparation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4742</td>
<td>Integrated Technology and Management Capstone Project</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credit Hours: 22

- Students who are admitted to the T&M Program must satisfy the requirements for a bachelor’s degree in their major.
- The minimum, cumulative GPA required for applicants to the Denning T&M Program is 3.0 based on a minimum of 12 hours earned at Georgia Tech. In order for accepted students to maintain their eligibility to remain in the T&M Program, they must maintain a minimum 3.0 GPA for the classes required by the Denning T&M curriculum. All courses used to satisfy the requirements of the minor must be taken for a letter grade and must be completed with the grade of C (2.00) or better.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in European Studies

Comprised of courses in history, political science, languages, media, and sociology, the interdisciplinary Ivan Allen College European Studies minor connects study of ancient, medieval and modern Europe, including France, Germany, Russia, Spain, the United Kingdom, and the European Union. The countries of Europe individually and collectively a pivotal role in world politics and the global economy. Europe is also key region for U.S. geostrategic and economic interests. Moreover, Europe reflects different ways to structure state-society relations and has contributed greatly to western culture. In addition, the European Union is the world’s most advanced form of international cooperation. As a consequence, the study of Europe should be an integral part of a contemporary education. Through interdisciplinary study of culture, history, politics, sociology, and languages in Europe, students engage in comparative study of societies and values. This minor is designed for undergraduates who will enter a
A wide range of careers (engineering, science, business, public service, law, teaching, research, etc.).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2220</td>
<td>Government and Politics of Western Europe</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2221</td>
<td>Politics of the European Union</td>
<td></td>
</tr>
<tr>
<td>INTA 4230</td>
<td>Seminar in Europe: European Union</td>
<td></td>
</tr>
</tbody>
</table>

Required course:
- INTA 2220 Government and Politics of Western Europe
- INTA 2221 Politics of the European Union
- INTA 4230 Seminar in Europe: European Union

Elective courses
- HTS 3048 Modern Russian History 3
- HTS 3063 Outposts of Empire: Comparative History of British 3
- HTS 3803 Special Topics 3
- HTS 3813 Special Topics 3
- HTS 3823 Special Topics 3
- HTS 4031 Seminar in European History 4
- HTS 4699 Undergraduate Research 1-12
- HTS 4813 Special Topics 3
- HTS 4823 Special Topics 3
- HTS 4833 Special Topics 3
- HTS 4925 Special Problems in History, Technology, and Society 1-21
- HTS 4926 Special Problems in History, Technology, and Society 1-21
- HTS 4927 Special Problems in History, Technology, and Society 1-21
- HTS 4928 Special Problems in History, Technology, and Society 1-21
- HTS 4929 Special Problems in History, Technology, and Society 1-21

International Affairs (INTA) courses
- INTA 3044 Global Politics of Technology 3
- INTA 3101 International Institutions 3
- INTA 3120 European Security Issues 3
- INTA 3121 Foreign Policies of Russia and Eurasia 3
- INTA 3223 Transatlantic Relations 3
- INTA 3321 Political Economy of European Integration 3
- INTA 4121 Seminar in Europe: European Security 3
- INTA 4803 Special Topics 3

Language courses (must select at least one)
- FREN 3000 Survey of French Literature 3
- FREN 3001 French Literature from 1800 to 1850 3
- FREN 3002 French Literature from 1850 to 1900 3
- FREN 3004 Drama Workshop 3
- FREN 3011 France Today I 3
- FREN 3012 France Today II 3
- FREN 3014 Introduction to Contemporary France 3

Minor guidelines:
- All courses must be taken on a letter-grade basis
- All courses must be completed with a grade of ‘C’ or higher.
- Nine of the fifteen hours must be at the 3000-level or higher.
- Courses must be taken from at least three schools (at least one option must be taken in History & Sociology (HSOC) or Literature, Media, and Communication (LMC)
- At least one course presented for the minor must be a French, German, Spanish, or Russian course offered by the School of Modern Languages from the list provided or approved by the coordinator.
- Contingent upon approval of a co-coordinator, a student may count one course taken outside of the Ivan Allen college of Liberal Arts toward the minor. And, if approved by the coordinator, this course may be taken at another university.
- All Special Topics, Special Problems, and Undergraduate Research classes must be approved by the coordinator.
- A maximum of 6 semester hours of Special Topics courses may be included in the minor or the student may complete 3 semester hours of Special Topics and 3 semester hours of either Special Problems or Undergraduate Research. Student may not use 6 semester hours of either Special Problems or Undergraduate Research for a minor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 3038</td>
<td>The French Revolution</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3039</td>
<td>Modern France</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3041</td>
<td>Modern Spain</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3043</td>
<td>Modern Germany</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3045</td>
<td>Nazi Germany and the Holocaust</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3046</td>
<td>Science, Politics, and Culture in Nazi Germany</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>FREN 3015</td>
<td>Social Identities in Contemporary French Culture</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3017</td>
<td>Paris: Modernity Today</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3030</td>
<td>French Phonetics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3040</td>
<td>Reading and Translation</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3061</td>
<td>France: Culture, Economy, Commerce I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3062</td>
<td>France: Culture, Economy and Commerce II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3110</td>
<td>Comics & Graphic Arts</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3121</td>
<td>Advanced Composition</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3551</td>
<td>French for the Professions I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3691</td>
<td>Business Communication and Correspondence in France</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3692</td>
<td>French Business and Technology</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3693</td>
<td>French Business and Technology II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3694</td>
<td>French Business and Technology Abroad</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3697</td>
<td>Paris in Cinema/Cinema in Paris</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3821</td>
<td>Special Topics</td>
<td>1</td>
</tr>
<tr>
<td>FREN 3833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4001</td>
<td>French Stylistics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4011</td>
<td>French Art</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4013</td>
<td>French Literature and the Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4061</td>
<td>French Science and Technology I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4101</td>
<td>Literature of the Francophone World I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4102</td>
<td>Literature of the Francophone World II</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4200</td>
<td>Introduction to French Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4241</td>
<td>French Cinema I: Cinematic Experiences</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4242</td>
<td>French Cinema II: The French New Wave</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4250</td>
<td>Reading Les Miserables</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4300</td>
<td>France and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4813</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4823</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4900</td>
<td>Special Problems in French</td>
<td>1-21</td>
</tr>
<tr>
<td>GRMN 3010</td>
<td>Introduction to German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3024</td>
<td>Conversation and Composition</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3026</td>
<td>German Stylistics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3030</td>
<td>Crossing Borders in Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3055</td>
<td>German Fairy Tales: From the Grimm Brothers to Disney</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3071</td>
<td>Introductory Business German I</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3110</td>
<td>Television & Electronic Culture</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3695</td>
<td>German Business and Technology: Structure, Communication and Correspondence</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3696</td>
<td>German Business and Technology: Current Issues</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3697</td>
<td>German Business and Technology: Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3813</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3823</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 3901</td>
<td>Special Problems</td>
<td>1-21</td>
</tr>
<tr>
<td>GRMN 4010</td>
<td>Perspectives of German Media</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4012</td>
<td>Typical German Towards a German Identity</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4023</td>
<td>Selected Readings in German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4024</td>
<td>German Film and Literature</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4025</td>
<td>German Culture & Film</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4026</td>
<td>German Post-Wall Cinema</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4027</td>
<td>Political Songwriting in Germany, 1945 to Present</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4061</td>
<td>Advanced Business German I</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4065</td>
<td>The European Union: History, Institutions and Current Issues and Challenges</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4120</td>
<td>Literary Representations of German History</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4126</td>
<td>Advanced Stylistics: Grammar and Discourse</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4691</td>
<td>Berlin: The Capital in the 20th Century</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4693</td>
<td>Industrial Transformation and German Society/ Economy</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4813</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4823</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>GRMN 4900</td>
<td>Special Problems in German</td>
<td>1-21</td>
</tr>
<tr>
<td>RUSS 3001</td>
<td>Advanced Russian I</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3002</td>
<td>Advanced Russian II</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3005</td>
<td>Russian for Heritage Speakers</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3222</td>
<td>The Russian Twentieth Century in Literature and Film</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3242</td>
<td>Urban Mythologies in Russian Literature</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3350</td>
<td>Russian and American Mass Cultures</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3691</td>
<td>Intensive Advanced Russian</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3692</td>
<td>Advanced Reading and Composition for Business, Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3695</td>
<td>Contemporary Russia</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3698</td>
<td>Russia Yesterday and Today</td>
<td>1</td>
</tr>
<tr>
<td>RUSS 3803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3811</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3812</td>
<td>Special Topics</td>
<td>2</td>
</tr>
<tr>
<td>RUSS 3813</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3823</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 3833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4320</td>
<td>Nineteenth-Century Russian Writers</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4335</td>
<td>Technology, Society, and Culture in the Soviet Union and Russia</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4340</td>
<td>Invention of Business Discourse in Russia (1990-)</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4360</td>
<td>Russian Culture through the Prism of Song</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4692</td>
<td>Intensive Advanced Russian II</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4693</td>
<td>Intensive Advanced Russian III</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4813</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4823</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4833</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 4901</td>
<td>Special Problems in Russian</td>
<td>1-21</td>
</tr>
<tr>
<td>RUSS 4902</td>
<td>Special Problems in Russian</td>
<td>1-21</td>
</tr>
</tbody>
</table>
Film and Media Studies Minor

The School of Literature, Media, and Communication (LMC) sponsors the Film and Media Studies minor, which offers students in any major the opportunity to gain an in-depth knowledge of film and media through concentrated study in courses offered by LMC and the Schools of History and Sociology (HSOC) and Modern Languages (ML). The Film and Media Minor is largely concentrated on the rhetoric, history, theory, and broad cultural context of its subject. While is not aimed at developing skills in film or media production, those interested in gaining background in this area may take a course in video production as part of the minor.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Program of Study

The Film and Media Studies minor is comprised of 18 credit hours, of which at least 12 credit hours must be upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2500</td>
<td>Introduction to Film & LMC 3254 and Film History</td>
<td>6</td>
</tr>
<tr>
<td>LMC 2400</td>
<td>Introduction to Media Studies & LMC 3254 and Film History</td>
<td>6</td>
</tr>
<tr>
<td>LMC 3206</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3236</td>
<td>Writing for the Stage and Screen</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3252</td>
<td>Studies in Film and Television</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3255</td>
<td>Cinema and Digital Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3256</td>
<td>Major Filmmakers</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3257</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3258</td>
<td>Documentary Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3259</td>
<td>Experimental Film</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3263</td>
<td>Music, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3404</td>
<td>Social Media</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3405</td>
<td>Media, Culture, and Society</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3406</td>
<td>Video Production</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3407</td>
<td>Advanced Video Production</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3411</td>
<td>The Rhetoric of Visual Communication</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2085</td>
<td>Modern Language Course on Film/ Media (e.g. GRMN 4024)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 18
Minor in French

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages.

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select 15 hours of French electives</td>
<td>15</td>
</tr>
</tbody>
</table>

1. Must be beyond 2002 courses in French.
2. At least nine credit hours must be 3000-level or higher.
3. Three hours of FREN 34XX may be counted among the total hours for the minor.

Minor in German

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages.

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select 15 hours of German electives</td>
<td>15</td>
</tr>
</tbody>
</table>

1. Must be beyond 2002 courses in German.
2. At least nine credit hours must be 3000-level or higher.
3. Three hours of GRMN 34XX may be counted among the total hours for the minor.

• A maximum of 9 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.

• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or FREN 2699 FREN 2699 FREN 2699. Students may not use 6 credit hours of either Special Problems or FREN 2699 for a minor.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
Minor in Global Development

The minor covers topics and fosters skills that are essential for all scientists, engineers, businesspeople, and policymakers who are involved with and need to understand how politics, economics, culture, and engineering interact to affect the outcome of different types of science and technology projects in the developing world. The Global Development minor teaches the concepts, theories, applications, and tools necessary for graduates to enter into such projects and work constructively with others in the Global Development community. The Global Development minor requires 15 credit hours.

Minor Program of Study & Guidelines (p. 107)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2050</td>
<td>Intro to Global Development</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>Select three of the following:</td>
<td>9</td>
</tr>
<tr>
<td>CEE 4803</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>CP 4020</td>
<td>Introduction to Urban and Regional Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4190</td>
<td>Introduction to Climate Change Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4210</td>
<td>Environmental Planning and Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>CP 4310</td>
<td>Urban Transportation and Planning</td>
<td></td>
</tr>
<tr>
<td>CS 4911</td>
<td>Design Capstone Project</td>
<td></td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td></td>
</tr>
<tr>
<td>ECON 3300</td>
<td>Economics of International Energy Markets</td>
<td></td>
</tr>
<tr>
<td>ECON 4311</td>
<td>Strategic Economics for Global Enterprise</td>
<td></td>
</tr>
<tr>
<td>ECON 4350</td>
<td>International Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 4351</td>
<td>International Financial Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 4355</td>
<td>Global Financial Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 4411</td>
<td>Economic Development</td>
<td></td>
</tr>
<tr>
<td>ECON 4415</td>
<td>Conflict and Security in Developing Countries</td>
<td></td>
</tr>
<tr>
<td>HTS 3055</td>
<td>Globalization in the Modern Era</td>
<td></td>
</tr>
<tr>
<td>HTS 3064</td>
<td>Sociology of Development</td>
<td></td>
</tr>
<tr>
<td>INTA 3773</td>
<td>Global Issues and Leadership</td>
<td></td>
</tr>
<tr>
<td>INTA 3031</td>
<td>Human Rights in a Technological World</td>
<td></td>
</tr>
<tr>
<td>INTA 3240</td>
<td>Government and Politics of Africa</td>
<td></td>
</tr>
<tr>
<td>INTA 3241</td>
<td>Latin American Politics</td>
<td></td>
</tr>
<tr>
<td>INTA 3301</td>
<td>International Political Economy</td>
<td></td>
</tr>
<tr>
<td>INTA 3303</td>
<td>Political Economy of Development</td>
<td></td>
</tr>
<tr>
<td>INTA 4803</td>
<td>Special Topics (Computers, Communication and International Development)</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA/ME</td>
<td>Global Development Capstone</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

- All courses must be completed with grade of 'C' or higher
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.

Minor in Health and Medical Sciences

The Health & Medical Sciences Minor is primarily geared towards students interested in pre-professional health programs or careers in medical research. The purpose of the Health & Medical Sciences Minor is to allow students with interests in a variety of fields, including medicine, exercise science, dentistry, optometry, health-related research, veterinary medicine, health informatics, pharmacy, nursing, and other allied health sciences to gain basic knowledge of the science surrounding health that will prepare them for future careers.

The Health & Medical Sciences Minor is designed to provide students with flexibility to pursue their interests while ensuring that students are exposed to a diversity of subject areas. Therefore, to complete the 15 credit Health & Medical Sciences Minor, students will be required to take a minimum of 9 credits of classes from at least two schools other than their home school (i.e., classes with School designators--APPH, BIOL, CHEM, PHYS, PSYC--other than their major School designator) and a maximum of 6 credits from their home unit. All classes used to fulfill the Health & Medical Sciences Minor must be chosen from the approved list of health-related courses.

In addition, as is the case for all GT minors, the Health & Medical Sciences Minor must include at least 9 semester hours of courses numbered 3000 or above, courses used to satisfy Core Areas A through E in a student's major degree program cannot also be used to satisfy the course requirements for the minor, a maximum of 6 semester hours of approved Special Topics courses may be included in the Health &
Minor in Health, Medicine, and Society

The Health, Medicine, and Society minor is a program of study for undergraduate students who are interested in the health and medical professions. Humanities and social science perspectives on health and medicine equip students to address important topics, such as the ethics of biomedical research, the nature of medical discovery, the relationships among race, health, and gender, the global impact of public health, and the cost of health care delivery. Understanding these and related issues is essential to developing informed, thoughtful, and ethically enlightened leaders in the fields of health and medicine.

Program of Study

The multi-disciplinary Health, Medicine, and Society minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).
A multidisciplinary minor may contain courses in a student's major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor; provided these courses are not also used to satisfy any course requirement in the student's major degree program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select five of the following:</td>
<td>15</td>
</tr>
<tr>
<td>ECON 4510</td>
<td>Economics of Health and Health Care</td>
<td></td>
</tr>
<tr>
<td>HTS 2080</td>
<td>Introduction to the History of Disease and Medicine</td>
<td></td>
</tr>
<tr>
<td>HTS 3086</td>
<td>Sociology of Medicine and Health</td>
<td></td>
</tr>
<tr>
<td>HTS 3087</td>
<td>History of Medicine</td>
<td></td>
</tr>
<tr>
<td>HTS 3088</td>
<td>Race, Medicine & Science</td>
<td></td>
</tr>
<tr>
<td>HTS 4086</td>
<td>Seminar in Health, Medicine, and Society</td>
<td></td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>PUBP 3244</td>
<td>Stem Cell Science, Policy, and Ethics</td>
<td></td>
</tr>
<tr>
<td>PUBP 4843</td>
<td>Special Topics (Health Care Law, Policy, and Ethics)</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in History

For students who want to broaden their educations, the study of history provides a context for understanding the world and develops analytical abilities, verbal and written communications skills, and the critical thinking that is the bedrock of active citizenship. It is also good preparation for a broad array of careers, including business, education, government, and law.

Minor Program of Study & Guidelines (p. 107)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 credits hours of History courses.</td>
<td>15</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. Nine of the 15 credit hours required must be 3000-level or higher.
2. Three credit hours taken outside of history may be counted toward the minor, with the approval of the school.
3. Students majoring in HTS may not minor in History.

- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Industrial Design

The minor in Industrial Design will expose students to the field of industrial design, allowing them to better work on multidisciplinary teams where design is a central element. This minor will provide interested students from other disciplines at Georgia Tech accelerated access to both the undergraduate and graduate programs in Industrial Design.

The minor has three main objectives related to knowledge, skills, and application:

1. provide students with foundational knowledge of industrial design,
2. develop students’ skill in working on multidisciplinary design teams, and
3. enable students to effectively apply design methods to complete exemplary design projects arising in design across disciplines.

In addition, the College of Design offers a separate undergraduate minor in Multidisciplinary Design/Arts History for students in all disciplines at Georgia Tech. The minor requires completion of one of three available core survey sequences in the history of design, in addition to four courses from at least three lists of courses in: history of architecture, the history of industrial design, the history of the city/landscape/garden, history of art and foreign study, and music history. Architecture and industrial design program students must select a core-survey sequence outside their major, or select two additional electives from approved lists.

Interested students should see the Undergraduate Minors (http://catalog.gatech.edu/academics/minors) page and consult with an academic advisor for more details.
The minor program offers specialized instruction in the globalization of politics, economics, and the increasing interdependence of states, and is especially useful for students preparing for graduate school or careers in internationally oriented fields. The minor provides instruction in fundamental skills for students to acquire significant knowledge to understand world politics and international affairs.

Minor in International Business, Language, and Culture

The School of Modern Languages and the Scheller College of Business offer an interdisciplinary minor in “International Business, Language, and Culture” (ILBC) housed in the School of Modern Languages. Two key objectives of the Institute’s strategic plan are to “prepare students for global leadership” and “innovate to amplify social responsibility and economic impact.” In order to achieve these objectives students need to understand the fundamentals of business and also be able to communicate across different languages. This minor meets both of these objectives.

Program of Study

This minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 2320</td>
<td>Human Factors in Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 2401</td>
<td>Visual Design Thinking</td>
<td>3</td>
</tr>
<tr>
<td>ID 3320</td>
<td>Design Methods: User Centered Design</td>
<td>3</td>
</tr>
<tr>
<td>ID 4833</td>
<td>Special Topics: Collaborative</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 3301</td>
<td>Materials I: Renewables</td>
<td>3</td>
</tr>
<tr>
<td>ID 3302</td>
<td>Materials and Processes II: Nonrenewables</td>
<td></td>
</tr>
<tr>
<td>ID 3510</td>
<td>Introduction to Interactive Product Design</td>
<td></td>
</tr>
<tr>
<td>ID 3520</td>
<td>Tangible Interaction</td>
<td></td>
</tr>
<tr>
<td>ID 4106</td>
<td>Parametric Product Modeling</td>
<td></td>
</tr>
<tr>
<td>ID 4201</td>
<td>Design/Research Methods</td>
<td></td>
</tr>
<tr>
<td>ID 4206</td>
<td>Culture of Objects: A Seminar on the Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Culture of Objects</td>
<td></td>
</tr>
<tr>
<td>ID 4210</td>
<td>Introduction to Universal Design in the Built</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>ID 4320</td>
<td>Prototyping Interaction: Designing for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experience</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours

- All courses must be taken on a letter-grade basis, and a C or better must be received in each course.
- A student may seek permission from the School to allow 3 credit hours of upper-division, non-INTA coursework to count toward the completion of the minor if that coursework is clearly relevant to International Affairs.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor. Students may not use 6 credit hours of Special Topics courses. Students may not use course credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the **major advisor’s responsibility** to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in International Affairs

The School offers a Minor in International Affairs and Minor in Global Development. These programs are designed for students who want a concentration outside their major that provides a greater depth of study than a certificate program.
Students who wish to pursue this minor should declare the minor by completing the minor change form (https://registrar.gatech.edu/info/changeaddition-undergraduate-minors) with the Student Advisor in Modern Languages.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Modern Language Minor Information (https://modlangs.gatech.edu/degrees/minors-and-certificates)

Program of Study for Business Majors

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business Majors Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two of the following courses:</td>
<td>6</td>
</tr>
<tr>
<td>MGT 3118</td>
<td>Cross-cultural Management</td>
<td></td>
</tr>
<tr>
<td>MGT 3606</td>
<td>International Business Law</td>
<td></td>
</tr>
<tr>
<td>MGT 3661</td>
<td>Advanced Concepts in International Business</td>
<td></td>
</tr>
<tr>
<td>MGT 4030</td>
<td>International Accounting</td>
<td></td>
</tr>
<tr>
<td>MGT 4070</td>
<td>International Finance</td>
<td></td>
</tr>
<tr>
<td>MGT 4116</td>
<td>The Role of Gender, Race and Ethnicity in Organization</td>
<td></td>
</tr>
<tr>
<td>MGT 4335</td>
<td>International Marketing</td>
<td></td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Special Topics in Industrial Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Global Strategy)</td>
<td></td>
</tr>
</tbody>
</table>

Select three 3000/4000-level courses in the same language. At least one must come from the list below.

9 | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 3021</td>
<td>Chinese Society and Culture I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHIN 3022</td>
<td>Chinese Society and Culture II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHIN 3692</td>
<td>Business Chinese</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHIN 3696</td>
<td>Economic Development and Sustainability in China</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3011</td>
<td>France Today I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3012</td>
<td>France Today II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3014</td>
<td>Introduction to Contemporary France</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3061</td>
<td>France: Culture, Economy, Commerce I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3062</td>
<td>France: Culture, Economy and Commerce II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3551</td>
<td>French for the Professions I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3691</td>
<td>Business Communication and Correspondence in France</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3692</td>
<td>French Business and Technology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3693</td>
<td>French Business and Technology II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 3694</td>
<td>French Business and Technology Abroad</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FREN 4300</td>
<td>France and Globalization</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 3071</td>
<td>Introductory Business German I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 3695</td>
<td>German Business and Technology: Structure, Communication and Correspondence</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 3696</td>
<td>German Business and Technology: Current Issues</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 4061</td>
<td>Advanced Business German I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GRMN 4692</td>
<td>Industrial Transformation and German Society/Economy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>JAPN 3692</td>
<td>Business Japanese</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Program of Study for Non-Business Majors

Non-Business Majors Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses:</td>
<td></td>
</tr>
<tr>
<td>MGT 3000</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3660</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following courses:</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2210</td>
<td>Information Systems and Digital Transformation</td>
<td></td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td></td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td></td>
</tr>
<tr>
<td>MGT 3150</td>
<td>Principles of Management</td>
<td></td>
</tr>
<tr>
<td>MGT 3661</td>
<td>Advanced Concepts in International Business</td>
<td></td>
</tr>
<tr>
<td>MGT 3606</td>
<td>International Business Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two 3000/4000-level courses in the same language. At least one must come from the list below.</td>
<td>6</td>
</tr>
<tr>
<td>CHIN 3021</td>
<td>Chinese Society and Culture I</td>
<td></td>
</tr>
<tr>
<td>CHIN 3022</td>
<td>Chinese Society and Culture II</td>
<td></td>
</tr>
<tr>
<td>CHIN 3692</td>
<td>Business Chinese</td>
<td></td>
</tr>
<tr>
<td>CHIN 3696</td>
<td>Economic Development and Sustainability in China</td>
<td></td>
</tr>
<tr>
<td>FREN 3011</td>
<td>France Today I</td>
<td></td>
</tr>
<tr>
<td>FREN 3012</td>
<td>France Today II</td>
<td></td>
</tr>
<tr>
<td>FREN 3014</td>
<td>Introduction to Contemporary France</td>
<td></td>
</tr>
<tr>
<td>FREN 3061</td>
<td>France: Culture, Economy, Commerce I</td>
<td></td>
</tr>
<tr>
<td>FREN 3062</td>
<td>France: Culture, Economy and Commerce II</td>
<td></td>
</tr>
<tr>
<td>FREN 3551</td>
<td>French for the Professions I</td>
<td></td>
</tr>
<tr>
<td>FREN 3691</td>
<td>Business Communication and Correspondence in France</td>
<td></td>
</tr>
<tr>
<td>FREN 3692</td>
<td>French Business and Technology</td>
<td></td>
</tr>
<tr>
<td>FREN 3693</td>
<td>French Business and Technology II</td>
<td></td>
</tr>
<tr>
<td>FREN 3694</td>
<td>French Business and Technology Abroad</td>
<td></td>
</tr>
<tr>
<td>FREN 4300</td>
<td>France and Globalization</td>
<td></td>
</tr>
<tr>
<td>GRMN 3011</td>
<td>Germany Today</td>
<td></td>
</tr>
<tr>
<td>GRMN 3071</td>
<td>Introductory Business German I</td>
<td></td>
</tr>
<tr>
<td>GRMN 3695</td>
<td>German Business and Technology: Structure, Communication and Correspondence</td>
<td></td>
</tr>
<tr>
<td>GRMN 3696</td>
<td>German Business and Technology: Current Issues</td>
<td></td>
</tr>
<tr>
<td>GRMN 4061</td>
<td>Advanced Business German I</td>
<td></td>
</tr>
<tr>
<td>GRMN 4693</td>
<td>Industrial Transformation and German Society/Economy</td>
<td></td>
</tr>
<tr>
<td>JAPN 3692</td>
<td>Business Japanese</td>
<td></td>
</tr>
<tr>
<td>JAPN 3693</td>
<td>Japan Today</td>
<td></td>
</tr>
<tr>
<td>JAPN 4123</td>
<td>Technical and Business Japanese Translation</td>
<td></td>
</tr>
<tr>
<td>KOR 3691</td>
<td>Business Korean</td>
<td></td>
</tr>
<tr>
<td>KOR 3692</td>
<td>Current Issues and Technology in Korea</td>
<td></td>
</tr>
<tr>
<td>RUSS 3691</td>
<td>Intensive Advanced Russian</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

1 Study Abroad course

General Notes:

- All courses must be taken on a letter-grade basis and a grade of 'C' or higher must be received in each course.
- No more than three hours of coursework can be complete at another university, and this must be approved by the advisor.

Minor in International Business, Language, and Culture
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 3692</td>
<td>Advanced Reading and Composition for Business, Science and Technology ¹</td>
</tr>
<tr>
<td>RUSS 4340</td>
<td>Invention of Business Discourse in Russia (1990-)</td>
</tr>
<tr>
<td>SPAN 3211</td>
<td>Spain Today</td>
</tr>
<tr>
<td>SPAN 3235</td>
<td>Latin America Today</td>
</tr>
<tr>
<td>SPAN 3590</td>
<td>Issues of Sustainable Development in the Andean Region</td>
</tr>
<tr>
<td>SPAN 3592</td>
<td>Culture and Commerce in the Andes ¹</td>
</tr>
<tr>
<td>SPAN 3690</td>
<td>Commerce and Sustainable Communities ¹</td>
</tr>
<tr>
<td>SPAN 3691</td>
<td>Business Communication and Correspondence in the Hispanic ¹</td>
</tr>
<tr>
<td>SPAN 3692</td>
<td>Business and Culture in the Hispanic World ¹</td>
</tr>
<tr>
<td>SPAN 3693</td>
<td>Hispanic Science and Technology ¹</td>
</tr>
<tr>
<td>SPAN 4251</td>
<td>Hispanic Community Internship</td>
</tr>
<tr>
<td>SPAN 4693</td>
<td>Sustainability in Spain ¹</td>
</tr>
<tr>
<td>CHIN/</td>
<td>Special Topics</td>
</tr>
<tr>
<td>FREN/</td>
<td></td>
</tr>
<tr>
<td>GRMN/</td>
<td></td>
</tr>
<tr>
<td>JAPN/</td>
<td></td>
</tr>
<tr>
<td>KOR/</td>
<td></td>
</tr>
<tr>
<td>RUSS/</td>
<td></td>
</tr>
<tr>
<td>SPAN</td>
<td></td>
</tr>
<tr>
<td>3813/</td>
<td></td>
</tr>
<tr>
<td>3823/</td>
<td></td>
</tr>
<tr>
<td>3833/</td>
<td></td>
</tr>
<tr>
<td>4813/</td>
<td></td>
</tr>
<tr>
<td>4823/</td>
<td></td>
</tr>
<tr>
<td>4833/</td>
<td></td>
</tr>
<tr>
<td>CHIN 4695</td>
<td>Chinese Internship or FREN 4695 French Internship or GRMN 4695 German Internship or JAPN 4695 Japanese Internship or RUSS 4695 Russian Internship or SPAN 4695 Spanish Internship</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

¹ Study Abroad course

General Notes:

- All courses must be taken on a letter-grade basis and a grade of 'C' or higher must be received in each course.
• No more than three hours of coursework can be complete at another university, and this must be approved by the advisor.

Minor in Japanese

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certiﬁcates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Japanese electives</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

1. Must be beyond 2001 courses in Japanese.
2. At least nine credit hours must be 3000-level or higher.
3. Three hours of JAPN 34XX may be counted among the total hours for the minor.

• A maximum of 9 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
• All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.
• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or JAPN 2699 JAPN 2699 JAPN 2699. Students may not use 6 credit hours of either Special Problems or JAPN 2699 for a minor.
• It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor

Minor in Korean

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certiﬁcates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Korean electives</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

1. Must be beyond 2001 courses in Korean.
2. At least nine credit hours must be 3000-level or higher.
3. Three hours of KOR 34XX may be counted among the total hours for the minor.

Minor in Law, Science, and Technology

The School of Public Policy is home to Georgia Tech’s Law, Science, and Technology/Pre-Law Program. This program offers a wide range of curricular opportunities as well as pre-law advising and support services for students considering law school and careers in law.

The program introduces students to selected areas of law that they are likely to study in law school. Students will begin to develop the skills that they will need to succeed in law school and in law practice. Some of the courses are taught by full-time faculty, while others are taught by attorneys from the Atlanta area, thereby exposing students to academic and practical perspectives on the practice of law.

The program welcomes students from every college and major. Students majoring in the sciences and engineering may be surprised to learn
that their undergraduate background gives them a strong start toward specializations such as intellectual property law, products liability law, and construction law. The pre-law program can supplement a student's scientific or engineering background by developing the reading and writing skills that are fundamental to a successful legal career.

Pre-law Certificate - Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>PUBP</td>
<td>3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP</td>
<td>3016 Judicial Process</td>
<td></td>
</tr>
<tr>
<td>PUBP</td>
<td>3610 Pre-Law Seminar</td>
<td></td>
</tr>
<tr>
<td>PUBP</td>
<td>4609 Legal Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Select elective PUBP courses to fulfill 12 credit hour requirement.</td>
<td>I (\text{Numbered 3000 or above.})</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

For additional curricular requirements or any other information, see the pre-law section of the website www.prelaw.gatech.edu; or contact the pre-law program director (contact information listed at website).

Minor in Leadership Studies

The Minor in Leadership Studies has as its primary objective the goal of providing students with an in-depth knowledge of leadership theory, skills, experience, and application through a rigorous program of study that is multi-disciplinary in nature. The minor is comprised of three tracks: Global Engineering, Public Policy and Business, offered through the School of Civil and Environmental Engineering, School of Public Policy and the ILE respectively. Students apply for a specific track, are accepted, and enter the program to begin a prescribed 15 credit hour course of study while satisfying requirements for a bachelor's degree in their major.

Application and course descriptions are available at: http://leadership.gatech.edu

Application and course descriptions are available in the Minor Program of Study & Guidelines (p. 107) section of this catalog.

GPA Requirement

In order for a student to be enrolled in this minor, they must have at least thirty credit hours with a cumulative GPA of 2.5 or greater, have applied for admission, and been formally admitted. Each course counting toward the minor must be completed with a grade of \(C\) or above, with the overall required GPA in the courses counting toward the minor being a 2.75 or better.

Program of Study - Business Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>PUBP</td>
<td>4140 Foundations of Leadership</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select at least 3 of the following from the Business Track:</td>
<td>9</td>
</tr>
<tr>
<td>MGT</td>
<td>3103 Leadership in a Changing Environment</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>3662 Management in the Healthcare Sector</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4102 Management Consulting</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4072 Entrepreneurial Finance</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4116 The Role of Gender, Race and Ethnicity in Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4117 Global Workforce Management</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4193 Servant Leadership, Values & Systems</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4194 Social Enterprise and Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4670 Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4803 Special Topics</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>3101 Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or MGT 3 Principles of Management</td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td>4191 The Entrepreneurship Forum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or MGT 4192 Impact Speaker Series Forum</td>
<td></td>
</tr>
</tbody>
</table>

Internship

- It is the **major advisor's responsibility** to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.
Approved Special Topics Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 4803</td>
<td>Corporate Governance - pre-requisite MGT 2106</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Business Fundamentals for Social Entrepreneurs (available only to participants in the Budapest Study Aboad program)</td>
<td>3</td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Motivation and Rewards - Pre-requisite MGT 3101 or MGT 3102</td>
<td>3</td>
</tr>
</tbody>
</table>

• A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Approved Special Topics Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 4140</td>
<td>Foundations of Leadership</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3050</td>
<td>Political Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 2010</td>
<td>Political Processes</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 2030</td>
<td>Organizations and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4803</td>
<td>Special Topics 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Internship

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 4651</td>
<td>Public Policy Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

• A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Program of Study - Global Engineering Track

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 4140</td>
<td>Foundations of Leadership</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4000</td>
<td>Global Engineering Leadership</td>
<td>3</td>
</tr>
</tbody>
</table>

Select at least 3 of the following from the Engineering Track: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4350</td>
<td>Environmental Technology in the Developing World</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4150</td>
<td>Construction Management & Megaprojects</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4460</td>
<td>International Disaster Reconnaissance</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4660</td>
<td>Sustainable Transportation Abroad</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4803</td>
<td>Special Topics (Smart and Sustainable Cities)</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4803</td>
<td>Special Topics (Origami Engineering)</td>
<td>3</td>
</tr>
</tbody>
</table>

Internship

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTR 3011</td>
<td>International Internship Spring Term (Global Engineering Leadership Experience)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1 Students may also select a Global Engineering Leadership Development Internship.
Minor in Linguistics

The Schools of Modern Languages, Psychology, and Computer Science offer an interdisciplinary minor in Linguistics, housed in the School of Modern Languages. While the students are advised by the Linguistics advisor (Modern Languages), the is delivered by faculty in Modern Languages, Psychology and Computer Science. The minor connects studies of the physical structures and mental processes involved in human language; the psychological, neurobiological, and social/societal factors that enable humans to acquire, use, comprehend and produce language; and the application of computer science to the analysis and synthesis of language and speech. This minor is designed for undergraduates who will enter a wide range of careers, especially, language education, educational design, programming, human/computer interaction, etc.

Students wishing to pursue this minor should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Student Advisor in Modern Languages.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Course</td>
<td></td>
</tr>
<tr>
<td>LING 2100</td>
<td>Introduction to Linguistics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following courses:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LING 3100</td>
<td>Applications of Linguistics</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3012</td>
<td>Introduction to Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC/CS</td>
<td>Introduction to Cognitive Science</td>
<td>3790</td>
</tr>
<tr>
<td>PSYC 4011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology ¹</td>
<td></td>
</tr>
<tr>
<td>PSYC 4090</td>
<td>Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Select 9 hours from the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>FREN 3030</td>
<td>French Phonetics</td>
<td></td>
</tr>
<tr>
<td>JAPN 4750</td>
<td>Japanese Discourse and Grammar</td>
<td></td>
</tr>
<tr>
<td>JAPN 4780</td>
<td>Japanese Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td>SPAN 4165</td>
<td>Bilingualism in the Spanish Speaking World</td>
<td></td>
</tr>
<tr>
<td>SPAN 4170</td>
<td>Spanish Applied Linguistics</td>
<td></td>
</tr>
<tr>
<td>LING 3100</td>
<td>Applications of Linguistics</td>
<td></td>
</tr>
<tr>
<td>PSYC 2760</td>
<td>Human Language Processing</td>
<td></td>
</tr>
<tr>
<td>PSYC 3012</td>
<td>Introduction to Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>or CS 3790</td>
<td>Introduction to Cognitive Science</td>
<td>3000</td>
</tr>
<tr>
<td>or PSYC 4011</td>
<td>Cognitive Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 4090</td>
<td>Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>or PSYC 4200</td>
<td>Advanced Topics in Cognitive Psychology ¹</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

¹ PSYC 4200: given the variety of topics, only when previously approved by Linguistics advisor.

General notes:

• All courses for this minor must be taken on a letter-grade basis and a grade of C or better must be received in each course.
• Nine of the fifteen hours must be at the 3000 level or above.
• Other new courses offered in ML at 3000/4000 may count toward the Minor with approval from the advisor.
• No more than six hours of special topic courses from any discipline or department (CHIN, FREN, JAPN, LING, SPAN, PSYC, or CS) can be counted for the minor, and these courses must be approved by the advisor.
• No more than three hours of coursework can be completed at another university, and this must be approved by the advisor.

Minor in Materials Science and Engineering

The School of Materials Science and Engineering (MSE) offers an undergraduate minor in materials science and engineering for non-MSE majors. The purpose of the minor is to broaden the materials background of non-materials science and engineering students and to introduce them to a materials approach to problem solving that may be different from that provided by their major.

Fifteen hours of MSE courses are required for the minor, of which at least twelve semester hours are upper-division coursework (i.e., courses numbered 3000 or above). The depth of the program of study should ensure that upon completion, the student will have met the educational objectives established for the minor. Many students will be able to complete a considerable portion of the minor requirements by scheduling MSE courses as electives required by their major.

Non-MSE undergraduate majors are encouraged to participate in this program provided they have the appropriate prerequisites and approval of their home school academic advisor. To participate or for additional information, contact the associate chair for Undergraduate Programs in the School of Materials Science and Engineering.

Minor Program of Study & Guidelines (p. 107)

Materials Science Minor Information (http://www.mse.gatech.edu/undergraduate-program/minor)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 credit hours of MSE coursework ¹</td>
<td>15</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

¹ Twelve hours must be 3000-level or higher courses.

• All courses counting toward the minor must be taken on a letter-grade basis and all courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
• A maximum of 3 credit hours of Special Topics courses may be included in a minor program.
• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at
another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minors in Mathematics

The Mathematics minor consists of 15 semester hours chosen from MATH 2106 and Mathematics courses 3000 level or higher.

For further information, consult the departmental advisor.

Minor Program of Study & Guidelines (p. 107)

Math: Minor Information (http://www.math.gatech.edu/academics/undergraduate/minors)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2106, MATH 3000-level or higher</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1 MATH 2106 is not required but may be used toward the required 15 hours.

General Notes:

- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
- A maximum of 3 semester hours of Special Topics courses may be used to satisfy the course requirements for a minor.
- A maximum of 3 semester hours of Undergraduate Research credit may be used to satisfy the course requirements for a minor.
- No Special Problems or Internship coursework may be used.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- Courses must be completed on a letter grade mode.
- A maximum of 3 semester hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- A maximum of 3 semester hours of credit earned by an Advanced Standing Examination can be used to satisfy the course requirements for a minor.

- At most one of MATH 3215, MATH 3225, and MATH 3670 can be included in the minor. At most one of MATH 3406 and MATH 4305 can be included in the minor.
- Institute undergraduate minor guidelines must be satisfied.

Minor in Middle Eastern and North African Studies

The Schools of History and Sociology, International Affairs, and Modern Languages offer a minor in Middle Eastern and North African Studies. This interdisciplinary minor connects studies of the regions and countries in the Middle East—their languages, their cultures, and their peoples, both concurrently in their national and international relationships as well as longitudinally over the course of history. This minor is designed for undergraduates who will enter a wide range of careers that can lead directly or indirectly to interactions with the people, the social organizations and businesses, and governments of the Middle East and North Africa, both abroad and here in the U.S., especially in terms of the critical technological, social, and policy decisions facing the world today.

Students wishing to pursue this minor should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Student Advisor in Modern Languages.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 6 credit hours from the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ARBC 1501 Understanding Arab Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC 2001 Intermediate Arabic I & ARBC 200 And Intermediate Arabic II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC 2813/2823/ Special Topics PERS courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTS 2040 History of Islamic Societies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTS 2041 History of the Modern Middle East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA 2260 Government, Politics and Society of the Middle East</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select 9 credit hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARBC 3001 Advanced Arabic I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARBC 3002/4813 Advanced Arabic II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARBC 3813/4813 Special Topics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HTS 3051 Women and the Politics of Gender in the Middle East</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INTA 3260 Middle East Relations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HTS 4061 Seminar in Asian History</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HTS 4091 Seminar in Global Issues</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
INTA Special Topics 3813/3813/3823/4813/4814/4815

FREN 3000/4000-level courses French courses dealing with Middle Eastern or North African topic, approved by MENAS advisor.

Notes:

1) All students need to show competency in Arabic or Persian equivalent to having successfully passed ARBC 2002 or PERS 2XXX.

2) A maximum of 6 hours of Special Topics is allowed

3) All courses must be taken on a letter-grade basis and a grade of C or better must be received in each course.

4) No more than three hours of coursework can be completed at another university, and the advisor must approve this.

5) It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Music (General)

Requirements

- Students seeking admission to one of the Music Minor Degree Programs must be a full-time Georgia Tech student or have transferred from another institution.

- A written application and interview are required if no applied lessons are included in the Minor plan.

- A written application, interview, and formal audition are required if applied lessons are to be approved as part of the plan.

- Curriculum consists of 15 credit hours (6 hours required from Foundation Course Options and 9 credit hours of Music courses approved by Music Minor Coordinator).

Interview/Applied Lesson Audition

Applicants for the Music Minor [General Emphasis] and the Music Technology Minor will complete an interview with the Music Minor Coordinator. If applied lessons are to be included in the Music Minor [General Emphasis] applicants must complete an audition and interview at least one semester prior to admittance to the program. Auditions must be scheduled with the Music Minor Program Coordinator.

Curriculum

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Course Options</td>
<td>Select two courses:</td>
<td>6</td>
</tr>
<tr>
<td>MUSI 2010 Fundamentals of Musicianship I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSI 2011 Fundamentals of Musicianship II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSI 2525 Introduction Audio Technology I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSI 2526 Introduction to Audio Technology II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applied Instruction

Select 0-3 credit hours from the following:

- MUSI 3710 Individual Applied Instruction
- MUSI 3720 Individual Applied Instruction
- MUSI 3730 Individual Applied Instruction

Ensemble Performance

Select 0-3 credit hours from the following:

- MUSI 3018 Marching Band
- MUSI 3019 Pep Band
- MUSI 3121 Concert Band
- MUSI 3131 Symphonic Band
- MUSI 3231 Chamber Choir
- MUSI 3241 Chorale
- MUSI 3251 Glee Club
- MUSI 3261 Treble Choir
- MUSI 3311 Jazz Ensemble
- MUSI 3321 Jazz Combo
- MUSI 3411 Chamber Ensemble
- MUSI 3511 Percussion Ensemble
- MUSI 3531 New Music Ensemble
- MUSI 3541 Electronic Percussion Ensemble
- MUSI 3551 Rock and Pop Ensemble
- MUSI 3611 Symphony Orchestra

Music Theory & Literature

Select 0-6 credit hours from the following:

- MUSI 3610
- MUSI 4456 Music Technology History and Repertoire

Music Technology

Select 0-6 credit hours from the following:

- MUSI 3450 Survey of Music Technology
- MUSI 3500 Introduction of Synthesized Computer Music
- MUSI 4450 Integrating Music Into Multimedia
- MUSI 4456 Music Technology History and Repertoire
- MUSI 4457 Computational Music and Audio Analysis
- MUSI 4458 Computer Music Composition
- MUSI 4459 Digital Signal Processing for Music
- MUSI 4630 Music Recording and Mixing
- MUSI 4650 Music and Sound Design
- MUSI 4670 Music Interface Design
- MUSI 4677 Music Perception and Cognition

Research & Special Topics

Select 0-6 credit hours from the following:

- MUSI 4699 Undergraduate Research
- MUSI 4803 Special Topics

- All courses counting toward the minor must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems...
Minors and Specializations

or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.

- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

For additional information please contact the Music Minor Coordinator, Mr. Benjamin Diden: benjamin.diden@music.gatech.edu (fclark@music.gatech.edu) or 404.894.8964. Alternatively, you can contact the Administrative Coordinator, Corissa Jones at corissa.jones@music.gatech.edu or 404.894.8949.

Minor Program of Study & Guidelines (http://catalog.gatech.edu/academics/minors)

Ensemble Performance
The Music Minor and Music Performance Minors require a minimum of 3 semesters in ONE of the following ensemble tracks and must be completed at the MUSI 3000 level or above. Therefore, a student must be enrolled in the ensemble for three semesters during their junior and senior years. The ensemble tracks include:

- Wind Ensemble and/or Concert Band
- Jazz Ensemble
- Percussion Ensemble
- Orchestra
- Chorale and/or Chamber Choir and/or Men’s Glee Club

Ensemble Clarification
Please note that Instrumental Chamber Ensembles do not apply to the Ensemble Performance course curriculum requirements.

Minor in Music Technology

Requirements

- Students seeking admission to one of the Music Minor Degree Programs must be a full-time Georgia Tech student or have transferred from another institution.

- Written application and interview required – no formal audition.

- Complete 15 credit hours of course requirements (curriculum below).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2010</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2011</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
</tbody>
</table>

Music Ensemble
Select 3 to 4 credit hours of Music Ensemble at the 3000/4000 level.

Music Technology
Select 2 to 5 credit hours from the following:

- MUSI 3500 Introduction of Synthesized Computer Music

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 4450</td>
<td>Integrating Music Into Multimedia</td>
<td></td>
</tr>
<tr>
<td>MUSI 4455</td>
<td>Streaming Media</td>
<td></td>
</tr>
<tr>
<td>MUSI 4630</td>
<td>Music Recording and Mixing</td>
<td></td>
</tr>
<tr>
<td>MUSI 4650</td>
<td>Music and Sound Design</td>
<td></td>
</tr>
<tr>
<td>MUSI 4670</td>
<td>Music Interface Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code Option</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 3710</td>
<td>Individual Applied Instruction</td>
<td>1-5</td>
</tr>
<tr>
<td>MUSI 3720</td>
<td>Individual Applied Instruction</td>
<td></td>
</tr>
<tr>
<td>MUSI 3730</td>
<td>Individual Applied Instruction</td>
<td></td>
</tr>
<tr>
<td>MUSI 3740</td>
<td>Individual Applied Instruction</td>
<td></td>
</tr>
<tr>
<td>MUSI 3750</td>
<td>Individual Applied Instruction</td>
<td></td>
</tr>
</tbody>
</table>

| Total Credit Hours | 12-20 |

- All courses counting toward the minor must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.

- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
Minor in Music Technology - Plan of Study
Written application required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 2010</td>
<td>Fundamentals of Musicianship I</td>
<td>3</td>
</tr>
<tr>
<td>MUSI 2011</td>
<td>Fundamentals of Musicianship II</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three courses from the following:
MUSI 3450 Survey of Music Technology
MUSI 3500 Introduction of Synthesized Computer Music
MUSI 4450 Integrating Music Into Multimedia
MUSI 4456 Music Technology History and Repertoire
MUSI 4457 Computational Music and Audio Analysis
MUSI 4458 Computer Music Composition
MUSI 4459 Digital Signal Processing for Music
MUSI 4630 Music Recording and Mixing
MUSI 4650 Music and Sound Design
MUSI 4670 Music Interface Design
MUSI 4677 Music Perception and Cognition
MUSI 4699 Undergraduate Design
MUSI 4803 Special Topics

Total Credit Hours 18

- All courses counting toward the minor must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Naval Science
The minor in Naval Science will familiarize the student with basic and advanced concepts of Naval Science with emphasis on naval history, technology, and leadership. The Institute’s motto of “Progress and Service” is embodied in military service. This minor will support the students who plan to serve their country by recognizing their academic achievement outside of their major coursework. The minor will also give students who do not pursue military service a basic working knowledge of the United States Navy and Marine Corps. Concepts learned complement any chosen career path.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS 1321</td>
<td>Introduction to Naval Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NS 1323</td>
<td>Naval Maritime History</td>
<td>3</td>
</tr>
<tr>
<td>NS 2321</td>
<td>Naval Leadership and Management</td>
<td>3</td>
</tr>
<tr>
<td>NS 2323</td>
<td>Navigation</td>
<td>3</td>
</tr>
<tr>
<td>NS 3323</td>
<td>Evolution of Warfare</td>
<td>3</td>
</tr>
<tr>
<td>NS 3325</td>
<td>Naval Weapons Systems</td>
<td>3</td>
</tr>
<tr>
<td>NS 3326</td>
<td>Naval Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>NS 4320</td>
<td>Naval Operations and Seamanship</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 15 credit hours from the following:

1 Approved by the Music Minor Coordinator
- All courses counting toward the minor must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
A minimum of 9 credit hours of upper-division coursework must constitute the required 15 credit hours of minor coursework. Students may not repeat any course for double credit. Courses may be taken in any order, but students are highly encouraged to complete NS 1321 before enrolling in any other courses.

Minor in Nuclear Radiological Engineering

The Nuclear & Radiological Engineering and Health Physics Program of the Woodruff School offers a certificate and a minor in Nuclear & Radiological Engineering to non-NRE engineering students. These programs provide a general knowledge of Nuclear and Radiological Engineering topics and are valuable for students considering graduate work in Nuclear Engineering or Medical Physics.

Minor Program of Study & Guidelines (p. 107)

Program of Study

The NRE minor must comprise at least 15 credit hours, of which at least 12 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRE 2120</td>
<td>Elements of Nuclear and Radiological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NRE 3301</td>
<td>Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>NRE Electives 1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Other minor guidelines:

- All courses counting toward the minor must be taken on a letter-grade basis.
- Each course used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Philosophy

Georgia Tech offers undergraduate courses in philosophy with a particular focus on science and technology. The courses are intended to enable Georgia Tech students to reflect on the nature of their disciplines and to focus their understanding on the context of their lives as professionals and citizens. All Philosophy (PHIL) courses can be used to satisfy the distribution requirement in humanities, and some fulfill a variety of ethics requirements.

Certificate and minor programs in philosophy are available for students who wish to concentrate coursework in this field. The certificate program consists of twelve hours of coursework and the minor of fifteen hours.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 3103</td>
<td>Modern Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 3115</td>
<td>Philosophy of Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 9 credit hours of the following electives, at least 6 of which are upper-division: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2030</td>
<td>Ethics in International Affairs</td>
<td></td>
</tr>
<tr>
<td>PHIL 2010</td>
<td>Introduction to Philosophical Analysis</td>
<td></td>
</tr>
<tr>
<td>PHIL 2025</td>
<td>Philosophical Analysis of Policy Choices</td>
<td></td>
</tr>
<tr>
<td>PHIL 3050</td>
<td>Political Philosophy</td>
<td></td>
</tr>
<tr>
<td>PHIL 3102</td>
<td>Ancient Philosophy</td>
<td></td>
</tr>
<tr>
<td>PHIL 3105</td>
<td>Ethical Theories</td>
<td></td>
</tr>
<tr>
<td>PHIL 3109</td>
<td>Engineering Ethics</td>
<td></td>
</tr>
<tr>
<td>PHIL 3113</td>
<td>Logic and Critical Thinking</td>
<td></td>
</tr>
<tr>
<td>PHIL 3127</td>
<td>Science, Technology, and Human Values</td>
<td></td>
</tr>
<tr>
<td>PHIL 3135</td>
<td>Philosophy of Technology</td>
<td></td>
</tr>
<tr>
<td>PHIL 3140</td>
<td>Philosophy of Food</td>
<td></td>
</tr>
<tr>
<td>PHIL 4110</td>
<td>Theories of Knowledge</td>
<td></td>
</tr>
<tr>
<td>PHIL 4752</td>
<td>Philosophical Issues in Computation</td>
<td></td>
</tr>
<tr>
<td>PHIL 4174</td>
<td>Perspectives in Science and Technology</td>
<td></td>
</tr>
<tr>
<td>PHIL 4176</td>
<td>Environmental Ethics</td>
<td></td>
</tr>
<tr>
<td>PHIL 4803</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

1 Numbered 3000 or above.
Minor Program of Study & Guidelines (p. 107)

Minor in Physics

A minor in physics is intended to provide an in-depth study of physics to non-physics majors entering into a global and diverse workforce where a multidisciplinary science and engineering background is increasingly common. It will also serve those students who, through elective physics course studies, have developed a greater interest in the discipline, or who plan to enter graduate school in an area where a strong physics background is useful.

The objective of the minor is to strengthen the student’s knowledge of the fundamental physical concepts underlying all of modern science and engineering. The minor will help the student develop analytical problem-solving skills and reinforce their ability to engage in scientific thinking.

Minor Program of Study & Guidelines (p. 107)

Program of Study

The physics minor consists of 15 credit hours. At most 3 credit hours of laboratory may be included among the 15 credit hours.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2213</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3143</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201</td>
<td>Classical Mechanics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 3122</td>
<td>Electrostatics and Magnetostatics</td>
<td></td>
</tr>
<tr>
<td>PHYS 3141</td>
<td>Thermodynamics</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select elective PHYS courses to fulfill 15 credit hour requirement. 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 3753</td>
<td>Fundamentals of Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 3755</td>
<td>Human Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Biological Sciences Electives 1, 2

BIOS Elective options (a minimum of 6 BIOS hours is required):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 2500</td>
<td>Introduction to Science</td>
<td></td>
</tr>
<tr>
<td>BIOS 3000</td>
<td>Survey of Medicine</td>
<td></td>
</tr>
<tr>
<td>BIOS 3450</td>
<td>Cell and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOS 3451</td>
<td>Cell and Molecular Biology Lab</td>
<td></td>
</tr>
<tr>
<td>BIOS 3754</td>
<td>Laboratory in Human Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOS 3756</td>
<td>Physiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOS 4100</td>
<td>Exercise Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4200</td>
<td>Kinesiological Basis of Human Movement</td>
<td></td>
</tr>
<tr>
<td>BIOS 4238</td>
<td>Ion Channels</td>
<td></td>
</tr>
<tr>
<td>BIOS 4400</td>
<td>Human Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td>BIOS 4418</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4464</td>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>BIOS 4540</td>
<td>Human Motor Control</td>
<td></td>
</tr>
<tr>
<td>BIOS 4699</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>BIOS 4803</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

Non-BIOS elective options:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 3100</td>
<td>Systems Physiology</td>
<td></td>
</tr>
<tr>
<td>ECE 4781</td>
<td>Biomedical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td></td>
</tr>
<tr>
<td>ME 4757</td>
<td>Biofluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 4758</td>
<td>Biosolid Mechanics</td>
<td></td>
</tr>
</tbody>
</table>
Minor in Political Science

The discipline of political science is included within the Ivan Allen College within the School of Public Policy and the Sam Nunn School of International Affairs. Undergraduate courses in political science are intended to broaden students' perceptions of political processes and governmental institutions. Many of these courses are taught under the PUBP or INTA prefix. Students should consult with the political science faculty concerning course offerings.

Political science courses may be used to satisfy the distribution requirement in social sciences, including the state-mandated requirement on constitutions of the United States and Georgia. This requirement may be satisfied by examination or completion of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 1101</td>
<td>Government of the United States</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>INTA 1200</td>
<td>American Government in Comparative Perspective</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112</td>
<td>The United States since 1877</td>
<td></td>
</tr>
</tbody>
</table>

Selected as follows:

1. Students must complete a minimum of 6 credit hours of BIOS courses. The remaining 3 credit hours of electives may be selected from the listed non-BIOS elective options or may be selected from the BIOS courses.

2. A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor. BIOS 4699 or BIOS 4803 must be approved by the minor advisor.

- Students must earn 'C' or higher in each minor course (no pass/fail credits)
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.

Certificate in Political Science

The certificate in political science requires twelve hours of coursework (at least nine hours at the 3000 level), chosen in consultation with the faculty coordinator.

Minor Program of Study & Guidelines (p. 107)

Program of Study

The Political Science minor must comprise at least 15 semester hours, of which at least 12 semester hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2210</td>
<td>Comparative Political Philosophies and Ideologies</td>
<td>15</td>
</tr>
<tr>
<td>POL 2101</td>
<td>State and Local Government</td>
<td></td>
</tr>
<tr>
<td>PHIL 3050</td>
<td>Political Philosophy</td>
<td></td>
</tr>
<tr>
<td>PUBP 2012</td>
<td>Foundations of Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000</td>
<td>American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 3016</td>
<td>Judicial Process</td>
<td></td>
</tr>
<tr>
<td>PUBP 3201</td>
<td>Introduction to Social Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3214</td>
<td>African American Politics</td>
<td></td>
</tr>
<tr>
<td>PUBP 4120</td>
<td>Survey Research Methods</td>
<td></td>
</tr>
<tr>
<td>PUBP 4200</td>
<td>Social Policy Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 4212</td>
<td>Women and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4226</td>
<td>Business and Government</td>
<td></td>
</tr>
<tr>
<td>PUBP 4410</td>
<td>Science, Technology, and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4416</td>
<td>Critical Issues in Science and Technology</td>
<td></td>
</tr>
<tr>
<td>PUBP 4514</td>
<td>Mass Communication Policy</td>
<td></td>
</tr>
</tbody>
</table>

Selected as follows:

1. Select at least 12 credit hours of upper-division coursework (numbered 3000 or above). A student may seek permission from the School of Public Policy to allow 3 credit hours of upper-division coursework taught outside the School to count toward the completion of the minor if that coursework is clearly relevant to Political Science.
A minor in psychology is available to all non-psychology majors. The minor program provides a foundation in research methods and statistics and allows the student to take upper level courses in various areas of psychology. This minor is valuable for students who wish to have a background in psychology while pursuing other majors and considering graduate school in psychology or related fields. Further information is available on the School’s web site.

Minor Program of Study & Guidelines (p. 107)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3016</td>
<td>Judicial Process</td>
<td></td>
</tr>
<tr>
<td>PUBP 3201</td>
<td>Introduction to Social Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3214</td>
<td>African American Politics</td>
<td></td>
</tr>
<tr>
<td>PUBP 4120</td>
<td>Survey Research Methods</td>
<td></td>
</tr>
<tr>
<td>PUBP 4200</td>
<td>Social Policy Issues</td>
<td></td>
</tr>
<tr>
<td>PUBP 4212</td>
<td>Women and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4226</td>
<td>Business and Government</td>
<td></td>
</tr>
<tr>
<td>PUBP 4410</td>
<td>Science, Technology, and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4416</td>
<td>Critical Issues in Science and Technology</td>
<td></td>
</tr>
<tr>
<td>PUBP 4514</td>
<td>Mass Communication Policy</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1 Select at least 12 credit hours of upper-division coursework (numbered 3000 or above). A student may seek permission from the School of Public Policy to allow 3 credit hours of upper division coursework taught outside the School to count toward the completion of the minor if that coursework is clearly relevant to Political Science.

• A course may not be used to satisfy the requirements of more than one minor or certificate.
• All courses counting toward the minor must be taken on a letter-grade basis.
• All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
• A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
• It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Public Policy

There are many interfaces between the realm of public policy and nearly every program of study at Georgia Tech. Engineering, the sciences, management, architecture, computing, and the liberal arts are impacted by – and affect – the decisions made by governments. The minor and certificate in Public Policy allow Georgia Tech students to develop the multidisciplinary thinking skills that are needed for strategic decision making in business and technical professions as well as law and public policy.

Certificate in Public Policy

The certificate program consists of twelve credit hours of coursework.

Minor Program of Study & Guidelines (p. 107)
of upper-division coursework in public policy taught outside the School to count toward the completion of the minor. Contact the School for the current public policy minor supervisor.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Electives |
| | 15 |

| Total Credit Hours | 18 |

1 POL 1101 or equivalent as determined by the administrator of the minor program is required in addition to the 15 credit hours for the minor.

2 Numbered 3000 or above. A student may seek permission from the School of Public Policy to allow 3 credit hours of upper-division coursework taught outside the School to count toward the completion of the minor if that coursework is clearly relevant to Public Policy.

- A course may not be used to satisfy the requirements of more than one minor or certificate.
- All courses counting toward the minor must be taken on a letter-grade basis.
- All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Robotics

The Schools of Aerospace Engineering, Biomedical Engineering, Electrical and Computer Engineering, Interactive Computing, and Mechanical Engineering offer a minor in robotics for students majoring in any discipline.

The Robotics Minor provides a concentrated experience in the multidisciplinary field of robotics.

Additional Restrictions on the 15 hours of credit for the Robotics Minor:

- At least two courses must be taken outside of the student’s home school. Cross-listed courses, such as those marked with an * in the list above, cannot count as being “outside the home school” for any of the students who are from the schools that cross list that course.
• Courses must be taken from two or more schools.
• All courses from the minor must be passed with a grade of C or higher.
• No more than one 2000-level course may be used towards the minor.
• No course that is required (by name and number) in the student’s major discipline can be counted towards the student’s minor. No course that is considered equivalent to a required course in the student’s major is allowed for the minor.
• No course counted towards the Robotics Minor can be used for any other undergraduate minor or certificate.

Minor in Russian Studies

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Russian coursework ¹</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 15

¹ Students must earn 15 credit hours of language electives in a single language beyond the 2001 course.
² Students pursuing a minor in Russian Studies should take their electives in at least two different departments/schools (Modern Languages, International Affairs, and/or Literature, Media, and Communication).
³ At least nine credit hours must be taken at the 3000 level or above.

- A maximum of 9 credit hours of transfer credit may be used to satisfy the course requirements for a minor.
- All courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or RUSS 2699. Students may not use 6 credit hours of either Special Problems or RUSS 2699 for a minor.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Russian

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, Russian, and Spanish. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Minor in Science Fiction Studies

LMC provides minors in Film and Media Studies, Performance Studies, Science Fiction Studies, and Technical Communication. The School also co-sponsors minors in East Asian Studies; Health, Medicine, and Society; Science, Technology, and Society; and Women, Science, and Technology.

Students wishing to pursue any of these minors should consult LMC director or associate director of undergraduate studies for detailed information concerning requirements. Courses for all minors are selected from "Courses of Instruction."

LMC also sponsors a series of certificate programs in American Literature and Culture, Film Studies, and Literary and Cultural Studies. Students should consult the LMC director or associate director of undergraduate studies for detailed information on requirements. The courses for these certificates are among those listed in "Courses of Instruction," and all fulfill humanities requirements.

LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either the LMC director or associate director of undergraduate studies for detailed information concerning requirements. Courses for this certificate are selected from among those listed in "Courses of Instruction."

The minor in Science Fiction Studies (SFS) is for students who are interested in learning how people communicate the experience of science and technology across centuries, continents, and cultures. The two core LMC classes required for this minor teach students the history of science fiction across media. The three electives required to complete this minor enable students to connect their study of science fiction to issues of social justice, ethics, artistic practice, and the historic relations of science, technology, and culture. Students who pursue this minor will develop the analytic skills and creative mindsets that are crucial for graduate school and for advancements in careers ranging from education to engineering.

Please note: This minor is not allowed for BSLMC or BSCM students.
LMC and CM students interested in science fiction studies should...
consult with their advisors about selecting an equivalent degree thread or creating a science fiction studies concentration.

Minor Program of Study & Guidelines (p. 107)

Program of Study
The Science Fiction Studies minor is comprised of least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3214</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3215</td>
<td>Science Fiction Film and Television</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
Select three of the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2813</td>
<td>Special Topics in STAC</td>
<td></td>
</tr>
<tr>
<td>LMC 3112</td>
<td>Evolution and the Industrial Age</td>
<td></td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td></td>
</tr>
<tr>
<td>LMC 3234</td>
<td>Creative Writing</td>
<td></td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td></td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td></td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td></td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td>LMC 3310</td>
<td>The Rhetoric of Scientific Inquiry</td>
<td></td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td></td>
</tr>
<tr>
<td>LMC 3352</td>
<td>Film and/as Technology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1 with approval of the Director of Undergraduate Studies

- All courses counting toward this minor must be taken on a letter-grade basis and courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor. Permission from LMC Advisor, LMC DUS, or LMC ADUS is required when requesting to use a special topics course toward the minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.

Minor in Science, Technology, and Society

LMC provides minors in Film and Media Studies, Performance Studies, and Technical Communication. The School also co-sponsors minors in

- East Asian Studies;
- Health, Medicine, and Society;
- Science, Technology, and Society; and
- Women, Science, and Technology.

Students wishing to pursue any of these minors should consult LMC for detailed information concerning requirements. Courses for all minors are selected from "Courses of Instruction."

LMC also sponsors a series of certificate programs in American Literature and Culture, Film Studies, and Literary and Cultural Studies. Students should consult the LMC director of undergraduate studies for detailed information on requirements. The courses for these certificates are among those listed in "Courses of Instruction," and all fulfill humanities requirements.

LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either LMC or Undergraduate Studies for detailed information concerning requirements. Courses for this certificate are selected from among those listed in "Courses of Instruction" and from the list offered by the School of History and Sociology.

The Science, Technology, and Society minor will provide a context for understanding how science and technology fits within our social world, past and present. It offers students a better understanding of how science and technology develop and change, how they are represented and understood in culture, and how various social and historical contexts shape science and technology. This area of study also develops analytical abilities, verbal and written communications skills, and the critical thinking. It is good preparation for a broad array of careers, including business, education, government, and law.

Minor Program of Study & Guidelines (p. 107)

Program of Study
The multi-disciplinary Science, Technology, and Society minor must comprise at least 15 semester hours, of which at least 9 semester hours are upper-division coursework (numbered 3000 or above).

A multidisciplinary minor may contain courses in a student's major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor, provided these courses are not also used to satisfy any course requirement in the student's major degree program.

Three credit hours taken outside of STS courses may be counted toward the minor, with approval of the HTS minor advisor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 1081</td>
<td>Engineering in History</td>
<td>6</td>
</tr>
</tbody>
</table>

Required Courses
Select two of the following:

1 with approval of the HTS minor advisor
Minor in Scientific and Engineering Computing

The Scientific and Engineering Computing minor provides undergraduate students with computational and numerical skills and knowledge to augment their studies in their major programs. Core courses in mathematics and computing provide broad, general skills in numerical methods, algorithms, and scientific software development. Elective courses provide depth in applying numerical computation to problems in the field of the student’s major.

Computational methods are now used routinely in virtually all fields of science and engineering, and are becoming more common in the social sciences. They have become essential to understand natural and human-created phenomena and systems. Computation has been described as the third paradigm for scientific discovery and innovation, along with theory and experimentation. A minor curriculum in computation is a natural complement to major programs in science, engineering and the social sciences.

Minor Program of Study & Guidelines (p. 107)

Program of Study

A CS Minor application is required.

The Scientific and Engineering Computing minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Math through Calculus III and Differential Equations</td>
<td></td>
</tr>
<tr>
<td>CS 1331</td>
<td>Introduction to Object Oriented Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CX 4010</td>
<td>Computational Problem Solving for Scientists and Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 3090</td>
<td>Numerical Methods for Aerospace Engineering</td>
<td></td>
</tr>
<tr>
<td>CHBE 2120</td>
<td>Numerical Methods in Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>CX 4640</td>
<td>Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 4640</td>
<td>Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>ME 2016</td>
<td>Computer Applications</td>
<td></td>
</tr>
<tr>
<td>MSE 3025</td>
<td>Statistics and Numerical Methods in Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intro to Parallel Computing</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CX 4220</td>
<td>Introduction to High Performance Computing</td>
<td></td>
</tr>
</tbody>
</table>

1. The multi-disciplinary Science, Technology, and Society minor must comprise at least 15 credit hours, of which at least 9 credit hours of upper-division coursework (numbered 3000 or above).

- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.
Minor in Social Justice

LMC provides minors in Film and Media Studies, Performance Studies, Science Fiction Studies, and Technical Communication. The School also co-sponsors minors in East Asian Studies; Health, Medicine, and Society; Science, Technology, and Society; and, Women, Science, and Technology.

Students wishing to pursue any of these minors should consult LMC director or associate director of undergraduate studies for detailed information concerning requirements. Courses for all minors are selected from "Courses of Instruction."

LMC also sponsors a series of certificate programs in American Literature and Culture, Film Studies, and Literary and Cultural Studies. Students should consult the LMC director or associate director of undergraduate studies for detailed information on requirements. The courses for these certificates are among those listed in "Courses of Instruction," and all fulfill humanities requirements.

LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either LMC and the School of History and Sociology also cooperate in providing a certificate in African American Studies. Students should consult either LMC or associate director of undergraduate studies for detailed information concerning requirements. Courses for this certificate are selected from among those listed in "Courses of Instruction."

The minor in Social Justice is for undergraduate students who are interested in incorporating an in-depth awareness of social issues into their fields of study and careers. Humanities and social science classes included in the minor address issues of equity and inclusiveness in relation to historical, cultural, social, economic, political, and/or techno-scientific factors. Students develop the analytic skills, social understanding, and creative mindsets needed to become informed, ethical, and innovative problem solvers and leaders in an increasingly global and technological world. The minor in Social Justice supports the missions of the Institute's Strategic Plan and its Quality Enhancement Plan.

Minor Program of Study & Guidelines (p. 107)

Program of Study

A multidisciplinary minor may contain courses in a student’s major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor, provided these courses are not also used to satisfy any course requirement in the student’s major degree program.

The multi-disciplinary Social Justice minor must comprise at least 15 credit hours, of which at least 9 credit hours are upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 2016</td>
<td>Social Issues and Public Policy</td>
<td>6</td>
</tr>
</tbody>
</table>

1. CS 1331 is a pre-requisite for the minor and must be taken, but not included in the required 15 credit hours. A grade of A or B is required.
2. Computer engineering students should take both CX 4220 and CX 4777/MATH 4777 rather than CX 4010.
3. If Numerical Methods is required by the student’s Major, then the student may take an additional elective. Numerical Methods courses include (ECE and computer engineering students are restricted to taking AE 3090, CX 4640/MATH 4640, or MSE 3025)
 - No Special Problems or Internships coursework may be used towards the CS minor.
 - A grade of A or B is required for CS 1331. All courses used to satisfy the course requirements for a minor must be completed with a grade of C (2.00) or better.
 - All courses counting toward the minor must be taken on a letter-grade basis.
 - A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
 - It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

Minor in Social Justice
Minor in Sociology

For students in other majors interested in broadening their educational experience at Georgia Tech, the School of History and Sociology offers minors in history; sociology; Health, Medicine, and Society; Science, Technology, and Society; Sports, Society, and Technology; and participates in the interdisciplinary minors in Social Justice; and Women, Science, and Technology.

The study of sociology develops analytical abilities, verbal and written communication skills, and invaluable critical tools for understanding the contemporary world. Sociology is good preparation for a broad array of careers, including business, education, public administration, and social work.

Minor Program of Study & Guidelines (p. 107)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td>6</td>
</tr>
<tr>
<td>LMC 2350</td>
<td>Introduction to Social Justice</td>
<td>1</td>
</tr>
<tr>
<td>LMC 3208</td>
<td>African American Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3210</td>
<td>Ethnicity in American Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3314</td>
<td>Technologies of Representation</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td>3</td>
</tr>
<tr>
<td>SOC 1101</td>
<td>Introduction to Sociology</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Select 15 hours of Sociology coursework 1,2,3

1. At least 9 credit hours must be upper-division coursework (numbered 3000 or above).
2. Three credit hours taken outside of sociology may be counted toward the minor, with the approval of the school.
3. Students majoring in HTS may not minor in Sociology.

- All courses counting toward the minor must be taken on a letter-grade basis and must be completed with a grade of C (2.00) or better.
- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.
Minor in Spanish

The School of Modern Languages offers minors in Chinese, French, German, Japanese, Korean, and Spanish as well as in Russian Studies. This program is designed for students who wish to develop their language skills to at least an intermediate level and to provide themselves with a greater depth than possible with a certificate program.

Students wishing to pursue one or more of these minors should declare the minor by filling out the minor change form (http://www.registrar.gatech.edu/students/formlanding/changeminor.php) with the Director of Undergraduate Studies in Modern Languages.

Minor Program of Study & Guidelines (p. 107)

Modern Language Minor Information (http://www.modlangs.gatech.edu/degrees/minors-certificates)

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select 15 hours of Spanish courses</td>
<td>15</td>
</tr>
</tbody>
</table>

1. At least nine hours must be 3000-level or higher.
2. Fifteen hours must be beyond 2002 course.

• A maximum of 9 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
• All courses counting toward a minor must be taken on a letter-grade basis, and a grade of C or better must be received in each course.
• A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or SPAN 2699. Students may not use 6 credit hours of either Special Problems or SPAN 2699 for a minor.
• It is the major advisor's responsibility to verify that students are using only courses from the designated block(s) from the student's major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student's major degree program may also be used to satisfy the course requirements for a minor.

Minor in Sports, Society, and Technology

For students in other majors interested in broadening their educational experience at Georgia Tech, the School of History and Sociology offers minors in history, sociology; Health, Medicine, and Society; Science, Technology, and Society; Sports, Society, and Technology; and participates in the interdisciplinary minors in Social Justice; and Women, Science, and Technology.

The Sports, Society, and Technology minor draws upon the interdisciplinary field of sports studies and is appealing to undergraduate students interested in the critical, holistic study of sport. The minor includes coursework from such diverse areas as architecture, international studies, applied physiology, business law, economics, history, and sociology. Examples of topics covered in the minor include:

• the legal and economic impact of sports;
• the historical and contemporary relationships between technology, race, nationality, gender and sports;
• sports science, technology and performance; and
• public policy and global sports infrastructure.

Since this curriculum focuses on the critical study of sports, it is particularly attractive for those interested in acquiring the breadth of knowledge and critical thinking skills that numerous employers say they are seeking in college graduates. SST coursework also helps students become innovative leaders in our local and global communities. Therefore SST coursework is good preparation for graduate school, community service or a broad array of careers including those in the sports and health industries, education, government and law.

Minor Program of Study & Guidelines (p. 107)

Program of Study

A multidisciplinary minor may contain courses in a student's major field of study. A maximum of 6 credit hours of such courses may be used to satisfy the course requirements for the minor, provided these courses are not also used to satisfy any course requirement in the student's major degree program.

In addition to the courses listed here, there are other courses offered less regularly—for example, Special Topics and Undergraduate Research classes—that may count toward the minor. The SST adviser should be consulted for guidance. Three credit hours taken outside of SST courses may be counted toward the minor, with the approval of the SST minor advisor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select five of the following:</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>BIOS 2500 Introduction to Sport Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTS 2015 History of Sports in America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTS 3022 Gender and Sports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTS 3073 Sociology of Sports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTS 3075 Foundations of Sports Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTA 3242 Soccer and Global Politics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 4520 Economics of Sports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGT 4803 Special Topics in Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSE 3300 Materials Science & Engineering of Sports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCH 4803 Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 15

1. At least 9 credit hours must be at the 3000 level or above.
2. Required prerequisite is ECON 2106.
3. Required prerequisite is MGT 2106, with a grade of C or higher.
Minor in Sustainable Cities

The School of City and Regional Planning offers a minor in Sustainable Cities that emphasizes both sustainability and community engagement. It provides students with a deep learning experience that integrates classroom learning and direct real-world community-based project experience in creating a more sustainable built environment.

Program of study

The minor includes (1) six credits of required coursework, (2) one additional 3-credit elective from a list of courses offered by the School of City and Regional Planning, (3) one additional 3-credit elective selected from a list of courses offered in related academic disciplines, and (4) one additional 3-credit elective drawn from the courses on either list.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>CP 2233</td>
<td>Sustainable Urban Development</td>
<td>3</td>
</tr>
<tr>
<td>CP 4052</td>
<td>Sustainable Cities Studio</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select three hours from the following list of City Planning courses:</td>
<td>3</td>
</tr>
<tr>
<td>CP 4010</td>
<td>Foundations of Urban and Regional Development</td>
<td></td>
</tr>
<tr>
<td>CP 4020</td>
<td>Introduction to Urban and Regional Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4105</td>
<td>Land Conservation</td>
<td></td>
</tr>
<tr>
<td>CP 4190</td>
<td>Introduction to Climate Change Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4210</td>
<td>Environmental Planning and Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>CP 4310</td>
<td>Urban Transportation and Planning</td>
<td></td>
</tr>
<tr>
<td>CP 4510</td>
<td>Fundamentals of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>CP 6112</td>
<td>Introduction to Land Use Planning</td>
<td></td>
</tr>
<tr>
<td>CP 6223</td>
<td>Policy Tools for Environmental Management</td>
<td></td>
</tr>
<tr>
<td>CP 6442</td>
<td>Equity, Social Justice, and Economic Development</td>
<td></td>
</tr>
<tr>
<td>CP 6612</td>
<td>Community Development</td>
<td></td>
</tr>
<tr>
<td>CP 6630</td>
<td>Government and Housing Markets</td>
<td></td>
</tr>
<tr>
<td>CP 6680</td>
<td>Citizen Participation and Community Engagement</td>
<td></td>
</tr>
<tr>
<td>CP 6836</td>
<td>Urban Ecological Design</td>
<td></td>
</tr>
<tr>
<td>CP 6850</td>
<td>Public Health and the Built Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three hours from the following list of courses in related academic disciplines:</td>
<td>3</td>
</tr>
<tr>
<td>SLS 3120</td>
<td>Foundations of Sustainable Systems</td>
<td></td>
</tr>
<tr>
<td>SLS 3110</td>
<td>Technology and Sustainable Community Development</td>
<td></td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Special Topics in Industrial Management (Business Decisions for Shared Value)</td>
<td></td>
</tr>
<tr>
<td>MGT 4803</td>
<td>Special Topics in Industrial Management (Social Impact: In-depth Exploration and Design)</td>
<td></td>
</tr>
<tr>
<td>BIOS 2300</td>
<td>Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOS 2301</td>
<td>Problems in Ecology Laboratory</td>
<td></td>
</tr>
<tr>
<td>EAS 4803</td>
<td>Special Topics (Extreme Atlanta: Climate Change in Urban Spaces)</td>
<td></td>
</tr>
<tr>
<td>PUBP 3315</td>
<td>Environmental Policy and Politics</td>
<td></td>
</tr>
<tr>
<td>PUBP 3350</td>
<td>Energy Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3320</td>
<td>Climate Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>Sustainability, Technology, and Policy</td>
<td></td>
</tr>
<tr>
<td>HTS 2803</td>
<td>Special Topics (Semester in the City)</td>
<td></td>
</tr>
<tr>
<td>HTS 3012</td>
<td>Urban Sociology</td>
<td></td>
</tr>
<tr>
<td>HTS 3011</td>
<td>The City in American History</td>
<td></td>
</tr>
<tr>
<td>HTS 3005</td>
<td>American Environmental History</td>
<td></td>
</tr>
<tr>
<td>LMC 2350</td>
<td>Introduction to Social Justice</td>
<td></td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td></td>
</tr>
<tr>
<td>CS/INTA 4745</td>
<td>Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
<tr>
<td>CS/INTA 6745</td>
<td>Information and Communication Technologies and Global Development</td>
<td></td>
</tr>
<tr>
<td>CEE 4610</td>
<td>Multimodal Transportation Planning, Design, and Operations</td>
<td></td>
</tr>
<tr>
<td>CEE 4803</td>
<td>Special Topics (Smart and Sustainable Cities)</td>
<td></td>
</tr>
<tr>
<td>ISYE 4501</td>
<td>Energy, Efficiency, and Sustainability</td>
<td></td>
</tr>
<tr>
<td>ARCH 4151</td>
<td>History of Urban Form</td>
<td></td>
</tr>
<tr>
<td>ARCH 4227</td>
<td>Architecture and Ecology</td>
<td></td>
</tr>
<tr>
<td>INTA 2050</td>
<td>Intro to Global Development</td>
<td></td>
</tr>
<tr>
<td>INTA 3232</td>
<td>Sustainable Megaregion</td>
<td></td>
</tr>
<tr>
<td>INTA 3040</td>
<td>Energy, Environment, and Policy</td>
<td></td>
</tr>
<tr>
<td>INTA 4744</td>
<td>Global Development Capstone</td>
<td></td>
</tr>
<tr>
<td>Modern Languages courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIP courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Abroad Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select three hours from either of the above lists</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1 The lists of courses shown above are not exhaustive. With permission of the Chair of the School of City and Regional Planning students may substitute one course with substantial Sustainable Cities content that is not on the above lists. All courses previously approved by the Chair will be included on an updated list of Chair Approved Courses available from the website of the School of City and Regional Planning.
Minor in Technology and Business

The curriculum of the Minor in Technology and Business requires the completion of 22 semester credit hours in the course of study shown below. Students who are admitted to the T&M Program satisfy the requirements for a bachelor’s degree in their major.

- Business courses for Architecture, Ivan Allen and Sciences students cover such topics as Marketing, Finance, Accounting, and Investments.
- Together with students in Engineering and Business, these Architecture, Ivan Allen and Sciences students take classes on analyzing emerging technologies and managing product and technology development.
- Together with Business, Computing, and Engineering students, these Architecture, Ivan Allen and Sciences students take an integrated capstone project course, where interdisciplinary teams focus on a specific problem posed by one of the program’s corporate affiliates. These projects address problems involving significant technical and managerial issues.

Program of Study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3743</td>
<td>Analysis of Emerging Technologies</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3744</td>
<td>Managing Product, Service & Technology Development</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3741</td>
<td>Integrative Management Development-Project Preparation</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3742</td>
<td>Integrated Technology and Management Capstone Project</td>
<td>4</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>Marketing Management I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3000</td>
<td>Accounting for Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3078</td>
<td>Finance and Investments</td>
<td>3 or MGT 306 Financial Management</td>
</tr>
</tbody>
</table>

- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at another institution or credit earned through the AP or IB program, assuming the scores meet Georgia Tech minimum standards.
- It is the major advisor’s responsibility to verify that students are using only courses from the designated block(s) from the student’s major field of study that are allowed to satisfy a minor program, that they are not using any Core Area A-E courses (including humanities and social sciences), and that they are not using any courses for more than one minor or certificate. Any free elective course used to satisfy the course requirements of the student’s major degree program may also be used to satisfy the course requirements for a minor.

GPA Requirement

The minimum, cumulative GPA required for applicants to the Denning T&M Program is 3.0 based on a minimum of 12 hours earned at Georgia Tech. In order for accepted students to maintain their eligibility to remain in the T&M Program, they must maintain a minimum 3.0 GPA for the classes required by the Denning T&M curriculum. All courses used to satisfy the requirements of the minor must be taken for a letter grade and must be completed with the grade of C (2.00) or better. All 22 credit hours are required.

Application and course descriptions are available at: http://scheller.gatech.edu/centers-initiatives/technology-management-program/index.html

Minor in Women, Science, and Technology

The Women, Science, and Technology (WST) program does what no other gender studies program does: it links science and technology issues to those issues more traditionally associated with women’s studies. The WST minor prepares Tech students (women and men majoring in engineering, science, social sciences, and humanities) to live and work in an increasingly diverse world. The minor helps students develop their understanding of the human side of science and engineering involving not only gender issues, but inequalities of race and class as well.

WST courses reflect on the theoretical and practical dimensions of diversity. Students are encouraged to explore the values associated with scientific culture and to learn to synthesize knowledge across the disciplines, while viewing science and engineering as social and cultural forces that shape relations among women and men.

With permission of the WST coordinators, students may substitute one independent study course or course from another Georgia Tech unit. This may be chosen from special topics courses, seminars, and other courses that focus upon gender and social inequality or social issues of science and technology. Students may register and plan their courses of study for the WST minor by meeting with WST coordinators, Carol Colatrella (LMC) or Mary Frank Fox (PUBP). Students petition for the minor at the time...
they petition for their major degree. Minors are conferred upon graduation and appear on students’ transcripts.

Women, Science, and Tech Information (http://www.wst.gatech.edu/wst-minor)

Program of Study

The WST minor must be comprised of at least 15 credit hours. At least 12 of the minor’s 15 credit hours must be upper-division coursework (numbered 3000 or above).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 3304</td>
<td>Science, Technology, and Gender</td>
<td></td>
</tr>
<tr>
<td>HTS 3020</td>
<td>Gender and Technology</td>
<td></td>
</tr>
<tr>
<td>HTS 3021</td>
<td>Women in Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>PUBP 4212</td>
<td>Women and Public Policy</td>
<td></td>
</tr>
<tr>
<td>PUBP 4214</td>
<td>Gender, Science, Technology, and Public Policy</td>
<td></td>
</tr>
</tbody>
</table>

Electives
Select three courses from at least two different Ivan Allen College schools below OR from the Required Courses above: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 2082</td>
<td>Technology and Science in the Industrial Age</td>
<td>3</td>
</tr>
<tr>
<td>HTS 2084</td>
<td>Technology and Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3007</td>
<td>Sociology of Work, Industry, and Occupations</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3016</td>
<td>Women and Gender in the United States</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3017</td>
<td>Sociology of Gender</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3051</td>
<td>Women and the Politics of Gender in the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3082</td>
<td>Sociology of Science</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3083</td>
<td>Technology and the Shaping of American Society</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3084</td>
<td>Culture and Technology</td>
<td>3</td>
</tr>
<tr>
<td>HTS 3086</td>
<td>Sociology of Medicine and Health</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC 2100</td>
<td>Introduction to Science, Technology and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 2200</td>
<td>Introduction to Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3212</td>
<td>Women, Literature, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3219</td>
<td>Literature and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3225</td>
<td>Gender Studies in the Disciplines</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3302</td>
<td>Science, Technology, and Ideology</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3306</td>
<td>Science, Technology, and Race</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3308</td>
<td>Environmentalism and Ecocriticism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3316</td>
<td>Science, Technology, and Postcolonialism</td>
<td>3</td>
</tr>
<tr>
<td>LMC 3318</td>
<td>Biomedicine and Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Public Policy
Select three courses from at least two different Ivan Allen College schools below OR from the Required Courses above: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 2012</td>
<td>Foundations of Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4410</td>
<td>Science, Technology, and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4416</td>
<td>Critical Issues in Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 4200</td>
<td>Social Policy Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

International Affairs
Select three courses from at least two different Ivan Allen College schools below OR from the Required Courses above: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 4803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>INTA 8803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

Modern Languages
Select three courses from at least two different Ivan Allen College schools below OR from the Required Courses above: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 3241</td>
<td>The Individual and the Family in Hispanic Literature</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 3242</td>
<td>Society in Hispanic Literature</td>
<td>3</td>
</tr>
</tbody>
</table>

Economics
Select three courses from at least two different Ivan Allen College schools below OR from the Required Courses above: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2100</td>
<td>Economic Analysis and Policy Problems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2101</td>
<td>The Global Economy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
</tbody>
</table>

Students can receive credit for either ECON 2100 or ECON 2101, or for ECON 2105/ECON 2106. Students cannot receive credit for ECON 2100 and ECON 2101, or for ECON 2100 and ECON 2105/ECON 2106, or for ECON 2101 and ECON 2105/ECON 2106.

- A maximum of 6 credit hours of Special Topics courses may be included in a minor program or the student may complete 3 credit hours of Special Topics and 3 credit hours of either Special Problems or Undergraduate Research. Students may not use 6 credit hours of either Special Problems or Undergraduate Research for a minor.
- A maximum of 3 credit hours of transfer credit may be used to satisfy the course requirements for a minor. This includes courses taken at
Professional Master's in Applied Systems Engineering

Stay current and build your systems engineering expertise with our Professional Master’s Degree in Applied Systems Engineering, referred to as PMASE.

Work full-time and expand your “systems thinking” skills with this two-year advanced degree from a top 10 public university in the U.S. The convenient hybrid format that blends face-to-face instruction and online learning.

- Be part of a team of students collaborating on project-based learning to overcome systems engineering hurdles and develop real-life solutions.
- Build relationships with supportive peers, dedicated and accessible professors, and network with professionals to form meaningful connections that will have a long-term career impact.
- Immerse yourself in a practical, hands-on approach to learn how to integrate systems engineering processes into your current and future jobs.
- Be inspired and challenged by passionate Georgia Tech faculty and Georgia Tech Research Institute scientists and engineers who offer extensive real-world experience and lead research for industry and government.
- Learn alongside and share insight with other professionals with at least three to five years of experience and diverse perspectives.
- Immediately apply your new knowledge to your job.

The PMASE program is a two year program divided into core curriculum courses and complex systems courses and is delivered in a cohort model. A cohort is a group of students working towards a common degree and taking the same classes on the same schedule through completion of the degree. During the Fall Term of the cohort’s second year in the program, the students select a domain elective from the options available. Currently the elective options available are in the domains of sensors systems (ASE 6111), information systems (ASE 6121) and human systems integration (ASE 6131). The prerequisite for the domain electives is ASE 6006, Systems Engineering Laboratory.

Core Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE 6001</td>
<td>Fundamentals of Modern Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ASE 6002</td>
<td>Systems Design and Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Domain Electives (Choose one):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE 6003</td>
<td>Modeling and Simulation for Systems Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ASE 6004</td>
<td>Leading Systems Engineering Teams</td>
<td>3</td>
</tr>
<tr>
<td>ASE 6005</td>
<td>Advanced Topics in Systems Engineering: Systems Modeling with SysML</td>
<td>3</td>
</tr>
<tr>
<td>ASE 6006</td>
<td>Systems Engineering Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Program of study

- Learn about a variety of topics ranging from technical competencies, including sustainable system design and manufacturing continuous improvement, to leadership skills, like leading change and handling conflict.
- Focus on one class at a time.
- Select an area of concentration: The forest bioproducts track covers various aspects of pulp and paper, bioengineering pathways, new biomaterials and biotechnologies, and business competitive analysis and forecasting. The chemical manufacturing track will address foundational technologies as well as emerging processes and markets in the chemical processing industry.
- Wrap up the program with a Capstone course, a comprehensive team-based project that challenges you to tackle a real-world industry problem and present the solution to a company sponsor. Benefit from a hybrid approach that only requires three week-long visits to our main campus in Atlanta. You can obtain the remainder of your two-year education online via pre-recorded lectures and real-time web-conferencing sessions.
- Take advantage of faculty support during virtual office hours.
- Obtain the type of education that only a top-ranked technology and engineering university can provide.

Program of study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 6380</td>
<td>Production Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6381</td>
<td>Manufacturing Reliability</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 6382</td>
<td>Quality Control and Six Sigma</td>
<td>3</td>
</tr>
</tbody>
</table>

Professional Master's in Manufacturing Leadership

Strong operations and facility leaders are vital to a manufacturing company’s success. Set yourself apart through this unique graduate program, which includes ten courses structured in a way that enables you to continue working while enrolled.

- Obtain the type of education that only a top-ranked technology and engineering university can provide.
Professional Master's in Occupational Safety and Health

The Professional Master's in Occupational Safety and Health Management (PMOSH) program is a terminal degree for industry professionals with 3-5 years of work experience. It is designed to help students develop the skills and knowledge necessary to successfully define and manage complex safety and health programs. As opposed to a Master of Science degree, which typically has a research focus and serves as a gateway to a PhD program, the PMOSH program provides an applied, practical educational experience through projects, teamwork and industry-relevant case studies. Students gain real-world experience by collaborating in a team environment through a hybrid of online and in-person learning. They learn how to think strategically to determine strengths in their company's safety and health management systems while also identifying areas of risks. The six-semester program is delivered on-line and includes three campus visits where students will collaborate in groups and deliver final presentations at the end of the program. Through the ten-course curriculum, students study topics areas including fundamentals of occupational safety and health (OSH) and its standards, technologies that can be implemented on OSH, communication skills, and business aspects of OSH.

Website: https://pe.gatech.edu/degrees/pmosh?utm_campaign=pmosh-launch-2017

To earn the PMOSH degree, students must complete ten courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP 8803</td>
<td>Special Topics (Fundamentals of Occupational Safety and Health Program Management)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8813</td>
<td>Special Topics (Industrial Hygiene Principles and Health Hazards)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8823</td>
<td>Special Topics (Hazardous Materials Management)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8833</td>
<td>Special Topics (Occupational Safety and Health Principles)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8843</td>
<td>Special Topics (Advanced Safety Principles)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8853</td>
<td>Special Topics (Applied Ergonomics)</td>
<td>3</td>
</tr>
<tr>
<td>BCP 8800</td>
<td>Culture & Leadership Influences on Safety & Health</td>
<td>3</td>
</tr>
<tr>
<td>BCP 6900</td>
<td>Economic Analysis, Risk Management, Risk Financing, & Insurance for Safety Professionals</td>
<td>3</td>
</tr>
<tr>
<td>BCP 6950</td>
<td>Occupational Safety and Health Capstone</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 30

APPLICATIONS

Admission to the Professional Master's in Occupational Safety and Health (PMOSH) program is based on an applicant's professional experience, prior education, and competencies. Please be sure to fulfill the following requirements and gather the items below before beginning the application process:

1. A bachelor's degree from an accredited school with a competitive GPA of at least 3.0.
2. Proof of English Proficiency (i.e., TOEFL). Exempted if degree was earned from a university where English is the language of instruction.
3. At least one year of professional work experience (post-Bachelor's degree) in a safety and health general industry or construction related fields.
4. Three letters of recommendation. Letters should come from past and current supervisors, outlining your skills and capabilities, and describing why you should be considered for admission.
5. A required essay/statement of purpose (no more than one page). The essay/statement of purpose should include:
 a. Why you should be considered?
 b. What experience you can bring to the program?
 c. What you expect to take away from the program to enhance your professional career?
6. A resume including work and educational experience.
7. An official transcript sent from each accredited school in which you received a degree.

Application deadline, including all supporting documents, is May 1 for the fall cohort.

Professional Master's in Sustainable Electrical Energy

This master's degree is targeted to working engineers in the electrical energy and power industry. The Professional Master's in Sustainable Electrical Energy (PMSEE) program is structured to bring in students in specific cohorts. The degree features six required courses, including a culminating capstone project course, and four elective courses taken by all students in a given cohort and chosen from a selection of ten or more elective courses. Courses are organized in a sequential manner to cover in a comprehensive way the engineering content and industry emerging technologies in sustainable electrical energy. The required core for the PMSEE includes courses on power system operation and control, conventional generation, renewable energy sources, power systems economics, power system planning and reliability, and a capstone project course. Elective courses are chosen from subjects such as power system protection, power electronics, wind energy, smart grids, high voltage engineering, computational intelligence in power, solar energy, nuclear...
engineering and reactor engineering, fuel cell systems, and energy engineering economics and risk management.
COURSES

Accounting (ACCT)

ACCT 2101. Accounting I: Financial Accounting. 3 Credit Hours.
An introduction to the measurement and financial reporting of organizations and the interpretation of the resulting financial statements. Credit not allowed for MGT 3000 and ACCT 2101.

ACCT 2102. Accounting II: Managerial Accounting. 3 Credit Hours.
The course deals with determining the costs of products and services and using cost information for planning and decision making. Credit not allowed for MGT 3000 and ACCT 2102.

Aerospace Engineering (AE)

AE 1601. Introduction to Aerospace Engineering. 1 Credit Hour.
Overview of aerospace engineering. Common terminology, introduction to use of engineering models, professional and ethical standards and experience with team-based design of aerospace systems. Students cannot receive credit for both AE 1601 and AE 1350.

AE 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with BMED, CHE, ECE, ME, and MSE 1750.

AE 1XXX. Aerospace Engr Elective. 1-21 Credit Hours.

AE 2010. Thermodynamics & Fluids Fundamentals. 4 Credit Hours.
Thermodynamic and fluid properties. Conservation laws, Isentropic flow, shocks and expansions, introduction to flows with friction and heat transfer. Applications to aerospace devices. Students cannot receive credit for both AE 2010 and AE 3450.

AE 2011. Fluid Fundamentals. 2 Credit Hours.
Flowfield concepts, fluid properties, conservation equations for flows, isentropic flow, shocks and expansions, introduction to flows with friction and heat transfer. Applications to aerospace devices.

AE 2220. Dynamics. 3 Credit Hours.
Motion of particles and mass center of bodies, kinematics and kinetics of rigid bodies in plane motion, work-energy and impulse-momentum methods, 3-D dynamics of rigid bodies.

AE 2221. 3D Dynamics. 1 Credit Hour.
Kinematics and kinetics of rigid bodies in three-dimensional motion.

AE 2355. Aerospace Systems Design Competition II. 3 Credit Hours.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical role commensurate with sophomore standing.

AE 2610. Introduction to Experimental Methods in Aerospace. 1 Credit Hour.
Introduction to laboratory instrumentation and measurement techniques used in aerospace. Basic application of sensor principles, uncertainty analysis, interpretation and analysis of experimental data, and documentation.

AE 2611. Technical Communications for Aerospace Engineers. 1 Credit Hour.
Development of technical communication skills required by aerospace engineers. Includes written, oral and visual communication methods.

AE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

AE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

AE 2801. Special Topics. 1 Credit Hour.
Normally taken by sophomores. Course material devoted to special topics in aerospace engineering.

AE 2802. Special Topics. 2 Credit Hours.
Normally taken by sophomores. Course material is devoted to special topics in aerospace engineering.

AE 2803. Special Topics. 3 Credit Hours.
Normally taken by sophomores. Course material devoted to special topics in aerospace engineering.

AE 2901. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 2902. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 2903. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 2XXX. Aerospace Engr Elective. 1-21 Credit Hours.

AE 3030. Aerodynamics. 4 Credit Hours.
Aerodynamics of airfoils and wings in subsonic, transonic and supersonic flight. Laminar and turbulent boundary layers and effects of viscosity on aerodynamic performance.

AE 3090. Numerical Methods for Aerospace Engineering. 3 Credit Hours.
Basic numerical methods in Aerospace Engineering taught in Fortran or C, language instruction included. Numerical integration, interpolation, FFT, linear algebra, initial and boundary value problems.

AE 3140. Structural Analysis. 3 Credit Hours.
Application to structural analysis. Basic equations of elasticity. Bending, shearing and torsion of thin walled structures. Energy methods for structural analysis and application to finite element theory for trusses and beam structures. Students cannot receive credit for both AE 3140 and AE 3125.

AE 3330. Introduction to Aerospace Vehicle Performance. 3 Credit Hours.

AE 3340. Design and Systems Engineering Methods. 2 Credit Hours.
Overview of aerospace design and systems engineering. Tools to organize the design process and to support design decisions. Introduction to numerical optimization and trade studies.
AE 3355. Aerospace Systems Design Competition III. 3 Credit Hours.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical or leadership role commensurate with junior standing.

AE 3450. Thermodynamics and Compressible Flow. 3 Credit Hours.

AE 3530. System Dynamics and Vibration. 3 Credit Hours.
Modeling and analysis of lumped- and distributed-parameter systems, free and forced vibration in mechanical systems, free vibration in structural systems. Students cannot receive credit for both AE 3530 and AE 3515.

AE 3531. Control System Analysis and Design. 3 Credit Hours.
Control system performance analysis and specifications, classical methods of control system analysis and design, introduction to modern control methods. Students cannot receive credit for AE 3531 and AE 3515 or AE 3531 and ME 4452.

AE 3610. Experiments in Fluid and Solid Mechanics. 2 Credit Hours.
Experimental laboratory in solid and fluid mechanics, aerodynamics, propulsion. Emphasis on measurement techniques, analysis and interpretation of data, comparison to analytical predictions, and reporting.

AE 3801. Special Topics. 1 Credit Hour.
Normally taken by juniors. Course material devoted to special topics in aerospace engineering.

AE 3802. Special Topics. 2 Credit Hours.
Normally taken by juniors. Course material devoted to special topics in aerospace engineering.

AE 3803. Special Topics. 3 Credit Hours.
Normally taken by juniors. Course material devoted to special topics in aerospace engineering.

AE 3901. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 3902. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 3903. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 3XXX. Aerospace Engr Elective. 1-21 Credit Hours.

AE 4040. Computational Fluid Dynamics. 3 Credit Hours.
Discretization of PDEs, stability and accuracy considerations, iterative and time/space marching schemes, aerospace applications.

AE 4060. Aeroacoustics. 3 Credit Hours.
Concepts and techniques, noise sources, data acquisition and reduction, aeroacoustic resonances, commonalities in the music of wind instruments and sources of aircraft noise, community impact.

AE 4070. Introduction to Propeller and Rotor Theory. 3 Credit Hours.
A study of the theory and equations used in the design of propellers and helicopter rotors.

AE 4071. Rotorcraft Aeromechanics. 3 Credit Hours.
Basic rotor aerodynamics and dynamics, helicopter performance and trim, introduction to helicopter stability, control and vibration.

AE 4080. Aerothermodynamics. 3 Credit Hours.
Convective heat transfer and viscous drag in high- temperature and high-speed flowfields. Inviscid hypersonic theory, real gas effects, and wall thermal protection strategies.

AE 4132. Finite Element Analysis. 3 Credit Hours.
An introduction to classical approximation techniques and the fundamentals of the finite element-method applied to structures and structural dynamics with aerospace applications.

AE 4170. Structural Integrity and Durability. 3 Credit Hours.
Multiaxial stress states, inelasticity in metals and polymers, yield criteria, metal fatigue, fracture, stress intensity factors, fracture toughness, fatigue crack growth, metal creep, and polymer viscoelasticity.

AE 4220. Structural Dynamics and Aeroelasticity. 3 Credit Hours.
Structural dynamics of one-dimensional systems. Analysis of static aeroelastic phenomena, unsteady aerodynamics, and flutter. Equations of motion for complete aeroelastic systems; solution techniques.

AE 4341. Aircraft Design. 3 Credit Hours.
Aircraft Vehicle Design. Preliminary design or case study of a complete flight vehicle, including a propulsion system, a structural system, and a control system. Students cannot receive credit for both AE 4341 and AE 4350.

AE 4342. Space System Design. 3 Credit Hours.
Spacecraft subsystems and synthesis. Students apply mission and spacecraft design principles in developing a space flight mission concept. Topics may vary. Students cannot receive credit for AE 4342 and AE 4356.

AE 4343. Rotorcraft Design. 3 Credit Hours.
Rotorcraft Vehicle Design. Preliminary design or case study of a complete rotorcraft flight vehicle, including a propulsion system, a structural system, and a control system. Students cannot receive credit for both AE 4343 and AE 4358 or AE 4343 and AE 6333.

AE 4355. Aerospace Systems Design Competition IV. 3 Credit Hours.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical or leadership role commensurate with senior standing.

AE 4361. Space Flight Operations. 3 Credit Hours.
This course introduces the foundations and analysis of space flight operations for human and robotic space missions.

AE 4370. Life Cycle Cost Analysis. 3 Credit Hours.
Modeling of total cost of complex systems over their entire life cycle. Modeling risk uncertainty for complex energy, environmental, and military systems.

AE 4376. Accident Causation and System Safety. 2 Credit Hours.
This course provides an in-depth examination of the multi-disciplinary issues in accident causation and system safety (prevention) across different industries.

AE 4451. Jet and Rocket Propulsion. 3 Credit Hours.

AE 4461. Introduction to Combustion. 3 Credit Hours.
Basics of combustion and combustion devices. Chemical thermodynamics, reaction rates, premixed/nonpremixed flames, ignition, stabilization, and pollutants. Applications in turbine, rocket, and internal combustion engines.
AE 4531. Aircraft Flight Dynamics. 3 Credit Hours.
Three-dimensional rigid body dynamics, aircraft equations of motion, static and dynamic stability, flight control design, introduction to aeroelastic phenomena. Students cannot receive credit for both AE 4531 and AE 3521.

AE 4532. Spacecraft Flight Dynamics. 3 Credit Hours.
Cover fundamental material in orbit and attitude dynamics. Investigate orbits, rendezvous/intercept maneuvers, interplanetary transfers, attitude coordinates, attitude stability, attitude control, and attitude estimation. Students cannot receive credit for both AE 4532 and AE 4310.

AE 4552. Introduction to Humans & Autonomy. 3 Credit Hours.
Learn the fundamental principles underlying the functions performed by humans and by autonomous systems in dynamic, complex domains. Credit will not be awarded for both AE 4552 and AE 6552.

AE 4580. Introduction to Avionics Integration. 3 Credit Hours.
Avionics in modern aerospace vehicle systems, including impact on design and performance. Specific case-studies; covers: navigation, GPS, stability augmentation, radar, health monitoring, databases, human factors, and software.

AE 4610. Dynamics and Control Laboratory. 2 Credit Hours.
Experiments in dynamics and control related to aerospace engineering topics.

AE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

AE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

AE 4701. Wind Engineering. 3 Credit Hours.
An introductory course on wind energy and its potential; modeling and design of wind turbines; analysis of the economic benefits of wind turbine systems. Credit not allowed for both AE 4701 and ME 4701.

AE 4757. Biofluid Mechanics. 3 Credit Hours.
Introduction to the study of blood flow in the cardiovascular system. Emphasis on modeling and the potential of flow studies for clinical research application. Crosslisted with CHE and ME 4757.

AE 4758. Biosolid Mechanics. 3 Credit Hours.
The mechanics of living tissue, e.g., arteries, skin, heart muscle, ligament, tendon, cartilage, and bone. Constitutive equations and some simple mechanical models. Mechanics of cells. Applications. Crosslisted with CHE and ME 4758.

AE 4760. Engineering Acoustics and Noise Control. 3 Credit Hours.
Study of acoustics related to noise and its control; acoustics terminology wave propagation, wave equation solutions, instrumentation, data processing, room acoustics, noise control, noise legislation. Crosslisted with ME 4760.

AE 4791. Mechanical Behavior of Composites. 3 Credit Hours.
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with CEE, CHE, ME, MSE, and PTFE 4791.

AE 4793. Composite Materials and Processes. 3 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with CEE, CHE, ME, MSE, and PTFE 4793.

AE 4794. Composite Materials and Manufacturing Testing. 4 Credit Hours.
Basic principles of selection and sign of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with CEE, CHE, ME, MSE, and PTFE 4794.

AE 4801. Special Topics. 1 Credit Hour.
Normally taken by seniors. Course material devoted to special topics in aerospace engineering.

AE 4802. Special Topics. 2 Credit Hours.
Normally taken by seniors. Course material devoted to special topics in aerospace engineering.

AE 4803. Special Topics. 3 Credit Hours.
Normally taken by seniors. Course material devoted to special topics in aerospace engineering.

AE 4804. Special Topics. 4 Credit Hours.
Normally taken by seniors. Course material devoted to special topics in aerospace engineering.

AE 4883. Special Topics. 3 Credit Hours.

AE 4901. Special Problems in Aerospace Engineering. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 4902. Special Problems in Aerospace Engineering. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 4903. Special Problems. 1-21 Credit Hours.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 4XXX. Aerospace Engr Elective. 1-21 Credit Hours.

AE 6009. Viscous Fluid Flow. 3 Credit Hours.
Fundamental conservation laws. Laminar flows, wall-bound and free shear flows. Separation, heat transfer, and compressibility effects. Introduction to flow instability and transition to turbulence.

AE 6012. Turbulent Flows. 3 Credit Hours.

AE 6015. Advanced Aerodynamics. 3 Credit Hours.
Introduce concepts, derivation and application of aerodynamic fundamentals. Emphasis on advanced knowledge in analysis and design of fixed-wing, launch/atmospheric return vehicles, and rotating systems.

AE 6020. Elements of Compressible Flow. 3 Credit Hours.

AE 6030. Advanced Potential Flow I. 3 Credit Hours.
Unsteady potential theory for various speed ranges. Calculation of steady and unsteady aerodynamic loads on airfoils and wings. Vortex flows. Topics of current research interest.

AE 6042. Computational Fluid Dynamics. 4 Credit Hours.

AE 6050. High-temperature Gas Dynamics I. 3 Credit Hours.
Defining equations for compressible flows, real gas properties and their effect on the behavior of equilibrium and non-equilibrium flows.
AE 6052. Flow Diagnostics and Control. 3 Credit Hours.
Introduction to experimental techniques; flow visualization; statistical methods; pressure, velocity, temperature, density, particle size, reaction rate measurements. Experiment design, data acquisition, and interpretation. Flow control.

AE 6060. Aeroacoustics. 3 Credit Hours.
Lighthill’s theory of aerodynamic noise and extensions, flow/acoustic interactions, feedback phenomenon, supersonic jet noise, aeroacoustics of ducts, propeller noise, helicopter noise, sonic boom.

AE 6070. Rotary Wing Aerodynamics. 3 Credit Hours.
Vortex wake modeling; analytical inflow theories; modern computational methods for rotary wing aerodynamic analysis; aerodynamic noise.

AE 6080. Dynamics of Turbulence. 3 Credit Hours.

AE 6100. Advanced Structural Analysis I. 3 Credit Hours.

AE 6101. Advanced Structural Analysis II. 3 Credit Hours.
Buckling of beams on elastic foundations, rings and arches; elasticity theory; torsional buckling of shafts, buckling of plates, circular cylindrical shells, rotating beams, nonconservative problems.

AE 6104. Computational Mechanics. 3 Credit Hours.
Development of finite element methods for linear, static structural analysis. The basic tools of the finite element method. The formulation of various structural elements.

AE 6106. Analysis of Aerospace Structural Elements. 3 Credit Hours.
This course focuses on the analysis of advanced aerospace structures. Beam theory is reviewed, plate theory is introduced. Classical and energy solutions are presented.

AE 6107. Analysis of Aerospace Structural Elements. 3 Credit Hours.
This course focuses on the analysis of advanced aerospace structures. Beam theory is reviewed. Examples of nonlinear behavior of materials are discussed. Plate theory is introduced; classical and energy solution methods are studied.

AE 6111. Elasticity. 3 Credit Hours.
Stresses and deformations in continuum media. Stress and strain measures used in nonlinear elasticity. Equilibrium equations and energy principles. Nonlinear beam, plate, and shell applications.

AE 6112. Inelastic Response. 3 Credit Hours.

AE 6114. Fundamentals of Solid Mechanics. 3 Credit Hours.
Unified overview of fundamental aspects of solid mechanics, from nonlinear continuum mechanics to linear elasticity, including an introduction to energy methods and other special topics.

AE 6115. Fundamentals of Aerospace Structural Analysis. 3 Credit Hours.
Overview and fundamentals of aerospace structural analysis, including virtual work and energy methods, buckling and advanced structural theories.

AE 6123. Design of Fiber-Reinforced Composite Structures. 3 Credit Hours.
Composite material systems, composite structures including anisotropic plate and shell theory, shear deformation, hygrothermal and interlaminar stresses. Finite element modeling. Design case studies and cost-effective applications for thin-walled sections.

AE 6161. Theory of Plates. 3 Credit Hours.
Development of isotropic and anisotropic plate theories. Classical and energy solutions for various geometrics and loadings. Aerospace applications including elastically coupled composite and sandwich plates.

AE 6162. Shell Structures. 3 Credit Hours.
Analysis of stresses and deformation of shells with and without bending, shells forming surfaces of revolution, asymptote methods, buckling of shells, nonlinear theories.

AE 6165. Principles of Fracture and Fatigue. 3 Credit Hours.

AE 6170. Structural Optimization. 3 Credit Hours.
Mathematical methods of constrained optimization, sensitivity analysis, approximation concepts, decomposition techniques, shape optimization in the context of structural design.

AE 6200. Advanced Aeroelasticity I. 3 Credit Hours.
Understanding and analysis of aeroelastic phenomena in fixed-wing aircraft, static aeroelasticity, dynamic aeroelasticity, and dynamic response and transient stresses in aircraft structures.

AE 6210. Advanced Dynamics I. 3 Credit Hours.
Kinematics of particles and rigid bodies, angular velocity, inertia properties, holonomic and nonholonomic constraints, generalized forces.

AE 6211. Advanced Dynamics II. 3 Credit Hours.
A continuation of AE 6210. Equations of motion, Newtonian frames, consistent linearization, energy and momentum integrals, collisions, mathematical representation of finite rotation.

AE 6220. Rotorcraft Structural Dynamics and Aeroelasticity. 3 Credit Hours.
Elementary blade dynamics, flap-lag dynamics, ground resonance, structural dynamics of rotating beams, nonlinear elastic blade analysis, harmonic balance and trim, Floquet theory.

AE 6230. Structural Dynamics. 3 Credit Hours.
Dynamic response of single-degree-of-freedom systems, Lagrange’s equations; modal decoupling; vibration of Euler-Bernoulli and Timoshenko beams, membranes and plates.

AE 6231. System Identification in Structural Dynamics. 3 Credit Hours.
System identification by complex exponential methods, poly ref techniques, eigen-realization methods and frequency domain methods. Effects of noise, generalized least squares, and recursive online identification.

AE 6240. Numerical Methods in Structural Dynamics. 3 Credit Hours.
Rayleigh quotient, Rayleigh-Ritz and Galerkin methods; extraction of eigenvalues and eigenvectors; analysis of forced harmonic response; direct time integration of large-scale systems.

AE 6251. Experimental Methods in Structural Dynamics. 3 Credit Hours.
Experimental methods for measurement of structural vibration, random vibration, analytical methods for analysis of vibration data, applications to single and multi-degree-of-freedom problems.
AE 6252. Smart Structures and Structural Control. 3 Credit Hours.
Modeling smart sensors and actuators, development of closed loop models, design of controllers, validation of controllers, application to vibration control, noise control, and shape control.

AE 6263. Flexible Multi-body Dynamics. 3 Credit Hours.
Nonlinear, flexible multi-body dynamic systems, parameterization of finite rotations, strategies for enforcement of holonomic and non holonomic constraints, formulation of geometrically nonlinear structural elements, time-integration techniques.

AE 6270. Applied Nonlinear Dynamics. 3 Credit Hours.
Nonlinear vibration methods through averaging and multiple scales, bifurcation, periodic and quasi-periodic systems, transition to chaos, characterization of chaotic vibrations, thermodynamics of chaos, chaos control.

AE 6280. Wave Propagation. 3 Credit Hours.
Dilational, equivalent mixed waves; Rayleigh and Lamb waves, reflection, refraction, impact problems, plastic waves, N.D.E. vibration control, numerical methods, finite deformation wave propagation, constitutive equations.

AE 6310. Optimization for the Design of Engineered Systems. 3 Credit Hours.
Introduction to optimization problem formulations for engineering design, algorithms for constrained nonlinear programming, multibjective and multidisciplinary optimization, and robust design optimization.

AE 6322. Spacecraft and Launch Vehicle Design I. 4 Credit Hours.

AE 6323. Spacecraft and Launch Vehicle Design II. 3 Credit Hours.
Space Vehicle Design methodology further developed and applied. Teams formed to prepare competitive proposals in response to given mission requirements. Designs publicly presented and defended.

AE 6333. Rotorcraft Design I. 3 Credit Hours.
System approach to conceptual design of aerospace systems with emphasis on rotorcraft. Comprehensive methodologies for aerospace vehicle synthesis and sizing. Integration of technologies. Students cannot receive credit for both AE 6333 and AE 4343.

AE 6334. Rotorcraft Design II. 4 Credit Hours.
Students work together on this application to complete the preliminary design stage of a specific rotorcraft. Participants are exposed to disciplinary and interdisciplinary issues.

AE 6343. Aircraft Design I. 3 Credit Hours.
Stochastic approach to conceptual design of aerospace systems with emphasis on aircraft and missiles. Comprehensive methodologies for aerospace vehicle synthesis and sizing. Integration of technologies.

AE 6344. Aircraft Design II. 4 Credit Hours.
Students work together on this application to complete the preliminary design stage of a specific aircraft or missile. Participants are exposed to disciplinary and interdisciplinary issues.

AE 6353. Orbital Mechanics. 3 Credit Hours.
First graduate-level astrodynamics class that includes two-body orbital mechanics, orbit determination, orbit prediction, orbital maneuvers, lunar and interplanetary trajectories, orbital rendezvous and space navigation.

AE 6354. Advanced Orbital Mechanics. 3 Credit Hours.
Advanced concepts in orbital mechanics including orbit determination, orbital perturbations, time of flight, rendezvous, low thrust trajectories, and multi-body problems. Taught in alternate years.

AE 6355. Planetary Entry, Descent and Landing. 3 Credit Hours.
Enter flight mechanics and dynamics, aerothermodynamics, thermal protection systems, aerodynamic decelerators, descent and landing. Robotic and human exploration mission studies for aerobraking, planetary entry, aerocapture.

AE 6361. Air Breathing Propulsion System Design I. 3 Credit Hours.
Air breathing propulsion design with emphasis on multidisciplinary design issues related to system integration, cycle selection, performance, cost, reliability, maintainability, etc.

AE 6362. Safety by Design. 4 Credit Hours.
Autonomous situational flight model allows students to examine complex behaviors in the “pilot-vehicle-operational conditions" system. Flight certification and airworthiness requirements are mapped into formal scenarios.

AE 6372. Aerospace Systems Engineering. 3 Credit Hours.

AE 6373. Advanced Design Methods I. 4 Credit Hours.
Introduction to modern probabilistic design methods and techniques. Design of experiments, Taguchi methods, response surface equations, robust design, risk and uncertainty, technology assessment and selection.

AE 6374. Advanced Design Methods II. 3 Credit Hours.

AE 6380. Fundamentals of Computer-aided Design and Engineering. 3 Credit Hours.
Introduction to the principles of geometric modeling; 2-D systems; 3-D wireframe, surface and solid representations; mathematical representations of curves, surfaces, solids; application to aerospace design problems. Credit not allowed for both AE 4375 and AE 6380.

AE 6381. Software Development for Engineering Applications. 3 Credit Hours.
Introduction to the development of engineering analysis and visualization software for UNIX workstations with emphasis on rapid prototyping, information modeling, distributed processing, and client/server architectures.

AE 6382. Computing Systems for Engineering Research Laboratory. 1 Credit Hour.
Introduction to computational systems used for engineering research. Basics of Unix and Windows operating systems, survey of the major programming languages, and computing frameworks.

AE 6383. Applied Design Laboratory. 1 Credit Hour.
Introduction to computing tools and processes used in subsequent applied design courses in graduate fixed wing, rotary wing, and space systems design tracks.

AE 6410. Combustion Dynamics. 3 Credit Hours.
Acoustic wave propagation in inhomogeneous flows, flame-acoustic wave interactions, and control of combustion-driven oscillations.

AE 6412. Turbulent Combustion. 3 Credit Hours.
AE 6414. Multi-Phase Combustion. 3 Credit Hours.

AE 6440. Turbine Engine Aerothermodynamics. 3 Credit Hours.
Analysis and design of gas turbine engine components including axial flow compressors, turbines, inlets, and nozzles. Heat transfer and turbine blade cooling.

AE 6445. Combustor Fundamentals. 3 Credit Hours.
Examination of the chemical and aerothermodynamic processes that govern gas turbine combustor performance and design. Also fuel injection, noise, emissions, and testing methodologies.

AE 6450. Rocket Propulsion. 3 Credit Hours.
Analysis and design of rocket engines including solid, hybrid, and advanced propulsion systems.

AE 6451. Electric Propulsion. 3 Credit Hours.
The course provides a solid background of the operating principles, performance characteristics, and design features of the state-of-the-art electric propulsion systems.

AE 6503. Helicopter Stability and Control. 3 Credit Hours.
Helicopter general equations of motion, rotor forces and moments, helicopter stability and control characteristics, handling qualities, flight control system design.

AE 6504. Modern Methods in Aircraft Flight Control. 3 Credit Hours.
Linear quadratic regulator design. Model following control. Stochastic control. Fixed structure controller design. Applications to aircraft flight control.

AE 6505. Random Processes and Kalman Filtering. 3 Credit Hours.
Probability and random variables and processes; correlation; shaping filters; simulation of sensor errors; Wiener filter; random vectors; covariance propagation; recursive least-squares; Kalman filter; extensions.

AE 6506. Aerospace Guidance and Navigation. 3 Credit Hours.

AE 6511. Optimal Guidance and Control. 3 Credit Hours.
Euler-Lagrange formulation; Hamilton-Jacobi approach; Pontryagin's minimum principle; Systems with quadratic performance index; Second variation and neighboring extremals; Singular solutions; numerical solution techniques.

AE 6520. Advanced Flight Dynamics. 3 Credit Hours.
Reference frames and transformations, general equations of unsteady motion, application to fixed-wing, rotary-wing and space vehicles, stability characteristics, flight in turbulent atmosphere.

AE 6530. Multivariable Linear Systems and Control. 3 Credit Hours.
Techniques for analysis and description of multivariable linear systems. Tools for advanced feedback control design for these systems, including computational packages. Credit will not be awarded for both AE 6530 and ECE 6550 or AE 6530 and ME 6401.

AE 6531. Aerospace Robust Control I. 3 Credit Hours.

AE 6532. Aerospace Robust Control II. 3 Credit Hours.
Advanced treatment of robustness issues. Controller analysis and design for linear and nonlinear systems with structured and non-structured uncertainty. Reduced-order control, stability, multipliers, and mixed-mu.

AE 6534. Control of Aerospace Structures. 3 Credit Hours.
Advanced treatment of control of flexible structures. Topics include stability of multi-degree-of-freedom systems, passive and active absorbers and isolation, positive real models, and robust control for flexible structures.

AE 6551. Cognitive Engineering. 3 Credit Hours.
Cognitive engineering addresses a range of technologies and work environments that will support human cognitive performance, including information systems, decision support, automation, and intelligent systems.

AE 6552. Advanced Topics in Humans and Autonomy. 3 Credit Hours.
Establish a deep understanding of the theoretical basis for functions performed by humans and by autonomous systems in dynamic, complex domains.

AE 6561. Reliable Control Software for Aerospace and Embedded Applications. 3 Credit Hours.
Basic principles of reliable control and embedded software design, with aerospace applications. Programming languages and their specific features covered in student projects.

AE 6571. Air Traffic Control and Management. 3 Credit Hours.
Functionalities and technologies of air traffic control and management in the areas of communication, navigation, surveillance; decision aiding, automation; conflict detection resolution; collaborative decision-making.

AE 6580. Aerospace Nonlinear Control. 3 Credit Hours.

AE 6694. Graduate Internship. 1-21 Credit Hours.
Graduate Internship for which the student is paid.

AE 6701. Wind Engineering. 3 Credit Hours.
An introductory course on wind energy and its potential; modeling and design of wind turbines; analysis of the economic benefits of wind turbine systems. Credit will not be awarded for both AE 6701 and ME 6701.

AE 6705. Introduction to Mechatronics. 4 Credit Hours.
Modeling and control of actuators and electro-mechanical systems. Performance and application of microprocessors and analog electronics to modern mechatronic systems.

AE 6721. Evaluation of Human Integrated Systems. 3 Credit Hours.
Evaluation of human integrated systems including translating research questions into measurable objectives, overview of evaluation methods and data analysis techniques applicable to such systems. Credit not allowed for both AE 6721 and ISYE 6231.

AE 6760. Acoustics I. 3 Credit Hours.
Fundamental principles governing the generation, propagation, reflection, and transmission of sound waves in fluids. Crosslisted with ME 6760.

AE 6761. Acoustics II. 3 Credit Hours.
Radiation and scattering of sound waves in fluids, duct acoustics, dissipation phenomena. Crosslisted with ME 6761.

AE 6762. Applied Acoustics. 3 Credit Hours.
Mufflers, resonators, acoustic materials, barriers, industrial noise, room acoustics, active noise control. Crosslisted with ME 6762.
AE 6765. Kinetics and Thermodynamics of Gases. 4 Credit Hours.
Thermodynamics of nonreacting and reacting gas mixtures. Introductory quantum theory, statistical thermodynamics, and gas kinetic theory. Crosslisted with ME 6765.

AE 6766. null. 3 Credit Hours.
Introductory chemical kinetics, detonations and deflagrations, laminar flame propagation in premixed gases, ignition and quenching, laminar diffusion flames and droplet burning, turbulent reacting flows. Crosslisted with ME 6766.

AE 6767. Combustion II. 3 Credit Hours.
Turbulent combustion, combustion instability and control, solid propellants and explosives, chemical kinetics, pollutant formation and destruction, computational and experimental methods for reacting flows. Crosslisted with ME 6767.

AE 6769. Linear Elasticity. 3 Credit Hours.
Governing equations of linear elasticity, plane elasticity, boundary value problems, airy stress function and complex variable methods, simple three-dimensional solutions. Crosslisted with ME 6769.

AE 6770. Energy and Variational Methods in Elasticity and Plasticity. 3 Credit Hours.
Applications of energy and variational methods in engineering mechanics to elastic, plastic, and dynamical behavior of deformable bodies. Crosslisted with ME 6770.

AE 6779. Dynamic System Simulation and Modeling. 3 Credit Hours.
Models of dynamic systems, such as aircraft, ground vehicles and machinery, and manual control. Numerical simulation techniques and applications. Interactive simulators. Student programming project. Crosslisted with ISYE 6779.

AE 6XXX. Aerospace Engr Elective. 1-21 Credit Hours.

AE 7000. Master's Thesis. 1-21 Credit Hours.

AE 7741. Robotics Professional Preparation. 1 Credit Hour.

AE 7742. Robotics Professional Preparation 2. 1 Credit Hour.

AE 7743. Robotics Professional Preparation 3. 1 Credit Hour.

AE 7764. Acoustic Propagation. 3 Credit Hours.
Propagation of sound in inhomogeneous fluids; ray acoustics, ocean and atmospheric acoustics, nonlinear acoustics. Crosslisted with ME 7764.

AE 7772. Fundamentals of Fracture Mechanics. 3 Credit Hours.
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with CHE, CEE, ME, and MSE 7772.

AE 7773. Advanced Fracture Mechanics. 3 Credit Hours.
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with CEE, CHE, ME, and MSE 7773.

AE 7774. Fatigue of Materials and Structures. 3 Credit Hours.
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multiaxial loading, and fatigue crack propagation. Crosslisted with CEE, CHE, ME, and MSE 7774.

AE 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures. 3 Credit Hours.

AE 7785. Introduction to Robotics Research. 3 Credit Hours.
Familiarizes students with the core areas of robotics; mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research.

AE 7791. Damage, Failure and Durability of Composite Materials. 3 Credit Hours.

AE 7792. Advanced Mechanics of Composites. 3 Credit Hours.
Anisotropic elasticity, hygrothermal behavior, stress analysis of laminated composites including 3D effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with CHE, CEE, ME, MSE, and PTFE 7792.

AE 7793. Manufacturing of Composites. 3 Credit Hours.
Major manufacturing techniques of metal-ceramic and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with CHE, CEE, ME, MSE, and PTFE 7793.

AE 8001. Design Seminar. 1 Credit Hour.
Case studies of existing aerospace systems; assessment of design payoffs and risks; industry experts provide case examples and knowledge transfer to course participants; field trips.

AE 8002. AE Graduate Seminar. 1 Credit Hour.
Introduce AE graduate students to world-class aerospace researchers and topics, discuss and demonstrate basic graduate student resources and skills.

AE 8740. Robotics Internship. 1-21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.

AE 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

AE 8750. Robotics Research Foundation I. 3 Credit Hours.
Multidisciplinary research course supervised by two robotics faculty from different schools participating in the robotics Ph.D. program.

AE 8751. Robotics Research Foundation II. 3 Credit Hours.
Continuation of AE 8751 (Robotics Research Foundation I).

AE 8801. Special Topics. 1 Credit Hour.
Special topics of current interest.

AE 8802. Special Topics. 2 Credit Hours.
Special topics of current interest.

AE 8803. Special Topics. 3 Credit Hours.
Special topics of current interest.
AE 8804. Special Topics. 4 Credit Hours.
Special topics of current interest.
AE 8805. Special Topics. 5 Credit Hours.
Special topics of current interest.
AE 8883. Special Topics. 3 Credit Hours.
AE 8900. Special Problems. 1-21 Credit Hours.
AE 8901. Special Problems. 1-21 Credit Hours.
AE 8902. Special Problems. 1-21 Credit Hours.
AE 8903. Special Problems. 1-21 Credit Hours.
AE 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistantships.
AE 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.
AE 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours.
AE 9000. Doctoral Thesis. 1-21 Credit Hours.

Applied Physiology (APPH)

APPH 1040. Scientific Foundations of Health. 2 Credit Hours.
Students will learn how genetics, the environment and human behavior influence well-being. Topics include health fitness, immunity, nutrition, stress management and chronic disease prevention. Credit not allowed for both APPH 1040 and APPH 1050 or APPH 1040 or HPS 1040.

APPH 1050. The Science of Physical Activity and Health. 2 Credit Hours.
Students will learn the importance of health fitness, good nutrition, stress management and chronic disease prevention. Activity portion of course will focus on training to improve fitness. Credit not allowed for both APPH 1050 and HPS 1040 or APPH 1050 or APPH 1040.

APPH 11XX. Wellness Requirement. 1-21 Credit Hours.

APPH 1802. Special Topics. 2 Credit Hours.
Special Topics.

APPH 1XXX. Applied Physiology elective. 1-21 Credit Hours.

APPH 2500. Introduction to Sport Science. 3 Credit Hours.
Students will apply scientific principles to human performance related to sport and movement across an array of topics (e.g., rehabilitation, exercise physiology, locomotion biomechanics, prosthetics).

APPH 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

APPH 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

APPH 2XXX. Applied Physiology elective. 1-21 Credit Hours.

APPH 3000. Survey of Medicine. 3 Credit Hours.
Content focuses on scientific, social, and cultural aspects of illness, how perceptions and behavior influence disease concept and fundamental aspects of medical diagnosis and treatment.

APPH 3300. Health Promotion. 3 Credit Hours.
Through small group discussions and lectures, this class examines contemporary health issues facing college students and the theory and skill required to conduct health promotion activities.

APPH 3500. Nutrition and Health. 2 Credit Hours.
Study of human nutrition as an applied science. Nutrition physiology; metabolism, energy, production, biochemical aspect, role of nutrients, weight control mechanisms, and preventative nutrition in health management will be covered.

APPH 3751. Human Anatomy and Physiology. 3 Credit Hours.
The study of human anatomy and fundamental physiological mechanisms with concentration in skeletal, muscular, nervous, circulatory, respiratory, digestive, urinary, endocrine, and reproductive systems. Crosslisted with BIOL 3751.

APPH 3753. Fundamentals of Anatomy. 3 Credit Hours.
Detailed studies of human body structures using a regional and systems approach. Emphasis is placed on structural relationships and the integration of body systems.

APPH 3754. Laboratory in Human Anatomy. 1 Credit Hour.
A detailed hands-on study of human structure using high resolution models, specialized specimens and dissection of selected mammalian organs and tissues.

APPH 3755. Human Physiology. 3 Credit Hours.
Students will explore the function and adaptation of the human body emphasizing neuromuscular, cardio-respiratory, gastrointestinal, endocrine, and urinary systems to maintain homeostasis and human health.

APPH 3756. Laboratory in Human Physiology. 1 Credit Hour.
A laboratory application of concepts in Physiology, providing hands-on experience focusing primarily on non-invasive human experiments supplemented with vitro tissues experiments.

APPH 3801. Special Topics. 1 Credit Hour.
Topics of current interest in applied physiology.

APPH 3802. Special Topics. 2 Credit Hours.
Topics of current interest in applied physiology.

APPH 3803. Special Topics. 3 Credit Hours.
Topics of current interest in applied physiology.

APPH 3804. Special Topics. 4 Credit Hours.
Topics of current interest in applied physiology.

APPH 3831. Special Topics. 1 Credit Hour.
Topics of current interest in applied physiology.

APPH 3832. Special Topics. 2 Credit Hours.

APPH 3833. Special Topics. 3 Credit Hours.
Topics of current interest in applied physiology.

APPH 3834. Special Topics. 4 Credit Hours.
Topics of current interest in applied physiology.

APPH 3901. Special Problems. 1-21 Credit Hours.
Individual studies in applied physiology.

APPH 3902. Special Problems. 1-21 Credit Hours.
Individual studies in applied physiology.

APPH 3903. Special Problems. 1-21 Credit Hours.
Individual studies in applied physiology.

APPH 3904. Special Problems. 1-21 Credit Hours.
Individual studies in applied physiology.

APPH 4100. Exercise Physiology. 3 Credit Hours.
Physiology of human movement with emphasis on metabolic, cardiorespiratory, and musculoskeletal aspects; associated topics include body composition, thermoregulation, and ergogenic aids.
APPH 4200. Kinesiological Basis of Human Movement. 3 Credit Hours.
Analysis of human movement from a kinesiological, neural and anatomical perspective including the study of locomotion and the mechanisms of selected musculoskeletal injuries, chronic and acute.

APPH 4238. Ion Channel Structure, Function and Regulation. 3 Credit Hours.
We will examine the basic biophysical properties, structure-function relationships, physiological regulation, pathology and pharmacological manipulation of ion channels with heavy reliance on recent literature.

APPH 4400. Human Neuroanatomy. 3 Credit Hours.
The purpose of this course is to learn the anatomical makeup of the human nervous system. In this course we will closely examine details of central and peripheral neuroanatomy with links to function. As well, comparisons with non-human vertebrate neuroanatomy will be made. Credit not allowed for both APPH 4400 and APPH 6400.

APPH 4600. Muscle Structure and Plasticity. 3 Credit Hours.
To provide an in-depth understanding of the biological processes underlying skeletal muscle structure and function.

APPH 4651. Human Anatomy. 4 Credit Hours.
The study of human system anatomy involving cadaver dissection, lectures and practical exams. The human muscular, nervous, skeletal and cardiorespiratory systems will be emphasized.

APPH 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

APPH 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research under the guidance of a faculty member.

APPH 4801. Special Topics. 1 Credit Hour.
Topics of current interest in applied physiology.

APPH 4802. Special Topics. 2 Credit Hours.
Topics of current interest in applied physiology.

APPH 4803. Special Topics. 3 Credit Hours.
Topics of current interest in applied physiology.

APPH 4804. Special Topics. 4 Credit Hours.
Topics of current interest in applied physiology.

APPH 4831. Special Topics. 1 Credit Hour.
Topics of current interest in applied physiology.

APPH 4832. Special Topics. 2 Credit Hours.
Topics of current interest in applied physiology.

APPH 4833. Special Topics. 3 Credit Hours.
Topics of current interest in applied physiology.

APPH 4834. Special Topics. 4 Credit Hours.
Topics of current interest in applied physiology.

APPH 6202. Clinical Gait Analysis. 3 Credit Hours.
Analysis of normal and pathological human locomotion. Study of theory and instrumentation for measurement of temporal and spatial kinematics and kinetics, electromyography, and plantar pressure.

APPH 6203. Biomechanics and Kinesiology in Prosthetics and Orthotics. 2 Credit Hours.
Mechanics of human movement applied to the study of artificial limbs and braces. Emphasis on neuromuscular control, Newtonian mechanics, kinematics and kinetics.

APPH 6209. Clinical Pathology. 2 Credit Hours.
Systems level overview of human pathology with emphasis on the effect of disease on human movement and neuromechanical function.

APPH 6211. Systems Physiology I: Cellular Mechanisms of Plasticity. 3 Credit Hours.
The course will focus on adaptations of skeletal, muscular, and neural systems at the cellular level.

APPH 6212. Systems Physiology II: Physiology of Neuromotor Tissues. 3 Credit Hours.
The course will focus on function and adaptations of skeletal, muscular, and neural systems. Interactions among the various systems and their plasticity will be emphasized.

APPH 6213. Systems Physiology III: Integrated Systems and Adaptation. 3 Credit Hours.
The course will focus on integrative mechanism impacting motor system performance. Interactions among the various systems and their plasticity will be emphasized.

APPH 6214. Laboratory Rotations in Prosthetics and Orthotics. 2 Credit Hours.
This course will provide the opportunity for students in individual laboratories to support their graduate training in prosthetics and orthotics.

APPH 6215. Studies in Responsible Conduct of Research in Prosthetics and Orthotics. 3 Credit Hours.
This course will cover areas related to research ethics, the responsible use of animal and human models and collaborative research issues in prosthetics and orthotics.

APPH 6216. Studies in Rehabilitation Research: Prosthetics and Orthotics. 1 Credit Hour.
This course will provide students in the PhD Training Program in Prosthetics and Orthotics to study issues in Rehabilitation Medicine.

APPH 6223. CAD/CAM in Prosthetics and Orthotics Laboratory. 1 Credit Hour.
Theoretical and practical analysis of the application of computer-aided design and manufacturing to prosthetics and orthotics. Includes methods of digitization and multiple manufacturing processes.

APPH 6225. Biostatistics. 3 Credit Hours.
Introductory statistical principles and methods of experimental design, sampling, power estimation, and hypothesis testing using ANOVA and regression.

APPH 6230. Exercise Metabolism. 3 Credit Hours.
The course will focus on the biochemical pathways that provide fuel for the human body during rest and various levels of physical activity.

APPH 6231. Biomechanical Aspects of Human Motor Control. 3 Credit Hours.
The course will examine selected motor control problems that the nervous system faces in the process of managing this mechanical complexity.

APPH 6232. Locomotion Neuromechanics. 3 Credit Hours.
This is a course that will introduce topics on the biomechanical and neural aspects of the control of limb locomotion and movement.

APPH 6233. The Aging Movement Control System. 3 Credit Hours.
The aim of this course is to review research literature dealing with the effects of advances in age on the CNS and motor performance.

APPH 6234. Physical Activity as a Human Behavior. 3 Credit Hours.
Focus is on understanding physical activity as a behavior using health behavior change models. An interdisciplinary perspective integrating research from the fields of epidemiology, physiology, and psychology.
APPH 6235. Mechanics and Pathomechanics of Movement Control. 3 Credit Hours.
This course is designed to understand the potential effects of selected disorders of the neuromuscular system on movement control.

APPH 6236. Neuromuscular Physiology. 3 Credit Hours.
This course discusses the application of current experimental techniques in human studies in vivo.

APPH 6237. Methods of Human Neuroimaging. 3 Credit Hours.
The purpose of the course is to introduce various methods of functional neuroimaging in humans.

APPH 6238. Ion Channel Structure, Function and Regulation. 3 Credit Hours.
This course will examine the structure, function and regulation of ion channels from both excitable and non-excitable cells.

APPH 6239. Movement Disorders. 3 Credit Hours.
This course serves as an introduction to the clinical and research aspects of movement disorders.

APPH 6400. Human Neuroanatomy. 3 Credit Hours.
The purpose of this course is to learn the anatomical makeup of the human nervous system. In this course we will closely examine details of central and peripheral neuroanatomy with links to function. As well, comparisons with non-human vertebrate neuroanatomy will be made.

APPH 6500. Classics in Neuroscience. 1 Credit Hour.
The purpose of this seminar is to learn and explore the history of neuroscience from a perspective of reading classic papers that have evolved.

APPH 6600. Muscle Structure and Plasticity. 3 Credit Hours.
Covers the biological processes underlying skeletal muscle structure and function, as well as rigorous mathematical models of those processes.

APPH 6651. Human Anatomy. 4 Credit Hours.
The study of human system anatomy involving cadaver dissection, lectures and practical exams. The human muscular, nervous, skeletal and cardiorespiratory systems will be emphasized.

APPH 6710. Ethics of Biotechnology and Bioengineering Research. 3 Credit Hours.
This course examines the ethics of biotechnological research, including issues in the realm of research ethics, bioethics, and healthcare robotics.

APPH 6746. Rehabilitation Engineering. 3 Credit Hours.
Students will participate in rehabilitation engineering as practiced in the assistive technology industry. Credit not allowed for both APPH 6746 and ME 6746.

APPH 6895. Lower Limb Orthotics I. 3 Credit Hours.
This course is the first part of a two course series and sets the essential elements of theory, technical design and patient management.

APPH 6896. Lower Limb Orthotics II. 4 Credit Hours.
This course is the second in a two part course series and applies more advanced elements of theory, technical design and patient management.

APPH 6971. Introduction to P&O Processes and Clinical Methods. 1 Credit Hour.
This course introduces basic processes for fabrication of prostheses and orthoses. Clinical methods associated with the provision of prostheses and orthoses will also be introduced.

APPH 6975. Introduction to Prosthetics. 2 Credit Hours.
This course introduces the history and development of external limb prostheses including their design, alignment, socket interfaces, suspension mechanisms, and components.

APPH 6981. Upper Limb Prosthetics. 4 Credit Hours.
Clinical training for the practice of prosthetics emphasizing adult and pediatric upper limb prostheses.

APPH 6982. Spinal Orthotics. 4 Credit Hours.
Clinical training for the practice of orthotics emphasizing adult and pediatric spinal orthoses.

APPH 6983. Upper Limb Orthotics. 3 Credit Hours.
Clinical training for the practice of orthotics emphasizing adult and pediatric upper limb orthoses.

APPH 6984. Transtibial Prosthetics. 4 Credit Hours.
Clinical training for the practice of prosthetics emphasizing adult and pediatric transtibial (below knee) prostheses.

APPH 6985. Transfemoral Prosthetics. 4 Credit Hours.
Clinical training for the practice of prosthetics emphasizing adult and pediatric transfemoral (above knee) prostheses.

APPH 6997. Assistive Technology. 1 Credit Hour.
Theories and devices associated with assistive technology and mobility aids, emphasizing topics important to clinical practice in prosthetics and orthotics.

APPH 6999. Clinical Practicum in Prosthetics and Orthotics. 1-21 Credit Hours.
Clinical observation of the practice of prosthetics and orthotics and related medical disciplines.

APPH 8000. Seminar. 3 Credit Hours.
The purpose of this course is for students to learn the research process from the early stage of identifying a question through publication of work.

APPH 8009. Research Seminar I. 1 Credit Hour.
A forum for graduate students in prosthetics and orthotics to present topics related to their research interests.

APPH 8010. Seminar in Prosthetics and Orthotics. 1 Credit Hour.
A forum for graduate students in prosthetics and orthotics to present and discuss topics related to their research interests.

APPH 8012. Research Seminar III. 3 Credit Hours.
A forum for graduate students in prosthetics and orthotics to present topics related to their research interests.

APPH 8801. Special Topics. 1 Credit Hour.
Topics of special interest not covered in the regular course offerings.

APPH 8802. Special Topics. 2 Credit Hours.
Topics of special interest not covered in the regular course offerings.

APPH 8803. Special Topics. 3 Credit Hours.
Topics of special interest not covered in the regular course offerings.

APPH 8804. Special Topics. 4 Credit Hours.
Topics of special interest not covered in the regular course offerings.

APPH 8813. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.

APPH 8823. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.

APPH 8833. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.

APPH 8901. Special Problems. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest.
APPH 8902. Special Problems. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest.

APPH 8903. Special Problems. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest.

APPH 8997. Teaching Assistantship. 1-21 Credit Hours.
This course is for students holding a graduate teaching assistantship.

APPH 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding research assistantships.

APPH 9000. Doctoral Thesis. 1-21 Credit Hours.

Arabic (ARBC)

ARBC 1001. Elementary Arabic I. 4 Credit Hours.
Development of basic communication skills in the spoken language. Introduction to the writing system, the reading of simple texts, and basic grammatical structures.

ARBC 1002. Elementary Arabic II. 4 Credit Hours.
Continuation of Arabic I.

ARBC 10X1. Trans Arabic Elementary I. 3 Credit Hours.

ARBC 10X2. Trans Arabic Elementary II. 3 Credit Hours.

ARBC 1501. Understanding Arab Culture. 3 Credit Hours.
Arab beliefs and values regarding topics such as religion, society, family, the dynamics between men and women, and social norms are discussed. Taught in English.

ARBC 1801. Special Topics. 1 Credit Hour.
Topics of current interest in Arabic.

ARBC 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 1814. Special Topics. 4 Credit Hours.
Topics of current interest in Arabic.

ARBC 1823. Special Topics. 3 Credit Hours.
Special Topics for Arabic.

ARBC 1XXX. Arabic Elective. 1-21 Credit Hours.

ARBC 2001. Intermediate Arabic I. 3 Credit Hours.
This course continues the introduction to features of Arabic in the context of Arab culture at large. Students are exposed to features of several Arabic dialects.

ARBC 2002. Intermediate Arabic II. 3 Credit Hours.
This course is a continuation of ARBC 2001.

ARBC 2301. Arabic Arts, Science and Technology Through History. 3 Credit Hours.
An examination of Arab accomplishments in Sciences, Technology, Philosophy and Art (700-1300 AD) through historical documents, books and movies. Taught in English.

ARBC 2698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARBC 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARBC 2811. Special Topics. 1 Credit Hour.
Topics of current interest in Arabic.

ARBC 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 2821. Special Topics. 2 Credit Hours.
Topics of current interest in Arabic.

ARBC 2823. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 2833. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 2XXX. Arabic Elective. 1-21 Credit Hours.

ARBC 3001. Advanced Arabic I. 3 Credit Hours.
Advanced grammar, listening, reading, writing, speaking, the language of contemporary Arabic society, politics and culture through task-based language teaching. Taught in Arabic.

ARBC 3002. Advanced Arabic II. 3 Credit Hours.
Listening, reading, writing, speaking the language of contemporary Arabic society, politics and culture through task-based language teaching. Taught in Arabic.

ARBC 3501. Men-Women In Islam. 3 Credit Hours.
The course discusses contemporary Arab women and men writers’ interpretation of the Qur’an demonstrating the egalitarian and anti-patriarchal nature of its teachings. Taught in English.

ARBC 3691. Intensive Advanced Arabic. 3 Credit Hours.
Develops students’ receptive & communicative skills in Arabic while capitalizing on the rich linguistic & cultural surroundings. Part of ARBC LBAT summer program.

ARBC 3692. Arabic for Business and Technology I. 3 Credit Hours.
The first sequence of two courses in which students learn the linguistic and pragmatic language of business culture in the Arab World. Taught in Arabic.

ARBC 3693. Arabic for Business and Technology II. 3 Credit Hours.
The continuation of two courses in which students learn the linguistic and pragmatic language of business culture in the Arab World. Taught in Arabic.

ARBC 3811. Special Topics. 1 Credit Hour.
Topics of current interest in Arabic.

ARBC 3812. Special Topics. 2 Credit Hours.
Topics of current interest in Arabic.

ARBC 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 3XXX. Arabic Elective. 1-21 Credit Hours.

ARBC 4698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARBC 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARBC 4813. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.

ARBC 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Arabic.
ARCH 4XXX. Arabic Elective. 1-21 Credit Hours.

Architecture (ARCH)

ARCH 1009. Fundamentals of Architectural Design I. 4 Credit Hours.
Introduction to creative problem-solving and the design realization cycle through project-based design exercises that emphasize the role of representation.

ARCH 1010. Fundamentals of Architectural Design II. 4 Credit Hours.
Introduction to the design of complex problems through an emphasis on integrative and collaborative design strategies, research, critical reflection, and interdisciplinary teamwork.

ARCH 1016. Foundation Studio 1. 4 Credit Hours.
Introduction to creative problem-solving and the design realization cycle through project-based design exercises that emphasize the role of representation.

ARCH 1017. Architecture Design Studio 1. 5 Credit Hours.
Introduction to the design of complex problems through an emphasis on integrative and collaborative design strategies, research, critical reflection, and interdisciplinary teamwork.

ARCH 1020. Media + Modeling 1. 3 Credit Hours.
Intermediate approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 1060. Introduction to Design and the Built Environment. 3 Credit Hours.
Introduction to architecture and building construction through case studies that illuminate past and present practices, as well as future possibilities within the discipline.

ARCH 1854. Special Topics. 4 Credit Hours.
Special topics in design.

ARCH 1XXX. Architecture Elective. 1-21 Credit Hours.

ARCH 2020. Media + Modeling 2. 3 Credit Hours.
Advanced approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 2111. History of Architecture I. 3 Credit Hours.
Architectural history from antiquity through the eighteenth century emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.

ARCH 2112. History of Architecture II. 3 Credit Hours.
Architectural history during the nineteenth and twentieth centuries emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.

ARCH 2115. Modern Architecture and Art in Europe, America and Australia: Nineteenth and Twentieth Centuries. 3 Credit Hours.
A brief survey of architecture and art in the nineteenth and twentieth centuries, including a discussion of related influences on developments in those fields.

ARCH 2211. Construction Technology and Design Integration I. 3 Credit Hours.
Introduction to building anatomy, technical and expressive characteristics of materials and their organizational assembly.

ARCH 2472. Architecture Modeling & Media 2. 3 Credit Hours.
Intermediate approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 2474. Architecture Modeling & Media 3. 3 Credit Hours.
Advanced approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARCH 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARCH 2803. Special Topics. 3 Credit Hours.

ARCH 2854. Special Topics. 4 Credit Hours.
Special Topics in design.

ARCH 2XXX. Architecture Elective. 1-21 Credit Hours.

ARCH 3007. Art & Architecture in Greece. 3 Credit Hours.
An intensive on-site investigation of the role that the arts and architecture have played in the development of classical Greek civilization.

ARCH 3008. Art & Architecture in Italy I. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.

ARCH 3009. Art & Architecture in Italy II. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque Periods in Italy with special emphasis on the works in Rome.

ARCH 3010. Design Strategies. 3 Credit Hours.
The design process as reflection in action. The logic of design decisions. The synthesis of diverse bodies of knowledge in design. Interdisciplinary collaborations in design.
ARCH 3011. Architectural Design IV, V, VI. 5 Credit Hours.
Intermediate architectural design projects emphasizing the functional
priorities and expressive potential of building technologies through studio
problems of varying programmatic and contextual complexity.

ARCH 3012. Architectural Design IV, V, VI. 5 Credit Hours.
Intermediate architectural design projects exploring the inter-
relationships of various programmatic models, normative building types,
and technological themes within specific physical, urban, and cultural
contexts.

ARCH 3016. Architecture Design Studio IV. 5 Credit Hours.
Intermediate architectural design projects emphasizing the functional
priorities and expressive potential of building technologies through studio
problems of varying programmatic and contextual complexity.

ARCH 3017. Architecture Design Studio V. 5 Credit Hours.
Intermediate architectural design projects exploring the inter-
relationships of various programmatic models, normative building types,
and technological themes within specific physical, urban and cultural
contexts.

ARCH 3115. Modern Arch and Art Workshop. 3 Credit Hours.
A brief survey of key ideas of architecture and art in the twentieth century
and exploration of their application to current architectural design and
representation.

ARCH 3135. City Literacy. 3 Credit Hours.
The course frames the city as material and social space, focusing on everyday experience in exemplary cities to explore how they are
conceived and negotiated.

ARCH 3231. Environmental Systems and Design Integration I. 3 Credit
Hours.
Human physiology, the occupation of space, and principles of
sustainability. Micro-climate, energy consumption, thermal loading,
passive solar strategies, daylighting, optics, and acoustics.

ARCH 3241. Fundamentals of Structures. 3 Credit Hours.
Physics of structure: principles of statics, strengths of materials, and the
dynamic forces acting upon them.

ARCH 3404. Architectural Design Studio III. 4 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
problematize urban context culturally, ecologically, and technologically.

ARCH 3405. Architectural Design Studio IV. 4 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
problematize urban context culturally, ecologically, and technologically.

ARCH 3855. Special Topics. 5 Credit Hours.
Special Topics in design.

ARCH 3XXX. Architecture Elective. 1-21 Credit Hours.

ARCH 4011. Architectural Design Studio V. 5 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
engage and problematize urban context culturally, ecologically, and
technologically.

ARCH 4012. Architectural Design Studio VI. 5 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
engage and problematize urban context culturally, ecologically, and
technologically.

ARCH 4015. Structures 1. 3 Credit Hours.
Gravity loads on building structures. Introduction to structural planning.
Design of wood and steel structures. Properties of wood and architectural

ARCH 4016. Architecture Design Studio 6. 5 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
engage and problematize urban context culturally, ecologically and
technologically.

ARCH 4017. Architecture Design Studio 7. 6 Credit Hours.
Advanced studies in architectural design emphasizing application of
analytical, conceptual, and representational skills within projects that
engage and problematize urban context culturally, ecologically and
technologically. Capstone Design Studio.

ARCH 4025. Structures 2. 3 Credit Hours.
Lateral loads and lateral load resisting systems for building structures.
Design and application of Portland cement concrete mixtures. Design of

ARCH 4107. Introduction to Historic Preservation. 3 Credit Hours.
This course provides an overview of the history, philosophy, organization,
current legislation, policies, and practice of historic preservation.

ARCH 4109. Architecture and Minimalism. 3 Credit Hours.
This course examines the influence of "minimalism," the 1960s art phenomenon, upon architecture culture and production from 1968-
present.

ARCH 4110. Public Space: Questions and Configurations. 3 Credit Hours.
This course addresses questions concerning present-day configurations
of public space as a platform for analysis of the contemporary city.

ARCH 4112. Architecture in Georgia. 3 Credit Hours.
A field study and archival research on the architecture of the state of
Georgia outside of Atlanta.

ARCH 4113. History of Renaissance and Mannerist Architecture. 3 Credit
Hours.
Investigation of the history and theory of Renaissance and Mannerist
arithmetic with a primary emphasis on Italy.

ARCH 4114. Medieval Architecture. 3 Credit Hours.
Investigations of the architecture of Medieval Europe with an emphasis
on English and French Romanesque and Gothic, including towns and
castles.

ARCH 4115. Introduction to Principles of Classical Design. 3 Credit
Hours.
An introduction to the principles of Classical and traditional architectural
design through readings, discussions, and site visits with Classical
architects.

ARCH 4117. Architecture and the Arts and Crafts Movement. 3 Credit
Hours.
Investigations in the theory, design, and building methods of English and
American architects associated with the Arts and Crafts Movement.

ARCH 4118. American Academic Architecture. 3 Credit Hours.
Investigations of the history and theory of late nineteenth- and twentieth-
century classicism in America.

ARCH 4119. Architecture of Frank Lloyd Wright. 3 Credit Hours.
Investigations on the life and work of Frank Lloyd Wright.
ARCH 4120. Atlanta Architecture. 3 Credit Hours.
Investigations through lectures, reading, and research of the history of Atlanta architecture and significant architectural firms from the city’s founding to the present.

ARCH 4123. European Modernism. 3 Credit Hours.
Survey of European architecture from Art Nouveau to LeCorbusier.

ARCH 4124. History of Architecture in the United States. 3 Credit Hours.
History investigations of architecture within the continental United States from the colonial period to the present.

ARCH 4125. French Architecture from Ledoux to LeCorbusier. 3 Credit Hours.
History of French architecture from Ledoux to LeCorbusier with special emphasis on Paris.

ARCH 4126. Paris Urban History. 3 Credit Hours.
The social, cultural, urban, and architectural history of the city of Paris, from its founding until the present. Course offered in Paris only.

ARCH 4127. Introduction to Art and Architecture in Italy. 1 Credit Hour.
Required preparation for the COA Summer Program in Italy. The course includes the fundamentals of art and architecture, basic Italian language skills, and library research for required summer program projects.

ARCH 4128. Barcelona: Architecture, Urban Design, Public Space. 3 Credit Hours.
Architectural history of the city of Barcelona and its public spaces, with a focus on the major urban and architectural projects since 1850. Offered through the Studies Abroad Program.

ARCH 4129. Form and Narrative: Cross Media Analysis. 3 Credit Hours.
This theory course will involve an extended comparison between architecture and related art forms, especially painting, film, and writing.

ARCH 4133. Architecture and Discourse of the Everyday. 3 Credit Hours.
Introduction to ecological design theory, research, and practice in architecture, including writings, criticism, and analyses of buildings and projects.

ARCH 4134. History of Architecture in the United States. 3 Credit Hours.
Survey of European architecture from Art Nouveau to LeCorbusier.

ARCH 4217. Architectural Structures and Design Integration II. 3 Credit Hours.
Integration, representation, and constructability of building assemblies and structural systems. Grading, drainage, foundations, structure, and enclosure in relation to building codes and principles of sustainability.

ARCH 4225. Reinvestigating the Detail: The Ornamental and the Everyday. 3 Credit Hours.
Explores the role of the detail in contemporary architectural practice.

ARCH 4226. Green Construction. 3 Credit Hours.
This course focuses on the means, methods, strategies, and technologies to improve the energy efficiency and performance of buildings, and to reduce the environmental impact of buildings. Credit will not be awarded for both ARCH 4226 and ARCH 6226 or ARCH 4226 and BC 4710.

ARCH 4227. Architecture and Ecology. 3 Credit Hours.
Introduction to ecological design theory, research, and practice in architecture, including writings, criticism, and analyses of buildings and projects.

ARCH 4231. Environmental Systems and Design Integration II. 3 Credit Hours.
Active building systems design: artificial lighting, mechanical, electrical, communication, transportation systems. Case studies of integrated and sustainable building assemblies.

ARCH 4232. On Growth and Form. 3 Credit Hours.
Combination of aesthetic theory, history and digital design theory. The tracing of digital design (or generative design) back to its early roots in Romanticism.

ARCH 4240. Building Simulation in Design Practice. 3 Credit Hours.

ARCH 4251. Architectural Structures and Design Integration I. 3 Credit Hours.

ARCH 4252. Architectural Structures and Design Integration II. 3 Credit Hours.

ARCH 4253. Advanced Structures Seminar. 3 Credit Hours.
Fundamentals of steel and concrete design and the computerized design of steel and concrete structural systems for multi-story buildings.

ARCH 4303. Programming and Building Evaluation. 3 Credit Hours.
Building programming and evaluation of building performance with respect to the aims of organizational users, policy development, and the process of planning and design decisions.

ARCH 4305. Near and Far: Cross-Cultural Practices in Art, Architecture and Design. 3 Credit Hours.
This course will address the material culture of globalization and cultural diffusion, emphasizing the multicultural registers of work produced between and across geographical, cultural, and disciplinary boundaries.

ARCH 4310. How do we dwell?. 3 Credit Hours.
Explores environmental behavior and the role of design in it through exploration of place and space, communal identity and memory, and natural and social ecology.
ARCH 4315. Professional Practice of Architecture. 3 Credit Hours.
Principles and framework of professional practice including ethics, legal climate, business practices and contracts, project process and management, office organization, and methods of building production.

ARCH 4316. Traditions of Architectural Practice. 3 Credit Hours.
Critical examination of architectural practice. Cultural derivation and technological transformation of various conventions of representation, construction, and design; speculation about future paradigms of architectural practice.

ARCH 4320. Retrofitting Suburbia. 3 Credit Hours.
Study of suburban redevelopment trends, projects, and policies that improve environmental, social, and economic sustainability, with an emphasis on urban design strategies. Credit not awarded for both ARCH 4320 and COA 6120.

ARCH 4330. Understanding Clients and Users: Methods for Programming and Evaluation. 3 Credit Hours.
Theories and methods of architectural programming and evaluation.

ARCH 4334. Housing and Culture. 3 Credit Hours.
Examination of social, cultural, and behavioral issues as they influence the form of houses and housing.

ARCH 4335. The Social Practice of Architecture. 3 Credit Hours.
Introduction to theories and findings about human use and experience of architecture.

ARCH 4350. Architectural Theory. 3 Credit Hours.

ARCH 4404. Architectural Design Studio V. 4 Credit Hours.
Advanced studies in architectural design emphasizing application of analytical, conceptual, and representational skills within projects that problematize urban context culturally, ecologically, and technologically.

ARCH 4405. Architectural Design Studio VI. 4 Credit Hours.
Advanced studies in architectural design emphasizing application of analytical, conceptual and representational skills within projects that engage and problematize context culturally, ecologically and technologically.

ARCH 4411. Introduction to Visual Arts. 3 Credit Hours.
Orientation to issues of visual perception and representation of form and space through freehand drawing, composition, color, texture, mixed-media, and journal making.

ARCH 4412. Drawing and the Human Figure. 3 Credit Hours.
Studio instruction in figure drawing from the live model with emphasis on the structure and dynamics of the human figure.

ARCH 4413. Collage Making. 3 Credit Hours.
Concepts of collage within art, architecture, and culture; manual and electronic approaches to two and three-dimensional collage making.

ARCH 4414. Representation in Watercolor. 3 Credit Hours.
Introductory course in the use of transparent watercolor for field painting and architectural representation. Theory of pigment characteristics in applied painting.

ARCH 4415. Photography I. 3 Credit Hours.
Introduction to studio, darkroom, and field photography with emphasis on composition, processing, and printing.

ARCH 4416. Photography II. 3 Credit Hours.
Advanced techniques in photography. Use of color, filters, four-by-five format cameras with emphasis on architectural photography.

ARCH 4417. Building Furniture and Furnishing Buildings. 3 Credit Hours.
A course that focuses on schematic design development of furniture. The emphasis of this course is on conceptual development and material and structural clarity.

ARCH 4447. Urban Ecological Design. 3 Credit Hours.
This course engages the contemporary issues of urban ecology and its articulation to design. It explores relationship between urban forms and flows of ecology, energy, material, water and information. Credit will not be awarded for both ARCH 4447 and ARCH 6447 or ARCH 4447 and CP 6836.

ARCH 4503. BIM (Building Information Modeling) Applications. 3 Credit Hours.
Survey of Building Information Modeling - its technologies exploration of new technologies to be applied and new procedures of project execution. Credit is not awarded for both ARCH 4503 and ARCH 6503.

ARCH 4505. Geometric Constructs. 3 Credit Hours.
Geometric surface and solid construction fundamentals using parametric modeling tools; use of sketching workbenches. Credit will not be awarded for both ARCH 4505 and ARCH 6505.

ARCH 4507. Parametric Design. 3 Credit Hours.
Exploration of concepts and mechanisms for creating custom parametric models that use hierarchies of relationships, constraints and rules for architectural components through parameters. Credit not awarded for both ARCH 4507 and ARCH 6507.

ARCH 4508. Shape Grammars. 3 Credit Hours.
Shape grammars are a powerful formal system for the generative description, interpretation and evaluation of designs. Credit will not be awarded for both ARCH 4508 and ARCH 6508.

ARCH 4515. Collaborative Design Workshop. 3 Credit Hours.
Collaborative Design Workshop provides a platform for students to participate in a "live project" that requires them to navigate external relationships and constraints as part of the design process.

ARCH 4630. Architecture, Space and Culture. 3 Credit Hours.
Analytical models of the social functions of architectural space and evaluation of associated design choices, across a variety of building types.

ARCH 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARCH 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ARCH 4701. Analog-Digital Design Computing. 3 Credit Hours.
Analog and digital approaches in design computation. Visual and symbolic representations. Algorithmic and computational tools. History and logic. Credit will not be awarded for both ARCH 4701 and ARCH 6501.

ARCH 4702. Design Scripting. 3 Credit Hours.
Learning the concepts and application of scripting languages in architecture and form generation. Credit will not be awarded for both ARCH 4702 and ARCH 6502.

ARCH 4770. Psychology and Environmental Design. 3 Credit Hours.
Introduction to psychological concepts relevant to environmental design. Survey of selected methods for assessing human-made environments. Crosslisted with PSYC 4770.
ARCH 4801. Special Topics. 1 Credit Hour.
ARCH 4802. Special Topics. 2 Credit Hours.
ARCH 4803. Special Topics. 3 Credit Hours.
ARCH 4804. Special Topics. 4 Credit Hours.
ARCH 4805. Special Topics. 5 Credit Hours.
ARCH 4811. Special Topics: Architectural Design. 1 Credit Hour.
ARCH 4812. Special Topics: Architectural Design. 2 Credit Hours.
ARCH 4813. Special Topics: Architectural Design. 3 Credit Hours.
ARCH 4814. Special Topics: Architectural Design. 4 Credit Hours.
ARCH 4815. Special Topics: Architectural Design. 5 Credit Hours.
ARCH 4821. Special Topics in History and Theory. 3 Credit Hours.
ARCH 4822. Special Topics in History and Theory. 3 Credit Hours.
ARCH 4823. Special Topics in History and Theory. 3 Credit Hours.
ARCH 4831. Special Topics in Technology. 3 Credit Hours.
ARCH 4832. Special Topics in Technology. 3 Credit Hours.
ARCH 4833. Special Topics in Technology. 3 Credit Hours.
ARCH 4841. Special Topics: Professional and Social Practice. 3 Credit Hours.
ARCH 4842. Special Topics: Professional and Social Practice. 3 Credit Hours.
ARCH 4843. Special Topics: Professional and Social Practice. 3 Credit Hours.
ARCH 4851. Special Topics. 1 Credit Hour.
ARCH 4852. Special Topics. 2 Credit Hours.
ARCH 4853. Special Topics. 3 Credit Hours.
ARCH 4855. Special Topics. 5 Credit Hours.
ARCH 4863. Special Topics. 3 Credit Hours.
Special topics in design.
ARCH 4901. Special Problems. 1-21 Credit Hours.
ARCH 4902. Special Problems. 1-21 Credit Hours.
ARCH 4903. Special Problems. 1-21 Credit Hours.
ARCH 4904. Special Problems. 1-21 Credit Hours.
ARCH 4905. Special Problems. 1-21 Credit Hours.
ARCH 4911. Special Problems - Visual Communications. 1-21 Credit Hours.
ARCH 4912. Special Problems - Visual Communications. 1-21 Credit Hours.
ARCH 4913. Special Problems - Visual Communications. 1-21 Credit Hours.
ARCH 4914. Special Problems - Visual Communications. 1-21 Credit Hours.
ARCH 4915. Special Problems: Architectural Design. 1-21 Credit Hours.
ARCH 4921. Special Problems: History, Theory, and Criticism. 1-21 Credit Hours.
ARCH 4922. Special Problems: History, Theory, and Criticism. 1-21 Credit Hours.
ARCH 4923. Special Problems: History, Theory, and Criticism. 1-21 Credit Hours.
ARCH 4931. Special Problems: Architectural Technology. 1-21 Credit Hours.
ARCH 4932. Special Problems: Architectural Technology. 1-21 Credit Hours.
ARCH 4933. Special Problems: Architectural Technology. 1-21 Credit Hours.
ARCH 4941. Special Problems. 1-21 Credit Hours.
ARCH 4942. Special Problems. 1-21 Credit Hours.
ARCH 4943. Special Problems. 1-21 Credit Hours.
ARCH 4951. Special Problems. 1-21 Credit Hours.
ARCH 4952. Special Problems. 1-21 Credit Hours.
ARCH 4953. Special Problems. 1-21 Credit Hours.
ARCH 494X. Architecture Elective. 1-21 Credit Hours.
ARCH 6007. Art & Architecture in Greece. 3 Credit Hours.
An intensive on-site investigation of the role that the arts and architecture have played in the development of classical Greek civilization.
ARCH 6008. Art & Architecture in Italy I. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.
ARCH 6009. Art & Architecture in Italy II. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque periods in Italy with special emphasis on the works of Rome.
ARCH 6010. Media + Modeling 1. 3 Credit Hours.
Introductory approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.
ARCH 6011. Urban Design Laboratory. 6 Credit Hours.
Urban design laboratory problems focusing on analysis, design, and implementation strategies for contemporary urban problems.
ARCH 6015. Structures 1. 3 Credit Hours.
This course provides students with a basic knowledge of analysis and design of building structures and the ordering of structural systems to resist gravity and lateral loads.

ARCH 6016. Structures 2. 3 Credit Hours.
Introduction to structural design and framing systems for steel and concrete with consideration of lateral loads and lateral load resisting systems.

ARCH 6020. Media + Modeling 2. 3 Credit Hours.
Intermediate approaches to two dimensional modeling and representation in architecture using both manual and digital media techniques.

ARCH 6024. Architecture Core I Studio. 5 Credit Hours.
Foundation studies in architectural design emphasizing analytical and analogical generative strategies applied to studio problems that engage architectural representation, composition, and fabrication. Credit not allowed for both ARCH 6024 and ARCH 4021.

ARCH 6026. Architecture Core II Studio. 5 Credit Hours.
Intermediate studies in architectural design emphasizing integrative design strategies that engage the programmatic, contextual, and constructed dimensions of architecture and its representations. Credit not allowed for both ARCH 6026 and ARCH 4022.

ARCH 6027. Architecture Core III Studio. 5 Credit Hours.
Intermediate studies in architectural design emphasizing integrative design strategies that engage the programmatic, contextual, and constructed dimensions of architecture and its representations. Credit not allowed for both ARCH 6027 and ARCH 4023.

ARCH 6028. Core I Studio. 5 Credit Hours.
Foundation studies in architectural design emphasizing analytical and analogical generative strategies applied to studio problems that engage architectural representation, composition, and fabrication.

ARCH 6029. Core 2 Studio. 5 Credit Hours.
Intermediate studies in architectural design emphasizing integrative design strategies that engage the programmatic, contextual, and constructed dimensions of architecture and its representations.

ARCH 6030. Core 3 Studio. 5 Credit Hours.
Intermediate studies in architectural design emphasizing integrative design strategies that engage the programmatic, contextual, and constructed dimensions of architecture and its representations.

ARCH 6039. Advanced Architectural Studio 1. 6 Credit Hours.
Architectural design studio exploring advanced issues in architecture from the perspectives of professional practice, sustainability, technology and urban design.

ARCH 6040. Advanced Architectural Studio 2. 6 Credit Hours.
Architectural design studio exploring advanced issues in architecture from the perspectives of professional practice, sustainability, technology and urban design.

ARCH 6049. Design + Research Studio 1. 6 Credit Hours.
Advanced architectural design emphasizing innovation through applied research. Emerging methods of design generation/evaluation. Changing topics: healthcare, fabrication, urbanism, ecology, building performance, cultural institutions.

ARCH 6050. Design + Research Studio 2. 6 Credit Hours.
Advanced architectural design emphasizing innovation through applied research. Emerging methods of design generation/evaluation. Changing topics: healthcare, fabrication, urbanism, ecology, building performance, cultural institutions.

ARCH 6069. Advanced Architectural Design I. 6 Credit Hours.
Architectural design studio exploring advanced issues in architecture from the perspectives of professional practice, sustainability, technology and urban design.

ARCH 6070. Advanced Architectural Design II. 6 Credit Hours.
Architectural design studio exploring advanced issues in architecture from the perspectives of professional practice, sustainability, technology and urban design.

ARCH 6071. Architecture Design and Research Studio I. 6 Credit Hours.
Advanced architectural design emphasizing innovation through applied research. Emerging methods of design generation/evaluation. Changing topics: healthcare, fabrication, urbanism, ecology, building performance, cultural institutions.

ARCH 6072. Architecture Design and Research Studio 2. 6 Credit Hours.
Advanced architectural design emphasizing innovation through applied research. Emerging methods of design generation/evaluation. Changing topics: healthcare, fabrication, urbanism, ecology, building performance, cultural institutions.

ARCH 6100. Retrofitting Suburbia. 3 Credit Hours.
Study of suburban redevelopment trends, projects, and policies that improve environmental, social, and economic sustainability, with an emphasis on urban design strategies.

ARCH 6105. Architectural History I - Antiquity through the 18th Century. 3 Credit Hours.
Architectural history from antiquity through the 18th century emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions. Credit not allowed for both ARCH 6105 and ARCH 4105 or ARCH 2111.

ARCH 6106. Architectural History II - 19th and 20th Century. 3 Credit Hours.
Architectural history during the 19th and 20th centuries emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions. Credit not allowed for both ARCH 6106 and ARCH 4106 or ARCH 2112.

ARCH 6107. Intro to Historic Preser. 3 Credit Hours.
This course provides an overview of the history, philosophy, organization, current legislation, policies, and practice of historic preservation.

ARCH 6109. Architecture and Minimalism. 3 Credit Hours.
This course examines the influence of "minimalism," the 1960s art phenomenon, upon architecture culture and production from 1968-present.

ARCH 6110. Public Space: Questions and Configurations. 3 Credit Hours.
This course addresses questions concerning present-day configurations of public spaces as a platform for analysis of the contemporary city.

ARCH 6112. Islamic Architecture and Urbanism. 3 Credit Hours.
Two-part survey of Asian architecture and urbanism (excluding East Asia). The Islamic world up to the 18th century: the Mughal, Raj, and post-independence periods in Indian subcontinent.

ARCH 6113. History of Renaissance and Mannerist Architecture. 3 Credit Hours.
Investigation of the history and theory of Renaissance and Mannerist architecture with a primary emphasis on Italy.

ARCH 6114. Architecture and Discourse of the Everyday. 3 Credit Hours.
Application of the concept of the everyday to architectural practice from perspectives of European social theory, American cultural landscape studies, and contemporary architectural theory.
ARCH 6115. Introduction to Principles of Classical Design. 3 Credit Hours.
An introduction to the principles of Classical and traditional architectural design through readings, discussions, and site visits with Classical architects.

ARCH 6117. Architecture of the Arts and Crafts Movement. 3 Credit Hours.
Study of the theory, design, and construction of the “artistic” house as embodied in the English and American Arts and Crafts Movement and in related developments elsewhere.

ARCH 6119. Frank Lloyd Wright and His Influence. 3 Credit Hours.
Study of the life, work, and influence of Frank Lloyd Wright, including work of his apprentices and followers.

ARCH 6120. History of Atlanta Architecture. 3 Credit Hours.
Study of the architecture of the Atlanta metro area.

ARCH 6127. Introduction to Art and Architecture in Italy. 1 Credit Hour.
Required preparation for the COA Summer Program in Italy. Includes the fundamentals of art and architecture, basic Italian language skills; library research for required summer program projects.

ARCH 6129. Form and Narrative: Cross Media Analysis. 3 Credit Hours.
This theory course will involve an extended comparison between architecture and related art forms, especially painting, film, and writing.

ARCH 6135. Architectural Representation. 3 Credit Hours.
Systems of architectural representation and codes of thinking, drawing, and reading architecture.

ARCH 6136. Architecture and Ideology. 3 Credit Hours.
Architecture and politics in Italy, Germany, and the Soviet Union between the wars.

ARCH 6137. Postwar Architecture and Urbanism in the U.S.: Design, Politics & History. 3 Credit Hours.
Introduction to the economic, social, political, cultural, and technological forces that shape architecture and cities in the United States after World War II.

ARCH 6142. Dwelling: Histories and Theories of Environmental Behavior and Design. 3 Credit Hours.
Explores scholarship and case studies from multiple disciplines relating to issues of place, community identity and memory, culturally constructed meaning, and appropriate use of resources.

ARCH 6143. Museums Hist Thry Design. 3 Credit Hours.
Investigates museums as manifestations of the construction and content of knowledge, the public mission of cultural and scientific institutions and the framing of visitors experience.

ARCH 6151. Theories of Urban Design. 3 Credit Hours.
Contemporary theories of urban design and their relationship to the contemporary city examined through architects’ writings, urban projects, and interdisciplinary criticism.

ARCH 6152. Studies in Landscape Architecture. 3 Credit Hours.
History and theory of the designed landscape and garden from the ancient world to the present.

ARCH 6153. History and Theory of the Modern City. 3 Credit Hours.
An examination of the evolution of the modern city in the nineteenth and twentieth centuries with particular reference to architectural, city planning, and urban design theories.

ARCH 6154. Introduction to Urban Design. 3 Credit Hours.
Introduction of urban design ideas, research, and practice, examining traditional qualities of the American city and their possible applications in the contemporary city.

ARCH 6155. Contemporary Architecture and Urbanism in Europe. 3 Credit Hours.
A course on contemporary architecture and urban projects in Europe, including the architect’s writings, published criticism, and analyses of the buildings and projects.

ARCH 6160. Race, Space, and Architecture in the United States. 3 Credit Hours.
This course examines the relationship between architecture - as social practice and as a labor market - and race in the United States.

ARCH 6171. Formulation of Design Intention in Architecture. 3 Credit Hours.
Reviews theories of interpretive criticism in architecture, and develops methodological approaches to interpreting criticizing, and formulating conceptual intent in architectural design.

ARCH 6206. Studies in Architectural Building Assemblies. 3 Credit Hours.
Structural and cladding systems integration, environmental control, and tectonic representation explored through historical and contemporary case studies and applied design solutions.

ARCH 6209. Building Enclosure: A Tectonic Element. 3 Credit Hours.
Investigations of enclosure design from three perspectives (technology, form, and culture), analyzing relationships of the four Semperian elements and Alberti’s three parts of the enclosure.

ARCH 6210. Architectonics. 3 Credit Hours.
The study of architecture of form from both an historical and a mathematical perspective. The formal theory is applied mathematics, group theory, combinatronics, as well as recent studies in the history of mathematics.

ARCH 6215. Contemporary Architecture and Construction Technology. 3 Credit Hours.
General exposure to questions pertaining to the production of building systems and assemblies through a series of case study projects by contemporary practicing architects.

ARCH 6216. Eco-Technology: Ideas and Constructions. 3 Credit Hours.
Strategies of ecologically sustainable design and construction and the role of the architect in the stewardship of the environment.

ARCH 6218. The Material Logic of Architecture. 3 Credit Hours.
Introduction to scientific and practical nature of architectural materials: soils, cements, metals, plastics, and glazing materials. Laboratory includes fabrication of, and experiments on, architectural materials.

ARCH 6225. Reinvestigating the Detail: The Ornamental and the Everyday. 3 Credit Hours.
Explores the role of the detail in contemporary architectural practice.

ARCH 6226. Green Construction. 3 Credit Hours.
This course focuses on the means, methods, strategies, and technologies to improve the energy efficiency and performance of buildings, and to reduce the environmental impact of buildings.

ARCH 6227. Architecture and Ecology. 3 Credit Hours.
Introduction to ecological design theory, research, and practice in architecture, including writings, criticism, and analyses of buildings and projects.

ARCH 6229. Construction Technology and Design Integration I. 3 Credit Hours. Introduction to building anatomy, technical and expressive characteristics of materials and their organizational assembly. Credit not allowed for both ARCH 6229 and ARCH 4219.

ARCH 6230. Construction Technology and Design Integration 2. 3 Credit Hours. Integration, representation, and constructability of building assemblies and structural systems. Grading, drainage, foundations, structure, and enclosure in relation to building codes and principles of sustainability.

ARCH 6241. Building Simulation in Design Practice. 3 Credit Hours. Learn to use mainstream simulation packages to support building design in domains of Energy, CFD, Lighting, Ventilation.

ARCH 6242. Building Physics Modeling. 3 Credit Hours. Survey of basic thermo-fluid energy and mass flows in buildings, the interrelations between these flows, physical system modeling, and implications for building performance goals.

ARCH 6243. Evidence-Based Design. 3 Credit Hours.

ARCH 6251. Building Structures I. 3 Credit Hours. Introduction to design and analysis of building structures and ordering of structural systems to resist gravity and lateral loads. Emphasis on wood structures.

ARCH 6252. Building Structures II. 3 Credit Hours. Introduction to structural design and framing systems for steel and concrete with consideration of lateral loads and lateral load resisting systems.

ARCH 6268. Advanced Architecture, Culture and Behavior: Theories, Models and Methods. 3 Credit Hours. Theories, models, methods and case studies linking architectural design to culture and behavior.

ARCH 6271. Healthcare Design of the Future. 3 Credit Hours. Introduction to research-based approaches to integrated healthcare design innovation.

ARCH 6303. Urban Design: Policy and Implementation. 3 Credit Hours. Introduction to urban design policy and practice across a range of scales including planning, architecture, landscape architecture, civil engineering, public policy and administration. Credit not allowed for both ARCH 6303 and CP 6834.

ARCH 6305. Near and Far: Cross-Cultural Practices in Art, Architecture, and Design. 3 Credit Hours. This course will address the material culture of globalization and cultural diffusion, emphasizing the multicultural registers of work produced between and across geographical, cultural, and disciplinary boundaries.

ARCH 6312. Ecological Practice: History, Polemics, and Poetics. 3 Credit Hours. An historically and culturally grounded examination of the ecological perspective. Critical and productive engagement with green guidelines, laws, products, design briefs, and procedures.

ARCH 6313. Traditions of Architectural Practice. 3 Credit Hours. Critical examination of architectural practice. Cultural derivation and technological transformation of various conventions of representation, construction, and design; speculations about future paradigms of architectural practice.

ARCH 6315. Practice of Architecture I. 3 Credit Hours. Architectural practice from historical, sociological, and ethical perspectives with focus on professional leadership, practice management, and entrepreneurship.

ARCH 6316. Practice of Architecture 2. 3 Credit Hours. Methods of architectural project delivery and project management. Fundamentals of building economics. Emergent models of research-driven architectural practice.

ARCH 6352. Theory of Architecture 2. 3 Credit Hours. Approaches to architectural form, style, and tectonics from aesthetic, social, and technological perspectives. Instrumental and symbolic uses of architectural media in design and building production.

ARCH 6404. Electronic Media: From Technique to Culture. 3 Credit Hours. The influence of electronic media upon representation and invention in architecture.

ARCH 6412. Dwelling: Histories and Theories of Environmental Behavior and Design. 3 Credit Hours. Explores scholarship and case studies from multiple disciplines relating to issues of place, community identity and memory, culturally constructed meaning, and appropriate use of resources.

ARCH 6417. Building Furniture/Furnishing Buildings. 3 Credit Hours. A course that focuses on schematic design and design development of furniture. The emphasis of this course is on conceptual and material/structural clarity.

ARCH 6420. Design Computing. 3 Credit Hours. Survey of computer representations and modeling techniques, including pixel-based images, vector-based drawing systems, and surface and solid modeling; use of applications built upon these systems. Credit not allowed for both ARCH 6420 and ARCH 4420.

ARCH 6426. 3D Modeling in Architecture. 3 Credit Hours. Construction of 3D computer models of architectural structures. Topics include: geometry creation, light and materials property, rendering, data exchange, and basic animation.

ARCH 6427. Advanced Modeling and Animation in Architecture. 3 Credit Hours. Advanced computer modeling of architectural form. Topics include: parametric design, parametric materials, special effects, object libraries, animation, and video production.

ARCH 6428. Formal Systems in Design, Art, and Architecture. 3 Credit Hours. This course will examine generative descriptions of languages of design, art, and architecture and explore various computational approaches to design with a special emphasis on shape grammars.

ARCH 6447. Urban Ecological Design. 3 Credit Hours. This course engages the contemporary issues of urban ecology and its articulation to design. It explores relationships between urban forms and flows of ecology, energy, material, water and information. Credit not allowed for both ARCH 6447 and CP 6836.

ARCH 6470. Architecture Modeling & Media I. 3 Credit Hours. Introductory approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.
ARCH 6472. Architecture Modeling & Media 2. 3 Credit Hours.
Intermediate approaches to two dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 6474. Architecture Modeling & Media 3. 3 Credit Hours.
Advanced approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 6501. Analog and Digital Design Computation. 3 Credit Hours.

ARCH 6502. Scripting for Architecture and Design. 3 Credit Hours.
Learning the concepts and application of scripting languages in architecture and form generation.

ARCH 6503. Building Information Modeling - Concepts and Applications. 3 Credit Hours.
Survey of Building Information Modeling - its technologies exploration of new technologies to be applied and new procedures of project execution.

ARCH 6504. Digital Design and Fabrication Workshop. 6 Credit Hours.
Parametric design, planning and programming. Develop design for fabrication in specific materials including wood, plastic, metals, concrete, or composite.

ARCH 6505. Geometric Constructs in Digital Space. 3 Credit Hours.
Geometric surface and solid construction fundamentals using parametric modeling tools; use of sketching workbenches.

ARCH 6506. Construction Materials, Systems, and Fabrications. 3 Credit Hours.

ARCH 6507. Parametric Modeling and Design. 3 Credit Hours.
Design using parametric modeling tools; use of sketching workbenches and development of custom parametric models.

ARCH 6508. Shape Grammars. 3 Credit Hours.
Shape grammars are a powerful formal system for the generative description, interpretation and evaluation of designs.

ARCH 6509. Computation, Creativity and Design Cognition. 3 Credit Hours.
This course investigates computational methods, models tools that support design creativity and cognition. Credit not allowed for both ARCH 6509 and ID 6509.

ARCH 6511. Robotic Fabrication. 3 Credit Hours.
Introduction to robotics in design and construction. Kinematics and programming of 6-axis industrial robots. Use of robotics in building fabrication and assembly operations.

ARCH 6512. Research Colloquium. 3 Credit Hours.
Introduces students to the processes of developing a topic of inquiry and delivering projects in architectural design, and to prepare students for the development of a final MS research project to be delivered as a final deliverable of the MS program during the subsequent semester.

ARCH 6513. Building Systems & Data. 3 Credit Hours.
A focus on the overlap between AEC (Architecture, Engineering, Construction) processes and the building models and data that support them.

ARCH 6531. Environmental Systems I. 3 Credit Hours.
Basics of heat, light, and sound applied to buildings. Thermal loading, passive thermal control, thermal comfort, climate, passive solar strategies, light and daylighting, acoustics.

ARCH 6532. Environmental Systems II. 3 Credit Hours.
Survey of active building systems: artificial lighting, mechanical (HVAC), electrical plumbing, transportation systems. Choice of active systems for sustainability, cost, etc.

ARCH 6731. Zero Energy House. 3 Credit Hours.
Design, analysis, operation, construction, and cost feasibility of so-called “zero energy” houses. Credit not allowed for both ARCH 6731 and BC 6731.

ARCH 6XXX. Architecture Elective. 1-21 Credit Hours.

ARCH 7000. Master's Thesis. 1-21 Credit Hours.

ARCH 7012. Urban Design Studio I. 6 Credit Hours.
Urban design laboratory problems focusing on analysis, design, and implementation strategies for contemporary urban problems.

ARCH 7013. Urban Design Studio 1. 6 Credit Hours.
Urban design studio problems focusing on analysis, design, and implementation strategies for contemporary urban problems.

ARCH 7014. Urban Design Studio 2. 6 Credit Hours.
Advanced urban design problems emphasizing the application of contemporary urban design research and multidisciplinary collaboration into the design process.

ARCH 7015. Urban Design Studio 3. 6 Credit Hours.
Advanced urban design problems emphasizing the application of contemporary urban design research and multidisciplinary collaboration into the design process.

ARCH 7030. Media + Modeling 3. 3 Credit Hours.
Advanced approaches to two and three dimensional modeling and representation in architecture using both manual and digital media and techniques.

ARCH 7042. Urban Design Workshop. 3 Credit Hours.
Advanced problems in urban design and development focusing on the Atlanta region. Integration of urban design theory and methods, economic development, political registration, and communication.

ARCH 7043. Urban Design Workshop. 4 Credit Hours.
Advanced problems in urban design and development focusing on the Atlanta region. Integration of urban design theory and methods, economic development, political registration, and communication.

ARCH 7044. Urban Design Workshop. 5 Credit Hours.
Advanced problems in urban design and development focusing on the Atlanta region. Integration of urban design theory and methods, economic development, political registration, and communication.

ARCH 7045. Urban Design Workshop. 6 Credit Hours.
Advanced problems in urban design and development focusing on the Atlanta region. Integration of urban design theory and methods, economic development, political registration, and communication.

ARCH 7060. Critical Positions in Architectural Design. 3 Credit Hours.
Advanced topics in the theory of architectural production focusing upon contemporary ethical dilemmas and the development of critical positions of design.

ARCH 7151. History of Urban Form. 3 Credit Hours.
History of the city as a collective work of architecture with an emphasis on the city’s physical form and space.
ARCH 7252. Computational Building Simulation. 3 Credit Hours.
Students learn how to develop their own extensible Building Simulation software using Finite Element discretization in Matlab and apply it to research problem.

ARCH 7471. Cognitive Function of Visual Design in Architecture. 3 Credit Hours.
Presents fundamentals of imaginative and cognitive functioning of visual design in buildings, and develops inter-disciplinary approaches to investigating visual form of buildings.

ARCH 7625. Theories of Inquiry. 3 Credit Hours.
Introduction to research paradigms and their assumptions. The formulation of questions and frameworks of description, representation, analysis, interpretation, and data control.

ARCH 8100. Introduction to Architectural Research 1. 3 Credit Hours.
Fundamental issues and methods across specializations in architectural research modules on causation and simulation.

ARCH 8101. Introduction to Architectural Research 2. 3 Credit Hours.
Fundamental issues and methods across specializations in architectural research; modules on representation and interpretation.

ARCH 8102. Introduction to Architectural Research 3. 3 Credit Hours.
Fundamental issues and methods across specializations in architectural research; modules on historiography and epistemology and on theories of design.

ARCH 8630. Architecture Space & Culture. 3 Credit Hours.
Accounts of the social functions of architectural space and associated design choices, across a variety of building types and scales of environmental design.

ARCH 8685. Building Simulation Seminar. 3 Credit Hours.

ARCH 8799. Qualifying Paper. 1-21 Credit Hours.
Preparation for Qualifying Paper in Doctorial Program in Architecture.

ARCH 8801. Special Topics. 1 Credit Hour.
ARCH 8802. Special Topics. 2 Credit Hours.
ARCH 8803. Special Topics. 3 Credit Hours.
ARCH 8804. Special Topics. 4 Credit Hours.
ARCH 8805. Special Topics. 5 Credit Hours.
ARCH 8806. Special Topics. 6 Credit Hours.

ARCH 8811. Special Topics: Architectural Design. 1 Credit Hour.
ARCH 8812. Special Topics: Architectural Design. 2 Credit Hours.
ARCH 8813. Special Topics: Architectural Design. 3 Credit Hours.
ARCH 8814. Special Topics: Architectural Design. 4 Credit Hours.
ARCH 8815. Special Topics: Architectural Design. 5 Credit Hours.

ARCH 8821. Special Topics: History, Theory, and Criticism. 3 Credit Hours.

ARCH 8822. Special Topics: History, Theory, and Criticism. 3 Credit Hours.

ARCH 8831. Special Topics: Architectural Technology. 3 Credit Hours.
ARCH 8832. Special Topics: Architectural Technology. 3 Credit Hours.
ARCH 8833. Special Topics: Architectural Technology. 3 Credit Hours.
ARCH 8841. Special Topics: Professional and Social Practice. 3 Credit Hours.

ARCH 8842. Special Topics: Professional and Social Practice. 3 Credit Hours.
ARCH 8843. Special Topics: Professional and Social Practice. 3 Credit Hours.

ARCH 8851. Special Topics: Visual Arts and Design Computing. 1 Credit Hour.
ARCH 8852. Special Topics: Visual Arts and Design Computing. 2 Credit Hours.

ARCH 8853. Special Topics: Visual Arts and Design Computing. 3 Credit Hours.
ARCH 8855. Special Topics. 5 Credit Hours.

ARCH 8856. Special Topics. 6 Credit Hours.
ARCH 8863. Special Topics. 3 Credit Hours.

ARCH 8866. Special Topics. 6 Credit Hours.
Air Force Aerospace Studies (AS)

AS 1000. Air Force Leadership-Lab. 1 Credit Hour.
Air Force customs and courtesies, drill and ceremonies, and introduction to the military environment. Emphasis on developing the leadership and interpersonal skills needed of Air Force officers.
Applied Systems Engineering (ASE)

ASE 6001. Fundamentals of Modern Systems Engineering. 3 Credit Hours.
Explore a wide range of modern systems engineering principles and development methodologies. Address requirements engineering, systems definition, design and analysis, implementation, operation, and technical management.

ASE 6002. Systems Design and Analysis. 3 Credit Hours.
Introduce emerging techniques for systems and systems-of-systems analysis including IPPD, DOE, Taguchi methods, response surface equations, multi-attribute decision making, and concept feasibility assessment.

ASE 6003. Modeling and Simulation for Systems Engineers. 3 Credit Hours.
Introduction to modeling and simulation for systems engineers. Topics include problem formulation, conceptual modeling, simulation methodologies, verification and validation, DOE, simulation execution, and output analysis.

ASE 6004. Leading Systems Engineering Teams. 3 Credit Hours.
Systems engineering processes provide a model for successfully managing complex systems. Learn to apply management and development techniques used for successful commercial and government programs.

ASE 6005. Advanced Topics in Systems Engineering: Systems Modeling with SysML. 3 Credit Hours.
This core elective introduces SymML as a system modeling and design tool, with example applications, guidelines for application, and student projects on implementations in practice.

ASE 6006. Systems Engineering Laboratory. 3 Credit Hours.
Application of working knowledge of systems engineering techniques applied to a "case study" in an applicable domain.

ASE 6101. Vehicle Systems Analysis and Synthesis. 3 Credit Hours.
Vehicle Preliminary Design involves design iteration with disciplinary physics-based methods and tools. Includes geometry and databases from conceptual design, six DOF modeling, analysis, and synthesized baseline.

ASE 6102. System of Systems and Architecture. 3 Credit Hours.
Develop a broader understanding of the interdependencies and interoperability issues, interfaces, and processes for creating and defining Systems Architecture for complex systems.

ASE 6103. Complex System Lifecycle and Integration. 3 Credit Hours.
System preliminary design must address product and process design throughout system lifecycle from integration through manufacturing to phase-out along with interfaces to other existing systems.

ASE 6104. Complex System Design and Integration (Capstone). 3 Credit Hours.
Student teams apply methods and techniques taught throughout the program to conduct complex system Conceptual Design based on requirements provided in a Request for Proposal.

ASE 6111. Sensor Systems Analysis and Synthesis. 3 Credit Hours.
Defines, classifies, and examines technology used in stand-alone sensor systems. Centers on system-engineering trades useful in designing systems of sensors and systems of systems.

ASE 6121. Information Systems Analysis and Synthesis. 3 Credit Hours.
Tools and approaches for analysis and synthesis of enterprise information systems. Topics include user-centered requirement, scenario-based design, UML, network/communications, iterative prototyping, and enterprise support.

ASE 6131. Analysis and Synthesis: Human Systems Integration. 3 Credit Hours.
Human Systems Integration Analysis and Synthesis, a PMASE complex systems elective, ensures human-related technical issues are properly addressed during system definition, design, development, and implementation.

ASE 8801. Special Topics. 1 Credit Hour.
Topics of current interest in Applied Systems Engineering.

ASE 8803. Special Topics. 3 Credit Hours.
Topics of current interest in Applied Systems Engineering.

ASE 8901. Special Problems. 1-21 Credit Hours.

Building Construction (BC)

BC 1XXX. Bldg Construction Elect. 1-21 Credit Hours.

BC 2600. Construction Contracting. 3 Credit Hours.
The goal of this course is to teach students the basics of construction contracting, business methods, organizational models, bidding, construction insurance, and labor relations.

BC 2610. Construction Technology I. 3 Credit Hours.
An introduction to the planning and physical development process for the construction of projects of residential and light construction scale.

BC 2620. Construction Technology II. 3 Credit Hours.
A continuation of Construction Technology I with an emphasis on large-scale and high-rise building, i.e., commercial building construction.

BC 2630. Construction Seminar. 1 Credit Hour.
Provides an introduction to the construction industry with emphasis on exploring career opportunities in construction.

BC 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BC 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BC 2XXX. Bldg Construction Elect. 1-21 Credit Hours.

BC 3600. Construction Cost Management. 3 Credit Hours.
Introduction to cost principles and cost analysis of construction projects, including classification of work, quantity survey techniques, construction operation costs, and bid proposals.

BC 3610. Construction Law. 3 Credit Hours.
Legal aspects of construction contracts, bonds, insurance, and bidding. Owner, architect, contractor, and subcontractor relationships.

BC 3620. Real Estate and Construction Finance and Accounting. 3 Credit Hours.
General introduction to the financing of construction and real estate development projects. Emphasis on financing requirements, activities, sources, and uses.

BC 3630. Project Management I. 3 Credit Hours.
This course will offer construction planning and management techniques for project design and construction with a focus on different scheduling methods and their use.
BC 3640. Construction Mechanics. 3 Credit Hours.
An introductory course to the evaluation of behavior of buildings, the properties of structural materials, and the behavior of load-resisting members.

BC 3XXX. Bldg Construction Elect. 1-21 Credit Hours.

BC 4010. History of Construction Industry. 3 Credit Hours.
Addresses how today's construction industry is organized and its particular characteristics, how it evolved from early times and where it may be heading in the future.

BC 4050. Building Information Modeling for Multi-disciplinary Integration. 3 Credit Hours.
This course introduces students to BIM and the changes it has been causing to the traditional design, planning, management, construction, facility management, and contracting practices.

BC 4110. Trends & Pol For Res Dev. 3 Credit Hours.
An overview of development in the United States, current trends in residential development, and the impact of external factors on residential development. This course is designed to help Building Construction students understand how their development impacts the social environment and quality of life of the community.

BC 4120. Community Dsgn & Constr. 3 Credit Hours.
An overview of the principles of smart growth, livable communities and new urbanism and how these principles are implemented in the process from design to construction and marketing.

BC 4130. Intg Design Constr & Dev. 3 Credit Hours.
A study of contemporary examples of an integrated approach to design, construction and development. Course involves real-world project analysis from multiple points of view.

BC 4140. Construction Management Project. 3 Credit Hours.
This class is the application of course materials covered throughout the Certificate in Construction Management to an actual construction project with a simulated business construct.

BC 4600. Project Management II. 3 Credit Hours.
This course covers practical project management, technology, and tools for this approach and the required management skills for successful execution of projects.

BC 4610. Value Engineering and Building Economics. 3 Credit Hours.
First part is an introduction to principles and methodology. Second part is an introduction to economic principles and theories and how to apply the concepts and methods of building economics.

BC 4620. Building Structural Analysis. 3 Credit Hours.
Emphasis being placed on the practical design and construction of structural elements. The course includes basic design principles with a heavy emphasis on constructability and buildability.

BC 4630. Senior Capstone Project. 3 Credit Hours.
A senior construction project that includes redevelopment analysis and feasibility study, project development, and construction.

BC 4640. Construction Marketing. 3 Credit Hours.
Methods of construction marketing and business development. Innovative computer applications, verbal skills development, professional strategies, market segmentation, and buyer behavior.

BC 4650. Laboratory for Sustainable Design and Construction. 3 Credit Hours.
The goal of the laboratory is to teach students a comprehensive sustainable design and construction information system and a program of real-world, hands-on projects.

BC 4660. Entrepreneurship in Construction. 3 Credit Hours.

BC 4672. Mechanical, Electrical and Plumbing Systems for Construction Managers. 3 Credit Hours.
The course will cover the fundamentals of design, selection, installation, commissioning, and maintenance of mechanical, electrical and plumbing systems. Credit not allowed for both BC 4672 and BC4670.

BC 4680. Professional Internship. 3 Credit Hours.
Students work for a professional architecture/engineering/ construction company in which they learn, first-hand, about the construction industry.

BC 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BC 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BC 4700. Construction Management. 3 Credit Hours.
An accelerated-pace course designed to provide a basic understanding of fundamental topics including planning, budgeting, estimation, scheduling, and project close out.

BC 4710. Green Construction. 3 Credit Hours.
This course focuses on the means, methods, strategies, and technologies to improve the energy efficiency and performance of buildings, and to reduce the environmental impact of buildings.

BC 4720. Residential Construction and Property Management. 3 Credit Hours.
A course designed to orient students to the basics of apartment management and includes the business functions of marketing, leasing, and financing.

BC 4730. Best Practices in Multi-Family Property. 3 Credit Hours.
A course designed to provide students with a broad range of the best practices related to the management of all types of multi-family residential property.

BC 4735. Real Estate Development and Construction. 3 Credit Hours.
Provides an overview of the real estate development process as it pertains to construction development including trends and current issues.

BC 4801. Special Topics. 1 Credit Hour.
BC 4802. Special Topics. 2 Credit Hours.
BC 4803. Special Topics. 3 Credit Hours.
BC 4823. Special Topics. 3 Credit Hours.
BC 4833. Special Topics. 3 Credit Hours.
BC 4843. Special Topics. 3 Credit Hours.
Topics of current interest in building construction.

BC 4900. Special Problems. 1-21 Credit Hours.

BC 4XXX. Bldg Construction Elect. 1-21 Credit Hours.
BC 6002. Issues in Sustainable Construction Technology. 3 Credit Hours.
Course designed to help students achieve a basic understanding of the materials used in the commercial segments in the construction industry and how these relate to sustainable construction.
BC 6004. Sustainable Energy in Architecture, Engineering and Construction. 3 Credit Hours.
An introductory course on sustainable energy in architecture, engineering and construction. The goal of the course is to introduce students to fundamental concepts of sustainable sources of energy to power buildings and address the impact of these sources to applicable green building rating systems.

BC 6005. Technology Applications in the Construction Industry. 3 Credit Hours.
Hands-on exploration of various present and future technologies that can be applied in all stages of a facilities’ lifecycle.

BC 6010. History of Construction Industry. 3 Credit Hours.
Addresses how today’s construction industry is organized and its particular characteristics, how it evolved from early times and where it may be heading in the future.

BC 6025. Construction Management. 3 Credit Hours.
An accelerated paced course providing graduate students a basic understanding of fundamental topics including planning, budgeting, estimating, scheduling and project closeout.

BC 6050. Building Information Modeling for Multi-disciplinary Integration. 3 Credit Hours.
This course introduces students to BIM and the changes it has been causing to the traditional design, planning, management, construction, facility management, and contracting practices. Credit will not be awarded for both BC 4050 and BC 6050.

BC 6100. Professional Trends in Facility Management. 3 Credit Hours.
An introductory course covering the organizational, managerial, ethical, and legal principles for the delivery of facility management services. Includes contracts and risk management.

BC 6125. Professional Internship. 3 Credit Hours.
A course in which students work for a professional architecture/engineering/construction company in which they learn, first-hand, about the construction industry.

BC 6150. Design-Build Organization and Management. 3 Credit Hours.
Introduction to Design-Build (DB) as a project delivery system. Provides information about the organization, the process, and the effects of DB on the industry.

BC 6175. Real Estate Development and Construction. 3 Credit Hours.
Provides an overview of the real estate development process as it pertains to construction development including trends and current issues.

BC 6185. Introduction to Construction Program Management. 3 Credit Hours.
Survey of the construction program management profession, focusing on the comprehensive management of single and multiple building programs including pre-design, design, construction and post-construction activities.

BC 6200. Maintenance Management of Built Assets. 3 Credit Hours.
This course covers the processes by which a facility and its systems are serviced and maintained during the facility’s life cycle. Includes acquisition, installation, operation, maintenance, and disposal of built assets.

BC 6250. Value Management for Integrated Facility Design and Construction. 3 Credit Hours.
Principles and methodology of value management analysis concepts and an examination of future values and worth criteria affecting building design, construction, furnishings, and operations performance.

BC 6270. Community Design and Development. 3 Credit Hours.
An overview of the principles of smart growth, liveable communities and new urbanism and how these principles are implemented in the process from design to construction and marketing.

BC 6275. Community Dsgn & Constr. 3 Credit Hours.
An overview of the principles of smart growth, liveable communities and new urbanism and how these principles are implemented in the process from design to construction and marketing.

BC 6285. Management of Pre-design Phase as Owner. 3 Credit Hours.
Examination of the Program Manager’s role and responsibilities as owner during the pre-design phase including feasibility, organization, financing, legal, entitlement, planning, budgeting, scheduling, and team selection.

BC 6300. Safety and Environmental Issues. 3 Credit Hours.
This course covers the environmental issues related to the performance of buildings and the health and risk factors for new and existing buildings.

BC 6350. Design and Construction Law. 3 Credit Hours.
Overview of construction law and legal issues encountered by the construction manager including U.S. laws, general concepts and definitions, contractor relationships, and relevant case studies.

BC 6370. Real Estate Policy, Trends, Ethics. 3 Credit Hours.
The application of market, community, and policy factors to create new development while professionally managing potential conflicts between these factors.

BC 6375. Trends & Pol For Res Dev. 3 Credit Hours.
An overview of development in the United States, current trends in residential development, and the impact of governmental regulations on residential development. This course is designed to help Building Construction students understand how their development impacts the social environment and quality of life of the community.

BC 6385. Management of Design Phase as Owner. 3 Credit Hours.
Examination of the Program Manager’s role and responsibilities as Owner during the design phase.

BC 6400. Facility Planning, Project Management, and Benchmarking. 3 Credit Hours.
This course introduces the techniques of planning project management, benchmarking, and their applications to facility management. Includes space forecasting, scheduling and control of projects, and benchmarking studies.

BC 6500. Real Estate Asset and Income Property Management. 3 Credit Hours.
This course covers real estate financial management and performance topics from a decision making and strategic planning orientation for facilities management professionals.

BC 6550. Design and Construction Processes for Integrated Services. 3 Credit Hours.
Offers a framework for use and application of design, contract, and performance documents for successful execution of various forms of integrated project delivery systems.

BC 6575. Real Estate Production Finance. 3 Credit Hours.
Business model and financing process required to produce new real estate developments through an investigation of land acquisition, development and construction financial management.

BC 6585. Management of Construction as Owner. 3 Credit Hours.
Survey of construction management from the owner’s perspective.
BC 6600. Facilities Management Financial Analysis. 3 Credit Hours. This course covers real property concepts, issues, and topics pertinent to the facility management professional. The topics include site selection, property market analysis, legal documents, and land use control.

BC 6650. Advanced Project Management. 3 Credit Hours. A four-phased coverage of project management including organization, planning and scheduling, control, budgeting, and ending with project testing, evaluation, and termination.

BC 6675. Residential Design and Construction. 3 Credit Hours. Course will examine the application of market, community, and regulatory factors to single family housing design and construction; construction management process required for efficient delivery.

BC 6685. Leadership and Communications in Design and Construction. 3 Credit Hours. Framework and guidelines for effective leadership and communications during design and construction.

BC 6700. Advanced Facility Management Practices. 3 Credit Hours. Students apply specific methods and procedures from core courses to actual business situations in the facility and property management industry.

BC 6731. Zero Energy Housing. 3 Credit Hours. Design, analysis, operation, construction, and cost feasibility of so-called "zero energy" houses. Credit not allowed for both BC 6731 and ARCH 6731.

BC 6800. Facility and Property Management Capstone. 3 Credit Hours. Designed to integrate the learning from basic topics through the use of actual case studies and situations found within the facility and property management industry.

BC 6850. Building Construction and Facility Management Capstone. 3 Credit Hours. Application of coursework covered in the Master of Science in Building Construction and Facility Management curriculum with a stimulated business construct from different perspectives: construction manager, program manager, or facility manager.

BC 6875. Real Estate Development Capstone Project. 3 Credit Hours. Formulation and exploration of a real estate development project. Topics include business plan, market analysis, site selection, regulations, finance, project delivery, design and engineering.

BC 6910. Best Practices in Multi-Family Property. 3 Credit Hours. A course designed to provide students with a broad range of the best practices related to the management of all types of multi-family residential property.

BC 6920. Introduction to Residential Property Management. 3 Credit Hours. A course designed to orient students to the basics of apartment management and includes the business functions of marketing, leasing, and financing.

BC 6930. Intg Design Constr & Dev. 3 Credit Hours. This course will focus on contemporary integrated approach to design, construction and development. Course involves real-world project analysis from multiple points of view. Examples to be selected from the Atlanta region.

BC 6975. The Evolution of a Deal. 3 Credit Hours. Presentations and site visits conducted by developers to expose students to design program implementation, financial structure, and project management.

BC 6XXX. Bldg Construct Elective. 1-21 Credit Hours.

BC 7000. Master's Thesis. 1-21 Credit Hours.

BC 7100. Quantitative Methods for Construction Research. 3 Credit Hours. Introductory course in graduate research in the building construction industry. Covers types of research, sampling methods, and basic analysis and evaluation techniques.

BC 7200. Advanced Readings in BC in Preparation for the PhD Comprehensive Examination. 1-12 Credit Hours. This course is designed around advanced readings in research and practice for PhD students working in the building construction area.

BC 8000. PhD Seminar for Students with Building Construction Emphasis. 1 Credit Hour. This is an introduction to PhD-level research in Building Construction.

BC 8100. Research Methodology. 3 Credit Hours. Research design course that teaches the basics of creating credible scientific research plans with examples from construction related research.

BC 8803. Special Topics. 3 Credit Hours.

BC 8811. Special Topics. 1 Credit Hour. Topics of current interest in building construction.

BC 8812. Special Topics. 2 Credit Hours. Topics of current interest in building construction.

BC 8813. Special Topics. 3 Credit Hours. Topics of current interest in building construction.

BC 8814. Special Topics. 4 Credit Hours. Topics of current interest in building construction.

BC 8815. Special Topics. 5 Credit Hours. Topics of current interest in building construction.

BC 8823. Special Topics. 3 Credit Hours. Topics of current interest in building construction.

BC 8833. Special Topics. 3 Credit Hours. Topics of current interest in building construction.

BC 8843. Special Topics. 3 Credit Hours. Topics of current interest in building construction.

BC 8901. Special Problems. 1-21 Credit Hours.

BC 8902. Special Problems. 1-21 Credit Hours.

BC 8903. Special Problems. 1-21 Credit Hours.

BC 8997. Teaching Assistantship. 1-9 Credit Hours. For graduate students holding graduate teaching assistantship.

BC 8998. Research Assistantship. 1-9 Credit Hours. For graduate students holding graduate research assistantship.

BC 8999. Doctoral Thesis Preparation. 1-21 Credit Hours. This course is designed to synthesize the knowledge and skills developed in previous research courses and apply them to the doctoral dissertation process for students in Building Construction.

Biology (BIOL)

BIOL 1220. Biology of Sex & Death. 4 Credit Hours.
Students learn biology through the lens of the formation and collapse of biological systems, organized around questions pertaining to life, sex, and death.

BIOL 1510. Biological Principles. 4 Credit Hours.
An introduction to the basic principles of modern biology, including biomacromolecules, bioenergetics, cell structure, genetics, homeostasis, evolution, and ecological relationships.

BIOL 1511. Honors Biological Principles. 4 Credit Hours.
An advanced introduction to the principles of modern biology, including biomacromolecules, bioenergetics, cell structure, genetics, homeostasis, evolution, and ecological relationships.

BIOL 1520. Introduction to Organismal Biology. 4 Credit Hours.
An introduction to biology at the organ and organismal levels, with emphasis on physiological processes and integration of growth and development.

BIOL 1521. Honors Introduction to Organismal Biology. 4 Credit Hours.
Introduction to biology at the organ and organismal levels, with emphasis on biodiversity, physiological processes, and integration of growth, reproduction and development.

BIOL 1XXX. Biology Elective. 1-21 Credit Hours.

BIOL 2100. Island Biogeography of New Zealand. 3 Credit Hours.
Introduction to theory of island biogeography focused on New Zealand’s geological history and unique biota.

BIOL 2335. General Ecology. 3 Credit Hours.
Introduction to ecological processes at individual, population, and community levels that occur in plant, animal, and microbial taxa, and their relevance to current environmental problems.

BIOL 2336. General Ecology Laboratory. 1 Credit Hour.
The companion laboratory for BIOL 2335 (Ecology). This course stresses understanding ecological concepts through a combination of lab and field experiments, and computer simulations.

BIOL 2337. Honors Ecology. 3 Credit Hours.
A problem-based learning course in ecology. Student teams will do research and solve challenges typically faced by ecologists and environmental scientists.

BIOL 2338. Honors Ecology Laboratory. 1 Credit Hour.
Companion course to Honors Ecology. Student teams will explore solutions to ecological challenges using experiments and mathematical models.

BIOL 2344. Genetics. 3 Credit Hours.
Mendelian and molecular genetics; principles of inheritance, gene structure and function, foundations of recombinant DNA technology, genetic basis of variation and evolution.

BIOL 2345. Genetics Laboratory. 1 Credit Hour.
A laboratory course in the fundamental techniques of genetic analysis.

BIOL 2354. Honors Genetics. 3 Credit Hours.
A comprehensive genetics course incorporating discussions of primary literature. Topics include molecular genetics and gene action, transfer systems and mapping, cytological, quantitative and population genetics. Credit not allowed for both BIOL 2354 and BIOL 2344.

BIOL 2355. Honors Genetics Laboratory. 1 Credit Hour.
Hands-on introduction to practical techniques, critical thinking, and important concepts in genetics. Students carry out laboratory experiments that explore transmission, population, and molecular genetics.

BIOL 2400. Mathematical Models in Biology. 3 Credit Hours.
Introductory probability and deterministic models in biology, including discrete and continuous probability distributions and dynamic models from molecular and cellular biology to ecology and epidemiology.

BIOL 2694. Intern Assistantship (Undergraduate Internship for Pay). 1-21 Credit Hours.
Biology Undergraduate Internship for pay for freshmen and sophomores, by permit only. The internship experience must be at a unit or agency approved by the School of Biology.

BIOL 2695. Undergraduate Internship (Undergraduate Internship for Academic Credit). 1-21 Credit Hours.
Biology Undergraduate Internship for credit freshmen and sophomores, by permit only. The internship experience must be at a unit or agency approved by the School of Biology.

BIOL 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BIOL 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BIOL 2801. Special Topics. 1 Credit Hour.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2802. Special Topics. 2 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2803. Special Topics. 3 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2804. Special Topics. 4 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2805. Special Topics. 5 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2901. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 2902. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 2903. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 2904. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 2905. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.
BIOL 2XXX. Biology Elective. 1-21 Credit Hours.

BIOL 3100. Ecology and Evolution: An Australian Perspective. 3 Credit Hours.
Evolution and ecology of Australian ecosystems, including rainforests, open woodlands, coastal habitats; conservation of endangered ecosystems. Earns Biology technical credit. Research project required.

BIOL 3300. Tropical Ecology. 3 Credit Hours.
Ecological processes in the tropics including community organizations, biotic interactions, biodiversity, coevolution. Students perform research projects in rain forest, cloud forest, and seashore.

BIOL 3380. Introductory Microbiology. 3 Credit Hours.
Basic biology of bacteria, fungi, algae, and viruses, with emphasis on bacteriology.

BIOL 3381. Introductory Microbiology Laboratory. 1 Credit Hour.
Fundamental laboratory techniques in microbiology.

BIOL 3450. Cell and Molecular Biology. 3 Credit Hours.
An introduction to the structure and function of cells and their organelles with emphasis on eucaryotic cellular and molecular processes. Credit not allowed for both BIOL 3450 and 3340.

BIOL 3451. Cell and Molecular Biology Lab. 1 Credit Hour.
An introduction to experimental methods of cell and molecular biology research that will cover some fundamental topics of cell biology. Credit not allowed for both BIOL 3451 and 3341.

BIOL 3600. Introduction to Evolutionary Biology. 3 Credit Hours.
Comprehensive introduction to evolutionary biology. Includes focus on processes (natural selection, genetic drift) and resulting patterns (genome organization, phylogeny) illustrated with prokaryote and eukaryote examples.

BIOL 3751. Anatomy and Physiology. 3 Credit Hours.
Study of human anatomy and fundamental physiological mechanisms. Topics include nervous, musculoskeletal, and cardiorespiratory systems. Free elective for biology majors. Crosslisted with AP 3751.

BIOL 3753. Fundamentals of Anatomy. 3 Credit Hours.
Detailed study of human body structures using a regional and systems approach. Emphasis is placed on structural relationships and the integration of body systems.

BIOL 3754. Laboratory in Human Anatomy. 1 Credit Hour.
A detailed hands-on study of human structure using high-resolution models, specialized specimens and dissection of selected mammalian organs and tissues.

BIOL 3755. Human Physiology. 3 Credit Hours.
Students will explore the function and adaptation of the human body emphasizing neuromuscular, cardio-respiratory, gastrointestinal, endocrine, and urinary systems to maintain homeostasis and human health.

BIOL 3756. Laboratory in Human Physiology. 1 Credit Hour.
A laboratory application of concepts in Physiology, providing hands-on experience focusing on primarily on non-invasive human experiments supplemented with in vitro tissues experiments.

BIOL 3813. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses in the department.

BIOL 3XXX. Biology Elective. 1-21 Credit Hours.

BIOL 4012. Protein Biology. 3 Credit Hours.
Biological view of proteins, including protein biosynthesis, processing, modification, folding, trafficking, interactions, degradation, natural and directed evolution, assembly diseases, amyloids, prions and protein-based inheritance.

BIOL 4015. Cancer Biology and Biotechnology. 3 Credit Hours.
This course covers basic concepts of cancer biology and new technologies that are being developed to understand, detect, treat, and prevent cancer. Credit not allowed for both BIOL 4015 and BIOL 7015.

BIOL 4101. Sensory Ecology. 3 Credit Hours.
A quantitative analyses of communication channels and information acquisition involving visual, auditory, mechanosensory, and olfactory modalities across a range of species and habitats.

BIOL 4105. Macromolecular Modeling. 4 Credit Hours.
Principles and practices in the use of molecular mechanics methods (minimization; molecular dynamics) to study structure-function relationships in biological macromolecules.

BIOL 4150. Genomics and Applied Bioinformatics. 3 Credit Hours.
Retrieval and analysis of biological sequence, gene expression, and proteomics data from public databases and other sources; applying standard bioinformatics tools to investigate biological questions. Credit not allowed for both BIOL 4150 and BIOL 6150.

BIOL 4221. Biological Oceanography. 3 Credit Hours.
An introduction to the major biological processes in the ocean including primary production, elemental cycling, food webs, and fisheries.

BIOL 4225. Molecular Evolution. 3 Credit Hours.
Evolutionary processes at molecular level, organizations of genomes and genetic systems. Students will read and present up-to-date research articles in various topics in molecular evolution.

BIOL 4340. Medical Microbiology. 3 Credit Hours.
Advanced study of bacteria, protozoa, fungi, and viruses that cause human diseases; emphasis on epidemiology, mechanisms of disease causation, prevention, and treatment.

BIOL 4401. Experimental Design and Statistical Methods in Biology. 3 Credit Hours.
Introductory course on experimental design, hypothesis testing and basic statistical techniques commonly applied in biological research. Exercises based on computer statistical software packages.

BIOL 4410. Microbial Ecology. 3 Credit Hours.
Advanced studies of microbial ecosystems, the specific roles of bacteria in maintaining ecological balance, and the evolution of the ecosystem in response to changing environments.

BIOL 4417. Marine Ecology. 3 Credit Hours.
An overview of the physical forces and biotic interactions structuring marine communities and of the major threats to these communities. Credit not allowed for both BIOL 4417 and BIOL 6417.

BIOL 4418. Microbial Physiology. 3 Credit Hours.
Study of the physiology of growth and metabolic activities of microorganisms.

BIOL 4422. Theoretical Ecology. 3 Credit Hours.
Theoretical foundations of ecology, from the population to the community and ecosystem levels.
BIOL 4428. Population Dynamics. 3 Credit Hours.
Students will examine the ecological factors that affect dynamics, regulation, and evolution of natural populations, emphasizing the connections with mathematical models, genetics, and ecology. Credit will not be awarded for both BIOL 4428 and BIOL 6428.

BIOL 4440. Plant Physiology. 3 Credit Hours.
Chemical transformation in photosynthesis, photophysiology and water relationships, organic nutrition and effects of hormones on growth and development of plants.

BIOL 4446. General Animal Physiology I. 3 Credit Hours.
Systems physiology including nerves, muscles, kidney, digestion, circulation, endocrinology, reproduction, and respiration.

BIOL 4460. Communicating Biological Research. 1 Credit Hour.
Students learn to convey the importance of research findings in the biological sciences and to critically evaluate research results through discussions and scientific presentations. Credit will not be awarded for both BIOL 4450 and BIOL 4460.

BIOL 4464. Developmental Biology. 3 Credit Hours.
Investigations of cell differentiation and development using the tools of molecular genetics and cell biology.

BIOL 4471. Behavioral Biology. 3 Credit Hours.
An introduction to the study of the principles of behavior of all kinds of organisms, from microbes to mammals.

BIOL 4478. Biophysics. 3 Credit Hours.
Biophysical aspects of nucleic acids, proteins, and their interactions.

BIOL 4480. Evolutionary Developmental Biology—How to Build an Organism. 2 Credit Hours.
This course teaches students how the process of development from embryo to adult impacts evolutionary diversity and human health. Credit not allowed for both BIOL 4480 and BIOL 6480.

BIOL 4545. Genetics of Complex Human Traits and Diseases. 3 Credit Hours.
Introduction to the genetics and evolution of complex human traits, focusing on contemporary approaches to understanding susceptibility to malignant, metabolic, immune and psychological diseases.

BIOL 4570. Immunology and Immunochemistry. 3 Credit Hours.
A survey of modern immunology and its applications.

BIOL 4590. Research Project Lab. 3 Credit Hours.
Experience in designing, implementing, and communicating a biology research project, and practical training in modern approaches for biological research.

BIOL 4607. Molecular Biology of Microbes: Disease, Nature, and Biotechnology. 3 Credit Hours.
Molecular genetics of bacteria with an emphasis on experimental approaches, regulatory mechanisms in disease-causing and environmental bacteria, and biotechnology applications derived from microbes. Credit not awarded for both BIOL 4607 and BIOL 4608 or BIOL 4607 and BIOL 4608 or BIOL 4607 and BIOL 4607.

BIOL 4608. Prokaryotic Molecular Genetics. 3 Credit Hours.
The molecular genetics of bacteria and their viruses, with emphasis in the organization, replication, expression, and transfer and experimental manipulation of prokaryotic genes and genomes. Credit not allowed for both BIOL 4220 and BIOL 4608 or BIOL 4608 and BIOL 4607 or BIOL 4608 and BIOL 6607.

BIOL 4620. Aquatic Chemical Ecology. 3 Credit Hours.
Focuses on understanding the chemical mechanisms of aquatic signaling and the cascading effects on population regulation, community organization, and ecosystem function. Credit not allowed for both BIOL 4620 and BIOL 6620.

BIOL 4650. Bioethics. 2 Credit Hours.
This course will examine the process of scientific inquiry and the ethical implications of research in the biological sciences.

BIOL 4651. Foundations of Bioethics. 3 Credit Hours.
This course examines important bioethical issues in research, policy, medicine, and the environment in light of ethical theory and the process of scientific inquiry. Credit not awarded for both BIOL 4651 and BIOL 4650.

BIOL 4668. Eukaryotic Molecular Genetics. 3 Credit Hours.
Topics in molecular genetics, including genetic engineering techniques, gene expression and regulation, genetic structure, stability and evolution, with emphasis on eukaryotic organisms.

BIOL 4690. Independent Research Project. 3 Credit Hours.
Independent research with proposal and manuscript writing, conducted with the guidance of a faculty member.

BIOL 4694. Intern Assistantship(Undergraduate Internship for Pay). 1-21 Credit Hours.
Biology Undergraduate Internship for pay for juniors and seniors, by permit only. The internship experience must at a unit or agency approved by the School of Biology.

BIOL 4695. Undergraduate Internship(Undergraduate Internship for Academic Credit). 1-21 Credit Hours.
Biology Undergraduate Internship for credit for juniors and seniors, by permit only. The internship experience must be at a unit or agency approved by the School of Biology.

BIOL 4696. Biology Undergraduate Teaching Assistantship. 3 Credit Hours.
Biology teaching carried out under the guidance of a faculty member. Credit not allowed for both BIOL 4696 and BIOL 4697.

BIOL 4697. Biology Undergraduate Teaching Experience. 3 Credit Hours.
An introduction to teaching biology for undergraduate teaching assistants, with a focus on effective teaching active engagement of students, and development of innovative classroom activities. Credit not allowed for both BIOL 4696 and BIOL 4697.

BIOL 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BIOL 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BIOL 4740. Biologically Inspired Design. 3 Credit Hours.
We examine evolutionary adaptation as a source for engineering design inspiration, utilizing principles of scaling, adaptability, and robust multifunctionality that characterize biological systems. Credit not allowed for both BIOL 4740 and (ISYE 4740 or PTFE 4740 or MSE 4740 or ME 4740).

BIOL 4744. Microbial Symbiosis & Microbiomes. 3 Credit Hours.
This course explores how symbiotic interactions with microbes affect the biology of other organisms, focusing extensively on the beneficial microbes native to the human body.
BIOL 4746. Signaling Molecules. 3 Credit Hours.
The diversity of chemical signals between organisms and their structural specifications will be presented along with chemical and biological methods for isolating signaling molecules.

BIOL 4752. Introductory Neuroscience. 3 Credit Hours.
Goals are to understand the components of the nervous system and their functional interactions, and appreciate the complexity of higher order brain functions and pathways. Crosslisted with BMED 4752.

BIOL 4755. Mathematical Biology. 3 Credit Hours.
An introduction to practical applications of mathematical models to help unravel the underlying mechanisms involved in biological processes. Crosslisted with MATH 4755.

BIOL 4801. Special Topics. 1 Credit Hour.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4802. Special Topics. 2 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4803. Special Topics. 3 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4804. Special Topics. 4 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4805. Special Topics. 5 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4813. Special Topics. 3 Credit Hours.
Special Topics in BIOS.

BIOL 4814. Special Topics. 4 Credit Hours.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOL 4823. Special Topics. 3 Credit Hours.
Special Topics in BIOS.

BIOL 4833. Special Topics. 3 Credit Hours.
Special Topics in BIOS. null.

BIOL 4901. Special Problems. 1-21 Credit Hours.
Research problem in biology under supervision of a faculty member. To be offered any quarter with credit to be arranged. Seven hours (four hours technical electives + three hours free electives) are the maximum credits allowed toward the Bachelor of Science in Biology degree.

BIOL 4902. Special Problems. 1-21 Credit Hours.
Research problem in biology under supervision of a faculty member. To be offered any quarter with credit to be arranged. Seven hours (four hours technical electives + three hours free electives) are the maximum credits allowed toward the Bachelor of Science in Biology degree.

BIOL 4903. Special Problems. 1-21 Credit Hours.
Research problem in biology under supervision of a faculty member. To be offered any quarter with credit to be arranged. Seven hours (four hours technical electives + three hours free electives) are the maximum credits allowed toward the Bachelor of Science in Biology degree.

BIOL 4904. Special Problems. 1-21 Credit Hours.
Research problem in biology under supervision of a faculty member. To be offered any quarter with credit to be arranged. Seven hours (four hours technical electives + three hours free electives) are the maximum credits allowed toward the Bachelor of Science in Biology degree.

BIOL 4905. Special Problems. 1-21 Credit Hours.
Special problem in biology under supervision of a faculty member. To be offered any quarter with credit to be arranged. Seven hours (four hours technical electives + three hours free electives) are the maximum credits allowed toward the Bachelor of Science in Biology degree.

BIOL 4910. Honors Undergraduate Research Thesis. 3 Credit Hours.
Writing and submission of an Undergraduate Research Thesis describing research accomplishments with a Georgia Tech faculty member. For a thesis conducted without a Biological Sciences faculty member, the instructor of record and a second reader from the School must both approve the thesis contains sufficient biological content.

BIOL 4XXX. Biology Elective. 1-21 Credit Hours.

BIOL 6150. Genomics and Applied Bioinformatics. 3 Credit Hours.
Retrieval and analysis of biological sequence, gene expression, and proteomics data from public databases and other sources; applying standard bioinformatics tools to investigate biological questions. Credit not allowed for both BIOL 6150 and BIOL 4150.

BIOL 6221. Biological Oceanography. 3 Credit Hours.
An introduction to the major biological processes in the ocean, including primary production, elemental cycling, food webs, and fisheries.

BIOL 6410. Microbial Ecology. 3 Credit Hours.
Advanced studies of microbial ecosystems, the specific roles of bacteria in maintaining ecological balance, and the evolution of the ecosystem in response to changing environments.

BIOL 6417. Marine Ecology. 3 Credit Hours.
An overview of the ecological and evolutionary patterns, processes, and mechanisms affecting the organization, structure, and function of a broad variety of marine communities. Credit not allowed for both BIOL 6417 and BIOL 4417.

BIOL 6418. Microbial Physiology. 3 Credit Hours.
Study of the physiology of growth and metabolic activities of microorganisms.

BIOL 6422. Theoretical Ecology. 3 Credit Hours.
Theoretical foundations of ecology, from the population to the community and ecosystem levels.

BIOL 6428. Population Dynamics. 3 Credit Hours.
Students will examine the ecological factors that affect dynamics, regulation, and evolution of natural populations, emphasizing the connections with mathematical models, genetics, and ecology. Credit will not be awarded for both BIOL 6428 and BIOL 4428.

BIOL 6478. Methods in Molecular Biophysics. 3 Credit Hours.
An introduction to biophysical methods that are employed to study biological macromolecules and their interaction to gain understanding of how they function. Credit not allowed for both BIOL 6478 and BIOL 4478.

BIOL 6480. Evolutionary Developmental Biology-How to Build an Organism. 2 Credit Hours.
This course teaches students how the process of development from embryo to adult impacts evolutionary diversity and human health. Credit not allowed for both BIOL 6480 and BIOL 4480.

BIOL 6570. Immunology. 4 Credit Hours.
A survey of modern immunology and its applications, with emphasis on immunological methods used in molecular and cell biological research.

BIOL 6600. Evolution. 3 Credit Hours.
An introduction to evolutionary patterns and processes, including the history of life, phylogenetics, population genetics, quantitative genetics, molecular evolution, and other important topics in evolutionary biology.
BIOL 6607. Molecular Biology of Microbes: Disease, Nature, and Biotechnology. 3 Credit Hours.
Molecular genetics of bacteria with an emphasis on experimental approaches, regulatory mechanisms in disease-causing and environmental bacteria, and biotechnology applications derived from microbes. Credit will not be awarded for both BIOL 6607 and BIOL 4607, BIOL 4608, or BIOL 6608.

BIOL 6608. Advanced Microbial Genetics. 3 Credit Hours.
Molecular mechanisms of bacterial and plasmid genetic processes. Topics covered include genome organization, DNA replication, transcription, and translation. Credit will not be awarded for both BIOL 6608 and BIOL 4607 or BIOL 6608 and BIOL 6607.

BIOL 6611. Advanced Microbial Physiology. 3 Credit Hours.
Advanced studies of selected aspects of the physiology of prokaryotic and eukaryotic microorganisms.

BIOL 6620. Aquatic Chemical Ecology. 3 Credit Hours.
The course focuses on understanding the chemical mechanisms of aquatic signaling and the cascading effects on population regulation, community organization, and ecosystem function. Credit not allowed for both BIOL 6620 and BIOL 4620.

BIOL 6623. Experiments in Aquatic Chemical Signaling. 6 Credit Hours.
A full-time commitment to student-originated, but faculty-guided, interdisciplinary research in aquatic chemical signaling using field, lab, and flume facilities at Skidaway Institute of Oceanography on the coast.

BIOL 6626. Physiological Ecology. 3 Credit Hours.
Study of the basic physiological processes and systems in vertebrates and invertebrates. Comparative study on how these systems are adapted for specific environments and functions.

BIOL 6628. Aquatic Toxicology. 3 Credit Hours.
Study of the biological effects of toxicants on aquatic organisms—mechanisms of toxicity, biotransformation, toxicity tests, ecological risk assessment.

BIOL 6630. Advanced Microbial Ecology. 3 Credit Hours.
Advanced studies of selected aspects of the ecology of prokaryotic and eukaryotic organisms.

BIOL 6720. Environmental Microbial Genomics. 3 Credit Hours.
To introduce advanced concepts and principles of contemporary environmental microbiological research and associated bioinformatics techniques through representative examples from recent literature.

BIOL 6756. Discovery of Signaling Molecules. 3 Credit Hours.
The diversity of chemical signals between organisms and their structural specificities will be presented along with chemical and biological methods for isolating signaling molecules. Crosslisted with CEE 6756 and CHEM 6756.

BIOL 6765. Geomicrobiology. 3 Credit Hours.
Interactions between microorganisms and the geosphere, microbial energetics and genetics; geochemical controls on microbial diversity and activity. Crosslisted with EAS 6765.

BIOL 6XXX. Biology Elective. 1-21 Credit Hours.

BIOL 7000. Master’s Thesis. 1-21 Credit Hours.

BIOL 7001. Foundations in Molecular and Cell Biology. 4 Credit Hours.
The goal of this course is to provide new students with fundamental knowledge in the general areas of prokaryotic and eukaryotic molecular biology, biochemistry, structural biology, and bioinformatics.

BIOL 7010. Advanced Cell Biology. 3 Credit Hours.
Current topics in eukaryotic cell biology including membrane functions, intracellular sorting and compartmentalization, cell signaling, cell cycle, cytoskeleton, cell adhesion, motility, and current experimental approaches.

BIOL 7015. Cancer Biology and Technology. 3 Credit Hours.
This course covers the major concepts of cancer biology as well as to state-of-the-art technologies that are being applied to cancer research, detection and treatment. Credit not allowed for both BIOL 7015 and BIOL 4015.

BIOL 7023. Bioinformatics. 3 Credit Hours.
Introduction to mathematical, statistical, and computer methods of nucleic acid and protein sequence analysis and interpretation. Algorithms for gene finding, protein structure and function prediction, constructing phylogenetic trees.

BIOL 7101. Advanced Sensory Ecology. 3 Credit Hours.
A quantitative analysis of how organisms of all kinds obtain information about their environment, and how they use it to guide locomotions.

BIOL 7110. Macromolecular Modeling. 4 Credit Hours.
Principles and practices in the use of molecular mechanics methods (minimization: molecular dynamics) to study structure-function relationships in biological macromolecules.

BIOL 7111. Molecular Evolution. 3 Credit Hours.
Evolutionary processes at the molecular level, organizations of genomes and genetic systems. Students will read and present up-to-date research articles in various topics in molecular evolution.

BIOL 7200. Programming for Bioinformatics. 3 Credit Hours.
This active-learning, project-based course provides a rigorous introduction to scientific computing for bioinformatics, including Linux utilities, shell scripting and bioinformatics programming.

BIOL 7210. Computational Genomics. 3 Credit Hours.
In this active learning class, students will learn to convert sequence information into knowledge through the use of computational genomics tools, applications and databases.

BIOL 7668. Eucaryotic Molecular Genetics. 3 Credit Hours.
Topics in molecular genetics of eukaryotic organisms, including: gene structure and expression, protein processing and folding, genome stability, and molecular evolution.

BIOL 7913. Advances in Microbiology. 2 Credit Hours.
Topics of current interest in microbial physiology, applied microbiology, microbial ecology, and medical microbiology.

BIOL 7914. Advances in Bacteriology. 2 Credit Hours.
Topics of current interest in the physiology and ecology of bacteria and applications to practical problems.

BIOL 7923. Advances in Ecology. 2 Credit Hours.
Topics of current interest in the general areas of population growth and limitation, and the structure and stability of ecosystems.

BIOL 7924. Advances in Environmental Biology. 2 Credit Hours.
Topics of current interest in environmental biology.

BIOL 7963. Advances in Molecular Biology. 2 Credit Hours.
Topics of current interest in molecular biology.

BIOL 7964. Advances in Genetics. 2 Credit Hours.
Topics of current interest in genetics.

BIOL 8000. Integrative Biology Seminar. 2 Credit Hours.
A reading and discussion course structured around the School of Biology weekly seminar.
BIOL 8001. Seminar. 2 Credit Hours.
Presentation of research seminar.

BIOL 8002. Seminar. 1 Credit Hour.
Weekly seminars on current research presented by various scientists in the field of biology.

BIOL 8003. Seminar. 1 Credit Hour.
Weekly seminars on current research presented by various scientists in the field of biology.

BIOL 8005. Signals in the Sea Seminar. 2 Credit Hours.
Students and invited authorities in the field will present seminars and lead discussions focused on currently emerging topics in aquatic chemical ecology and signaling.

BIOL 8006. Integrative Approaches to Biological Systems. 2 Credit Hours.
This course will investigate, using samples from the literature and faculty research, the general principles of biological systems, from gene expression circuits to ecological communities.

BIOL 8106. Tools of Science Seminar. 2 Credit Hours.
This course addresses issues important to all successful scientists and engineers such as: research ethics; collaborations between industry, academics, and government; women and minorities in science; balancing research, teaching and service; writing, editing, and reviewing, presentations; job interviews; time management; speaking to the public and media; and scientific and university politics.

BIOL 8744. Microbial Symbiosis & Microbiomes. 3 Credit Hours.
This course explores how symbiotic interactions with microbes affect the biology of other organisms, focusing extensively on the beneficial microbes native to the human body.

BIOL 8801. Special Topics. 1 Credit Hour.
New graduate lecture courses in areas of current interest.

BIOL 8802. Special Topics. 2 Credit Hours.
New graduate lecture courses in areas of current interest.

BIOL 8803. Special Topics. 3 Credit Hours.
New graduate lecture courses in areas of current interest.

BIOL 8804. Special Topics. 4 Credit Hours.
New graduate lecture courses in areas of current interest.

BIOL 8805. Special Topics. 5 Credit Hours.
New graduate lecture courses in areas of current interest.

BIOL 8813. Special Topics. 3 Credit Hours.
Special Topics in Biology.

BIOL 8814. Special Topics. 4 Credit Hours.
Special Topics in Biology (lecture + supervised lab).

BIOL 8823. Special Topics. 3 Credit Hours.

BIOL 8833. Special Topics. 3 Credit Hours.
Special Topics in Biological Sciences.

BIOL 8901. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 8902. Special Problems. 1-21 Credit Hours.
Research problems in biology under the supervision of a faculty member.

BIOL 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a teaching assistantship.

BIOL 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding research assistantships.

BIOL 9000. Doctoral Thesis. 1-21 Credit Hours.

Biological Sciences (BIOS)

Biomedical Engineering (BMED)

BMED 1000. Introduction to Biomedical Engineering. 1 Credit Hour.
An introduction to the field of biomedical engineering, with an emphasis on career preparation.

BMED 1300. Problems in Biomedical Engineering I. 3 Credit Hours.
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups using problem-based learning methodologies.

BMED 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, CHE, ECE, ME, and MSE 1750.

BMED 1801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1805. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1811. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1812. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1813. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1814. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1815. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 1XXX. Bioengineering Elective. 1-21 Credit Hours.

BMED 2210. Conservation Principles in Biomedical Engineering. 4 Credit Hours.
A study of material and energy balances applied to problems in biomedical engineering.
BMED 2250. Problems in Biomedical Engineering. 3 Credit Hours.
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups using problem-based learning methodologies. Credit will not be awarded for both BMED 2250 and BMED 1300.

BMED 2300. Problems in Biomedical Engineering II. 3 Credit Hours.
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups using problem-based learning methods.

BMED 2310. Intro to Biomedical Engineering Design. 3 Credit Hours.
In small teams students will apply problem-based learning and human centered design to reverse engineer, analyze, and redesign medical devices. Credit will not be awarded for both BMED 2310 and BMED 2300.

BMED 2400. Introduction to Bioengineering Statistics. 3 Credit Hours.
Introduction to statistical modeling and data analysis in bioscientific and bioengineering applications. Topics include estimation, testing, regression, and experimental design.

BMED 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BMED 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BMED 2801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2805. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2811. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2812. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2813. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2814. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2815. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 2XXX. Bioengineering Elective. 1-21 Credit Hours.

BMED 3100. Systems Physiology. 3 Credit Hours.
An introduction to human physiology emphasizing biomedical engineering approaches to the understanding of basic organ function, disease states, and medical intervention.

BMED 3101. Introduction to Biomedical Data Science and Engineering. 3 Credit Hours.
Practical/hands-on experience in performing biomedical-related data processing/computation/analysis with a variety of computer tools, platforms, and applications.

BMED 3110. Quantitative Engineering Physiology Laboratory I. 2 Credit Hours.
A hands-on lab providing an active learning team environment to reinforce selected engineering principles of physiology, emphasizing a quantitative model-oriented approach to physiological systems.

BMED 3300. Biotransport. 4 Credit Hours.
Fundamental principles of fluid, heat, and mass transfer with particular emphasis on physiological and biomedical systems.

BMED 3310. Biotransport. 3 Credit Hours.
Fundamental principles of fluid, heat, and mass transfer with particular emphasis on physiological and biomedical systems. Credit will not be awarded for both BMED 3310 and BMED 3300.

BMED 3400. Introduction to Biomechanics. 4 Credit Hours.
An introduction to the basic concepts and methods in biomechanics, including statistics and the mechanics of biomaterials. The biomedical applications of mechanics will be illustrated.

BMED 3500. Biomedical Sensors and Instrumentation. 3 Credit Hours.
A study of basic concepts and design of electronic sensors and instrumentation used in biomedical measurements. Standard clinical measurement techniques will also be examined.

BMED 3510. Biomedical Systems and Modeling. 4 Credit Hours.
Basic concepts, modeling tools and analysis techniques for the study of biochemical, bioelectrical and biomedical systems.

BMED 3520. Biomedical Systems and Modeling. 3 Credit Hours.
Introduction of computational systems biology, including the modeling process, various types of models, standard analysis and simulation of systems, and applications in real-world biological systems. Credit will not be awarded for both BMED 3520 and BMED 3510.

BMED 3600. Physiology of Cellular and Molecular Systems. 3 Credit Hours.
In depth cell and molecular physiology focused on cellular responses to stimuli, including cell organization/ reorganization, membrane transport/ kinetics, cell signaling/ molecular biology, mechanobiology and energy requirements.

BMED 3610. Quantitative Engineering Physiology Laboratory II. 2 Credit Hours.
This lab provides an active learning team environment, incorporating common cell/molecular biology techniques, to reinforce selected engineering principles in an in vitro cell culture setting.

BMED 3801. Special Topics. 1 Credit Hour.

BMED 3802. Special Topics. 2 Credit Hours.
Special Topics in Biomedical Engineering.
BMED 3XXX. Bioengineering Elective. 1-21 Credit Hours.

BMED 4400. Neuroengineering Fundamentals. 4 Credit Hours.
Lab and lecture on current topics in Neuroengineering, including electrophysiology, clinical and diagnostic neuroengineering, neural prosthetics, sensory-motor integration, neuromorphic VLSI, neurodynamics and neurorobotics.

BMED 4477. Biological Networks and Genomics. 3 Credit Hours.
Introduction to modeling of biological networks involved in gene regulation, cell signaling and metabolism. Mathematical modeling of cellular processes, such as gene expression, using genomic data.

BMED 4500. Cell and Tissue Engineering Laboratory. 3 Credit Hours.
The principles of cell and tissue engineering will be presented as a laboratory course to give students a hands-on experience. Cell engineering topics include receptor/ligand interactions, cell cycle/metabolism, cell adhesion, cellular mechanics, cell signal transduction, and cell transfection. Tissue engineering topics include applications, biomaterials/scaffolds and cells for reparative medicine, bioreactors and bioprocessing, functional assessment, in vivo issues.

BMED 4600. Senior Design Project I. 2 Credit Hours.
Team-oriented major design project in biomedical engineering, incorporating engineering standards and realistic design constraints. Credit not allowed for BMED 4600 and BMED 4603 (or BMED 4601).

BMED 4601. Senior Design Project II. 3 Credit Hours.
Team-oriented major design project in biomedical engineering, incorporating engineering standards and realistic design constraints. Credit not allowed for both BMED 4601 and BMED 4603 (or BMED 4600).

BMED 4602. Capstone Design. 3 Credit Hours.
Team-oriented design project in biomedical engineering, incorporating engineering standards and realistic design constraints. Includes introduction to relevant regulatory, intellectual property, and business management topics.

BMED 4603. Advanced Design. 3 Credit Hours.
Continuation of a team-oriented design experience initiated in BMED 4602 Capstone Design. Includes more advanced relevant regulatory, intellectual property, and business management topics. Credit not allowed for both BMED 4603 and BMED 4600 (or BMED 4601).

BMED 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BMED 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

BMED 4739. Medical Robotics. 3 Credit Hours.
An interdisciplinary course focusing on fundamental understanding of robot kinematics and dynamics as well as the design, development, and evaluation of a medical robotic system.

BMED 4740. Biologically Inspired Design. 3 Credit Hours.
We examine evolutionary adaptation as a source for engineering design inspiration, utilizing principles of scaling, adaptability, and robust multifunctionality that characterize biological systems.

BMED 4750. Diagnostic Imaging Physics. 3 Credit Hours.
Physics and image formation methods for conventional X-ray, digital X-ray CT, nuclear medicine, and magnetic resonance and ultrasound imaging. Crosslisted with MP 4750 and NRE 4750.

BMED 4751. Introduction to Biomaterials. 3 Credit Hours.
Introduction to different classes of biomaterials (polymers, metals, ceramics) and physiological responses to biomaterial implantation. Topics include material properties, host response, and biomaterial characterization techniques. Crosslisted with MSE 4751.

BMED 4752. Introductory Neuroscience. 3 Credit Hours.
Goals are to understand the components of the nervous system and their functional interactions, and appreciate the complexity of higher order brain functions and pathways. Crosslisted with BIOL 4752.

BMED 4757. Biofluid Mechanics. 3 Credit Hours.

BMED 4758. Biosolid Mechanics. 3 Credit Hours.

BMED 4765. Drug Design, Development and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including design of new drugs, synthesis and manufacturing issues, and methods for delivery into the body. Includes student presentations. Crosslisted with CHEM and CHBE 4765.

BMED 4781. Biomedical Instrumentation. 3 Credit Hours.
A study of medical instrumentation from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. Credit not allowed for both BMED 4781 and (CHE 4781 or ME 4781 or CHBE 4781 or ECE 4781).

BMED 4782. Biosystems Analysis. 3 Credit Hours.
Analytical methods for modeling biological systems, including white-noise protocols for characterizing nonlinear systems. Crosslisted with CHE, ECE, and ME 4782.

BMED 4783. Introduction to Medical Image Processing. 3 Credit Hours.
A study of mathematical methods used in medical image acquisition and processing. Concepts, algorithms, and methods associated with acquisition, processing, and display of two- and three-dimensional medical images are studied. Crosslisted with ECE 4783.

BMED 4784. Engineering Electrophysiology. 3 Credit Hours.
Basic concepts of electrophysiology from an engineering perspective. Functionality of relevant organs and systems; instrumentation tools which monitor electrophysiology function. Crosslisted with ECE 4784.

BMED 4801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4805. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.
BMED 4811. Special Topics. 1 Credit Hour.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4812. Special Topics. 2 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4813. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4814. Special Topics. 4 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4815. Special Topics. 5 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4823. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4833. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4843. Special Topics. 3 Credit Hours.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4900. Special Problems. 1-21 Credit Hours.
Individualized studies in certain specialized areas of interest in biomedical engineering.

BMED 4901. Special Problems. 1-21 Credit Hours.
Individualized studies in certain specialized areas of interest in biomedical engineering.

BMED 4902. Special Problems. 1-21 Credit Hours.
Individualized studies in certain specialized areas of interest in biomedical engineering.

BMED 4903. Special Problems. 1-21 Credit Hours.
Individualized studies in certain specialized areas of interest in biomedical engineering.

BMED 4XXX. Bioengineering Elective. 1-21 Credit Hours.

BMED 6041. Analytical Methods for Biomedical Engineering. 3 Credit Hours.
Basic analytical approaches to solve mathematical problems involved in biomedical engineering applications. Course focuses on ordinary and partial differential equations and on integral transform methods.

BMED 6042. Systems Physiology. 3 Credit Hours.
Regulation of physiological functions in the cardio-respiratory-renal, musculoskeletal, and gastrointestinal systems, and their interactions with the neural, endocrine, and immune systems.

BMED 6210. Magnetic Resonance Imaging. 3 Credit Hours.
This course covers the basic physics and engineering principles, advanced techniques and major applications of magnetic resonance imaging.

BMED 6501. Fundamentals of Biomedical Innovation and Development Processes. 3 Credit Hours.
Key steps, multiple stakeholders and interdependencies in the design and commercialization process for medical products.

BMED 6502. BioID Clinical Literacy and Experience. 3 Credit Hours.
Education in interfacing with medical healthcare professionals, medical terminology, on-site clinical observations, needs-finding, case analysis, creating design solutions for improved methods, products and procedures.

BMED 6503. Medical Markets and Clinical Specialties. 3 Credit Hours.
Introduction to medical device and biologics industries, interdependencies of commercial companies, vendors and suppliers required for development, commercialization and sales of products and equipment.

BMED 6504. Financial Planning for Development Projects. 3 Credit Hours.
Finance planning for development projects including: costing, forecasting, time value of money, breakeven analysis, return on investment analysis, capital budgeting, risk and return, working capital management.

BMED 6505. Product Planning and Project Management. 3 Credit Hours.
Strategy and analysis techniques to evaluate and manage new product innovations, product improvements and product line extensions in context of an entity's mission and goals.

BMED 6506. Professional Communications for Biomedical Innovation and Development. 3 Credit Hours.
Techniques and practice of effective oral presentations project/grant proposal writing, technical and project report writing to support medical device engineering, design and business.

BMED 6507. Medical Device Regulatory Requirements. 3 Credit Hours.
FDA Regulations for medical devices including clearance-approval pathways to commercialization, Quality Systems Regulations and ISO Standards for medical devices in the European Economic Community.

BMED 6508. BioID Team Masters Project I. 3 Credit Hours.
Team project to address an unmet medical need and develop an innovative solution including the engineering design document package and proof-of-concept prototype.

BMED 6509. BioID Masters Project II. 6 Credit Hours.
Teams will construct prototypes for Course I biomedical device project solution, conduct and analyze performance testing, prepare FDA 510(k) submission, and prepare project commercialization plan.

BMED 6517. Machine Learning in Biosciences. 3 Credit Hours.
Introduces machine learning concepts and methods, including supervised and unsupervised learning, dimension reduction and visualization. Topics are accompanied by bioinformatics and systems biology applications.

BMED 6700. Biostatistics. 3 Credit Hours.
An introduction to fundamental ideas and techniques in Biostatistics, with an emphasis on conceptual understanding and on the analysis of real data sets.

BMED 6710. Rational Design of Biomaterials. 3 Credit Hours.
The goal of this course is to give graduate students the ability to rationally design new biomaterials by integrating organic chemistry concepts with molecular biology.

BMED 6711. Rational Design of Biomaterials Lab. 3 Credit Hours.
The goal of this course is to teach students the laboratory skills needed to design and synthesize new biomaterials.

BMED 6720. Biotransport. 3 Credit Hours.
This graduate level course covers the analysis of fluid flow phenomena in the human body, cardiovasculature, respiratory system and other organ systems.
BMED 6730. Materials Science of Cellular Components. 3 Credit Hours.
Addresses structure-property relationship of cellular components. Credit not allowed for both BMED 6730 and MSE 6730.

BMED 6739. Medical Robotics. 3 Credit Hours.
This interdisciplinary course focuses on a fundamental understanding of robot kinematics and dynamics as well as the design, development, and evaluation of a medical robotic system.

BMED 6740. Living System Modeling & Analysis. 3 Credit Hours.
The purpose of this course is to introduce graduate students to living system models as pre-clinical test beds for a wide variety of biotechnologies.

BMED 6743. Tissue Mechanics. 3 Credit Hours.
Structure-function relationships and constitutive models for a variety of biological tissues, with an emphasis on understanding the mechanical behaviors of normal and pathological tissues. Credit not given for both BMED/ME 6783 and BMED/ME 6743. Crosslisted with ME 6743.

BMED 6753. Principles of Management for Engineers. 3 Credit Hours.
The course will provide an introduction to selected topics needed to be successful in the technology industries. Cannot count toward major area requirements in M.S. or Ph.D. programs of study.

BMED 6760. Information Processing Models in Neural Systems. 3 Credit Hours.
This course will examine "top down" modeling approaches for sensorineural systems, where an optimal computational principle used in engineering (e.g., information theory, Bayesian inference, control theory) explains observed information processing.

BMED 6765. Drug Design, Development and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including design of new drugs, synthesis and manufacturing issues, and methods of delivery into the body. Includes student presentations. Crosslisted with BMED 6765 and CHBE 6765.

BMED 6774. Biomedical Materials: Structure and Function. 3 Credit Hours.
Structure-function relationships of biomaterials and biomaterial characterization will be covered. Materials for medial implants, tissue engineering, biosensing, imaging, and drug delivery will be covered. Crosslisted with CHE, ME, and MSE 6774.

BMED 6777. Advanced Biomaterials. 3 Credit Hours.
Advanced topics of biomaterials performance and engineering, including biointerfaces, host reactions to materials, and bio-inspired/smart-materials strategies. Crosslisted with CHE, ME, and MSE 6777.

BMED 6779. Bioprocess Engineering. 3 Credit Hours.
Study of enzymes and microbial and mammalian cells for production of biochemicals and protein therapeutics in bioreactors; downstream separation and purification; integrated view of bioprocesses. Crosslisted with CHE 6779.

BMED 6780. Medical Image Processing. 3 Credit Hours.
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two- and three-dimensional data obtained from a variety of medical imaging modalities. Crosslisted with ECE and CS 6780.

BMED 6782. Cellular Engineering. 3 Credit Hours.
Engineering analysis of cellular systems. Crosslisted with CHE and ME 6782.

BMED 6784. Cardiovascular Biomechanics. 3 Credit Hours.
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with CHE and ME 6784.

BMED 6786. Medical Imaging Systems. 3 Credit Hours.
A study of the principles and design of medical imaging systems such as X-ray, ultrasound, nuclear medicine, and nuclear magnetic resonance. Crosslisted with ECE 6786.

BMED 6787. Quantitative Electrophysiology. 3 Credit Hours.
A quantitative presentation of electrophysiological systems in biological organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with PHYS and ECE 6787.

BMED 6789. Technology Ventures. 3 Credit Hours.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with ECE, CHE, ME, and MGT 6789.

BMED 6790. Information Processing Models in Neural Systems. 3 Credit Hours.
Examines "top-down" modeling approaches for sensorineural systems, where optimal computational principles used in engineering (e.g., information theory, Bayesian inference, control theory) explain observed information processing.

BMED 6793. Systems Pathophysiology. 3 Credit Hours.
Overview of human pathophysiology from a quantitative perspective. A brief introduction to the application of quantitative models to the understanding of biological systems. Crosslisted with CHE, ECE, and ME 6793.

BMED 6794. Tissue Engineering. 3 Credit Hours.
Biological, engineering, and medical issues in developing tissue engineered constructs. Emphasis in the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with CHE and ME 6794.

BMED 6799. Legal Issues in Technology Transfer. 3 Credit Hours.
Study and analysis of U.S. law as it applies to the patenting and licensing processes. Crosslisted with CHE, ME, and MGT 6799.

BMED 6XXX. Bioengineering Elective. 1-21 Credit Hours.

BMED 7000. Master's Thesis. 1-21 Credit Hours.

BMED 7001. Biomedical Engineering Seminar. 1 Credit Hour.
Graduate students of the Biomedical Engineering department (all programs) participate in seminars involving current research projects presented by faculty and invited speakers.

BMED 7002. Teaching Practicum I. 1 Credit Hour.
This course provides discipline-specific training that addresses intellectual problems and teaching strategies from the perspective of the discipline. Credit not allowed for both BMED 7002 and BMED 8696.

BMED 7003. Teaching Practicum II. 1 Credit Hour.
This course provides discipline-specific training that addresses intellectual problems and teaching strategies from the perspective of the discipline. Credit not allowed for both BMED 7003 and BMED 8697.

BMED 7004. Teaching & Research Practicum I. 1 Credit Hour.
This course provides the practical framework for understanding challenges faced during teaching, research, and academic life. This course includes topical materials required for BME RCR requirements.

BMED 7005. Teaching & Research Practicum II. 1 Credit Hour.
This course provides the practical framework for understanding challenges faced during teaching, research, and academic life.

BMED 7006. Teaching Practicum II. 1 Credit Hour.
This course provides discipline-specific training that addresses intellectual problems and teaching strategies from the perspective of the discipline. Credit not allowed for both BMED 7006 and BMED 8696.

BMED 7007. Teaching & Research Practicum II. 1 Credit Hour.
This course provides the practical framework for understanding challenges faced during teaching, research, and academic life. This course includes topical materials required for BME RCR requirements.
BMED 7011. Integrative Core: Introduction to Modeling and Experimentation in Biomedical Engineering. 3 Credit Hours.
An introduction to how engineers approach problems - via conceptual models that are then used to create wet lab models and in silico models.

BMED 7012. Integrative Core: Experimental Design-Measurements at the Right Spatial and Temporal Scales. 3 Credit Hours.
This integrative core course focuses on the design of experiments to answer scientific questions, with an emphasis on the spatial and temporal scales of measurements.

BMED 7013. Integrative Core: Problem Solving with Computational Models. 3 Credit Hours.
An introduction to computational model methodologies for complex biomedical/biological systems. Emphasis is placed on developing well-posed scientific hypotheses through the use of simulations.

BMED 7101. Advanced Seminar: Biomaterials & Regenerative Medicine. 3 Credit Hours.
This course is intended to promote critical review of the "State-of-the-art" biomaterial technologies to identify knowledge gaps that must be overcome to further biomaterials development.

BMED 7201. Advanced Seminar: Cardiovascular Biology & Biomechanics. 3 Credit Hours.
To review current topics in cardiovascular engineering, biology and diseases through critical literature review. In addition, each student will develop and present a "Proposal" by the end of the class.

BMED 7301. Advanced Seminar: Cellular & Biomolecular Engineering. 3 Credit Hours.
This seminar course illustrates the development of micro- and nano-scale engineering approaches for studies of biomolecules and cells and their applications to medicine.

BMED 7310. Stem Cell Engineering. 3 Credit Hours.
Fundamentals for the application of analytical engineering approaches to the quantitative study of stem cell biology and translation into cell therapies and diagnostics.

BMED 7410. Introduction to Multiscale Analysis in Systems. 3 Credit Hours.
The class explores modeling analyses spanning multiple levels of biological organization at different resolutions of detail. Emphasis is placed on control in complex biological systems.

BMED 7411. Mathematical Models in Biology & Medicine. 3 Credit Hours.
The course introduces the student to a representative set of models that elucidate the nature of biological and medical phenomena.

BMED 7413. Biochemical Systems Analysis. 3 Credit Hours.
The course introduces BME students interested in mathematical modeling and systems biology to the computational analysis of metabolic and other dynamic systems in biology.

BMED 7601. Advanced Seminar: Neuroengineering and Neuropathology. 3 Credit Hours.
Current issues in neuroengineering. Focus is placed on neuropathological complexity across cellular and organ level scales through literature reading, discussion, and independent study.

BMED 7610. Quantitative Neuroscience. 3 Credit Hours.
A quantitative presentation of neural signal processing and information coding, emphasizing the circuitry of sensory and motor pathways of the brain.

BMED 7741. Robotics Professional Preparation. 1 Credit Hour.

BMED 7742. Robotics Professional Preparation 2. 1 Credit Hour.

BMED 7743. Robotics Professional Preparation 3. 1 Credit Hour.

BMED 7785. Introduction to Robotics Research. 3 Credit Hours.
Familiarizes students with the core of robotics: mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research. Cross-listed with AE 7785, ECE 7785, and CS 7785.

BMED 8740. Robotics Internship. 1-21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.

BMED 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

BMED 8750. Multidisciplinary Robotics Research I. 3 Credit Hours.
Multidisciplinary research course supervised by two robotics faculty from different schools participating in the robotics Ph.D. program. Cross-listed with AE, CS, and ECE 8750.

BMED 8751. Multidisciplinary Robotics Research II. 3 Credit Hours.
Continuation of BMED 8750 (Multidisciplinary Robotics Research I). Cross-listed with AE, CS, and ECE 8751.

BMED 8811. Special Topics. 1 Credit Hour.
Topics of current interest in biomedical engineering.

BMED 8812. Special Topics. 2 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8813. Special Topics. 3 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8814. Special Topics. 4 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8815. Special Topics. 5 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8823. Special Topics. 3 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8833. Special Topics. 3 Credit Hours.
Special Topics.

BMED 8843. Special Topics. 3 Credit Hours.
Special Topics.

BMED 8853. Special Topics. 3 Credit Hours.
Topics of current interest in biomedical engineering.

BMED 8901. Special Problems. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

BMED 8902. Special Problems. 1-21 Credit Hours.

BMED 8903. Special Problems. 1-21 Credit Hours.

BMED 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a teaching assistantship.
Biomedical Engr/Joint Emory PKU (BMEJ)

BMED 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a research assistantship.

BMED 9000. Doctoral Thesis. 1-21 Credit Hours.

Biomed Engr/Joint Emory (BMEM)

BMEM 6000. Biomedical Engineering Joint Program with Emory. 1-21 Credit Hours.

BMEM 6001. BMED Eng-Joint w/Emory. 1-21 Credit Hours.

Civil and Environmental Engr (CEE)

CEE 1770. Introduction to Engineering Graphics and Visualization. 3 Credit Hours.
Engineering graphics and visualization including sketching, line drawing, and solid modeling. Development and interpretation of drawings and specification for product realization. Crosslisted with AE and ME 1770.

CEE 1XXX. Civil/Env Engr Elective. 1-21 Credit Hours.

CEE 2040. Dynamics. 2 Credit Hours.
Kinematics and kinetics of particles and rigid bodies in one and two dimensions; principles of work/energy and impulse/momentum.

CEE 2300. Environmental Engineering Principles. 3 Credit Hours.
Introduction to chemical, biological, and physical processes in the environment. Discussion of the basic processes governing air, water, and land quality, and the behavior and impacts of contaminants associated with human and industrial activities.

CEE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CEE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CEE 2803. Special Topics. 3 Credit Hours.

CEE 2901. Special Problems. 1-21 Credit Hours.

CEE 2XXX. Civil/Env Engr Elective. 1-21 Credit Hours.

CEE 3000. Civil Engineering Systems. 3 Credit Hours.
Infrastructure viewed from a systems perspective; analytical approaches and modeling of civil-engineered facilities; sustainability; engineering economy applications.

CEE 3010. Geomatics. 3 Credit Hours.
Spatial data collection methods including surveying, photogrammetry, remote sensing, and global positioning systems; management, manipulation, and analysis of spatial and associated attribute data.

CEE 3020. Civil Engineering Materials. 3 Credit Hours.
Physical, mechanical, and durability properties of concrete, metals, unreinforced and reinforced plastics, timber, asphalt, and asphalt concrete.

CEE 3040. Fluid Mechanics. 3 Credit Hours.
Elementary mechanics of fluids with emphasis on hydrostatics, control volume analysis of flowing fluids using kinematics, continuity, energy, and momentum principles; similitude, pipe flow.

CEE 3051. Introduction to Structural Engineering. 3 Credit Hours.
Concepts in structural engineering related to the analysis and design of various types of structures such that they behave as intended throughout their lifetime.

CEE 3055. Structural Analysis. 3 Credit Hours.
Determination of internal forces and deflection in statically determinate trusses, beams, and frames. Introduction to analysis of statically indeterminate structures.

CEE 3340. Environmental Engineering Laboratory. 3 Credit Hours.
Theory and application of environmental laboratory methods for measurement of fundamental properties and characteristics of dissolved and particulate constituents in water, air and soil systems.

CEE 3770. Statistics and Applications. 3 Credit Hours.
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression, and analysis of variance. Example applied to the field of civil and environmental engineering. Crosslisted with MATH 3770 and ISYE 3770. Also, credit not awarded for both CEE 3770 and MATH 3670.

CEE 3XXX. Civil/Env Engr Elective. 1-21 Credit Hours.

CEE 4000. Global Engineering Leadership. 3 Credit Hours.
Addresses skills necessary for the global engineer-leader: creating an engineering firm and evaluating its global viability; written, oral, and cross-cultural communication; collaboration; ethics; strategic planning.

CEE 4050. Infrastructure System Management. 3 Credit Hours.
Introduction to general concepts and advanced topics in infrastructure systems management applied to manage large-scale infrastructure assets.

CEE 4090. Capstone Design. 3 Credit Hours.
An interdisciplinary civil and environmental design experience. Problem definition, data acquisition, modeling and analysis, evaluation of design alternatives, oral and written presentation of final design.

CEE 4100. Construction Engineering and Management. 3 Credit Hours.
Fundamental concepts in planning, design, and construction of civil engineering projects. Introduction to project scheduling, cost estimating, controls, procurement, value engineering, quality assurance, and safety.

CEE 4101. Construction Seminar. 1 Credit Hour.
The seminar provides a platform for students to engage with construction industry companies and experts, to learn about different construction disciplines, their projects, and experiences.

CEE 4110. Construction Planning, Estimating, and Scheduling. 3 Credit Hours.
An integrated approach to planning, estimating, and scheduling of construction projects, including basic and advanced concepts, applications, and tools for developing plans, estimates, and schedules.

CEE 4120. Construction Equipment and Methods. 3 Credit Hours.
An integrated approach to construction methods, including basic and advanced concepts, applications, and tools for planning, analysis, and assessment of construction methods and equipment.

CEE 4130. Construction Safety and Health. 3 Credit Hours.
Fundamentals to safety and health as they apply to civil infrastructure and building construction. Topics include planning, design, management, rules and guidelines, best practices, and inspection of safety and health.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4140</td>
<td>Building Information Modeling (BIM) in Construction</td>
<td>3</td>
<td>Theory and Application of Building Information Modeling (BIM) in the Architecture/Engineering/Construction (A/E/C) industry with emphasis on Constructability, Scheduling, Front End Planning (FEP) and Construction monitoring.</td>
</tr>
<tr>
<td>CEE 4150</td>
<td>Construction Management & Megaprojects</td>
<td>3</td>
<td>Covers planning and development of megaprojects. Addresses social, environmental, and economic impacts of megaprojects. Discusses cultural differences & ethical issues in managing megaprojects.</td>
</tr>
<tr>
<td>CEE 4200</td>
<td>Hydraulic Engineering</td>
<td>3</td>
<td>Applications of fluid mechanics to engineering and natural systems including fluid drag, open channel flow, turbomachinery, and environmental hydraulics; laboratory experiments; computational hydraulics.</td>
</tr>
<tr>
<td>CEE 4210</td>
<td>Hydrology</td>
<td>3</td>
<td>Global circulation and the hydrologic cycle, precipitation mechanisms and analysis, evaporation and other losses, streamflow, hydrographs, river and reservoir routing, and frequency analysis.</td>
</tr>
<tr>
<td>CEE 4225</td>
<td>Introduction to Coastal Engineering</td>
<td>3</td>
<td>Introduction to coastal engineering processes and problems. Topics include: water wave mechanics, nearshore hydrodynamics, astronomical tides, sediment transport, beach nourishment, and coastal structures.</td>
</tr>
<tr>
<td>CEE 4230</td>
<td>Environmental Transport Modeling</td>
<td>3</td>
<td>Introduction to mixing of pollutants and natural substances in the surface water environment. Use of mathematical models for mixing zones and water quality.</td>
</tr>
<tr>
<td>CEE 4300</td>
<td>Environmental Engineering Systems</td>
<td>3</td>
<td>Environmental engineering issues associated with water, air, and land pollution, including risk assessment, groundwater contamination, global climate change, and sustainable technologies.</td>
</tr>
<tr>
<td>CEE 4310</td>
<td>Water Quality Engineering</td>
<td>3</td>
<td>Reclamation of water and wastewater for potable and industrial uses, groundwater remediation. Principles of physical, chemical, and biological treatment processes.</td>
</tr>
<tr>
<td>CEE 4320</td>
<td>Hazardous Substance Engineering</td>
<td>3</td>
<td>Technical aspects of hazardous waste management and treatment including legislation, exposure and risk assessment, contaminant fate and transport, waste treatment methods, and remediation technologies.</td>
</tr>
<tr>
<td>CEE 4330</td>
<td>Air Pollution Engineering</td>
<td>3</td>
<td>Introduction to the physical and chemical processes affecting the dynamics and fate of air pollutants at the local, regional, and global scales. Particular emphasis is on tropospheric pollutant chemistry and transport.</td>
</tr>
<tr>
<td>CEE 4340</td>
<td>Environmental Modeling and Health Risk Analysis</td>
<td>3</td>
<td>This course provides an introduction to modeling techniques used in the environmental health field, with emphasis on three different exposure pathways introduced as the air pathway, groundwater pathway, and surface water pathway.</td>
</tr>
<tr>
<td>CEE 4350</td>
<td>Environmental Technology in the Developing World</td>
<td>3</td>
<td>Approaches, methods, and practical aspects of employing technologies for improving environmental quality in low and middle income countries. Team project-based course with field component.</td>
</tr>
<tr>
<td>CEE 4395</td>
<td>Environmental Systems Design Project</td>
<td>3</td>
<td>Design and assessment of an environmental system, component or process, including problem definition, data acquisition, modeling and analysis, evaluation of alternatives, and presentations.</td>
</tr>
<tr>
<td>CEE 4405</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
<td>Introduction to soil as an engineering material, with a focus on the mechanics of soil strength and compressibility, and fluid flow through soils.</td>
</tr>
<tr>
<td>CEE 4406</td>
<td>Applied Geotechnics</td>
<td>3</td>
<td>Geotechnical principles applied to civil engineering construction, including evaluation of soil and rock properties, shallow foundations, drive and bored pilings, liquefaction, and ground modification. Credit not allowed for both CEE 4406 and CEE 4410.</td>
</tr>
<tr>
<td>CEE 4410</td>
<td>Geosystems Engineering Design</td>
<td>3</td>
<td>Analysis and design in geosystems engineering projects, including the evaluation of pile foundations, slope stability, earth-retaining structures, and embankments. Credit not allowed for both CEE 4410 and CEE 4406.</td>
</tr>
<tr>
<td>CEE 4420</td>
<td>Subsurface Characterization</td>
<td>3</td>
<td>Introduction to field and laboratory methods for characterizing subsurface geological, hydrological, geotechnical, and contaminant conditions.</td>
</tr>
<tr>
<td>CEE 4430</td>
<td>Environmental Geotechnics</td>
<td>3</td>
<td>Chemical equilibria and partitioning in subsurface systems; hazardous waste site assessment technologies and data; including soil gas data, monitoring wells, and direct-push technology.</td>
</tr>
<tr>
<td>CEE 4450</td>
<td>Introduction to Petroleum Geomechanics</td>
<td>3</td>
<td>Introduction to the basic concepts of geomechanics and their engineering applications with a focus on the petroleum - and energy-related applications.</td>
</tr>
<tr>
<td>CEE 4460</td>
<td>International Disaster Reconnaissance</td>
<td>3</td>
<td>Reviews consequence of and response to foreign disasters in light of technical, cultural and political factors; disasters include earthquakes, floods, hurricanes/typhoons, and man-made infrastructure failures.</td>
</tr>
<tr>
<td>CEE 4510</td>
<td>Structural Steel Design</td>
<td>3</td>
<td>Principles of behavior of tension and compression members, beams, and connections with application to the design of elementary structures.</td>
</tr>
<tr>
<td>CEE 4520</td>
<td>Reinforced Concrete Design</td>
<td>3</td>
<td>Principles of behavior of reinforced concrete beams, short columns, and slabs, with application to the design of elementary concrete structures, foundation, and earth-retaining structures.</td>
</tr>
<tr>
<td>CEE 4530</td>
<td>Timber and Masonry Design</td>
<td>3</td>
<td>Stress-based design of tension, compression, and flexural members; design of building systems, unreinforced and reinforced walls using timber and masonry construction materials and techniques.</td>
</tr>
<tr>
<td>CEE 4540</td>
<td>Infrastructure Rehabilitation</td>
<td>3</td>
<td>Rehabilitation of civil infrastructure systems including aspects of deterioration science, nondestructive assessment, renewal engineering, construction planning and management, and public policy and finance.</td>
</tr>
<tr>
<td>CEE 4550</td>
<td>Structural Analysis II</td>
<td>3</td>
<td>Analysis of two- and three-dimensional statically indeterminate structures by classical and matrix methods of solution. Flexibility and stiffness techniques, influence lines, approximate analysis, and nonlinear analysis.</td>
</tr>
<tr>
<td>CEE 4600</td>
<td>Transportation Planning, Operations, and Design</td>
<td>3</td>
<td>Introduction to transportation engineering with specific emphasis on the planning, design, and operation of transportation facilities.</td>
</tr>
</tbody>
</table>
CEE 4610. Multimodal Transportation Planning, Design, and Operations. 3 Credit Hours.
Planning, design, and operation of systems of air, rail, water, and highway facilities, including those for bicycles and pedestrians.

CEE 4620. Environmental Impact Assessment. 3 Credit Hours.
Key policy, planning, and methodological issues in the environmental impact assessment of engineering systems including the regulatory framework and analytical techniques.

CEE 4630. Computer-Aided Site and Roadway Design. 3 Credit Hours.
Site development principles and application to a comprehensive design project using computer-based digital terrain model software tools.

CEE 4640. Freeway and Interchange Planning and Design. 3 Credit Hours.
An introduction to the planning and design of freeways and interchanges. Topics include various interchange forms, HOV lanes, ramp metering, tolling, and truck by-pass ramps.

CEE 4650. Site Development Planning and Design in Transportation. 3 Credit Hours.
An introduction to the planning and design of site developments. Topics include site traffic analysis and driveway, parking lot, drive-thru facility, site circulation, delivery facility and residential neighborhood design.

CEE 4660. Sustainable Transportation Abroad. 3 Credit Hours.
Planning, design, and operations of transportation systems in countries with sustainable multimodal infrastructure; applying lessons learned to US; leadership development in context of sustainable technologies.

CEE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CEE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CEE 4791. Mechanical Behavior of Composites. 3 Credit Hours.
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CHE, ME, MSE, and PTFE 4791.

CEE 4793. Composite Materials and Processes. 3 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CHE, ME, MSE, and PTFE 4793.

CEE 4794. Composite Materials and Manufacturing. 4 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CHE, ME, MSE, and PTFE 4794.

CEE 4795. Groundwater Hydrology. 3 Credit Hours.
Dynamics of flow and solute transport in groundwater, including theory, implementation, and case studies. Crosslisted with EAS 4795.

CEE 4801. Special Topics. 1 Credit Hour.
CEE 4802. Special Topics. 2 Credit Hours.
CEE 4803. Special Topics. 3 Credit Hours.
CEE 4804. Special Topics. 4 Credit Hours.
CEE 4805. Special Topics. 5 Credit Hours.
CEE 4806. Special Topics. 6 Credit Hours.

CEE 4900. Undergraduate Honors Research Project. 1-21 Credit Hours.
Individual research projects conducted in conjunction with and under the direction of a CEE faculty member. Participation by invitation, and agreement with individual faculty members. Project culminates in a thesis and presentation.

CEE 4901. Special Problems. 1-21 Credit Hours.
CEE 4902. Special Problems. 1-21 Credit Hours.
CEE 4903. Special Problems. 1-21 Credit Hours.
CEE 4XXX. Civil/Env Engr Elective*. 1-21 Credit Hours.

CEE 6100. Construction Project Planning. 3 Credit Hours.
Introduction to project planning concepts including organization development, computer-based scheduling, computer-based estimating, regulatory agencies, and project financing.

CEE 6110. Computer Applications in Construction. 3 Credit Hours.
Introduction to computing tools impacting the construction industry and the analysis techniques used to determine company automation requirements.

CEE 6120. Environmentally Conscious Design and Construction. 3 Credit Hours.
Introduction to framework, concepts, principles, strategies, and tools for environmentally conscious design and construction of facilities and civil infrastructure systems.

CEE 6130. Construction Project Controls. 3 Credit Hours.
Introduction to project control concepts and advanced implementation techniques. Project control concerns including project budgeting, project productivity, cash flow, and resource allocation will be introduced.

CEE 6140. Advanced Planning and Estimating Methods. 3 Credit Hours.
Overview of advanced methods for planning and estimating construction projects including resource allocation/management, project control techniques, interpretation of schedules and estimates, and value engineering.

CEE 6150. Construction Law. 3 Credit Hours.
Overview of construction law and legal issues encountered by the construction engineer and manager.

CEE 6170. Project Delivery and Procurement. 3 Credit Hours.
Analysis of construction project delivery including traditional, design-build, construction management, multiple prime contractors, and related financing. The course focuses on the owner's role in construction.

CEE 6180. Construction Organizations. 3 Credit Hours.
Introduction to organizational concepts of the construction industry including strategic management, company financing, human resources, and market analysis.

CEE 6190. Construction Field Engineering. 3 Credit Hours.
Introduction to construction engineering techniques and practices including site excavation, shoring structures, heavy equipment, site layout, and temporary facility construction.
CEE 6215. Coastal Structures. 3 Credit Hours.
Introduction to coastal structures with a focus on the hydrodynamic loading and the resulting analysis, design and potential failure mechanisms during extreme events.

CEE 6221. Physical Hydrology. 3 Credit Hours.
Occurrence, movement, and distribution of water. Topics: hydrologic cycle, global circulation, climate, atmospheric water vapor, thermodynamics, precipitation, evaporation, snowmelt, soil moisture, unsaturated flow, infiltration, geomorphology, runoff, and routing.

CEE 6222. Hydrometeorology. 3 Credit Hours.
Estimation of hydrologic variables from on-site and remote sensors; operational hydrologic models; parameter estimation; operational forecasting.

CEE 6231. Probability and Statistics for Civil and Environmental. 3 Credit Hours.
Engineers Probability distributions applicable to civil engineering Systems; function of random variables; regression and correlation analysis; parameters estimation and statistical hypothesis tests.

CEE 6232. Stochastic Hydrology. 3 Credit Hours.
Stochastic modeling of hydrologic processes. Problems of model specifications and parameter identification, and validation. Application to forecasting and synthetic events.

CEE 6241. Water Resources Management I. 3 Credit Hours.
Operations research methodologies, including linear and nonlinear programming, and their applications to water resources systems.

CEE 6242. Water Resources Management II. 3 Credit Hours.
Design of decision support systems for water resources planning and management.

CEE 6244. Random Fields and Geostatistics. 3 Credit Hours.
Probability density function; moments; scales of fluctuations; spectral representation; simulation of random fields; cross-correlated random fields; vector fields; kriging; conditional simulation.

CEE 6251. Intermediate Fluid Mechanics. 3 Credit Hours.
Concepts of linear and angular deformation, vorticity, and conservation of mass. Development of Navier-Stokes with solutions: steady and unsteady uniform laminar, vortex, creeping, and potential flow.

CEE 6252. Advanced Fluid Mechanics. 3 Credit Hours.
Theory of three-dimensional turbulent boundary layers with application to environmental flows in rivers, estuaries, and the atmosphere of interest in water resources engineering.

CEE 6261. Environmental Fluid Mechanics. 3 Credit Hours.
Dynamics, mixing, and contaminant transport in surface water bodies, including lakes, rivers, estuaries, and coastal waters. Introduction to numerical models. Prediction of mixing zones.

CEE 6262. Advanced Environmental Fluid Mechanics. 3 Credit Hours.
Buoyancy modifications to the mixing and dynamics of pollutant discharges and surface water bodies. Gathering and analysis of laboratory and field data for mixing problems.

CEE 6263. Fluid Mechanics of Organisms. 3 Credit Hours.
Principles of fluid mechanics are applied in the context of biology. Discussion of transport of chemical and mechanical signals and fluid forces affecting organisms.

CEE 6271. Flow and Transport through Porous Media I. 3 Credit Hours.
Basic principles governing ground water flow. Topics covered: fundamental principles of saturated and unsaturated ground water flow, contaminant transport, and salt water intrusion.

CEE 6272. Flow and Transport through Porous Media II. 3 Credit Hours.
Principles of numerical methods used in solving ground water flow, contaminant transport models, building on materials covered in CEE 6271. Topics: finite element, difference methods, saturated/unsaturated ground water flow, and contaminant transport.

CEE 6274. Flow and Transport in Heterogeneous Porous Media. 3 Credit Hours.
Advanced treatment of transport processes in natural porous media: classical description; stochastic description of variability; dynamic models; flow and transport in aquifers; model uncertainty.

CEE 6281. Open Channel Hydraulics. 3 Credit Hours.

CEE 6282. Sediment Transport. 3 Credit Hours.
Engineering importance of erosion and sedimentation problems. Topics: properties of non-cohesive/cohesive sediments including specific weight/gravity/shape/size/ size distribution/fall velocity/mineral structure/ rheological properties.

CEE 6284. Hydraulic Transients in Fluid Systems. 3 Credit Hours.
Transient flow of liquids in piping systems. One-dimensional wave equations and method of characteristics. Effects of valves and pumps on water hammer. Cavitation and liquid-column separation.

CEE 6293. Hydrodynamic Stability and Turbulence. 3 Credit Hours.
Flow in stability and turbulence are important in virtually all environmental flows. Fundamental stability, transition, and turbulent concepts along with their engineering relevance will be introduced.

CEE 6310. Process Principles in Environmental Engineering. 3 Credit Hours.
Principles that can be used in the analysis and modeling of environmental engineering processes, including material and energy balances, mass transfer, and reaction engineering.

CEE 6311. Microbial Principles in Environmental Engineering. 3 Credit Hours.
Microbiological principles with emphasis on microbial nutrition and growth, inhibition and control of growth, biochemical thermodynamics, metabolic pathways, enzyme and microbial kinetics.

CEE 6312. Chemical Principles in Environmental Engineering. 3 Credit Hours.
Fundamental principles of chemical equilibria and environmental organic chemistry in dilute aqueous systems with emphasis on chemical speciation and environmental engineering applications.

CEE 6313. Fate of Contaminants in the Subsurface. 3 Credit Hours.
Effects of physical, chemical, and biological processes on the fate and transport of contaminants in unsaturated and saturated porous media.

CEE 6314. Fundamentals of Environmental Modeling and Mathematics. 3 Credit Hours.
This course is designed to provide an understanding of fundamental principles and approaches used in modeling environmental systems, as well as the necessary mathematical techniques.

CEE 6319. Environmental Sciences and Engineering Laboratory. 3 Credit Hours.
Laboratory exercises and discussions for the understanding of fundamental chemical analytical, physicochemical, and applied microbiological principles in environmental engineering.
CEE 6320. Legal, Institutional, and Policy Frameworks for Water Resources Planning and Management. 3 Credit Hours.
Fundamental principles of national and international water policy, legislation and management frameworks for transboundary water resources management.

CEE 6321. Water Quality and Ecology in Lakes and Rivers. 3 Credit Hours.
Mixing/transport of pollutants and natural substances in surface waters, lakes, rivers, estuaries, coastal waters. Application of mathematical models of hydrodynamics and water quality to these water bodies.

CEE 6322. Water Resources Systems Analysis. 3 Credit Hours.
The policy, legal, and institutional contexts of water resources planning and management, information and modeling systems, modeling tools, and the practical experience with the use of decision support systems.

CEE 6323. Natural Resources and Environmental Economics. 3 Credit Hours.
Relation between economic and ecological systems, case studies and examples, tools of environmental policy, environmental economic evaluation.

CEE 6324. Water Supply and Sanitation. 3 Credit Hours.
Sanitation, wastewater characterization, wastewater treatment process analysis and selection, pre-treatment options, biological treatment, removal of pollutants biosolids treatment and disposal, and safe water systems.

CEE 6325. River Hydraulics. 3 Credit Hours.
Open channel hydraulics, fluvial geomorphology, flood control structures, culverts, bridge openings, river bed and bank stability control measures.

CEE 6326. Hydrologic Principles and Practices. 3 Credit Hours.
Hydrologic cycle, global circulation, climate, atmospheric water vapor, thermodynamics, precipitation, evaporation, snowmelt, soil moisture, unsaturated flow, infiltration, geomorphology, runoff, and routing.

CEE 6327. Statistical Methods for Environmental Data Analysis and Prediction. 3 Credit Hours.
Provide a good understanding of the fundamental principles of probability/statistics, and demonstrate the application of these principles to environmental data analysis and prediction problems.

CEE 6330. Physicochemical Processes. 3 Credit Hours.
Theory and application of the physical and chemical processes of coagulation, flocculation, sedimentation, softening, filtration, and disinfection in water and wastewater treatment.

CEE 6331. Biological Processes. 3 Credit Hours.
Microbial growth kinetics and bioenergetics, theory, modeling, and application of biological processes employed in water, wastewater, and hazardous waste treatment systems as well as subsurface bioremediation.

CEE 6332. Separation Processes. 3 Credit Hours.
Theory and applications of the physical and chemical processes of sorption, membrane separation, and adsorption in both gas-phase and liquid-phase environmental engineering systems.

CEE 6333. Hazardous Waste Site Remediation. 3 Credit Hours.
Selection, design and implementation of hazardous waste site remediation technologies including pump-and-treat, soil vapor extraction, thermal processes, bioremediation, surfactant flushing, and barrier-treatment walls.

CEE 6340. Solid-Liquid Separations. 3 Credit Hours.
Characterization, stabilization, conditioning, thickening, dewatering, conversion, recovery, transportation, and disposal of air, water, and wastewater treatment residues.

CEE 6341. Industrial Waste Treatment and Disposal. 3 Credit Hours.
A review of current policies and approaches in industrial waste treatment, and application of engineering principles and processes for waste treatment, recovery, and disposal.

CEE 6342. Solid Waste Technology. 3 Credit Hours.
An introduction of the current regulations and fundamentals of solid waste management, characterization, handling, recycling, transportation, and final disposal systems.

CEE 6343. Membrane Processes. 3 Credit Hours.
An introduction of the theories of membrane separation processes with special emphasis on desalination, softening, THM precursors reduction using reverse osmosis and nanofiltration.

CEE 6345. Sustainable Engineering. 3 Credit Hours.
The course is intended to introduce students to the interaction between human and natural environment and provide an overview on the emerging science of sustainability.

CEE 6350. Advanced Environmental Chemistry. 3 Credit Hours.
Chemical behavior of inorganic and organic compounds in natural waters. Topics include chemistry of metal ions, partitioning and distribution of organic pollutants, surface reactions.

CEE 6351. Biotransformation of Xenobiotic Compounds. 3 Credit Hours.
Biotransformation pathways and kinetics of anthropogenic recalcitrant compounds and biological, biochemical, and environmental factors affecting these transformations in natural and engineered systems.

CEE 6355. Industrial Ecology in Environmental Engineering. 3 Credit Hours.
Introduces the principles of environmentally conscious products, processes, and manufacturing systems.

CEE 6360. Design of Treatment Facilities for Drinking Water. 3 Credit Hours.
Theory and design of process tanks and equipment for capture, purification, conditioning, storage, and distribution of safe drinking water.

CEE 6361. Modeling and Simulation of Biological Treatment Systems. 3 Credit Hours.
Theory and design of biological treatment systems for water reclamation, nutrient removal, and integrated process design and optimization using advanced computer models.

CEE 6390. Air Pollutant Formation and Control. 3 Credit Hours.
Analysis of air pollutants through the study of radical reaction pathways, combustion processes, and removal of particles and gaseous pollutants from exhaust gas streams.

CEE 6391. Advanced Topics in Air Pollution. 1 Credit Hour.
Current topics in air pollution engineering presented and discussed.

CEE 6402. Soil Mechanics. 3 Credit Hours.
Fundamental concepts related to the mechanical behavior of soils, including: effective stress, strength, stiffness, permeability, time-dependent behavior.

CEE 6403. Environmental Geotechnics. 3 Credit Hours.
Evaluation of equilibria and partitioning as applied to site assessment techniques including soil gas data, monitoring wells, soil samples, and direct-push technology.

CEE 6421. Laboratory Characterization of Geomaterials. 3 Credit Hours.
Instruction in the procedures, methods of interpretation and apparatus limitations and influences for geotechnical laboratory index, strength, deformation, and permeability tests.
CEE 6422. Experimental Methods in Soil Behavior. 3 Credit Hours.
Macrobehavior and microlvel phenomena in particulate media are
experimentally studied. Topics in experimental research include: scale
effects, similarity, falsification, errors, transducers, design of experiments.

CEE 6423. In-Situ Testing and Site Characterization of Geomaterials. 3
Credit Hours.
Field testing and sampling of geomaterials, primarily soils and rocks.
Introduces methods of drilling, probing, and in-situ measurement of soils
for determining stratigraphy and engineering parameters for analysis,
including soil borings, cone penetration tests, pressuremeter, dilatometer,
and other tests.

CEE 6424. Engineering Geophysics. 3 Credit Hours.
Geophysical techniques used to characterize near-surface soils and
rocks including seismic, magnetic, electromagnetic, radar, and resistivity
methods.

CEE 6431. Plasticity of Geomaterials. 3 Credit Hours.

CEE 6432. Finite Element Method for Coupled Processes In Elastic
Porous Media. 3 Credit Hours.
Poroelastivity, variational methods, space and time discretization. FEM
for solid mechanics, heat/mass transfer and coupled stress/pressure/
temperature variations in porous media, e.g. soils, rocks, concrete, bones.

CEE 6441. Analysis of Earth Structures. 3 Credit Hours.
Instruction in techniques for assessing the stability of earth-retaining
structures including unreinforced slopes, reinforced slopes, free-standing
retaining structures, and reinforced retaining structures.

CEE 6442. Dynamic Analysis in Geotechnical Engineering. 3 Credit Hours.
Dynamic soil properties; response of foundations to dynamic loads;
construction and blast vibration criteria; dynamic analysis of pile driving;
introduction to liquefaction potential.

CEE 6443. Foundation Systems. 3 Credit Hours.
Evaluation and design of foundations for civil engineering structures,
including the settlement and bearing capacity of shallow spread footings,
mats, and deep foundations. Footings, driven piles, bored piles, and
drilled shafts analyzed using elastic continuum theory, limit plasticity,
and cavity expansion solutions, supplemented with numerous case studies.
Ancillary topics include axial load transfer, pile group interaction, lateral
and moment loading, and pile dynamics.

CEE 6444. Geosynthetics in Civil Engineering. 3 Credit Hours.
Development, fabrication, design, and applications of geotextiles,
geogrids, geonets, and geomembranes.

CEE 6445. Geotechnical Earthquake Engineering. 3 Credit Hours.
Earthquake magnitude and intensity, seismic hazard evaluation using
deterministic and probabilistic approaches, site response analyses
and ground motion amplification liquefaction, and response of earth
structures.

CEE 6446. Geotechnical Seepage Analysis. 3 Credit Hours.
Seepage and its effects on engineering behavior of soils and its
consequences for design of geoinfrastracture.

CEE 6447. Ground Modification. 3 Credit Hours.
Methods for improving marginal construction sites for geotechnical
engineering projects and rehabilitation of geoinfrastracture.

CEE 6448. Landfill Design and Management. 3 Credit Hours.
The course deals with geomaterial selection and characterization,
chemical compatibility, placement procedures (including compaction),
design strategies, seepage issues, instrumentation, and environmental
monitoring.

CEE 6449. Design of Remediation Systems. 3 Credit Hours.
Design of remediation systems and management approaches for the
petrochemical, power generation, metals finishing, and mining industries
are emphasized. Risk analysis and case histories are presented.

CEE 6450. Pavement Design. 3 Credit Hours.
Analysis and design of flexible and rigid pavement for highway and
airfield runway, evaluation of pavement performance and distress, and
pavement rehabilitation strategy and techniques.

CEE 6451. Rock Mechanics. 3 Credit Hours.
Rock characterization, scale effect, in-situ stresses, mechanisms of rock
deforation and fracture, rock engineering; special attention to common
principles unifying presented set of topics.

CEE 6460. Theoretical Geomechanics. 3 Credit Hours.
Field equations of linear elasticity, solutions of boundary value problems,
steady/transient flow in porous media. Yielding and failure of soils;
plasticity theory and limit analyses. Constitutive soil models. Introduction
to finite elements with geotechnical engineering applications.

CEE 6461. Mathematical Applications for Civil and Environmental. 3
Credit Hours.
Mathematical techniques are reviewed in the context of CEE problems.
The simplified yet mathematicailly rigorous approach highlights the
internal mathematical connections between different engineering
problems.

CEE 6462. Signals and Inverse Problems in Civil Engineering. 3 Credit
Hours.
Civil engineering signals and systems. Discrete time and frequency
domain operations. Nonlinear and nonstationary systems. Inverse
problems. Matrix-based and other solutions. Tomography. Civil
engineering examples.

CEE 6463. Constitutive Modeling of Soils. 3 Credit Hours.
Fundamental concepts in modeling behavior of soils. Implementation
of models into numerical solution codes. Evaluation of models used in
practice.

CEE 6481. Unsaturated Soil Mechanics. 3 Credit Hours.
This course presents many of the fundamental concepts behind the
mechanical behavior of unsaturated soils.

CEE 6482. Applied Fracture Mechanics. 3 Credit Hours.
Application of fracture mechanics toward practical problems. General
fracture behavior studied in the context of a variety of applied topics.
Computer and experimental demonstrations.

CEE 6483. Geotechnical Image and Spatial Analysis. 3 Credit Hours.
Presentation of techniques for spatial and image processing and analysis
of subsurface data at micro and macro scales.

CEE 6484. Industrial Byproduct Reutilization. 3 Credit Hours.
Explores more fully the interface between geotechnology, geochemistry,
and sustainable engineering to develop new applications using industrial
byproducts.

CEE 6485. Wave-based Characterization of Particulate Materials. 3 Credit
Hours.
Characterization of materials with mechanical and electromagnetic
waves. Emphasis on particulates with extensions to other materials.
Laboratory and field applications.

CEE 6501. Matrix Structural Analysis. 3 Credit Hours.
Static analysis of framed structures by flexibility and stiffness methods;
computer models and solution for applied loads, temperature, support
settlement, and member prestrain effects.
CEE 6504. Finite Element Method of Structural Analysis. 3 Credit Hours.
Introduction to the element method with emphasis on analysis of solids and structures. One-, two-, and three-dimensional finite. Modeling, approximations, and errors.

CEE 6507. Nonlinear Finite Element Analysis. 3 Credit Hours.
Lagrangian formulations for nonlinear analysis of solids and structures, including consistent linearization and state determination. Incremental-iterative solution approaches; computational plasticity. Software implementation.

CEE 6510. Structural Dynamics. 4 Credit Hours.
Vibration and dynamic response of linear and nonlinear structures to periodic and general disturbing forces, with and without damping effects. Wind and earthquake SDOF and MDOF effects.

CEE 6511. Random Vibration. 3 Credit Hours.
Stochastic processes as tools for modeling time-dependent structural excitations; random dynamic response of structural systems to time-dependent forces; reliability of dynamic structural systems.

CEE 6512. Advanced Dynamics and Smart Structures. 3 Credit Hours.
Overview of advanced dynamics and smart structures. Topics include vibration modal analysis, signal processing, modern sensors technologies, structural monitoring, and structural control.

CEE 6513. Computational Methods in Mechanics. 3 Credit Hours.
Generalization of finite element concepts; Galerkin-weighted residual and variational approaches; mixed and hybrid finite element formulations, applications, transient dynamic analysis; software implementation.

CEE 6521. Reinforced Concrete Members. 3 Credit Hours.
Behavior and design of RC members; ductility and inelastic response; deep beams; corbel and torsion design; column biaxial bending; shearwalls; effects of creep and shrinkage.

CEE 6522. Reinforced Concrete Slab Systems. 3 Credit Hours.
Analysis and design of two-way slab systems, structural walls, and complex building configurations. Equivalent frame and analysis, strip and yield-line technique, application of finite element method to design of slab and wall systems.

CEE 6523. Prestressed Concrete. 3 Credit Hours.
Principles and practice of prestressed concrete. Analysis and design of statically determinate and indeterminate beams, and one-way and two-way slabs; precast pretensioned, posttensioned.

CEE 6527. Advanced Structural Steel Design. 3 Credit Hours.
Strength, behavior, and design of steel structures according to WSD and LRFD. Plate girders, composite beams, bolted and welded connections, beam-columns, and torsion.

CEE 6528. Introduction to Bridge Engineering. 3 Credit Hours.
Introduction to loads, methods of analysis, design, fabrication and construction of girder bridges.

CEE 6530. Structural Systems. 3 Credit Hours.
Behavior and design of steel and concrete building and bridge systems. Introduction to structural planning with emphasis on economics, structural behavior, serviceability, and strength considerations.

CEE 6533. Design of Polymer Composite Structures. 3 Credit Hours.
Strength, behavior, and design of polymeric composites, structural members, and connections for civil engineering applications.

CEE 6536. Rehabilitation of Existing Structures. 3 Credit Hours.
Deterioration science; corrosion of steel, alkali-silica reaction, freezing and thawing. Assessment and evaluation of existing structures, nondestructive testing, and nondestructive evaluation.

CEE 6538. Introduction to Non-Destructive Testing and Forensic Evaluation in Structures.. 3 Credit Hours.
Introduction to the theoretical basis and practical application of nondestructive testing with complementary analytical and destructive testing for the forensic investigation of engineering materials and structures.

CEE 6541. Earthquake Engineering. 3 Credit Hours.
Characteristics of earthquakes; design and rehabilitation of civil engineering structures for earthquake ground motion; code provisions; case studies.

CEE 6542. Consequence-Based Earthquake Engineering. 3 Credit Hours.
This course will provide focused instruction on earthquake engineering within a Consequence Based Engineering (CBE) framework. The course will reflect the cross-disciplinary nature of earthquake engineering practice and research, and will provide an overview on diverse topics in hazard definition, vulnerability assessment, mitigation measures and societal impact.

CEE 6544. Structural Modeling. 3 Credit Hours.
Modeling of structures for static, dynamic, and nonlinear analysis using finite elements. Effects of parameters on the structural behavior.

CEE 6548. Inelastic Design. 3 Credit Hours.
Application of fundamental theorems of plastic design to beam, frame, and plate structures. Design based on ultimate strength, ductility and capacity design principles.

CEE 6549. Structural Reliability. 3 Credit Hours.
Concepts and applications of probability and statistics for analysis of risk and reliability of structures subjected to natural and man-made hazards; stochastic load and strength modeling; probabilistic risk assessment; introduction to stochastic computational mechanics.

CEE 6551. Advanced Strength of Materials. 3 Credit Hours.
Study of advanced topics from mechanics of materials with application to structures. Typical topics: energy methods, failure theories, post-yield behavior, generalized bending and torsion.

CEE 6554. Theory of Elastic Stability. 3 Credit Hours.
Concepts of elastic stability, simple mechanical models, buckling of beam-columns and frames, beams on elastic foundation, and plates energy methods, torsional and lateral buckling.

CEE 6557. Theory of Plates and Shells. 3 Credit Hours.
Plate bending, approximate methods, nonlinearity, stiffened and anisotropic plates. Stress and deformation of shells with and without bending, surfaces of revolutions, and shallow shells.

CEE 6560. Applied Elasticity. 3 Credit Hours.
Introduction to traction, stress, and equilibrium; deformations, strain compatibility; constitutive equations; two-dimensional problems in Cartesian and polar coordinates; application to extension, bending, and torsion.

CEE 6563. Energy Methods in Mechanics. 3 Credit Hours.
Virtual work, principles of potential energy and complementary energy, Castiglano’s theorems, generalized and stationary variational principles, energy methods, structural applications, nonlinear problems, Hamilton’s principle.

CEE 6566. Plasticity and Viscoelasticity. 3 Credit Hours.
Plastic deformation, yield conditions, flow rules and normality, relaxation and creep, viscoelasticity, tubes and spheres, torsion and bending, slip line fields, viscoelastic boundary value problems.
CEE 6569. Wave Propagation in Solids. 3 Credit Hours.
Plane waves in elastic half-spaces, reflection and refraction; Rayleigh and Stoney waves; waveguides, Love waves, Rayleigh-Lamb modes; Cagniard-de Hoop method; in anisotropic media.

CEE 6571. Experimental Stress Analysis. 3 Credit Hours.
Study of surface stress and strain using brittle coatings and strain gauges. Strain gauge circuits, static and dynamic problems, transducer design and circuits.

CEE 6581. Engineering Programming Methods. 3 Credit Hours.
Engineering programming concepts through the application of numerical solution techniques including program development, efficiencies, documentation, and testing using formal data structures and algorithms.

CEE 6582. Knowledge-based Programming Methods in Engineering. 3 Credit Hours.
The usage and development of knowledge-based computer systems in engineering is studied. Topics include knowledge acquisition, representation, and verification.

CEE 6583. Object-oriented and Multimedia Programming in Engineering. 3 Credit Hours.
Coverage of object-oriented and multimedia technologies is presented for their proper development and utilization in solving engineering problems.

CEE 6585. Materials Science of Concrete. 3 Credit Hours.
This course integrates fundamental science-based concepts with engineering-based design of concrete toward the development of a more complete understanding of the relationships between materials design and multi-scale behavior.

CEE 6590. Durability of Cement-based Materials. 3 Credit Hours.
Develop fundamental understanding of the chemical, physical, and mechanical aspects surrounding the durability of cement-based materials.

CEE 6601. Linear Statistical Models in Transportation. 4 Credit Hours.
Theory of simple and multivariate regression and analysis of variance models. Assessment of modeling assumptions and remedial measures. Applications in the field of transportation planning.

CEE 6602. Urban Transportation Planning. 4 Credit Hours.
An overview course on the history, finance, operations, modeling, politics, environmental impacts, and planning of urban transportation systems in the United States.

CEE 6603. Traffic Engineering. 3 Credit Hours.

CEE 6604. Geometric Design of Transportation Facilities. 3 Credit Hours.
Geometric configurations of streets, expressways, bus ways, railways, and their terminals to meet characteristics of vehicle performance and operator limitations.

CEE 6605. Transportation Administration and Policy Analysis. 3 Credit Hours.
Overview of institutions and policy processes in the transportation sector: organizational analysis and implementation; policy analysis.

CEE 6621. GIS in Transportation. 3 Credit Hours.
Theory and application of GIS applied to transportation engineering and planning (GIS-T). Laboratory focuses on GIS-T development.

CEE 6622. Travel Demand Analysis. 3 Credit Hours.
Examination of methods for forecasting future site and regional-level travel demand. Model specification, calibration, and validation.

CEE 6623. Survey Design and Analysis. 3 Credit Hours.
Design of telephone, mail out, and personal interview survey instruments. Subsequent estimation of choice-based models from cross-sectional and panel survey data.

CEE 6624. Land Use - Transportation Interaction. 3 Credit Hours.
Overview of land use and transportation planning principles, how development impacts air transportation, how transportation investments impact development patterns and air quality.

CEE 6625. Transportation, Energy, and Air Quality. 3 Credit Hours.
Students investigate relationships between transportation demand, energy supply and consumption, fuel types, greenhouse gas emissions, and relationships between vehicle technology, pollutant emissions, modeling techniques, and air quality.

CEE 6631. Signalized Intersections and Networks. 3 Credit Hours.

CEE 6632. Simulation Models in Transportation. 3 Credit Hours.
Simulation models in transportation: development, calibration, applications, and analysis of outputs.

CEE 6633. Advanced Traffic Detection and Control. 3 Credit Hours.

CEE 6634. Transportation Safety Analysis. 3 Credit Hours.
Understanding the human factors elements of transportation safety, and how to appropriately model the highly complex and stochastic occurrence of accidents on a transportation network.

CEE 6635. Technology Innovation in Transportation. 3 Credit Hours.
Technology innovations in transportation including Intelligent Transportation Systems. Planning and design of ITS systems.

CEE 6636. Traffic Flow Theory. 3 Credit Hours.
Advanced study of underlying principles and analytical procedures used in performing capacity analyses of transportation facilities. Highway Capacity Manual procedures and other analytical techniques presented.

CEE 6641. Transportation Infrastructure Management and Traffic Control. 3 Credit Hours.
Transportation infrastructure traffic control and safety-related issues are addressed for initial implementation of transportation facilities as well as daily operational aspects.

CEE 6642. Transit Systems Planning and Design. 3 Credit Hours.
Introduction to transit system planning and design concepts. Course will discuss the planning, design, and operations of transit systems, and the operations of intermodal terminals.

CEE 6644. Airport Planning and Design. 3 Credit Hours.
Airport site selection, runway length and orientation, traffic control, drainage and lighting, long-range planning, government responsibility for air transportation.

CEE 6650. Discrete Choice Modeling. 3 Credit Hours.

CEE 6651. Infrastructure Systems Management. 3 Credit Hours.
Analytical approaches and tools for infrastructure and asset management, sustainable systems development.
CEE 6652. Infrastructure Management: IT Applications. 3 Credit Hours.
Introduction to information technologies (programming, database, GPS/GIS, etc.) and their applications to the life-cycle activities (e.g. design, construction, etc.) of CEE engineered systems.

CEE 6720. Environmental Microbial Genomics. 3 Credit Hours.
To introduce advanced concepts and principles of contemporary environmental microbiological research and associated bioinformatics techniques through representative examples from recent literature.

CEE 6751. Physical Properties and Rheology of Rocks. 3 Credit Hours.
Structure, properties, and rheology of minerals and rocks with applications to engineering structures and natural phenomena in the Earth. Fundamentals of rock mechanics and crack propagation. Crosslisted with EAS 6751.

CEE 6754. Engineering Communication. 3 Credit Hours.
Writing and editing engineering documents; designing and explaining visuals; creating and delivering electronic presentations. Crosslisted with MSE 6754.

CEE 6756. Discovery of Signaling Molecules. 3 Credit Hours.
The diversity of chemical signals between organisms and their structural specificities will be presented along with chemical and biological methods for isolating signaling molecules. Crosslisted with BIOL 6756 and CHEM 6756.

CEE 6761. Contaminated Sediment Geochemistry. 3 Credit Hours.
Acquaints students with fate of major pollutants, nutrients, organic compounds, such as pesticides, PAHs, and trace metals in sedimentary systems. Crosslisted with EAS 6761.

CEE 6764. Biological Applications of Environmental Fluid Mechanics Laboratory. 1 Credit Hour.
Provides students with hands-on experimental demonstrations of the basic principles of environmental fluid mechanics regarding chemical and hydrodynamic signals produced and sensed by organisms.

CEE 6790. Air Pollution Physics and Chemistry. 3 Credit Hours.
Introduction to physical and chemical processes affecting dynamics and fate of air pollutants at local, regional, and global scales; emphasis on tropospheric pollutant chemistry and transport. Crosslisted with EAS 6790.

CEE 6792. Air Pollution Meteorology and Chemistry. 3 Credit Hours.
Vertical temperature and wind structure, topographic effects, natural removal processes, atmospheric dispersion of stack effluents, air pollution climatology, meteorological management of air pollution. Crosslisted with EAS 6792.

CEE 6793. Atmospheric Boundary Layer. 3 Credit Hours.
Structure and dynamics of atmospheric boundary layer. Introduction to turbulence and turbulent transport. Crosslisted with EAS 6793.

CEE 6794. Atmospheric Chemical Modeling. 3 Credit Hours.
Application of modern numerical methods to the prediction of atmospheric chemical and physical compositions; specific applications using computer models developed by the students are included. Crosslisted with EAS 6794.

CEE 6795. Atmospheric Aerosols. 3 Credit Hours.
Chemical and physical properties of natural and anthropogenic aerosols. Sources, transport, transformation, and fate of primary/secondary, organic/inorganic, atmospheric semi-volatiles and aerosols. Crosslisted with EAS 6795.

CEE 6810. Linear Ocean Surface Wave Mechanics. 3 Credit Hours.
Introduction to linear wave mechanics with emphasis on boundary value problems. Topics include wavemakers, boundary layers, wave/current interactions, long waves, edge waves and wave forces.

CEE 6811. Nonlinear Ocean Surface Wave Mechanics. 3 Credit Hours.
Advanced solutions of nonlinear wave equations including introduction to perturbation methods, shallow and deep water solutions, nonlinear wave interactions and stream function solutions.

CEE 6821. Nearshore Hydrodynamics. 3 Credit Hours.
Introduction to surfzone hydrodynamics including properties of breaking waves, undertow, longshore currents, wave setup, rip currents, infragravity waves, shear waves, and combined wave/current boundary layers.

CEE 6840. Coastal Sediment Transport. 3 Credit Hours.
Transport of cohesive and non-cohesive sediments in tidal and surf zone environments, measurement of sediment transport, numerical modeling of sediment transport and beach evolution.

CEE 6842. Coastal Engineering Measurements. 3 Credit Hours.
Measurement of scalars (temperature, concentration), and vectors (velocity, waves), with emphasis on water and sediments. Acoustical and optical sensors. Quantitative use of digital video/photographic data.

CEE 6XXX. Civil/Env Engr Elective. 1-21 Credit Hours.

CEE 7000. Master's Thesis. 1-21 Credit Hours.

CEE 7310. Master's Thesis and Research Presentation. 1 Credit Hour.
Oral presentation of master's thesis and research projects.

CEE 7751. Computational Fluid Mechanics. 3 Credit Hours.
Numerical methods for solving the time-dependent Navier-Stokes equations in complex geometrics, including theory, implementation, and applications. Crosslisted with ME 7751.

CEE 7772. Fundamentals of Fracture Mechanics. 3 Credit Hours.
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CHE, ME, and MSE 7772.

CEE 7773. Advanced Fracture Mechanics. 3 Credit Hours.
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CHE, ME, and MSE 7773.

CEE 7774. Fatigue of Materials and Structures. 3 Credit Hours.
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multiaxial loading, and fatigue crack propagation. Crosslisted with AE, CHE, ME, and MSE 7774.

CEE 7791. Damage, Failure and Durability of Composite Materials. 3 Credit Hours.
Provide knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure and durability of composite materials. Crosslisted with AE, CHE, ME, MSE, and PTFE 7791.

CEE 7792. Advanced Mechanics of Composites. 3 Credit Hours.
Anisotropic elasticity, failure theories, hygrothermal behavior, 3-D analysis of laminates, thick laminates, free edge effects, stress concentrations, joints, creep and fracture of composites. Crosslisted with AE, CHE, ME, MSE and PTFE 7792.

CEE 7793. Manufacturing of Composites. 3 Credit Hours.
Major manufacturing techniques for metal-, ceramic-, and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CHE, ME, MSE and PTFE 7793.
CEE 7999. Doctoral Examination Preparation. 1-21 Credit Hours.
For students preparing for the doctoral qualifying examination.

CEE 8091. Construction Seminar. 1 Credit Hour.
Introduction to leading-edge industry practices not part of the regular curriculum using field trips and guest lectures.

CEE 8094. Environmental Engineering Seminar. 1 Credit Hour.
Developments in environmental engineering science and technology, current practice, current research, and special topics related to environmental quality assessment and control.

CEE 8095. Research Seminar in Environmental Engineering. 1 Credit Hour.
Discussion of current research topics in environmental engineering. Presentations by master’s and doctoral students.

CEE 8096. Environmental Fluid Mechanics & Water Resources Seminar. 1 Credit Hour.
Presentation and discussion of current research developments in environmental fluid mechanics and water resources by outside speakers, faculty, and graduate students.

CEE 8097. Introduction to Transportation Research. 1 Credit Hour.
The planning, organization and execution of professional transportation research. Topics include: human factors, safety, ethics, technical communications and the peer review process. Fulfills RCR requirements.

CEE 8099. Seminars in Structural Engineering, Mechanics and Materials for PhD students. 1 Credit Hour.
Seminars for CEE PhD students in Structural Engineering, Mechanics and Materials (SEMM) to improve and practice technical communication skills.

CEE 8811. Special Topics. 1 Credit Hour.
Topics of current interest in civil engineering.

CEE 8812. Special Topics. 2 Credit Hours.
Topics of current interest in civil engineering.

CEE 8813. Special Topics. 3 Credit Hours.
Topics of current interest in civil engineering.

CEE 8814. Special Topics. 4 Credit Hours.
Topics of current interest in civil engineering.

CEE 8815. Special Topics. 5 Credit Hours.
Topics of current interest in civil engineering.

CEE 8823. Special Topics. 3 Credit Hours.
Special Topics for CEE (lecture and supervised lab).

CEE 8824. Special Topics. 4 Credit Hours.
Topics of current interest in civil engineering.

CEE 8900. Special Problems. 1-21 Credit Hours.

CEE 8901. Special Problems. 1-21 Credit Hours.

CEE 8902. Special Problems. 1-21 Credit Hours.

CEE 8903. Special Problems. 1-21 Credit Hours.

CEE 8950. Master's Special Research Project. 1-21 Credit Hours.
Master’s research project to be scheduled by M.S. students not writing thesis.

CEE 8956. Master's Special Research Problem. 1-21 Credit Hours.
For nonthesis students performing research.

CEE 8997. Teaching Assistantship. 1-9 Credit Hours.
For students holding graduate teaching assistantships.

CEE 8998. Research Assistantship. 1-9 Credit Hours.
For students holding a graduate research assistantship.

CEE 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours.
For students in the preliminary stages of formulating their doctoral research program who have not obtained formal approval of dissertation topic.

CEE 9000. Doctoral Thesis. 1-21 Credit Hours.

Center Enhancement-Teach/Learn (CETL)

CETL 2000. Undergraduate Teaching Assistant Preparation. 1 Credit Hour.
This course is an introduction to the procedural information and practical skills needed to be an effective undergraduate teaching assistant. May be used as free elective credit with department approval.

CETL 2001. Fundamentals of Peer Tutoring. 1 Credit Hour.
This course is an introduction to the practical skills needed to be an effective peer tutor at Georgia Tech. May not be used towards degree requirements.

CETL 2698. Research Assistantship. 1-12 Credit Hours.
Credit hours to be arranged. Independent research conducted under the guidance of a faculty member. May not be used towards degree requirements.

CETL 2699. Undergraduate Research. 1-12 Credit Hours.
Credit hours to be arranged. Independent research conducted under the guidance of a faculty member. May be used as free elective towards BS degrees with department approval.

CETL 3000. Residence Life Seminar. 1 Credit Hour.
This course will provide students with techniques, skills and knowledge necessary to become a successful Residence Life Student Staff member. May not be used towards degree requirements.

CETL 3801. Special Topics. 1 Credit Hour.
Topics of current interest. May not be used towards degree requirements.

CETL 4001. Principles of Learning and Teaching I. 3 Credit Hours.
This course focuses on the knowledge and skills necessary for effective classroom instruction and management including: educational psychology, instructional design and delivery techniques. May be used as free elective towards BS degrees with department approval.

CETL 4002. Principles of Teaching and Learning II. 3 Credit Hours.
This course focuses on the knowledge and skills necessary for effective classroom instruction and management including instructional planning, assessment, and the teaching professional community. May be used as free elective towards BS degrees with department approval.

CETL 4698. Research Assistantship. 1-12 Credit Hours.
Credit hours to be arranged. Independent research conducted under the guidance of a faculty member. May not be used towards degree requirements.

CETL 4699. Undergraduate Research. 1-12 Credit Hours.
May be used as free elective towards BS degrees with department approval.

CETL 4801. Special Topics. 1 Credit Hour.
Topics of Current Interest. May not be used towards degree requirements. May not be used towards degree requirements.
CETL 4802. Special Topics. 2 Credit Hours.
Topics of Current Interest. May not be used towards degree requirements.

CETL 4803. Special Topics. 3 Credit Hours.
Topics of Current Interest. May not be used towards degree requirements.

CETL 6490. Advanced Environmental Data Analysis. 3 Credit Hours.
A unified view of the theories and applications underlying the statistical analysis of environmental data in the space, time and spectral domain.

CETL 8000. Graduate Teaching Assistant Preparation. 1 Credit Hour.
This course is an introduction to the procedural information and practical skills needed to be an effective graduate teaching assistant.

CETL 8701. Classroom Management and Policies: Effective Teaching. 1 Credit Hour.
A course in which students learn about official Georgia Tech policies impacting instruction and develop skills to resolve problems and enhance classroom learning.

CETL 8711. Student and Teacher Enhancement Partnership Summer Training. 1-21 Credit Hours.
Participants attend training sessions on pedagogy, classroom management, educational technology; engage in practice teaching; and design action plans for partnering with local high school teachers.

CETL 8712. STEP Fellows Academic Year Seminar. 1 Credit Hour.
This is the academic year follow-up course for STEP fellows. It is a forum to share and to continue training as the fellows work in their STEP high schools.

CETL 8713. Fundamentals of Teaching and Learning in Higher Education. 3 Credit Hours.
This course focuses on learner-centered teaching and educational research. Students design lesson plans, practice teaching, self-reflect, give and receive peer feedback, and write a teaching philosophy.

CETL 8714. Teach Practicum-HigherEd. 2 Credit Hours.
Apprentice to faculty mentor and help teach a college course. Get feedback from mentor, CETL, and a peer learning community. Explore types of academic careers.

CETL 8715. Teach Practicum-HigherEd. 3 Credit Hours.
Apprentice to faculty mentor and help teach a college course. Get feedback from mentor, CETL, and a peer learning community. Explore types of academic careers.

CETL 8717. Course Design for Higher Education. 3 Credit Hours.
Application of learner-centered teaching paradigm and educational research to create a course syllabus and design other course elements for a college-level course of their choosing.

CETL 8719. Teaching Immersion-Higher Education. 1 Credit Hour.

CETL 8721. Academic Writing for Graduate Students. 1 Credit Hour.
Through examination of writing samples and practice, students learn techniques for enhancing proposal preparation and methods for evaluating writing as future instructors and thesis directors.

CETL 8722. Academic Writing for International Graduate Students. 1 Credit Hour.
This course aids international graduate students in enhancing their academic writing skills in English through exposure to, and practice of producing examples of academic writing. Credit will not be awarded for both CETL 8722 and CETL 8723.

CETL 8723. Academic Writing for International Graduate Students. 2 Credit Hours.
This course helps international graduate students enhance their academic writing skills in English through analysis and production of academic writing samples. Credit not awarded for both CETL 8723 and CETL 8722.

CETL 8731. Academic Professionalism. 1 Credit Hour.
Participants in this course work through numerous exercises and scenarios in order to prepare them professionally and personally for a future career in academics.

CETL 8741. Academic Presentations. 1 Credit Hour.
An examination and practice of oral presentations in a variety of academic scenarios: e.g., conference talks, proposal presentations, discussion facilitation, job talks, and oral exams/defenses.

CETL 8791. Instructional Practices for International. 2 Credit Hours.
Enhancement of English pronunciation and instructional skills for international teaching assistants. In-class and small-group language practice; discussion of teaching methodology.

CETL 8792. Classroom English and Pedagogy for International. 2 Credit Hours.
Enhancement of English pronunciation and instructional skills for international teaching assistants. In-class and small-group language practice; discussion of teaching methodology; individual tutoring.

CETL 8793. Classroom English for International Graduate Students. 2 Credit Hours.
An oral skills class designed to help graduate students become more accurate and fluent in both verbal and nonverbal skills. In addition to working on acquiring an American accent and body language when speaking English, students will work on basic presentation skills. Credit will not be awarded for CETL 8793 and CETL 8797.

CETL 8794. Academic English for International Graduate Students. 1 Credit Hour.
Enhancement of English pronunciation for international teaching assistants. In-class and small group language practice.

CETL 8795. Advanced Oral Skills for International Graduate Students and Teaching Assistants. 2 Credit Hours.
An advanced oral skills class designed to help graduate students improve their verbal ability in English for teaching, making presentations, and interacting in academic and professional situations. Credit will not be awarded for both CETL 8796 and CETL 8795.

CETL 8796. Presentation Skills for International Graduate Students. 2 Credit Hours.
This advanced oral skills class is designed to help graduate students improve their presentation skills in English for more effective communication in academic/professional situations. Credit will not be awarded for both CETL 8795 and CETL 8796.

CETL 8797. Oral Communication for International Graduate Students. 2 Credit Hours.
In this class, students work on fluency, pronunciation clarity, and appropriateness in spoken communication to prepare for effective and confident participation in their academic communities. Credit will not be awarded for both CETL 8797 and CETL 8793.

CETL 8801. Special Topics. 1 Credit Hour.

CETL 8802. Special Topics. 2 Credit Hours.

CETL 8803. Special Topics. 3 Credit Hours.

CETL 8900. Special Problems. 1-21 Credit Hours.
Special problems in current interest.
Chemical & Biomolecular Engr (CHBE)

CHBE 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, ECE, ME, and MSE 1750.

CHBE 1801. Special Topics. 1 Credit Hour.
Special Topics in CHBE.

CHBE 1XXX. Chem Engr Elective. 1-21 Credit Hours.

CHBE 2100. Chemical Process Principles. 3 Credit Hours.
Material and energy balances for single-phase and multi-phase processes common to chemical engineering. Phase equilibrium and analysis of reacting systems.

CHBE 2110. Chemical Engineering Thermodynamics I. 3 Credit Hours.
Elements of engineering thermodynamics. First and second laws. Analysis of engineering machinery: compressors, turbines, engines, refrigeration. Credit not allowed for both CHBE 2110 and CHBE 2130.

CHBE 2120. Numerical Methods in Chemical Engineering. 3 Credit Hours.
Numerical methods are introduced and applied to the solution of chemical engineering problems. An introduction to chemical process simulation, and the appropriate software is provided.

CHBE 2130. Chemical Engineering Thermodynamics II. 2 Credit Hours.
Basic principles of chemical engineering thermodynamics including first and second laws, equations of state, PVT properties, power cycles and refrigeration. Credit not allowed for both CHBE 2130 and CHBE 2110.

CHBE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHBE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHBE 2801. Special Topics. 1 Credit Hour.
Topics relevant to chemical engineering not currently covered in the undergraduate curriculum are presented as demand or interest warrants.

CHBE 2803. Special Topics. 3 Credit Hours.
Topics relevant to chemical engineering not currently covered in the undergraduate curriculum are presented as demand or interest warrants.

CHBE 2XXX. Chem Engr Elective. 1-21 Credit Hours.

CHBE 3110. Chemical Engineering Thermodynamics II. 3 Credit Hours.

CHBE 3130. Chemical Engineering Thermodynamics II. 3 Credit Hours.
Basic principles of chemical engineering solution and phase equilibrium thermodynamics, including ideal and non-ideal solution models and phase equilibrium calculations (VLE, SLE, LLE). Credit not allowed for both CHBE 3130 and CHBE 3110.

CHBE 3200. Transport Process I. 3 Credit Hours.
Fundamentals of fluid mechanics and heat transfer. The design and analysis of equipment using the principles of fluid mechanics and heat transfer.

CHBE 3210. Transport Processes II. 3 Credit Hours.
Fundamental principles and applications of mass transfer. The analysis of chemical engineering processes and operations involving mass transfer.

CHBE 3225. Separations Processes. 3 Credit Hours.
Fundamentals of equilibrium-stage and continuous contacting operations. Applications of principles to distillation, absorption/stripping, extraction, absorption, and other separation technologies.

CHBE 3300. Engineering Ethics and Leadership. 3 Credit Hours.
Development of quantitative and qualitative assessment tools to resolve moral and ethical dilemmas that arise in the performance of engineering duties.

CHBE 3XXX. Chem Engr Elective. 1-21 Credit Hours.

CHBE 4020. Chemical Engineering in Nanoscale Systems. 3 Credit Hours.
Application of chemical processing fundamentals, fabrication, and characterization to design and analyze technologically important nanoscale systems. The course emphasizes an integrated engineering and science approach.

CHBE 4050. The Science and Engineering of Microelectronic Fabrication. 3 Credit Hours.
An elective class for students interested in fabrication of semiconductor devices focusing on the fundamentals of materials synthesis, chemical and mechanical properties, and chemical reactions. Credit will not be awarded for both CHBE 4050 and CHBE 6050.

CHBE 4200. Transport Phenomena/Unit Operations Laboratory. 3 Credit Hours.
This course illustrates engineering/scientific principles and physical models important to the data collection/interpretation of processes important to the practice of chemical engineering.

CHBE 4210. Transport Phenomena / Bioprocess Unit Operations. 3 Credit Hours.
This course illustrates engineering/scientific principles and physical models important to the data collection/interpretation of processes important in biotechnology.

CHBE 4300. Kinetics and Reactor Design. 3 Credit Hours.
Reacting systems are analyzed in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions are considered.

CHBE 4310. Bioprocess Engineering. 3 Credit Hours.
Integrating several ChBE core concepts, bioprocess engineering applies the material to biological systems. Items covered are enzyme kinetics, fermentation, downstream processing, and integrated bioprocesses important to the biotech industries.

CHBE 4400. Chemical Process Control. 4 Credit Hours.
Dynamics of chemical processes and their control. Techniques of conventional process control as well as digital control. Laboratory experiments to illustrate these concepts.

CHBE 4411. Process Dynamics and Control. 3 Credit Hours.
Dynamics of chemical processes and their control. Techniques of conventional process control as well as digital control.
CHBE 4412. Process Dynamics and Control Laboratory. 1 Credit Hour.
Dynamics of chemical processes and their control. Techniques of conventional process control as well as digital control. Laboratory experiments would illustrate these concepts.

CHBE 4505. Process Design and Economics. 3 Credit Hours.
Principles of flowsheet synthesis and economic analysis and optimization. A complete design on a chemical process will be undertaken, including concepts of unit operations, design, economics, and safety. Credit not allowed for both CHBE 4505 and CHBE 4530 (or CHBE 4520).

CHBE 4510. Process and Product Design And Economics. 2 Credit Hours.
Basic principles of chemical process and product design including heuristic design approaches, heat exchanger network design, optimization, and economic evaluation. Credit not allowed for both CHBE 4510 and CHBE 4505 (or CHBE 4525).

CHBE 4515. Chemical Process Safety. 1 Credit Hour.
Fundamental sources of chemical hazards and degree of risk. Process design and hazard avoidance are used to reduce risk.

CHBE 4520. Chemical Engineering Capstone Design Project. 2 Credit Hours.
Basic principles of chemical process and product design including heuristic design approaches heat exchanger network design, optimization, and economic evaluation. Credit not allowed for both CHBE 4520 and CHBE 4505 (or CHBE 4525).

CHBE 4525. Bioprocess Design and Economics. 3 Credit Hours.
Principles of flowsheet synthesis and economic analysis and optimization. A complete design of a biochemical process will be undertaken, including concepts of unit operations, design, economics, and safety. Credit not allowed for both CHBE 4525 and CHBE 4530 (or CHBE 4520).

CHBE 4530. Chemical Engineering Capstone Design Project. 2 Credit Hours.
Basic principles of chemical process and product design including heuristic design approaches heat exchanger network design, optimization, and economic evaluation. Credit not allowed for both CHBE 4530 and CHBE 4505 (or 4525).

CHBE 4535. Chemical Product Design, Engineering and Optimization. 3 Credit Hours.
Chemical engineering principles applied to the design of products.

CHBE 4572. Pulp and Paper Manufacturing. 3 Credit Hours.
The course provides comprehensive foundational knowledge of the industry enabling the student to understand the role of diverse manufacturing operations and to strategically plan improvements.

CHBE 4730. Emerging Technologies for Forest Bioproducts. 3 Credit Hours.
The course provides comprehensive knowledge of the manufacture of nontraditional products from forest biomaterials. It analyzes and assesses emerging manufacturing technologies, materials and products.

CHBE 4752. Integrated Circuit Fabrication. 3 Credit Hours.
The objective of this course is to give students exposure to the various steps involved in the fabrication of integrated circuits and devices. This course will include a laboratory segment in which students fabricate MOS transistors, diffused resistors, and MOS capacitors from a bare silicon substrate. Crosslisted with ECE 4752.

CHBE 4755. Electronic Packaging Substrate Fabrication. 3 Credit Hours.
This course provides hands-on instruction in basic packaging substrate fabrication techniques, including interconnect design and testing, dielectric deposition, via formation, and metallization. Crosslisted with ECE 4755.

CHBE 4757. Biofluid Mechanics. 3 Credit Hours.

CHBE 4758. Biosolid Mechanics. 3 Credit Hours.

CHBE 4759. Electrochemical Energy Storage and Conversion. 3 Credit Hours.
An elective class for senior-level students interested in electrochemical storage and conversion, including the fundamentals of electrochemistry and practical battery and fuel cells.

CHBE 4760. Biocatalysis and Metabolic Engineering. 3 Credit Hours.
This course provides an in-depth coverage of various topics in biocatalysis and metabolic engineering. Goals of this course are the development of an understanding of proteins as catalysts, their functioning in metabolic networks, their application in various industries, recognition of their potential for addressing future challenges in science and engineering. Crosslisted with CHEM 4760.

CHBE 4763. Pulping and Chemical Recovery. 3 Credit Hours.
Pulping and chemical recovery processes are studied on the reaction, delignification, energy, and liquor reuse. The process optimization, air and water pollution minimization are taught. Crosslisted with ME 4763.

CHBE 4764. Bleaching and Papermaking. 3 Credit Hours.
Pulp bleaching and formation of paper/board products are studied along with testing, end uses, chemical and mechanical treatment of pulp, non-wood and recycled fiber utilization. Crosslisted with ME 4764.
CHBE 4765. Drug Design, Development and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including
design of new drugs, synthesis and manufacturing issues, and methods
for delivery into the body. Includes student presentations. Crosslisted
with CHEM and BMED 4765.

CHBE 4767. Pulp And Paper Lab. 3 Credit Hours.
Fundamentals of pulp and paper testing procedures.

CHBE 4770. Nuclear Chemical Engineering. 3 Credit Hours.
This course surveys the chemical engineering aspects of nuclear power.
Topics include nuclear reactions, fuel cycles, solvent extraction of
metals, the properties of actinides and other irradiated fuel materials,
fuel reprocessing, and radioactive waste management. Crosslisted with
NRE 4770.

CHBE 4775. Polymer Science and Engineering I: Formation and
Properties. 3 Credit Hours.
An introduction to the chemistry, structure, and formation of polymers,
physical states and transitions, physical and mechanical properties to
polymer fluids and solids. Crosslisted with CHEM, ME, MSE, and PTFE
4775.

CHBE 4776. Polymer Science and Engineering II: Analysis, Processing
and Laboratory. 3 Credit Hours.
Polymer fabrication processes and methods of characterization and
identification of polymers are presented. Experiments in polymerization,
processing and property evaluation of polymers. Crosslisted with CHEM,
ME, MSE, and TFE 4776.

CHBE 4781. Biomedical Instrumentation. 3 Credit Hours.
A study of medical instrumentation from a systems viewpoint. Pertinent
physiological and electro-physiological concepts will be covered.
Credit not allowed for both CHBE 4781 and (CHE 4781 or ECE 4781 or
BMED 4781 or ME 4781).

CHBE 4782. Biosystems Analysis. 3 Credit Hours.
Analytical methods for modeling biological systems, including white-
noise protocols for characterizing nonlinear systems. Crosslisted with
BMED, ECE and ME 4782.

CHBE 4791. Mechanical Behavior of Composites. 3 Credit Hours.
Stress-strain behavior of composites, property of matrix and reinforcing
materials, mechanics of fiber-reinforced composites, lamina and laminate
analysis, and mechanical performance. Crosslisted with AE, CEE, ME,
MSE, and PTFE 4791.

CHBE 4793. Composite Materials and Processes. 3 Credit Hours.
Basic principles of selection and design of composite materials and
their manufacturing and testing. Cost factors. Laboratory exercises on
manufacturing and tests. Crosslisted with AE, CEE, ME, MSE, and PTFE
4793.

CHBE 4794. Composite Materials and Manufacturing. 4 Credit Hours.
Basic principles of selection and design of composite materials and
their manufacturing and testing. Cost factors. Laboratory exercises on
manufacturing and tests. Crosslisted with AE, CEE, ME, MSE, and PTFE
4794.

CHBE 4801. Special Topics. 1 Credit Hour.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4802. Special Topics. 2 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4803. Special Topics. 3 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4804. Special Topics. 4 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4805. Special Topics. 5 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4806. Special Topics. 6 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4853. Special Topics. 3 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4873. Special Topics. 3 Credit Hours.
Topics relevant to chemical engineering not currently covered in the
undergraduate curriculum are presented as demand or interest warrants.

CHBE 4901. Special Problems. 1-21 Credit Hours.
The student is given an opportunity to develop initiative and to apply
fundamental principles by doing semioriginal laboratory or theoretical
investigation of a chemical engineering problem.

CHBE 4902. Special Problems. 1-21 Credit Hours.
The student is given an opportunity to develop initiative and to apply
fundamental principles by doing semioriginal laboratory or theoretical
investigation of a chemical engineering problem.

CHBE 4903. Special Problems. 1-21 Credit Hours.
The student is given an opportunity to develop initiative and to apply
fundamental principles by doing semioriginal laboratory or theoretical
investigation of a chemical engineering problem.

CHBE 4XXX. Chem Engr Elective. 1-21 Credit Hours.

CHBE 6001. Introduction to Research and Responsible Conduct of
Research for ChBE Graduate Students. 1 Credit Hour.
This course introduces ChBE graduate students to topics that will be
encountered in research and fulfills RCR (responsible conduct of research)
in-person training requirements.

CHBE 6003. Chemical Process Safety. 1 Credit Hour.
The course focuses on risk reduction through design and hazard
avoidance. Sources of chemical hazards and risks are discussed.

CHBE 6004. Communication Skills for Technical Problem Solving. 1
Credit Hour.
Applications of both written and oral communication skills to the solution
of technical problems. Includes focus, audience analysis, visual aids, and
organization.

CHBE 6020. Chemical Engineering in Nanoscale Systems. 3 Credit Hours.
Application of chemical processing fundamentals, fabrication, and
characterization to design and analyze technologically important
nanoscale systems. The course emphasizes an integrated engineering
and science approach.

CHBE 6050. The Science and Engineering of Microelectronic Fabrication.
3 Credit Hours.
An elective class for students interested in fabrication of semiconductor
devices focusing on the fundamentals of materials synthesis, chemical
and mechanical properties, and chemical reactions. Credit will not be
awarded for both CHBE 6050 and CHBE 4050.
CHBE 6100. Advanced Chemical Engineering Thermodynamics. 3 Credit Hours.
Equations of state, corresponding states, and activity coefficient models and their relationship to intermolecular forces. Phase and chemical equilibria in chemical engineering.

CHBE 6110. Thermodynamics of Systems of Large Molecules. 3 Credit Hours.
Classical and statistical thermodynamics of systems that are important in chemical, biochemical, and polymer processing.

CHBE 6120. Molecular Modeling. 3 Credit Hours.
Introduction to computational chemistry techniques for modeling substances at the molecular level, including: ab initio and semiempirical quantum methods, molecular dynamics, and Monte Carlo methods.

CHBE 6130. Electrochemical Engineering. 3 Credit Hours.
Electrochemical thermodynamics and kinetics. Corrosion. Applications to semiconductor devices, fuel cells, and batteries.

CHBE 6200. Advanced Transport Phenomena, Fluid Mechanics, and Heat. 3 Credit Hours.
Transfer Viscous fluid mechanics and convective heat transfer. Scaling analysis and lubrication. Stokes, and boundary layer flows. Transport about solid bodies. Linear stability theory.

CHBE 6210. Fluid Mechanics of Two-Phase Flow. 3 Credit Hours.
Two-phase flow of nondeformable particles in Newtonian fluids. Rigorous results in the limit of small Reynolds number motions and applications to suspensions and colloids.

CHBE 6220. Computational Fluid Dynamics: Applications in Environmental. 3 Credit Hours.
Applications in Environmental and Chemical Processes. Introduction to numerical methods for solving transport problems. Applications to problems of interest in environmental and chemical processes.

CHBE 6229. Introduction to MEMS. 3 Credit Hours.
Introduction to Micro-Electro-Mechanical Systems: Microfabrication techniques including: photolithography, etching, physical and chemical vapor deposition, electroplating, bonding and polymer processing. Application to sensors and actuators.

CHBE 6230. Industrial Emissions Control. 3 Credit Hours.
Analysis of air quality criteria, ambient and emission standards, and industrial pollution sources. Recovery and utilization of waste gases and particulate matter.

CHBE 6231. Environmental Modeling in the Forest Products Industry. 3 Credit Hours.
The science and engineering of waste treatment processes in the pulp and paper industry.

CHBE 6232. Chemical Engineering Processes in Pulp & Paper Manufacturing. 3 Credit Hours.
To study the details of some of the major unit operations in pulp and paper manufacturing.

CHBE 6240. Advanced Separation Processes. 3 Credit Hours.
This course provides an advanced analysis of separation process technology, with special emphasis on new separation techniques and their applications.

CHBE 6250. Mass Transport through Solids. 3 Credit Hours.
An in-depth introduction to transport of penetrants in and through solids. Convective flow through porous media, and conductive flow through homogenous solids. Membrane separations.

CHBE 6260. Transport Phenomena-Mass Transfer. 3 Credit Hours.
Mass transport processes and material properties that affect them. Principles of both steady- and unsteady-state molecular diffusion are developed and transfer mechanisms examined.

CHBE 62X0. Xfer-Separation Process. 2 Credit Hours.
CHBE 62X1. Xfer-Env Mod Forest Ind. 2 Credit Hours.

CHBE 6300. Kinetics and Reactor Design. 3 Credit Hours.
A study of chemical kinetics and mechanisms in complex homogeneous and heterogeneous reaction systems. Design and analysis of chemical reactors for such systems.

CHBE 6310. Applied Chemical Kinetics. 3 Credit Hours.
Applications of chemical kinetics to homogeneous and heterogeneous gas and liquid reactions, including techniques and analyses.

CHBE 6320. Heterogeneous Catalysis. 3 Credit Hours.
Physics and chemistry of surfaces; thermodynamics, kinetics, and mechanism of adsorption and surface reactions; modern instrumental analyses; and industrial catalysis.

CHBE 6400. Advanced Process Control. 3 Credit Hours.
Fundamentals of multivariate control theory as applied to chemical processes.

CHBE 6410. Dynamic Behavior of Process Systems. 3 Credit Hours.

CHBE 6460. Microelectromechanical Devices. 3 Credit Hours.
Introduces fundamental concepts and tools needed for the design, simulation and analysis of MEMS devices. These include electrical, mechanical, radiant, thermal, magnetic and chemical domains. Credit not allowed for both CHBE 6460 and ME 6460 or ECE 6460.

CHBE 6500. Mathematical Modeling and Analysis of Chemical Processes. 3 Credit Hours.
Formulation and solution of mathematical models of a range of chemical processes with an emphasis on differential balances and incorporation of uncertainty.

CHBE 6600. Polymerization Reaction Engineering. 3 Credit Hours.
Polymerization processes are analyzed with regard to reaction mechanism, kinetics, and reactor design. Control of polymer structure during polymerization is emphasized.

CHBE 6608. Semiconductor Microlithography and Patterning. 3 Credit Hours.
The study of fundamental issues from physics, chemistry, chemical engineering, and electrical engineering inherent in semiconductor microlithography, encompassing both materials and processes used for pattern definition.

CHBE 6609. Polymers in Microelectronics. 3 Credit Hours.
Use of polymers in microelectronics applications such as photolithography, interlevel dielectrics, encapsulation, packaging, magnetic media, and optical storage.

CHBE 6634. Wet End Processing of Paper. 3 Credit Hours.
Wet end colloidal and polymer science of papermaking processes. Processing with fiber, mineral fillers, brighteners, and polymer additives.
CHBE 66X0. Xfer-Pulp-Paper Mfg I. 2 Credit Hours.
CHBE 66X1. Xfer-Pulp-Paper Mfg II. 2 Credit Hours.
CHBE 66X4. Xfer-Wet End Proc-Paper. 2 Credit Hours.
CHBE 66X7. Transfer-Bioprocessing. 3 Credit Hours.
CHBE 6701. Foundational Topics in the Manufacturing of Forest Bioproducts. 3 Credit Hours.
The course provides comprehensive foundational knowledge of the industry enabling the student to understand the role of diverse manufacturing operations and to strategically plan improvements. Course is cross-listed with MLDR 6701, CHBE 6741, ME 6741, CHEM 6741, MSE 6741, CHBE 6742, ME 6742, CHEM 6742, MSE 6742.
CHBE 6710. Microfluidics & Appl. 3 Credit Hours.
This course explores the fundamentals of microfluidics and nanofluidics, and their applications, primarily in biological and medical sciences (e.g. biomolecular separations). Credit not allowed for both CHBE 6710 and CHBE 4710.
CHBE 6741. Pulp and Paper Manufacture I. 3 Credit Hours.
The fundamentals of pulp and paper technology are presented. Applications to the several unit operations used are explored and augmented by field trips and recent case studies. Crosslisted with ME 6741, CHBE 6701 and MLDR 6701.
CHBE 6742. Pulp and Paper Manufacture II. 3 Credit Hours.
Papermaking technology is covered from a multidisciplinary engineering perspective with fundamental and practical considerations being addressed. Students participate in groups to run a pilot papermaking trial at the Henry Foundation in Savannah. Crosslisted with ME 6741, CHBE 6701 and MLDR 6701.
CHBE 6750. Preparation and Reactions of Polymers. 3 Credit Hours.
A detailed treatment of the reactions involved in the synthesis of both human-made and natural polymers, including preparation and degradative reactions of polymer systems. Crosslisted with CHEM and PTFE 6750.
CHBE 6751. Physical Chemistry of Polymer Solutions. 3 Credit Hours.
Study of polymer solutions, polymer miscibility, adsorption, sorption, plasticization, molecular weights, molecular weight distributions, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHEM, MSE, and PTFE 6751.
CHBE 6752. Polymer Characterization. 4 Credit Hours.
This course introduces the student to surface, near-surface and structural methods of polymer characterization. Specialized techniques critical to physical structure are emphasized. Crosslisted with CHEM, MSE, and PTFE 6752.
CHBE 6759. Plasma Processing of Electronic Materials and Devices. 3 Credit Hours.
Fundamental physics, chemistry, chemical engineering, and electrical engineering principles inherent in plasma processes. Includes etching, deposition, diagnostic methods, and control schemes. Crosslisted with ECE 6759.
CHBE 6760. Biocatalysis and Metabolic Engineering. 3 Credit Hours.
This course provides in-depth coverage of various topics in biocatalysis and metabolic engineering. Goals of this course are the development of an understanding of proteins as catalysts, their functioning in metabolic networks, their application in various industries, and recognition of their potential for addressing future challenges in science and engineering. Crosslisted with CHEM 6760.
CHBE 6765. Drug Design, Development and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including design of new drugs, synthesis and manufacturing issues, and methods of delivery into the body. Includes student presentations. Crosslisted with BMED 6765 and CHBE 6765.
CHBE 6768. Polymer Structure, Physical Properties and Characterization. 3 Credit Hours.
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with ME, PTFE, and MSE 6768.
CHBE 6774. Biomaterials: Structure and Function. 3 Credit Hours.
Structure-function relationships of biomaterials and biomaterial characterization will be covered. Materials for medical implants, tissue engineering, biosensing, imaging, and drug delivery will be covered. Crosslisted with BMED, ME, and MSE 6774.
CHBE 6777. Advanced Biomaterials. 3 Credit Hours.
Advanced topics of biomaterials performance and engineering, including biointerfaces, host reactions of materials, and bio-inspired/smart-materials strategies. Crosslisted with BMED and ME 6777.
CHBE 6778. Introduction to Biomaterials. 3 Credit Hours.
Introduction to a variety of biomaterials and their biomedical applications. Crosslisted with BMED and PTFE 6778.
CHBE 6779. Bioprocess Engineering. 3 Credit Hours.
Study of enzymes and microbial and mammalian cells for production of biochemicals and protein therapeutics in bioreactors; downstream separation and purification; integrated view of bioprocesses. Crosslisted with BMED 6779.
CHBE 6782. Cellular Engineering. 3 Credit Hours.
Engineering analysis of cellular systems. Crosslisted with BMED and ME 6782.
CHBE 6784. Cardiovascular Biomechanics. 3 Credit Hours.
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with BMED and ME 6784.
CHBE 6789. Technology Ventures. 3 Credit Hours.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, ECE, ME, and MGT 6789.
CHBE 6793. Systems Pathophysiology. 3 Credit Hours.
Overview of human pathophysiology from a quantitative perspective. A brief introduction to the application of quantitative models to the understanding of biological systems. Crosslisted with BMED, ECE, and ME 6793.
CHBE 6794. Tissue Engineering. 3 Credit Hours.
Biological, engineering, and medical issues in developing tissue-engineered constructs. Emphasis on the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with CHE and ME 6794.
CHBE 6799. Legal Issues in Technology Transfer. 3 Credit Hours.
Study and analysis of U.S. law as it applies to the patenting and licensing processes. Crosslisted with BMED, ME, and MGT 6799.
CHBE 6XXX. Chem Engr Elective. 1-21 Credit Hours.

CHBE 7000. Master's Thesis. 1-21 Credit Hours.

CHBE 7650. Advanced Physical Chemistry of Polymers. 3 Credit Hours.
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc.

CHBE 7757. Teaching Practicum. 3 Credit Hours.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with NRE, ME, HP 7757.

CHBE 7771. Mechanics of Polymer Solids and Fluids. 3 Credit Hours.
Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking, and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with ME, MSE, and PTFE 7771.

CHBE 7772. Fundamentals of Fracture Mechanics. 3 Credit Hours.
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CEE, ME, and MSE 7772.

CHBE 7773. Advanced Fracture Mechanics. 3 Credit Hours.
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, ME, and MSE 7773.

CHBE 7774. Fatigue of Materials and Structures. 3 Credit Hours.
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multiaxial loading, and fatigue crack propagation. Crosslisted with AE, CEE, ME, and MSE 7774.

CHBE 7775. Topics in Fracture and Fatigue of Metallic and Composite. 3 Credit Hours.

CHBE 7779. Damage, Failure, and Durability of Composite Materials. 3 Credit Hours.
Provides knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure, and durability of composite materials. Crosslisted with AE, CEE, ME, MSE, and PTFE 7791.

CHBE 7792. Advanced Mechanics of Composites. 3 Credit Hours.
Anisotropic elasticity, failure theories, hydrothermal behavior, 3-D analysis of laminates, thick laminates, free-edge effects, stress concentrations, joints, creep, and fracture of composites, and advanced topics. Crosslisted with AE, CEE, ME, MSE, and PTFE 7792.

CHBE 7793. Manufacturing of Composites. 3 Credit Hours.
Major manufacturing techniques for metal, ceramic, and polymer matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CEE, ME, MSE, and PTFE 7793.

CHBE 8001. Seminar in Chemical Engineering. 1 Credit Hour.

CHBE 8002. Seminar in Chemical Engineering. 1 Credit Hour.

CHBE 8801. Special Topics. 1 Credit Hour.

CHBE 8802. Special Topics. 2 Credit Hours.

CHBE 8803. Special Topics. 3 Credit Hours.

CHBE 8804. Special Topics. 4 Credit Hours.

CHBE 88X2. Xfer - Special Topics. 2 Credit Hours.

CHBE 8901. Special Problems. 1-21 Credit Hours.

CHBE 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding teaching assistanceships.

CHBE 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding research assistanceships.

CHBE 9000. Doctoral Thesis. 1-21 Credit Hours.

Chemistry (CHEM)

CHEM 1211K. Chemical Principles I. 4 Credit Hours.
Topics to be covered include atomic structure, bonding, properties of matter, thermodynamics and physical equilibria. Laboratory exercises supplement the lecture material. Credit not allowed for both CHEM 1310 and CHEM 1211K.

CHEM 1212K. Chemical Principles II. 4 Credit Hours.
Topics to be covered include chemical equilibria, acids and bases, aqueous equilibria, electrochemistry, kinetics, main group and transition elements. Laboratory exercises supplement the lecture material. Credit not allowed for both CHEM 1311/1312 and CHEM 1212K.

CHEM 12X1. Transfer General Chem. 4 Credit Hours.

CHEM 1310. General Chemistry. 4 Credit Hours.
Fundamental laws and theories of chemical reactions. Topics include atomic structure; bonding theory; stoichiometry; properties of solids, liquids and gases; chemical thermodynamics; electrochemistry; and kinetics. Credit not allowed for both CHEM 1211K and CHEM 1310.

CHEM 1315. Survey of Organic Chemistry. 3 Credit Hours.
Survey of organic chemistry as the basis for biochemical processes and commercial applications.

CHEM 1801. Special Topics. 1 Credit Hour.

CHEM 1802. Special Topics. 2 Credit Hours.

CHEM 1803. Special Topics. 3 Credit Hours.

CHEM 1XXX. Chemistry Elective. 1-21 Credit Hours.

CHEM 2211. Introduction to Quantitative Analysis. 3 Credit Hours.
Laboratory experimentation emphasizing quantitative chemical analysis. Credit not allowed for both CHEM 2211 and CHEM 1313.

CHEM 2214. Quantitative Chemical Analysis. 4 Credit Hours.
Theory and laboratory of quantitative chemical analysis.

CHEM 2311. Organic Chemistry I. 3 Credit Hours.
An introduction to structure and reactivity of organic molecules.

CHEM 2312. Organic Chemistry II. 3 Credit Hours.
The second course in the series dealing with the structure and reactivity of organic molecules.

CHEM 2313. Organic and Bioorganic Chemistry. 3 Credit Hours.
A second course in organic chemistry that extends the study to topics in biochemistry.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2380</td>
<td>Synthesis Laboratory I.</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 2601</td>
<td>Professional Skills for Chemists and Biochemists.</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 2694</td>
<td>Intern Assistantship (Undergraduate Internship for Pay).</td>
<td>1-21</td>
</tr>
<tr>
<td>CHEM 2695</td>
<td>Undergraduate Internship (Undergraduate Internship for</td>
<td>1-21</td>
</tr>
<tr>
<td></td>
<td>Academic Credit).</td>
<td></td>
</tr>
<tr>
<td>CHEM 2698</td>
<td>Undergraduate Research Assistantship.</td>
<td>1-12</td>
</tr>
<tr>
<td>CHEM 2699</td>
<td>Undergraduate Research.</td>
<td>1-12</td>
</tr>
<tr>
<td>CHEM 2801</td>
<td>Special Topics.</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 2802</td>
<td>Special Topics.</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 2803</td>
<td>Special Topics.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2804</td>
<td>Special Topics.</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2812</td>
<td>Special Topics.</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 2901</td>
<td>Special Problems in Chemistry.</td>
<td>1-21</td>
</tr>
<tr>
<td>CHEM 2902</td>
<td>Special Problems in Chemistry.</td>
<td>1-21</td>
</tr>
<tr>
<td>CHEM 2903</td>
<td>Special Problems in Chemistry.</td>
<td>1-21</td>
</tr>
<tr>
<td>CHEM 3371</td>
<td>Organic Chemistry Laboratory.</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3371</td>
<td>Organic Chemistry Laboratory.</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3700</td>
<td>The Science of Alternative Energy.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4113</td>
<td>Applications of Inorganic Chemistry in Current Energy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Research.</td>
<td></td>
</tr>
<tr>
<td>CHEM 4311</td>
<td>Advanced Organic Chemistry.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4311</td>
<td>Advanced Organic Chemistry.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4341</td>
<td>Applied Spectroscopy.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4401</td>
<td>Molecular Spectroscopy.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4452</td>
<td>Chemistry of the Solid State.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4511</td>
<td>Biochemistry I.</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4511</td>
<td>Biochemistry I.</td>
<td>3</td>
</tr>
</tbody>
</table>

Methods for preparation, isolation, and characterization of complex organic molecules, natural products, and polymers.

An introduction to technical and communication skills utilized in upper level chemistry and biochemistry courses with additional focus on resume building and professional development.

Undergraduate Internship for which the student is paid, Freshmen and Sophomores only.

Undergraduate Internship for academic credit, Freshmen and Sophomores only.

Independent research conducted under the guidance of a faculty member.

Independent research conducted under the guidance of a faculty member.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

Course of individual instruction, which will include library conference and laboratory experience.

Course of individual instruction, which will include library, conference and laboratory experience.

Course of individual instruction, which will include library conference and laboratory experience.

Course of individual instruction, which will include library conference and laboratory experience.

Course of individual instruction, which will include library conference and laboratory experience.

Course of individual instruction, which will include library conference and laboratory experience.

Course of individuated instruction, which will include library conference and laboratory experience.

A study of the reactions and structures of inorganic compounds and principles, generalizations and theories that assist in understanding their behavior.

Introduction to the theory and practice of modern chemical analysis.

Provides a background to modern analytical chemistry and instrumental methods of analysis with applications to engineering and other areas.

Multi-step organic synthesis and inorganic synthesis. Use of chemical literature and advanced spectroscopic techniques.

Multi-step organic and inorganic synthesis. Use of the chemical literature and advanced spectroscopic techniques.

Chemical thermodynamics, energetics of chemical reactions, changes of state, and electrochemistry.

Quantum mechanics, atomic and molecular structure, bonding theory, molecular spectroscopy, statistical mechanics.

Laboratory investigations of physical principles applied to chemical systems.

Laboratory investigations of physical principles applied to chemical systems.

Introductory course in biochemistry dealing with the chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

Scientific principles governing the current and future approaches in solar photo-voltaics, fuel cells, biomass conversion, nuclear energy and wind power.

Special Topics in Chemistry.

Special Topics in Chemistry.

The principles of coordination chemistry applied to theories and mechanisms of energy conversion and storage in chemistry and biology. Students cannot receive credit for CHEM 4113 and CHEM 6171.

Construction reactions and functional group interconversions as applied to multistep organic synthesis.

Theory and application of NMR, mass spectrometry, and infrared spectroscopy in the determination of organic structures.

Introduction to the theory and application of molecular spectroscopy, including electronic, vibrational, rotational transitions, and selection rules.

Application of the concepts of physical and inorganic chemistry to the structure of solids and their chemical and physical properties.

The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.
CHEM 4512. Biochemistry II. 3 Credit Hours.
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 4521. Biophysical Chemistry. 3 Credit Hours.
The physical chemistry of biological systems, biological macromolecules, and biological aggregates.

CHEM 4581. Biochemistry Laboratory I. 3 Credit Hours.
Modern biochemical techniques including methods for protein, nucleic acid, and lipid isolation and characterization; enzyme assays; chromatography; electrophoresis; and use of databases.

CHEM 4582. Biochemistry Laboratory II. 3 Credit Hours.
Laboratory techniques in the isolation and characterization of biological molecules with special emphasis on modern techniques.

CHEM 4601. Chemistry Seminar. 2 Credit Hours.
Student presentations of recent research topics in chemistry or biochemistry based on lab experience and/or literature searches.

CHEM 4684. Advanced Chemistry Lab. 4 Credit Hours.
A modular laboratory involving a series of multipart experiments that build upon chemical principles and experimental techniques introduced in earlier courses and instructional laboratories. Credit not allowed for both CHEM 4684 and CHEM 4681.

CHEM 4694. Intern Assistantship (Undergraduate Internship for Pay). 1-21 Credit Hours.
Undergraduate Internship for which the student is paid, Juniors and Seniors only.

CHEM 4695. Undergraduate Internship (Undergraduate Internship for Academic Credit). 1-21 Credit Hours.
Undergraduate Internship for academic credit, Juniors and Seniors only.

CHEM 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHEM 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHEM 4740. Atmospheric Chemistry. 3 Credit Hours.
This course provides a general chemical description of the Earth’s atmospheric system with a major focus on the two lowest layers of the atmosphere, i.e., the troposphere and the stratosphere. Crosslisted with EAS 4740.

CHEM 4760. Biocatalysis and Metabolic Engineering. 3 Credit Hours.
This course provides an in-depth coverage of various topics in biocatalysis and metabolic engineering. Goals of this course are the development of an understanding of proteins as catalysts, their functioning in metabolic networks, their application in various industries, recognition of their potential for addressing future challenges in science and engineering. Crosslisted with CHBE 4760.

CHEM 4765. Drug Design, Development, and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including design of new drugs, synthesis and manufacturing issues, and methods for delivery into the body. Includes student presentations. Crosslisted with CHBE and BMED 4765.

CHEM 4775. Polymer Science and Engineering I: Formation and Properties. 3 Credit Hours.
An introduction to the chemistry, structure, and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHE, ME, MSE, and PTFE 4775.

CHEM 4776. Polymer Science and Engineering II: Analysis, Processing, and Laboratory. 3 Credit Hours.
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHE, ME, MSE, and TFE 4776.

CHEM 4801. Special Topics. 1 Credit Hour.
Topics of current interest not included in the regular course offerings.

CHEM 4802. Special Topics. 2 Credit Hours.
Topics of current interest not included in the regular course offerings.

CHEM 4803. Special Topics. 3 Credit Hours.
Topics of current interest not included in the regular course offerings.

CHEM 4804. Special Topics. 4 Credit Hours.
Topics of current interest not included in the regular course offerings.

CHEM 4805. Special Topics. 5 Credit Hours.
Topics of current interest not included in the regular course offerings.

CHEM 4901. Special Problems. 1-21 Credit Hours.
Course of individualized instruction, which will include library, conference, and laboratory investigations.

CHEM 4902. Special Problems. 1-21 Credit Hours.
Course of individualized instruction, which will include library, conference, and laboratory investigations.

CHEM 4903. Special Problems. 1-21 Credit Hours.
Course of individualized instruction, which will include library, conference, and laboratory investigations.

CHEM 4XXX. Chemistry Elective. 1-21 Credit Hours.

CHEM 6170. Inorganic Chemistry I. 3 Credit Hours.
A series of key topics in inorganic chemistry will be reviewed: acids/ bases, redox processes, bonding and structure, transition metal chemistry, coordination complexes.

CHEM 6171. Inorganic Chemistry II. 3 Credit Hours.
Contemporary topics in inorganic chemistry including bioinorganic chemistry, reaction mechanisms and kinetics, optical and magnetic properties of molecular species, and inorganic materials.

CHEM 6172. Physical Methods in Inorganic Chemistry. 3 Credit Hours.
An introduction to the use of physical methods in inorganic chemistry including vibrational spectroscopy, multinuclear NMR, EST, Mossbauer, magnetometry, NQR, PES, diffraction, and EXAFS.

CHEM 6181. Chemical Crystallography. 3 Credit Hours.
The collection and interpretation of diffraction data. Single crystal structure analysis, powder diffraction for phase identification and quantitative analysis, and Rietveld refinement.

CHEM 6182. Chemistry of the Solid State. 3 Credit Hours.
An introduction to the chemistry of the solid state. Synthetic methods, measurement of properties, structure of solids, theory of electrical, optical, and magnetic properties.

CHEM 6183. Organometallic Chemistry. 3 Credit Hours.
The chemistry of main group and transition metal organometallics. Including synthetic methods, homogeneous catalysis and catalytic cycles, and synthetically useful organometallic reagents.

CHEM 6271. Analytical Chemistry I. 3 Credit Hours.
Discussion of chemical equilibrium, separations, and bioanalytical methods.

CHEM 6272. Analytical Chemistry II. 3 Credit Hours.
Topics include experimental design, electronics, and spectroscopy.
CHEM 6281. Mass Spectrometry. 3 Credit Hours.
Topics include sample handling, ionization methods, MS/MS, and quantitative analysis.

CHEM 6282. Chemical Sensors. 3 Credit Hours.
Origins of selectivity, principles of transduction mechanisms, construction and applications of modern chemical sensors.

CHEM 6283. Electroanalytical Chemistry. 3 Credit Hours.
Coulometry, electrolytic separations, polarography chronopotentiometry, coulometric titrations, voltammetry, and hydrodynamic electrochemical methods of analysis.

CHEM 6284. Environmental Analytical Chemistry. 3 Credit Hours.
Application of techniques from analytical chemistry in monitoring the environment.

CHEM 6285. Analytical Spectroscopy. 3 Credit Hours.
Modern analytical spectroscopy and use of analytical techniques in chemistry and chemical engineering.

CHEM 6287. Scanned Probe Techniques. 3 Credit Hours.
An in-depth analysis of the theory, practice and application of scanning probe microscopy techniques.

CHEM 6371. Identification of Organic Compounds. 3 Credit Hours.
Description of molecular structure and identification of organic compounds using spectroscopic techniques.

CHEM 6372. Physical Organic Chemistry. 3 Credit Hours.
Physical methods in organic chemistry; determination of reaction pathways.

CHEM 6373. Organic Synthesis. 3 Credit Hours.
Methods and strategy for the preparation of complex organic compounds.

CHEM 6381. Advanced Organic Synthesis. 3 Credit Hours.
Advanced topics in the synthesis of complex organic molecules.

CHEM 6382. Computational Methods in Organic Chemistry and Biochemistry. 3 Credit Hours.
The development of approximate methods in molecular orbital theory and molecular mechanics and their application to problems in organic and biochemistry.

CHEM 6471. Chemical Thermodynamics and Kinetics. 3 Credit Hours.
Laws of classical thermodynamics and their chemical applications. Introduction to statistical mechanics and chemical kinetics.

CHEM 6472. Quantum Chemistry and Molecular Spectroscopy. 3 Credit Hours.
Introduction to quantum mechanics and its application to molecular systems, atomic and molecular spectroscopy.

CHEM 6481. Statistical Mechanics. 3 Credit Hours.
Statistical thermodynamics, lattice statistics, molecular distribution and correlation functions, the theories of liquids and solutions, phase transitions, cluster theory, and measurement.

CHEM 6482. Chemical Kinetics and Reaction Dynamics. 3 Credit Hours.
Modern theoretical and experimental methods for studying macroscopic and microscopic bimolecular and unimolecular processes are discussed, as are methods for describing complex kinetic systems.

CHEM 6483. Chemistry of Electronic Organic Materials. 3 Credit Hours.
This course provides a broad description of the basic chemical and physical concepts that determine the properties of electrically active materials.

CHEM 6484. Chemistry of Optical Organic Materials. 3 Credit Hours.
Course description includes synthesis, electronic structure, physico-chemical characterization, and device applications of optically active organic materials.

CHEM 6485. Computational Chemistry. 3 Credit Hours.
Introductory course in computational chemistry, discussing electronic structure theory, semiempirical methods, molecular mechanics, transition-state searching, and computation of thermodynamic quantities.

CHEM 6491. Quantum Mechanics. 3 Credit Hours.
Important concepts and applications of quantum mechanics at the intermediate level, including operators, perturbation and variational methods applied to atoms and molecules.

CHEM 6502. Molecular Biochemistry. 3 Credit Hours.
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 6501. Biochemistry I. 3 Credit Hours.
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 6502. Biochemistry II. 3 Credit Hours.
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 6571. Enzymology and Metabolism. 3 Credit Hours.
Structure and chemistry of enzymes, enzyme mechanism, enzyme kinetics, enzyme inhibitors, and medicinal chemistry.

CHEM 6572. Macromolecular Structure. 3 Credit Hours.

CHEM 6573. Molecular Biochemistry. 3 Credit Hours.
Current topics in molecular biology including eukaryotic transcriptions, RNA processing, repair and recombination, immunity, viruses, DNA fingerprinting, and genome sequencing.

CHEM 6581. Protein Crystallography. 3 Credit Hours.
Application of crystallographic principles to the structure determination of macromolecules by molecular replacement, multiple isomorphous replacements. High-speed data collection methods and cryocystallography.

CHEM 6582. Biophysical Chemistry. 3 Credit Hours.
Applications of the principles and techniques of physical chemistry in biochemistry, with emphasis in the equilibrium and dynamic behavior of macromolecules in solution.

CHEM 6583. Drug Design and Discovery. 3 Credit Hours.
Application of principles of chemistry and biology to the creation of knowledge leading to the introduction of new therapeutic agents.

CHEM 6584. Contemporary Biochemistry. 3 Credit Hours.
Topics vary from year to year, but will include subjects from the biochemical literature, such as in Journal of Biological Chemistry.

CHEM 6750. Preparation and Reaction of Polymers. 3 Credit Hours.
A detailed treatment of the reactions involved in the synthesis of both human-made and natural polymers, including preparation and degradative reactions of polymer systems. Crosslisted with CHE and PTFE 6750.
CHEM 6751. Physical Chemistry of Polymer Solutions. 3 Credit Hours.
Study of polymer solutions, polymer miscibility, absorptions, sorptions,
plasticization, molecular weights, molecular weight distributions, and
interfacial phenomena using thermodynamics and statistical mechanics.
Crosslisted with CHE, MSE, and PTFE 6751.

CHEM 6752. Polymer Characterization. 4 Credit Hours.
This course introduces the student to surface, near-surface, and
structural methods of polymer characterization. Specialized techniques
critical to physical structure are emphasized. Crosslisted with CHE, MSE,
and PTFE 6752.

CHEM 6755. Theoretical Chemistry of Polymers. 3 Credit Hours.
Thermodynamics and microscopic dynamics of polymers. Fundamental
concepts, including scaling concepts, governing anisotropy of
polarizability, phase transitions, morphology, time-dependent correlations,
etc. are discussed. Crosslisted with MSE and PTFE 6755.

CHEM 6756. Discovery of Signaling Molecules. 3 Credit Hours.
The diversity of chemical signals between organisms and their structural
specificities will be presented along with chemical and biological
methods for isolating signaling molecules. Crosslisted with BIOL 6756
and CEE 6756.

CHEM 6760. Biocatalysis and Metabolic Engineering. 3 Credit Hours.
This course provides in-depth coverage of various topics in biocatalysis
and metabolic engineering. Goals of this course are the development of
an understanding of proteins as catalysts, their functioning in metabolic
networks, their application in various industries, and recognition of their
potential for addressing future challenges in science and engineering.
Crosslisted with CHBE 6760.

CHEM 6765. Drug Design, Development and Delivery. 3 Credit Hours.
Introduction to the pharmaceutical development process, including
design of new drugs, synthesis and manufacturing issues, and methods
of delivery into the body. Includes student presentations. Crosslisted with
BMED 6765 and CHBE 6765.

CHEM 6801. Special Topics. 1 Credit Hour.

CHEM 6802. Special Topics. 2 Credit Hours.

CHEM 6803. Special Topics. 3 Credit Hours.

CHEM 6XXX. Chemistry Elective. 1-21 Credit Hours.

CHEM 7000. Master's Thesis. 1-21 Credit Hours.

CHEM 7001. Introduction to Research. 1-21 Credit Hours.

CHEM 8000. Seminar in Chemistry. 1 Credit Hour.

CHEM 8001. Faculty Seminar. 2 Credit Hours.

CHEM 8002. Information Resources for Chemists and Biochemists. 2
Credit Hours.

CHEM 8003. Student Seminar. 2 Credit Hours.

CHEM 8801. Special Topics. 1 Credit Hour.
Special Topics.

CHEM 8803. Special Topics. 3 Credit Hours.

CHEM 8813. Special Topics in Inorganic Chemistry. 3 Credit Hours.
Topics from the inorganic chemistry research literature.

CHEM 8823. Special Topics in Analytical Chemistry. 3 Credit Hours.
Topics from the analytical chemistry research literature.

CHEM 8833. Special Topics in Organic Chemistry. 3 Credit Hours.
Topics from the organic chemistry research literature.

CHEM 8843. Special Topics in Physical Chemistry. 3 Credit Hours.
Topics from the physical chemistry research literature.

CHEM 8853. Special Topics in Biochemistry. 3 Credit Hours.
Topics from the biochemistry research literature.

CHEM 8863. Special Topics. 3 Credit Hours.
Topics from the polymer chemistry research literature.

CHEM 8873. Special Topics in Polymer Chemistry. 3 Credit Hours.
Topics from the polymer chemistry research literature.

CHEM X8X2. Xfer-Spec Top-Org Chem. 2 Credit Hours.

CHEM 8901. Special Problems. 1-21 Credit Hours.

CHEM 8902. Special Problems. 1-21 Credit Hours.

CHEM 8903. Special Problems. 1-21 Credit Hours.

CHEM 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistantships.

CHEM 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.

CHEM 9000. Doctoral Thesis. 1-21 Credit Hours.

Chinese (CHIN)

CHIN 1001. Elementary Chinese I. 4 Credit Hours.
Performance-based training in pronunciation, tones, and sentence
structure, developing a baseline for listening, speaking, reading, and
writing Chinese, as well as fostering a sensitivity to Chinese culture.
Humanities credit awarded for CHIN 1001 upon successful completion of
CHIN 1002 or CHIN 2001.

CHIN 1002. Elementary Chinese II. 4 Credit Hours.
Continued performance-based training in phonetics, grammar, sentence
structure, and characters; focusing in the similarities and differences
between English and Chinese.

CHIN 1011. Accelerated Elementary Chinese I. 4 Credit Hours.
This is the first of two courses in the basic Chinese sequence geared for
heritage learners at the elementary level. The pace is approximately 30%
faster than the non-accelerated course.

CHIN 1012. Accelerated Elementary Chinese II. 4 Credit Hours.
This is the second of two courses in the basic Chinese sequence geared
for heritage learners at the elementary level. The pace is approximately
30% faster than the non-accelerated course.

CHIN 10X1. Trans Elementary Chinese I. 3 Credit Hours.

CHIN 10X2. Trans Elementary Chinese II. 3 Credit Hours.

CHIN 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 1814. Special Topics. 4 Credit Hours.
Topics of current interest in Chinese.

CHIN 1XXX. Chinese Elective. 1-21 Credit Hours.

CHIN 2001. Intermediate Chinese I. 3 Credit Hours.
Reinforcing basic language skills and knowledge to enhance
students’ communication ability including oral dialogue and written
correspondence in current Chinese society.

CHIN 2002. Intermediate Chinese II. 3 Credit Hours.
Continued reinforcement of basic language skills and knowledge to
enhance students’ communication ability including oral dialogue and
written correspondence in current Chinese society.
CHIN 2011. Accelerated Intermediate Chinese I. 3 Credit Hours.
This is the first of two courses at the intermediate level in the Chinese sequence geared for heritage learners. The pace is approximately 30% faster than the non-accelerated course.

CHIN 2012. Accelerated Intermediate Chinese II. 3 Credit Hours.
This is the second of two courses at the intermediate level in the Chinese sequence geared for heritage learners. The pace is approximately 30% faster than the non-accelerated course.

CHIN 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHIN 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHIN 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 2XXX. Chinese Elective. 1-21 Credit Hours.

CHIN 3003. Intermediate Chinese III. 3 Credit Hours.
Continued reinforcement of basic speaking, reading, and writing skills, and cultural knowledge to enhance students' communication ability in topics relating to contemporary life and Chinese society.

CHIN 3004. Advanced Chinese I. 3 Credit Hours.
Continued reinforcement of intermediate speaking, reading, and writing skills, and cultural knowledge to enhance students' communication ability in topics relating to contemporary life and Chinese society.

CHIN 3021. Chinese Society and Culture I. 3 Credit Hours.
Comprehension of and discussion about issues in contemporary Chinese culture.

CHIN 3022. Chinese Society and Culture II. 3 Credit Hours.
Comprehension of and discussion about China news, economic reports, political events, feature stories, and sports on television and in newspapers.

CHIN 3401. A Kaleidoscope of Chinese Language. 3 Credit Hours.
Explores the Chinese language from multiple perspectives, examining its multifaceted and intriguing interactions with society, culture, gender, music, politics, and media. Taught in English.

CHIN 3404. Chinese for Current Events. 3 Credit Hours.
Reading, discussion and analysis of intermediate/advanced current events texts and authentic media. Part of the intensive summer Chinese language program (LBAT). Admission by application only.

CHIN 3692. Business Chinese. 3 Credit Hours.
Acquisition of business technology, protocols, decorum strategies and improvement of oral communication skills. Reading and writing of notes, correspondence, and reports. Part of the summer language program (LBAT). Admission by application only.

CHIN 3693. Conversation Practicum (LBAT). 3 Credit Hours.
Language practicum in the local community with written and oral classroom presentations. Part of the intensive summer Chinese language program (LBAT). Admission by application only.

CHIN 3696. Economic Development and Sustainability in China. 3 Credit Hours.
Examines the world's most populous nation's assault on its environment and resources in the pursuit of rapid economic growth. Taught in Chinese.

CHIN 3813. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the Chinese language not extensively treated in other courses in the department.

CHIN 3821. Special Topics. 1 Credit Hour.
Topics of current interest in Chinese.

CHIN 3822. Special Topics. 2 Credit Hours.
Topics of current interest in Chinese.

CHIN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 3XXX. Chinese Elective. 1-21 Credit Hours.

CHIN 4003. Advanced Chinese II: Contemporary China. 3 Credit Hours.
Development of advanced communication abilities. Materials deal with the economic, cultural, social, and political changes in contemporary China. Taught in Chinese.

CHIN 4004. Advanced Chinese III: Contemporary China. 3 Credit Hours.
Further development of advanced communication abilities. Materials deal with the economic, cultural, social, and political changes in contemporary China. Taught in Chinese.

CHIN 4005. Advanced Chinese Grammar. 3 Credit Hours.
This course will build on students' command of Chinese grammatical structures to enhance their spoken and written performances in academic setting. Taught in Chinese.

CHIN 4021. Advanced Language, Popular Music and Culture. 3 Credit Hours.
Utilizing popular songs/videos as cultural texts, this advanced language and culture course develops the students' listening, reading, writing, presentation, and web-based research in Chinese.

CHIN 4022. Kungfu Fiction/Pop Cul. 3 Credit Hours.
Utilizing authentic kungfu fiction texts, this advanced language and culture course develops students' listening, reading, writing, presentation, and web-based research, all in Chinese.

CHIN 4023. Chinese Strategy & The Art of War. 3 Credit Hours.
Using classical texts and their modern Chinese translations, this advanced language course analyzes Chinese strategic language and thought, with Western cultural comparison. Taught in Chinese.

CHIN 4031. Chinese-Language Cinema: Technological, Cultural, and Urban Transformation in China. 3 Credit Hours.
Utilizing selected Chinese films as texts, this advanced Chinese course focuses to discuss the topics dealing with the technological, cultural, and urban transformation in China.

CHIN 4032. Kungfu and Wuxia Film and Pop Culture. 3 Credit Hours.
Utilizing authentic film texts, this advanced language/culture course develops students' listening, reading, writing, presentation, and web-based research abilities and skills in Chinese.

CHIN 4035. A Documentary Survey of Sino-American Interactions. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in the Chinese-speaking world. Intended for students who have had some study-abroad experience in China. Conducted in Chinese.
CHIN 4695. Chinese Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in Chinese in relation to the practical goals/objectives of the entity.

CHIN 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHIN 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CHIN 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

CHIN 4823. Special Toics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Chinese.

CHIN 4901. Special Problems in Chinese. 1-21 Credit Hours.
Provides special instruction according to special needs.

CHIN 4902. Special Problems in Chinese. 1-21 Credit Hours.
Provides special instruction according to special needs.

CHIN 4XXX. Chinese Elective. 1-21 Credit Hours.

CHIN 6021. Chinese Popular Culture. 3 Credit Hours.
Utilizing popular songs/videos as cultural texts, this advanced language and culture course develops the students’ listening, reading, writing, presentation, and web-based research in Chinese.

CHIN 6022. Martial Arts Fiction. 3 Credit Hours.
Utilizing authentic martial arts fiction texts, this advanced language and culture course develops the students’ listening, reading, writing, presentation, and web-based research in Chinese.

CHIN 6023. Art of War and Thirty-Six Stratagems. 3 Credit Hours.
This advanced Chinese language and culture course analyzes traditional & modern Chinces culture via Sunzi Art of War and The Thirty-Six Stratagems. Taught in Chinese.

CHIN 6031. Chinese Cinema and Media. 3 Credit Hours.
Chinese films and media serve as authentic texts to enhance students’ language-learning skills and knowledge in Chinese culture, philosophy, history, and society. Taught in Chinese.

CHIN 6500. Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in China. Taught in Chinese.

CHIN 6510. Applied Language Practicum. 3 Credit Hours.
Students will serve as researchers, student aides and apprentice instructors for any 3/4000-level undergraduate course approved by their adviser and the course.

CHIN 6511. Applied Language Practicum Abroad. 3 Credit Hours.
Students serve as researchers and apprentice instructors in the LBAT or other faculty-led overseas language immersion program of the School of Modern Languages.

CHIN 6695. Chinese Internship Abroad. 3 Credit Hours.

CHIN 66958. Internship Abroad Chin A. 3 Credit Hours.

CHIN 6696. Chinese Internship Abroad. 6 Credit Hours.
Students complete internships abroad in a Spanish-speaking country. Conducted in Spanish. Online course. 6 credits.

CHIN 7000. Master's Thesis. 1-6 Credit Hours.
Optional thesis course.

CHIN 8803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in the regular course offerings.

College of Architecture (COA)

COA 1011. Fundamentals of Design and the Built Environment I. 3 Credit Hours.
Introduction to creative problem-solving and the design realization cycle through project-based design exercises that emphasize the role of representation.

COA 1012. Fundamentals of Design and the Built Environment II. 4 Credit Hours.
Introduction to the design of complex problems through an emphasis on integrative and collaborative design strategies, research, critical reflection, and interdisciplinary team work.

COA 1060. Introduction to Design and the Built Environment. 3 Credit Hours.
Introduction to architecture, building construction, and industrial design through case studies that illuminate past and present practices, as well as future possibilities within the disciplines.

COA 2241. History of Art I. 3 Credit Hours.
A survey of artistic manifestations from primitive times to the present. First semester sequence, prehistoric through Renaissance; second semester, Renaissance through contemporary art.

COA 2242. History of Art II. 3 Credit Hours.
A survey of artistic manifestations from primitive times to the present. First semester sequence, prehistoric through Renaissance; second semester Renaissance through contemporary art.

COA 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

COA 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

COA 2214. History of Art I. 3 Credit Hours.
A survey of artistic manifestations from primitive times to the present. First semester sequence, prehistoric through Renaissance; second semester, Renaissance through contemporary art.

COA 3114. Art and Architecture in Classical Greece. 3 Credit Hours.
Intensive on-site investigation of the role that the arts and architecture have played in the development of classical Greek civilization.

COA 3115. Art and Architecture in Italy I. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.

COA 3116. Art and Architecture in Italy II. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque periods in Italy with special emphasis on the works of Rome.

COA 4000. Furniture Workshop: Material Potential and Fabrication Strategies. 3 Credit Hours.
The course investigates construction into the design cycle to explore the boundaries between furniture, architecture, and sculpture. Exercises introduce furniture production techniques, material properties, and CNC milling.
COA 4010. History of Construction Industry. 3 Credit Hours.
Addresses how today's construction industry is organized and its particular characteristics, how it evolved from early times and where it may be heading in the future.

COA 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

COA 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

COA 4801. Special Topics. 1 Credit Hour.
Topics in design and the built environment.

COA 4802. Special Topics. 2 Credit Hours.
Topics in design and the built environment.

COA 4803. Special Topics. 3 Credit Hours.
Topics in design and the built environment.

COA 4804. Special Topics. 4 Credit Hours.
Topics in design and the built environment.

COA 4805. Special Topics. 5 Credit Hours.
Topics in design and the built environment.

COA 6010. History of Construction Industry. 3 Credit Hours.
Addresses how today's construction industry is organized and its particular characteristics, how it evolved from early times and where it may be heading in the future.

COA 6011. Urban Design Laboratory. 6 Credit Hours.
Urban design laboratory problems focusing on analysis, design, and implementation strategies for contemporary urban problems.

COA 6114. Art and Architecture in Classical Greece. 3 Credit Hours.
An intensive on-site investigation of the role that the arts and architecture have played in the development of classical Greek civilization.

COA 6115. Art and Architecture in Italy I. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.

COA 6116. Art and Architecture in Italy II. 3 Credit Hours.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque periods in Italy with special emphasis on the works of Rome.

COA 6120. Retrofitting the Suburbia. 3 Credit Hours.
Study of suburban redevelopment trends, projects, and policies that improve environmental, social, and economic sustainability, with an emphasis on urban design strategies.

COA 6151. History of Urban Form. 3 Credit Hours.
History of the city as a collective work of architecture with an emphasis on the city's physical form and space. Credit not allowed for both COA 6151 and ARCH 4151.

COA 6763. Design of Design Environments. 3 Credit Hours.
Analysis of design processes; analysis of current design tools at both the user interface and functional levels; procedures for developing better design tools. Credit not allowed for both COA 6763 and ID 6763 or CS 6763.

COA 6764. Geometric Modeling. 3 Credit Hours.
Software development course focusing on 3D geometric constructions and modeling; emphasizes solid modeling and its role in design. Crosslisted with CS 6764.

COA 7011. Urban Design Studio I. 6 Credit Hours.
Advanced urban design problems emphasizing the application of contemporary urban design research and multidisciplinary collaboration into the design process.

COA 7012. Urban Design Studio II. 6 Credit Hours.
Advanced urban design problems emphasizing the application of contemporary urban design research and multidisciplinary collaboration into the design process.

COA 8000. Doctoral Seminar. 1 Credit Hour.

COA 8530. PhD Planning Seminar. 1 Credit Hour.

COA 8600. The Genesis of Architecture. 3 Credit Hours.
The nature of architecture illustrated from those of all cultures; determinist theories; its social values and its meanings to the individual-material, physical, anthropological, and cognitive.

COA 8610. Thought and Interpretation in Architecture from the Hellenic Period to the 1830's. 3 Credit Hours.
A survey of architectural thought and theory taking account of other fields; paralleled by a review of major critical texts and assessments to the present day.

COA 8612. Thought and Interpretation in Architecture from the 1830's to the Twentieth Century. 3 Credit Hours.
A survey of architectural thoughts and theory taking account other fields; paralleled by a review of major critical texts and assessments to the present day.

COA 8620. The Design and Evolution of American Space. 3 Credit Hours.
Topical seminar on the development of urban, suburban, and rural American spatial forms, with emphasis on the relationship between public order and vernacular settlement.

COA 8625. Theories of Inquiry in Architecture. 3 Credit Hours.
Introduction to research paradigms and their assumptions. The formulation of questions and frameworks of description, representation, analysis, interpretation, and data control.

COA 8630. Theories of Architecture, Space and Culture. 3 Credit Hours.
Accounts of the social functions of architectural space and associated design choices, across a variety of building types and scales of environmental design. Credit will not be awarded for both COA 8630 and ARCH 4630.

COA 8635. Architecture and Policy: Linking Theory and Practice. 3 Credit Hours.
Methods and theories of planning, design, facilities management, and evaluation as they relate to organizational policy and development.

COA 8640. Theories of Psychology for Architecture. 3 Credit Hours.
An examination of social and psychological theory as it is applied to the creation and use of space.

COA 8645. Analytical Models of Built Space and Its Functions. 3 Credit Hours.
Introduction to analytical ideas and methodologies for the quantitative description of built space, form, building use, and functions. Layouts as configurations: boundaries, accessibility, visibility, extensions.

COA 8650. Formal Descriptions of Designs: Analyses of Space, Shape, and Form. 3 Credit Hours.
Introduction to the form and computational description of designs, with an emphasis on spatial patterns. Geometrical constructions, combinatorial approaches, analyses of shape.
COA 8672. Research Seminar in Design Computation. 3 Credit Hours.
Seminar review of developments in computing applied to architecture; current major research issues.

COA 8674. Structuring Multimedia Design Knowledge. 3 Credit Hours.
Theories and tools for structuring multimedia knowledge for design and designers.

COA 8676. Design and Engineering Databases. 3 Credit Hours.
Survey of database use in design and engineering; surveys relational, object-oriented database technology, and ISO-STEP methods of integration.

COA 8680. Performance Aspects of Building Systems Design. 3 Credit Hours.
Engineering analysis of building (sub) systems based on a performance ontology. Criteria, metrics, and tools for performance aspect evaluations in different building technology domains.

COA 8685. Building Performance Simulation. 3 Credit Hours.

COA 8690. Integrated Design and Engineering Environments for Buildings. 3 Credit Hours.
Surveys of issues for effective integration of heterogeneous design tools for building; previous efforts, current approaches; advanced techniques, including ISO-STEP and IAI.

COA 8811. Special Topics in Architectural/Planning Studies. 1 Credit Hour.

COA 8812. Special Topics in Architectural/Planning Studies. 2 Credit Hours.

COA 8813. Special Topics in Architectural/Planning Studies. 3 Credit Hours.

COA 8821. Special Topics in Architecture and Behavior. 1 Credit Hour.

COA 8822. Special Topics in Architecture and Behavior. 2 Credit Hours.

COA 8823. Special Topics in Architecture and Behavior. 3 Credit Hours.

COA 8831. Special Topics in Design and Technology. 1 Credit Hour.

COA 8832. Special Topics in Design and Technology. 2 Credit Hours.

COA 8833. Special Topics in Design and Technology. 3 Credit Hours.

COA 8841. Special Topics in Design Computing. 1 Credit Hour.

COA 8842. Special Topics in Design Computing. 2 Credit Hours.

COA 8843. Special Topics in Design Computing. 3 Credit Hours.

COA 8851. Special Topics in History and Theory. 1 Credit Hour.

COA 8852. Special Topics in History and Theory. 2 Credit Hours.

COA 8853. Special Topics in History and Theory. 3 Credit Hours.

COA 8861. Special Topics in History and Theory. 1 Credit Hour.

COA 8862. Special Topics in History and Theory. 2 Credit Hours.

COA 8863. Special Topics in History and Theory. 3 Credit Hours.

COA 8871. Special Topics: Urban Design. 1 Credit Hour.

COA 8872. Special Topics: Urban Design. 2 Credit Hours.

COA 8873. Special Topics: Urban Design. 3 Credit Hours.

COA 8874. Special Topics: Urban Design. 4 Credit Hours.

COA 8875. Special Topics: Urban Design. 5 Credit Hours.

COA 8876. Special Topics: Urban Design. 6 Credit Hours.

COA 8901. Special Problems. 1-21 Credit Hours.

COA 8902. Special Problems. 1-21 Credit Hours.

COA 8903. Special Problems. 1-21 Credit Hours.

COA 8904. Special Problems. 1-21 Credit Hours.

COA 8996. Qualifying Paper. 1-21 Credit Hours.

COA 8997. Teaching Assistantship. 1-9 Credit Hours.
For students holding a graduate teaching assistantship.

COA 8998. Research Assistantship. 1-9 Credit Hours.
For students holding a graduate research assistantship.

COA 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours.

COA 9000. Doctoral Thesis. 1-21 Credit Hours.
COE 2701. Startup Lab: Introduction to Technology Ventures. 3 Credit Hours.
Elements of technology venture creation including opportunity identification and validation, ideation, customer discovery, market analysis, minimum viable product development, business models, intellectual property, and capital raises.

COE 3001. Mechanics of Deformable Bodies. 3 Credit Hours.
Stress and strain analysis applied to beams, vessels, pipes, and combined loading; stress and strain transformations; beam deflection; column buckling.

COE 3002. Intro to Microelectronics and Nanotechnology Revolution. 3 Credit Hours.
Introduction to microelectronics and nanotechnology; the communications revolution, Moore's law, semiconductors, transistors, MEMS, photonics, analysis of common technological objects, global impact on technology and society.

COE 3803. Special Topics. 3 Credit Hours.

COE 3018. Modern Language International Co-op. 12 Credit Hours.

COE 3020. Building Construction Co-op Work Assignment. 6 Credit Hours.
For undergraduate Co-op students majoring in Building Construction.

COE 3021. Spring Term Building Construction Co-op. 6 Credit Hours.
Spring Term work term for Building Construction majors.

COE 3028. Fall Term Building Construction Co-op. 6 Credit Hours.
Fall Term work term for Building Construction majors.

COE 4000. Co-op Work Assignment. 12 Credit Hours.
Co-op Work Assignment For students on Co-op work assignment.

COE 4001. Spring Term CO-OP Work Assignment. 12 Credit Hours.

COE 4005. Summer Term CO-OP Work Assignment. 12 Credit Hours.

COE 4008. Fall Term CO-OP Work Assignment. 12 Credit Hours.

COE 6003. Co-op Work Assignment. 3 Credit Hours.
For students on Co-op work assignment.

COE 6006. Co-op Work Assignment. 6 Credit Hours.
For students on Co-op work assignment.

COE 6009. Co-op Work Assignment. 9 Credit Hours.
For students on Co-op work assignment.

COE 6012. Co-op Work Assignment. 12 Credit Hours.
For students on Co-op work assignment.

Cooperative Work Assignment (COOP)

College of Sciences (COS)

COS 2000. Introduction to Research. 1 Credit Hour.
Students will learn ethical guidelines for conducting research, develop skills in reading and writing research articles, and explore careers in research.

City Planning (CP)

CP 2233. Sustainable Urban Development. 3 Credit Hours.
This course introduces students to the theory and practice of sustainability as applied to the built environment at scales from the site to the megaregion.

CP 2698. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member. Undergraduate research under the guidance of a faculty member for the first years and sophomores.

CP 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member. Undergraduate research under the guidance of a faculty member for first years and sophomores.

CP 4010. Foundations of Urban and Regional Development. 3 Credit Hours.
The course describes the economic function of cities and the significant factors that shape their growth and development.

CP 4020. Introduction to Urban and Regional Planning. 3 Credit Hours.
This course provides an overview of the planning of cities and metropolitan regions. The legal and historical context as well as substantive areas of urban planning are addressed.

CP 4030. The City and Its Technology. 3 Credit Hours.
This course places urban infrastructure technology within the larger context of planning and development. The social and economic aspects of these systems are highlighted.

CP 4040. The City in Fiction and Film. 3 Credit Hours.
Examines images and perceptions of the urban environment as portrayed in literature and cinema. Explores the social, economic, and cultural contexts that impact on conception of the city.

CP 4050. Negotiation, Facilitation, and Conflict Management. 3 Credit Hours.
Theoretical and practical instruction on techniques of negotiation and consensus building using case studies and training exercises.

CP 4052. Sustainable Cities Studio. 3 Credit Hours.
This course provides students with a faculty-supervised community engagement experience in developing a sustainability-related project for a non-profit, business, or government agency.

CP 4105. Land Conservation. 3 Credit Hours.
This course considers the distinctive American view of land and history of the conservation movement, then discusses the why and how of modern land conservation.

CP 4190. Introduction to Climate Change Planning. 3 Credit Hours.
This course equips students with the knowledge and methods necessary to undertake the next generation of state, local, corporate, and enterprise climate action planning.
CP 4210. Environmental Planning and Impact Assessment. 3 Credit Hours.
Covers the principles of environmental planning and decision making. Examines the methods and processes, and environmental impact assessment and regulation.

CP 4310. Urban Transportation and Planning. 3 Credit Hours.
This course is designed to introduce the fundamentals of urban transportation planning and policy and is applicable to students in a variety of concentrations of study. The purpose of the course will be to acquaint students with transportation planning as a profession and the types of projects that transportation planners are required to conduct.

CP 4510. Fundamentals of Geographic Information Systems. 3 Credit Hours.
The course provides a basic understanding of the tools for collecting, storing, and analyzing spatially distributed data. Basic issues of software design and application are covered.

CP 4610. Introduction to Real Estate Investment. 3 Credit Hours.
Introduction to real estate analysis and utilization. Subjects include attributes of real property, value determinations, appraisal, investment analysis, market analysis, asset management, and public aspects.

CP 4620. Housing and Real Estate Economics. 3 Credit Hours.
Examination of private and public sector approaches to housing. Economic theory of durable goods, demand elasticities, applied market research analyses, and history of public intervention.

CP 4698. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member. Undergraduate research under the guidance of a faculty member for juniors and seniors.

CP 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member. Undergraduate research under the guidance of a faculty member for juniors and seniors.

CP 4811. Special Topics. 1 Credit Hour.
Topics of current interest not covered in other courses in the department.

CP 4812. Special Topics. 2 Credit Hours.
Topics of current interest not covered in other courses in the department.

CP 4813. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses in the department.

CP 4814. Special Topics. 4 Credit Hours.
Topics of current interest not covered in other courses in the department.

CP 4815. Special Topics. 5 Credit Hours.
Topics of current interest not covered in other courses in the department.

CP 6002. Introduction to Fields of Planning. 2 Credit Hours.
Introduction to the various subfields of planning through reading, discussion, and guest lectures by practicing planners. Course also covers professional ethics and career planning and development.

CP 6005. Freehand Drawing for Planners. 1 Credit Hour.
This course teaches planning students through drawing to record, analyze, conceptualize, and represent commonly recurring physical and diagrammatic relationships that occur in the physical environment.

CP 6006. Visualization for Planners. 1 Credit Hour.
Explores visual and representational techniques and methods for physical planning, introducing a common set of computer applications designed to enhance visual representation and communication.

CP 6012. Theory and History of Planning. 4 Credit Hours.
Examines theories of planning and the public interest. Considers the roles of planners within the American political system and the historical development of the planning profession.

CP 6016. Growth Management Law and Implementation. 3 Credit Hours.
Study of legal framework of planning focusing on managing development to achieve desired outcomes for the economy, society, and the environment.

CP 6024. Quantitative and Computer Methods. 4 Credit Hours.
Introduction to computing and quantitative methods in planning. Discusses commonly used data sources, data management, presentation techniques, and planning analytical models.

CP 6025. Advanced Planning Methods. 4 Credit Hours.
Analytical methods in planning including inferential statistics, linear regression, and analysis of variance and how they are applied to planning problems.

CP 6031. Economic Analysis for Planning. 3 Credit Hours.
Applications of economic principles to planning, including market theory, public goods, externalities, cost-benefit analysis, and project economics.

CP 6032. Urban and Regional Development Theory. 3 Credit Hours.
Study of theories in the structure and function of cities and regions. Emphasis on the economic forces shaping urban development.

CP 6034. Demographic and Economic Analysis of Urban Areas. 3 Credit Hours.
This course considers the social and economic structure of urban areas from a demographic perspective. Population structure, population change, and migration are explored.

CP 6052. Applied Planning Studio. 4 Credit Hours.
Analysis and preparation of alternatives for an existing neighborhood, community, or region. Emphasis on application of planning skills in a real-world situation.

CP 6053. Applied Planning Studio (Urban Design). 6 Credit Hours.
The studio investigates urban physical settings. It emphasizes processes from visual representation, performance evaluations to design decision making of future sustainable urban systems.

CP 6055. Planning Studio. 5 Credit Hours.
Analysis and preparation of alternatives for an existing neighborhood, community, or region. Emphasis on application of planning skills in a real-world situation.

CP 6105. Land Conservation. 3 Credit Hours.
This course considers the distinctive American view of land and history of the conservation movement, then discusses the why and how of modern land conservation.

CP 6112. Introduction to Land Use Planning. 3 Credit Hours.
This course introduces students to land use planning. The basic rationale for land use planning and its form in different states is covered.

CP 6122. Land Use Planning Methods. 3 Credit Hours.
This course explores the techniques of land use planning and applies them to specific land use types.

CP 6190. Introduction to Climate Change Planning. 3 Credit Hours.
This course equips students with the knowledge and methods necessary to develop the next generation for state, local, corporate, and enterprise climate action planning.

CP 6213. Urb Env Plan & Design. 3 Credit Hours.
This course introduces students to the basic theoretical and analytical underpinnings of urban environmental planning and design.
CP 6214. Environmental Planning and Impact Assessment. 3 Credit Hours.
Examines the principles, processes, and methods of environmental planning. Focus on environmental science and its use in impact assessment and project evaluation.

CP 6217. Climate Change and the City. 3 Credit Hours.
The course explores land use and urban design strategies for adapting to climate change in cities and on local hazard mitigation policy.

CP 6223. Policy Tools for Environmental Management. 3 Credit Hours.
The course covers the regulatory, market, and procedural tools used to manage the environment. It examines the strengths and weaknesses of alternative techniques.

CP 6233. Sustainable Urban Development. 3 Credit Hours.
Explores the principles and practice of sustainable urban development and the role of planning.

CP 6241. Water Resources Planning. 3 Credit Hours.
Fundamentals of water resources planning and watershed management. Emphasis on urban water resources problems, policies, and practices.

CP 6243. Health Impact Assessment. 3 Credit Hours.
Students conduct an HIA, evaluate a completed HIA and propose approaches to institutionalizing HIA in institutions that traditionally do not focus on health outcomes.

CP 6250. Hazardous Waste Planning and Management. 3 Credit Hours.
Examines the planning tools and management techniques for the proper use, storage, transport, and disposal of hazardous material and waste products.

CP 6261. Environmental Law. 3 Credit Hours.
This course introduces students to the framework of legislation that shapes environmental planning and policy, including NEPA, Clean Air Act, and Clean Water Act.

CP 6311. Introduction to Transportation Planning. 4 Credit Hours.
Overview course in transportation planning including basic principles to understanding transportation, current transportation problems, transportation policy, and decision-making processes and methods.

CP 6321. Transportation Planning Methods and Investment Decisions. 4 Credit Hours.
Review of transportation methods and how they interface with investment decisions. How transportation planners at the local, regional, state, and federal levels employ methods.

CP 6331. Land Use and Transportation Interaction. 3 Credit Hours.
Overview of land use and transportation planning principles, how development impacts transportation, how transportation investments impact development patterns and air quality.

CP 6341. Urban Design and Non-Motorized Accessibility. 3 Credit Hours.
Examines role and opportunity to make walking and biking viable travel options in urban environments and how urban environments need to be designed to encourage non-motorized travel.

CP 6351. Transportation and Economic Development. 3 Credit Hours.
Impact of transportation infrastructure investments on economic outcomes at a range of geographic scales including neighborhood, municipality, regional, and statewide.

CP 6361. Regional Transportation Planning and Administration. 3 Credit Hours.
This course will address the administrative, political, methodological, and social issues underlying the regional transportation planning process.

CP 6412. Foundations of Local Economic Development Planning and. 3 Credit Hours.
Policy introduction to local economic development planning, examining theory, process and practice, international and regional factors, public and private roles.

CP 6422. Economic Development Analysis and Practice. 3 Credit Hours.
This course focuses on strategy development, methods of analysis, and approaches to practice for urban and regional economic development policy and planning.

CP 6432. Industrial Restructuring and Its Planning Implications. 3 Credit Hours.
Examines industrial restructuring trends and theoretical frameworks; develops industry case studies; and considers economic development planning’s role in industrial restructuring.

CP 6442. Equity, Social Justice, and Economic Development. 3 Credit Hours.
Explores concepts and theories of equity and social justice, analysis of indicators of (in)justice/equity, and economic development planning’s role in promoting equity and social justice.

CP 6452. Urban Development Policy. 3 Credit Hours.
Introduces elements of urban policy and economic development by examining them historically, nationally, and locally. Approaches to urban development and redevelopment are analyzed.

CP 6514. Introduction to Geographic Information Systems. 3 Credit Hours.
This course introduces students to spatial analysis using geographic information systems. Fundamentals of software design and geographic data are covered.

CP 6521. Advanced Geographic Information Systems. 3 Credit Hours.
The course provides students with advanced spatial analysis techniques including network analysis, three-dimensional surface modeling, and GIS application development.

CP 6531. Introduction to Remote Sensing. 3 Credit Hours.
This course introduces students to the collection and use of satellite imagery and other remote sensing data.

CP 6541. Environmental Analysis Using GIS. 3 Credit Hours.
This course focuses on the application of geographic information systems (GIS) to environmental problems. It highlights the types and sources of data appropriate to those applications.

CP 6542. Transport & GIS. 3 Credit Hours.
Transportation data models, data processing, modeling, and service delivery in geographical information systems.

CP 6551. Spatial Analysis of Socioeconomic Data. 3 Credit Hours.
This course provides students with an in-depth study of the spatial distribution of human activity, including population, housing, and employment. Credit not allowed for both CP 6551 and CP 6570.

CP 6561. Geodemographics: Data Sources and Methods. 3 Credit Hours.
Explores important secondary data sources used by planners and analysts working with smaller geographic areas. Experience with hardware and software used to analyze data.

CP 6570. Socioeconomic GIS. 3 Credit Hours.
This advanced GIS course addresses the collection, management, analysis, and interpretation of spatial social, economic, housing, and demographic information. Credit not allowed for both CP 6570 and CP 6551.
CP 6581. Programming for Geographic Information Systems. 3 Credit Hours.
This course teaches fundamental programming skills for geoprocessing and data presentation in a geographic information system environment. The primary languages used are Python and Javascript.

CP 6591. GIS Professionalization. 1 Credit Hour.
This course provides MSGIST students with a bridge from the academic world to the professional GIS world.

CP 6592. Capstone Project Research. 1 Credit Hour.
This course allows students to select a MSGIST capstone project topic, conduct a professional and academic literature review, and assemble required spatial datasets.

CP 6595. GIS Systems Design and Management. 3 Credit Hours.
This course equips students to address a range of issues related to GIS data acquisition, database design, system configuration, and project management.

CP 6596. GIS Capstone Project. 3 Credit Hours.
Students plan and execute a major professional project using standard GIS methodologies, and communicate the project results in written, graphic, and public presentation formats.

CP 6611. Principles of Real Estate Finance and Development. 3 Credit Hours.
Introduction to principles of real estate finance, focusing on the role the public sector plays in making desirable development projects financially feasible.

CP 6612. Community Development. 3 Credit Hours.
This course will examine neighborhood-based efforts, public policy, trends and practices that have shaped community development in American inner city communities since 1950.

CP 6621. Introduction to Urban Design. 3 Credit Hours.
An introduction to the study, research, and practice of urban design examining traditional design principles and their application to the contemporary city.

CP 6640. Applied Real Estate Development Methods. 3 Credit Hours.
Examination of the operation of local housing markets and national, state, regional, and local housing policies.

CP 6680. City Planning Elective. 1-21 Credit Hours.
Students plan and execute a major professional project using standard GIS methodologies, and communicate the project results in written, graphic, and public presentation formats.

CP 6681. Negotation, Facilitation, and Conflict Management. 3 Credit Hours.
Theoretical and practical instruction on techniques of negotiation and consensus building using case studies and training exercises.

CP 6685. Public Sector Finance and Budgeting. 3 Credit Hours.

CP 6686. Urban Ecological Design. 3 Credit Hours.
The course engages the contemporary issues of urban ecology and its articulation to design. It explores relationship between urban forms, and flows of ecology, energy, material, water and information. Credit not allowed for both CP 6836 and ARCH 6447.

CP 6687. Urban Growth and Infrastructure Systems. 3 Credit Hours.
This course provides students with a basic understanding of urban infrastructure systems and their role in shaping urban growth and development.

CP 6688. Public Health and the Built Environment. 2 Credit Hours.
This interdisciplinary course examines how cities and neighborhoods can have both positive and adverse effects on human health, and produces recommendations to improve these outcomes.

CP 6689. Urban Design Policy: Analysis and Implementation. 3 Credit Hours.
This course provides students and faculty an opportunity to present and discuss planning research.

CP 6700. Master's Thesis. 1-21 Credit Hours.
Provides students with an opportunity to pursue advanced research under the guidance of a faculty committee.

CP 7000. Doctoral Planning Seminar. 1 Credit Hour.
This course provides students and faculty an opportunity to present and discuss planning research.

CP 7012. null. 1 Credit Hour.
Incoming City and Regional Planning doctoral students reflect upon research, assess opportunities afforded by doctoral education, and develop a plan of study for the program.

CP 8022. PhD Seminar in Research and Pedagogy. 1 Credit Hour.
Students conceptualize and share ongoing research with their peers, develop professional and pedagogical skills, and explore issues of student and career development.

CP 8020. Advanced Planning Theory. 3 Credit Hours.
Seminar on planning theory, including philosophy of science, political philosophy and ethical theory. The course explores the theoretical basis for planning as a social activity. Credit not allowed for both CP 8200 and COA 8520.
CP 8300. Advanced Urban and Regional Development Theory. 3 Credit Hours.
Examines principal urban-regional economic, and spatial theories for explaining economic, social and physical forces influencing locations, growth and decline of cities and regions. Credit not allowed for both CP 8300 and COA 8540.

CP 8400. Research Design and Qualitative Methods. 3 Credit Hours.
Examines issues associated with the design and methodological implementation of planning and applied social research, with a focus on techniques for qualitative inquiry. Credit not allowed for both CP 8400 and COA 8510.

CP 8505. Advanced Quantitative Research Methods for Planning, Policy and Design. 3 Credit Hours.
This course addresses two complementary topics: the design of quantitative research related to planning, design, and policy; and advanced statistical techniques for accomplishing such research. Credit not allowed for both CP 8505 and COA 8510.

CP 8813. Special Topics in Land Use Planning. 3 Credit Hours.
Topics of current interest in land use planning.

CP 8823. Special Topics in Environmental Planning. 3 Credit Hours.
Topics of current interest in environmental planning.

CP 8833. Special Topics in Transportation Planning. 3 Credit Hours.
Topics of current interest in transportation planning.

CP 8843. Special Topics in Economic Development. 3 Credit Hours.
Topics of current interest in economic development.

CP 8851. Special Topics in GIS. 1 Credit Hour.
Topics of current interest in Geographic Information Systems.

CP 8852. Special Topics in GIS. 2 Credit Hours.
Topics of current interest in Geographic Information Systems.

CP 8853. Special Topics in Geographic Information Systems. 3 Credit Hours.
Topics of current interest in geographic information systems.

CP 8863. Special Topics in Land Development. 3 Credit Hours.
Topics of current interest in land development.

CP 8873. Special Topics in Urban Design. 3 Credit Hours.
Topics of current interest in urban design.

CP 8876. Spec Topics: Urban Dsgn. 6 Credit Hours.
Special Topics.

CP 8881. Special Topics in City and Regional Planning. 1 Credit Hour.
Topics of current interest in city and regional planning.

CP 8882. Special Topics in City and Regional Planning. 2 Credit Hours.
Topics of current interest in city and regional planning.

CP 8883. Special Topics in City and Regional Planning. 3 Credit Hours.
Topics of current interest in city and regional planning.

CP 8900. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

CP 8901. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

CP 8902. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

The applied research paper requires students to demonstrate their ability to organize and execute professional-level work in consultation with a faculty member.

CP 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistantships.

CP 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.

CP 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours.

CP 9000. Doctoral Dissertation. 1-21 Credit Hours.

Computer Science (CS)

CS 1100. Freshman Leap Seminar. 1 Credit Hour.
Small group discussions with first year students are led by one or more faculty members and include a variety of foundational, motivational, and topical subjects for computationalist.

CS 1171. Introductory Computing in MATLAB. 1 Credit Hour.
For students with a solid introductory computing background needing to demonstrate proficiency in the MATLAB language.

CS 1301. Introduction to Computing. 3 Credit Hours.
Introduction to computing principles and programming practices with an emphasis on the design, construction and implementation of problem solutions use of software tools.

CS 1315. Introduction to Media Computation. 3 Credit Hours.
Introduction to computation (algorithmic thinking, data structures, data transformation and processing, and programming) in a media and communication context.

CS 1316. Representing Structure and Behavior. 3 Credit Hours.
Modeling the structure of media (e.g., music, graphical scenes) using dynamic data structures. Designing objects as encapsulations of structure and behavior. Algorithms for simulating objects. May not be taken for credit by students who have credit for CS 1322.

CS 1331. Introduction to Object Oriented Programming. 3 Credit Hours.
Introduction to techniques and methods of object-oriented programming such an encapsulation, inheritance, and polymorphism. Emphasis on software development and individual programming skills.

CS 1332. Data Structures and Algorithms for Applications. 3 Credit Hours.
Computer data structures and algorithms in the context of object-oriented programming. Focus on software development towards applications.

CS 1371. Computing for Engineers. 3 Credit Hours.
Foundations of computing with an introduction to design and analysis of algorithms and an introduction to design and construction of programs for engineering problem-solving.

CS 1372. Structured Program Design for Engineers. 3 Credit Hours.

CS 1801. Special Topics. 1 Credit Hour.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 1802. Special Topics. 2 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 1803. Special Topics. 3 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.
CS 1804. Special Topics. 4 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 1805. Special Topics. 5 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 1XXX. Computer Sci Elective. 1-21 Credit Hours.

CS 2050. Introduction to Discrete Mathematics for Computer Science. 3 Credit Hours.

CS 2051. Honors - Induction to Discrete Mathematics for Computer Science. 3 Credit Hours.

CS 2110. Computer Organization and Programming. 4 Credit Hours.
An introduction to basic computer hardware, machine language, assembly language, and C programming.

CS 2200. Computer Systems and Networks. 4 Credit Hours.
A broad exposure to computer system structure and networking including software abstractions in operating systems for orchestrating the usage of the computing resources.

CS 2261. Media Device Architectures. 4 Credit Hours.
Controlling the interface between hardware and software in media devices. Machine-level programming (e.g., in C) to create graphics, generate sound, and support user interaction.

CS 2316. Data Manipulation for Science and Industry. 3 Credit Hours.
Reading, manipulating, and exporting data for engineering, business, and scientific applications. Covers GUI's, File I/O, basic SQL, and web scraping. Emphasis on software development.

CS 2335. Software Practicum. 3 Credit Hours.
Methods for solving large programming problems. Techniques for quality assurance, managing programs, working in teams, analyzing problems, and producing effective solutions.

CS 2340. Objects and Design. 3 Credit Hours.
Object-oriented programming methods for dealing with large programs. Focus on quality processes, effective debugging techniques, and testing to assure a quality product.

CS 2345. Advanced Practical Object-Oriented Programming. 4 Credit Hours.
This course presents important programming principles that should be considered when using a non-automatic memory management complex language (such as C++). Templating, generic programming, resource acquisition is initialization (RAII), and smart pointers are a few examples. Credit not awarded for both CS 2345 and ECE 2036.

CS 2600. Knowledge Representation and Processing. 4 Credit Hours.
Introduction to the representation and manipulation of complex symbolic and sub-symbolic information.

CS 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

CS 2701. Startup Lab: Introduction to Technology Ventures. 3 Credit Hours.
Elements of technology venture creation including opportunity identification and validation, ideation, customer discovery, market analysis, minimum viable product development, business models, intellectual property, and capital raises. Cross-listed with COE 2701.

CS 2801. Special Topics. 1 Credit Hour.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2802. Special Topics. 2 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2803. Special Topics. 3 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2804. Special Topics. 4 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2805. Special Topics. 5 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2XXX. Computer Sci Elective. 1-21 Credit Hours.

CS 3101. Computer Science Ventures. 3 Credit Hours.
Students will learn how computer-science-based ventures are developed. The course is project-based. Students propose, analyze, design, implement, package and market web-2.0 and virtual-world-based products and services.

CS 3210. Design of Operating Systems. 3 Credit Hours.
Operating systems concepts, including multi-threading, scheduling, synchronization, communication, and access control. Projects will cover design and implementation of several operating systems components.

CS 3220. Computer Structures: Hardware/Software Codesign of a Processor. 3 Credit Hours.
Principles in pipelined processor design, with emphasis on the need for a close interaction between code generation and architecture.

CS 3240. Languages and Computation. 3 Credit Hours.
Interpreters as abstract machines and the tools used to construct them, such as scanners and parsers. An introduction to models of computation as embodied by different programming languages. Limits of and relationships between these models.

CS 3251. Computer Networking I. 3 Credit Hours.
Introduction to problems in computer networking, including error recovery, medium access, routing, flow control, and transport. Emphasis on current best practice. Includes programming of networked applications.

CS 3300. Introduction to Software Engineering. 3 Credit Hours.
Team-based project class to introduce and apply software engineering principles and practices.
CS 3311. Part 1 of a 2 semester project design and implementation sequence conjoined with Tech Communications. 1 Credit Hour.
Part 1 of a 2 semester project design and implementation sequence conjoined with Technical Communications. Prepare requirements, design and project plans. Develop a basic prototype of the desired system. Project is completed in CS 3312-Project Implementation. Credit will not be awarded for CS 3311 and CS 4911.

CS 3312. Part 2 of a semester project design and implementation sequence conjoined with Tech Communications. 2 Credit Hours.
The second part of a 2 semester project design and implementation sequence conjoined with Technical Communications. Implement a project designed in CS 3311. Credit will not be awarded for CS 3312 and CS 4911.

CS 3451. Computer Graphics. 3 Credit Hours.
Geometric constructions; transformations; perception; reflection models; photorealistic; non-photorealistic, and image-based rendering; rendering software and APIs; triangle-mesh processing; graphic acceleration; user-interaction, design and animation.

CS 3510. Design and Analysis of Algorithms. 3 Credit Hours.
Basic techniques of design and analysis of efficient algorithms for standard computational problems. NP-Completeness. Credit not allowed for both CS 3510 and CS 3511.

CS 3511. Design and Analysis of Algorithms, Honors. 3 Credit Hours.
Techniques of design and analysis of efficient algorithms for standard computational problems. NP-Completeness Project. Credit not allowed for both CS 3511 and CS 3510.

CS 3600. Introduction to Artificial Intelligence. 3 Credit Hours.
An introduction to artificial intelligence and machine learning. Topics include intelligent system design methodologies, search and problem solving, supervised and reinforced learning.

CS 3630. Introduction to Perception and Robotics. 3 Credit Hours.
Covers fundamental problems and leading solutions for computer and robot perception and action from the point of view of autonomous robot navigation.

CS 3651. Prototyping Intelligence Appliances. 4 Credit Hours.
Hands-on course teaching the fundamentals of electronics of electrical and mechanical prototyping.

CS 3743. Analysis of Emerging Technologies. 3 Credit Hours.
Analysis of emerging technologies and their impacts for firm practice, market practice, policy, and society. Credit not allowed for both CS 3743 and MGT 3743 or ME 3743.

CS 3750. Human Computer Interface Design and Evaluation. 3 Credit Hours.
Human computer interface is considered in terms of user-system compatibility. Concepts in human factors and interface design are covered in relation to capabilities of both humans and computers. Crosslisted with PSYC 3750.

CS 3790. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with PST, PSYC, and ISYE 3790.

CS 3801. Special Topics. 1 Credit Hour.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3802. Special Topics. 2 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3803. Special Topics. 3 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3804. Special Topics. 4 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3805. Special Topics. 5 Credit Hours.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3XXX. Computer Sci. 1-21 Credit Hours.

CS 4001. Computing, Society, and Professionalism. 3 Credit Hours.
Examines the role and impact of information and communication technology in society, with emphasis on ethical, professional, and public policy issues. Credit not allowed for both CS 4001 and 4002.

CS 4002. Robots and Society. 3 Credit Hours.
Examines the role and impact of robotics, distributed sensing and actuation, ubiquitous computing and related technology in society, emphasizing ethical, professional and public policy issues. Credit not allowed for both CS 4001 and 4002.

CS 4005. Next-Generation Computing Technologies. 3 Credit Hours.
Students will explore new paradigms in how content is created, distributed, and consumed, with hands-on demos of next-generation computing technologies.

CS 4010. Introduction to Computer Law. 3 Credit Hours.
Provides an introduction to copyrights, patents, trade secrets, trademarks, and commercial law pertaining to computer software and hardware.

CS 4052. Systems Analysis and Design. 3 Credit Hours.
An introductory course on the development life cycle of business information systems. It covers analysis and design tools and methodology. Credit not allowed for both CS 4052 and MGT 4045.

CS 4057. Business Process Analysis and Design. 3 Credit Hours.
Business processes are the mechanisms by which work is organized and performed. This course covers the analysis of business technology. Credit will not be awarded for both CS 4057 and MGT 4057.

CS 4210. Advanced Operating Systems. 3 Credit Hours.
Operating system abstractions and their implementations, multi-threading, efficient inter-address communication, high-level synchronization, introduction to multi-processor and distributed operating systems, real-time systems.

CS 4220. Programming Embedded Systems. 3 Credit Hours.
Design principles, programming techniques, and case studies of embedded real-time systems. Interface techniques and devices. Representations and reasoning about physical processes.

CS 4233. Parallel Computer Architecture. 3 Credit Hours.
The objective of this course is to develop an in-depth understanding of the design, implementation, and evaluation of modern parallel computers. Credit not allowed for both CS 4233 and CS 7110.

CS 4235. Introduction to Information Security. 3 Credit Hours.
Terms/concepts, threats, controls; problem definition; comprehensive information security model; security for operating systems, databases, network/distributed systems; administering security; legal/ethical/policy issues. Credit not allowed for both CS 4235 and CS 6035.
CS 4237. Computer and Network Security. 3 Credit Hours.
Fundamental concepts and principles of computer security, operating system and database security, secret key and public key cryptographic algorithms, hash functions, authentication, firewalls and intrusion detection systems, IPSec ad VPN, and wireless security.

CS 4240. Compilers, Interpreters, and Program Analyzers. 3 Credit Hours.
Study of techniques for the design and implementation of compilers, interpreters, and program analyzers, with consideration of the particular characteristics of widely used programming languages.

CS 4245. Introduction to Data Mining and Analysis. 3 Credit Hours.
Computational techniques for analysis of large, complex datasets, covering fundamental aspects as well as modern data mining and analysis techniques. Cross-listed with ISYE 4245.

CS 4251. Computer Networking II. 3 Credit Hours.
Principles of computer networks, including medium access, ARQ protocols, routing, congestion avoidance, and control. Emphasis on design options and tradeoffs. Includes significant network application programming.

CS 4255. Introduction to Network Management. 3 Credit Hours.
Introduction to SNMP-based network management. Practical application to network and system management including hands-on lab practice.

CS 4260. Telecommunications Systems. 3 Credit Hours.
Study of telecommunication systems emphasizing functional roles of the various portions of the system and how various functional components support and interact with one another.

CS 4261. Mobile Applications and Services for Converged Networks. 3 Credit Hours.
This course provides an introduction to mobile applications and services with an emphasis on voice and data service integration in modern commercial networks.

CS 4270. Data Communications Laboratory. 3 Credit Hours.
Detailed study of the principles of data transmission systems and their performance, reinforced by laboratory exercises.

CS 4280. Survey of Telecommunications and the Law. 3 Credit Hours.
Overview of telecommunication regulation at the federal, state, and judicial levels; review of FCC policies and restrictions on Bell operating companies under the AT&T Consent Agreement.

CS 4290. Advanced Computer Organization. 3 Credit Hours.
Topics concerning the hardware design of computer systems. Advanced techniques in high-performance pipelined central processing units. Memory and I/O systems. Parallel processors including shared-memory multiprocessors and cluster computers. Credit is not allowed for both CS 4290 and any of the following courses: CS 6290, ECE 4100, ECE 6100.

CS 4320. Introduction to Software Processes. 3 Credit Hours.
The course will provide students with an overall context in which software systems are developed from the viewpoint of processes that support development. Software engineering is described as the set of activities developers engage in to create high-quality products within schedule and budget constraints.

CS 4330. Software Engineering Applications. 3 Credit Hours.
Software engineering methods specific to classes of applications or systems, including information systems and embedded, real-time systems.

CS 4342. Software Generation, Testing, and Maintenance. 3 Credit Hours.
Methods and principles for program generation, testing, and managing the evolution of software systems.

CS 4365. Introduction to Enterprise Computing. 3 Credit Hours.
A survey of basic software tools and techniques used in mission-critical systems and applications, combined with in-depth study of fundamental principles underlying enterprise computing. Credit not allowed for both 4365 and CS 6365.

CS 4392. Programming Languages. 3 Credit Hours.

CS 4400. Introduction to Database Systems. 3 Credit Hours.
Comprehensive coverage of mainstream database concepts such as the entity-relationship model, relational databases, query languages, and database design methodology. Includes a project. Credit not allowed for both CS 4400 and CS 6402.

CS 4420. Database System Implementation. 3 Credit Hours.
Study of fundamental software components/algorithms of a database system, including the file manager, query engine, lock manager, and recovery manager. Includes a project component. Credit not allowed for both CS 4420 and CS 6422.

CS 4452. Human-Centered Computing Concepts. 3 Credit Hours.
Introduction to programming and human-centered principles of computing based on a communications and media computation context. Introduces user interface programming.

CS 4455. Video Game Design and Programming. 3 Credit Hours.
Techniques for electronic game design and programming, including graphics game engines, motion generation, behavioral control for autonomous characters, interaction structure, social and interface issues of multi-user play, and the business aspects of game development. Credit not allowed for both CS 4455 and CS 6457.

CS 4460. Introduction to Information Visualization. 3 Credit Hours.
Introduction to principles and techniques of information visualization, the presentation of primarily abstract data to help people understand, analyze and make sense of data. Students will not receive credit for both CS 4460 and CS 7450.

CS 4464. Computational Journalism. 3 Credit Hours.
A study of computational and technological advancements in journalism with emphasis on technologies for developing new tools and their potential impact on news and information. Credit not allowed for both CS 4464 and CS 6465.

CS 4470. Introduction to User Interface Software. 3 Credit Hours.
Concepts, techniques, structures, and strategies for implementation of interactive software.

CS 4472. Design of Online Communities. 3 Credit Hours.
Introduction to the design of online communities. Students study an existing community in depth. Credit not allowed for both CS 4472 and CS 6470.

CS 4475. Computational Photography. 3 Credit Hours.
An introductory course on the scientific, technical, perceptual, and aesthetic principles of pictures. Emphasis is on the techniques of image formation, analysis, merging, modification and their use for depiction of reality on a 2D medium of photographs.
CS 4476. Introduction to Computer Vision. 3 Credit Hours.
Introduction to computer vision including fundamentals of image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, image classification and scene understanding. Credit will not be awarded for both CS 4476 and CS 4495 or CS 6476.

CS 4480. Digital Video Special Effects. 3 Credit Hours.
A study of digital multimedia and the analysis and synthesis of digital video. Special attention paid to techniques for generating video special effects.

CS 4495. Computer Vision. 3 Credit Hours.
An introduction to computer vision and machine perception. An intensive study of the process of generating a symbolic description of the scene by interpretation of images(s). Credit not awarded for both CS 4495 and CS 6476.

CS 4496. Computer Animation. 3 Credit Hours.
Motion techniques for computer animation and interactive games (keyframing, procedural methods, motion capture, and simulation) and principles for storytelling, composition, lighting, and interactivity.

CS 4497. Computational Aesthetics. 3 Credit Hours.
Aesthetics plays a key role in society and economy. Students will invent and test beautification algorithms for colors, music, and animations and more.

CS 4510. Automata and Complexity Theory. 3 Credit Hours.
Computational machine models and their language classes. Undecidability. Resource-bounded computations. Central complexity-theoretic concepts such as complexity classes, reducibility and completeness.

CS 4520. Approximation Algorithms. 3 Credit Hours.
Approximation algorithms for NP-hard optimization problems, design and analysis techniques for such algorithms. Credit not allowed for both CS 4520 and CS 7520.

CS 4530. Randomized Algorithms. 3 Credit Hours.
Efficient randomized algorithms with improved performance over deterministic algorithms, or for NP-hard optimization problems, design and analysis techniques for such algorithms. Credit not allowed for both CS 4530 and CS 7530.

CS 4540. Advanced Algorithms. 3 Credit Hours.
Advanced techniques for designing and analyzing efficient algorithms for combinatorial, algebraic, and number theoretic problems. Credit not allowed for both CS 4540 and CS 6550.

CS 4550. Scientific Data Processing and Visualization. 3 Credit Hours.
Foundations and algorithms underlying the development and application of tools for the efficient transmission, analysis, filtering, and visualization of large scientific data sets.

CS 4560. Verification of Systems. 3 Credit Hours.
Technique for verifying, validating and testing software and hardware systems. Topics will include modeling, abstraction methods, evaluation and certification, and computer-aided verification methods.

CS 4590. Principles and Applications of Computer Audio. 3 Credit Hours.
A well-rounded exploration of digital audio and its importance in current research and applications. Exposes students to the principles, technology, and current research of computer audio.

CS 4605. Mobile and Ubiquitous Computing. 3 Credit Hours.
Investigates the infrastructure required to develop mobile and ubiquitous computing applications and establishes major research themes and experimental practices.

CS 4611. Artificial Intelligence Problem Solving. 3 Credit Hours.
Basic concepts and methods of AI problem solving, knowledge representation, reasoning, and learning.

CS 4613. Knowledge Systems Engineering. 3 Credit Hours.
Techniques for constructing large knowledge-based systems. Advanced symbolic AI techniques. Constraint systems.

CS 4615. Knowledge-Based Modeling and Design. 3 Credit Hours.
Information-processing theories of modeling and design; topics include design decision-making, problem-solving and learning, and knowledge-based modeling and design.

CS 4616. Pattern Recognition. 3 Credit Hours.
An introductory course on pattern classification and decision problems with applications to character recognition, image analysis, and speech recognition.

CS 4622. Case-Based Reasoning. 3 Credit Hours.
Based on human problem-solving, CBR has had many successes in industry and research. Topics include case representation, indexing and retrieval, similarity assessment, adaptation, learning. Credit not allowed for both CS 4622 and CS 7620.

CS 4625. Intelligent and Interactive Systems. 3 Credit Hours.
Explores how human-computer interaction and machine learning can interact to create personalized information environments. Emphasis on current research efforts from both fields.

CS 4632. Advanced Intelligent Robotics. 3 Credit Hours.
Hands-on course in which students program autonomous mobile robots and solve complex tasks for robot teams.

CS 4635. Knowledge-Based Artificial Intelligence. 3 Credit Hours.
Structured knowledge representation; knowledge-based methods of reasoning and learning; problem-solving, modeling and design.

CS 4641. Machine Learning. 3 Credit Hours.
Machine learning techniques and applications. Topics include foundational issues; inductive, analytical, numerical, and theoretical approaches; and real-world applications.

CS 4646. Machine Learning for Trading. 3 Credit Hours.
This course introduces students to the real world challenges of implementing machine learning based strategies including the algorithmic steps from information gathering to market orders.

CS 4649. Robot Intelli Planning. 3 Credit Hours.
We investigate algorithms for robots and complex systems that make intelligent decisions. Emphasis on the theoretical and empirical properties of classical, geometric, stochastic/dynamic planning.

CS 4650. Natural Language Understanding. 3 Credit Hours.
Methodologies for designing systems that comprehend natural language. Topics include lexical analysis, parsing, interpretation of sentences, semantic representation, organization of knowledge, and inference mechanisms. Credit not allowed for both CS 4650 and CS 7650.

CS 4660. Introduction to Educational Technology. 3 Credit Hours.
Introduction to the theory and practice of educational technology. Covers learning theory applicable to educational technology, explains major research findings.

CS 4665. Educational Technology: Design and Evaluation. 3 Credit Hours.
Intensive project class in which students design, implement, and evaluate a piece of educational technology, applying the theory learned in Introduction to Educational Technology.
CS 4670. Computer-Supported Collaborative Learning. 3 Credit Hours.
Research and practice in computer-supported collaborative learning.
Review of existing systems and research, as well as evaluation and
design methods.

CS 4675. Internet Computing Systems, Services and Applications. 3 Credit Hours.
Focusing on fundamental issues, concepts, techniques, and technical
challenges that are critical for designing and developing Internet
systems, services and applications. Credit not allowed for both CS 4675
and CS 6675.

CS 4685. Pervasive Systems and Networking. 3 Credit Hours.
In-depth study of systems and wireless networking issues in enabling
pervasive computing environments and applications using a hand-on
approach.

CS 4690. Empirical Methods for User Interface Design and Evaluation. 3 Credit Hours.
Introduction to empirical methods for gathering requirements and
evaluating the end-user and usability of software systems.

CS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

CS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

CS 4710. Introduction to Computing Concepts for Bioinformatics. 4 Credit Hours.
Introduction to programming concepts and computing tools such as
formal models and algorithms with applications from conceptual biology.
May not be used by computer science majors for degree credit.

CS 4725. Information Security Strategies and Policies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy, and
technology constraints; derivation of strategies; technical and procedural
means of achieving desired results. Credit will not be awarded for both
CS 4725 and CS 6725 or MGT 4725 or MGT 6725.

CS 4726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great
interest in the technology, policy, ethics, law, and business realms. Credit
will not be awarded for both CS 4726 and MGT 4726 or MGT 6726 or
CS 6726.

CS 4731. Game AI. 3 Credit Hours.
Examines the expressive possibilities of artificial intelligence techniques
in computer games. Students learn AI programming techniques, and how
they strongly interface with game design.

CS 4741. Integrative Management Development-Project Preparation. 3 Credit Hours.
Individual and group-based experiential learning activities to develop
integrated human system management skills that prepare students for
more successful capstone collaboration and learning. Credit not allowed
for both CS 4741 and MGT 4741 or ME 4741.

CS 4742. Integrated Computing and Management Capstone Project. 4 Credit Hours.
Project-based course for students in Computing and Management minor
to work in interdisciplinary teams on projects provided by corporate
affiliates. Credit not allowed for both CS 4742 and MGT 4742 or ME 4742.

CS 4745. Information and Communication Technologies and Global Development. 3 Credit Hours.
Focus on technology design, adoption, and use as seen through the lens of
global development.

CS 4752. Philosophical Issues in Computation. 3 Credit Hours.
Metaphysical and epistemological issues in the foundations, methods,
and implications of computing. Issues include: minds, brains, and
machines; representation and language; simulating nature. Crosslisted
with PST 4752.

CS 4770. Mixed Reality Experience Design. 3 Credit Hours.
Focuses on informal design, integration of media theory, HCI and
technology issues. Significant group design projects.

CS 4791. Integrative Project in Cognitive Science. 3 Credit Hours.
An integrative course in cognitive science focusing on the integration and
use of concepts and skills from cognitive science. A different integrative
project or set of projects will be taken on each semester; students will
contribute on the basis of their background and skill. Crosslisted with
PST, PSYC, and ISYE 4791.

CS 4792. Design Project in Cognitive Science. 3 Credit Hours.
Individual project with a cognitive science faculty member, designed as a
supplement to the student's senior design project or thesis in their major
area. Crosslisted with PST, PSYC, and ISYE 4792.

CS 4793. Integrative Perspectives in Cognitive Science. 3 Credit Hours.
An integrative course in cognitive science which uses a focus topic to
deepen interdisciplinary perspective and develop cognitive science
knowledge and skills.

CS 4801. Special Topics. 1 Credit Hour.
Courses of timely interest to the profession, conducted by resident or
visiting faculty.

CS 4802. Special Topics. 2 Credit Hours.
Courses of timely interest to the profession, conducted by resident or
visiting faculty.

CS 4803. Special Topics. 3 Credit Hours.
Courses of timely interest to the profession, conducted by resident or
visiting faculty.

CS 4804. Special Topics. 4 Credit Hours.
Courses of timely interest to the profession, conducted by resident or
visiting faculty.

CS 4805. Special Topics. 5 Credit Hours.
Courses of timely interest to the profession, conducted by resident or
visiting faculty.

CS 4851. Special Topics. 1 Credit Hour.
Special Topics in CS - Lab.

CS 4853. Special Topics. 3 Credit Hours.
Special Topics in CS (lecture and supervised lab)

CS 4863. Special Topics. 3 Credit Hours.
Special Topics.

CS 4893. Special Topics. 3 Credit Hours.
Special Topics for CS (lecture + lab).

CS 4901. Special Problems. 1-21 Credit Hours.
An investigation of significant areas of information in computer science.
Guided study and research.

CS 4902. Special Problems. 1-21 Credit Hours.
An investigation of significant areas of information and computer
science. Guided study and research.
CS 4903. Special Problems. 1-21 Credit Hours.
An investigation of significant areas of information and computer science. Guided study and research.

CS 4911. Design Capstone Project. 1-21 Credit Hours.
Team-based capstone experience allowing students to analyze a problem for a customer and manage the solution development through the full project life cycle.

CS 4912. Design Capstone Project. 3 Credit Hours.
Team-based capstone experience allowing students to analyze a problem for a customer and manage the solution development through the full project life cycle.

CS 4980. Research Capstone Project. 1-21 Credit Hours.

CS 4XXX. Computer Sci Elective. 1-21 Credit Hours.

CS 6010. Principles of Design. 3 Credit Hours.
This is an interactive hands-on course that will teach students the principles of design at the individual level.

CS 6035. Introduction to Information Security. 3 Credit Hours.
A broad spectrum of information security threats, basic cryptography, software vulnerabilities, programming for malicious operating system protections, network security, privacy, data mining, computer crime.

CS 6150. null. 3 Credit Hours.
Exploring challenges faced by underserved populations and developing countries from a computing perspective.

CS 6200. Graduate Introduction to Operating Systems. 3 Credit Hours.
This course teaches operating system abstractions, mechanisms, and their implementations, including for concurrency (threads) and synchronization, resource management (CPU, memory, I/O), and distributed services.

CS 6210. Advanced Operating Systems. 3 Credit Hours.
Introduction to graduate-level topics in operating systems using research papers, textbook excerpts, and projects. Provides students thorough comprehension of distributed and parallel computer systems.

CS 6220. Big Data Systems and Analytics. 3 Credit Hours.
This course will cover the concepts, techniques, algorithms, and systems of big data systems and data analytics, with strong emphasis on big data processing systems, fundamental models and optimizations for data analytics and machine learning, which are widely deployed in real-world big data analytics and applications.

CS 6230. High-Performance Parallel Computing: Tools and Applications. 3 Credit Hours.
Introduction to MIMD parallel computation, using textbook excerpts, research papers, and projects on multiple parallel machines. Emphasizes practical issues in high-performance computing.

CS 6235. Real-Time System Concepts and Implementation. 3 Credit Hours.
Principles of real-time systems, as occurring in robotics and manufacturing, interactive, and multimedia applications. Reviews and uses real-time operating systems.

CS 6238. Secure Computer Systems. 3 Credit Hours.
Design principles of secure systems, authentication, access control and authorization, discretionary and mandatory security policies, secure kernel design, and secure databases.

CS 6241. Design and Implementation of Compilers. 3 Credit Hours.
Design and implementation of modern compilers, focusing upon optimization and code generation.

CS 6245. Compiling for Parallelism. 3 Credit Hours.
Design and implementation of compilers for parallel and distributed computers, focusing upon optimization and code generation.

CS 6246. Object-Oriented Systems and Languages. 3 Credit Hours.
Design and implementation of object-oriented systems. Aspect-oriented programming, type systems, OO language implementation (virtual dispatch, GC), OO language design (genericity, reflection, mixins).

CS 6250. Computer Networks. 3 Credit Hours.
Principles and practice of computer networks, including signaling and framing, error control, medium access, routing, congestion control, end-to-end transport, and network APIs.

CS 6255. Principles of Network Management. 3 Credit Hours.
Focus on network, system, and applications management. Principles and practice of various network management standards will be presented. Course includes project assignment.

CS 6260. Applied Cryptography. 3 Credit Hours.
Cryptographic algorithms, cryptanalysis, symmetric cryptography, public key cryptography, DES, AES, RSA, hash and MAC functions, digital signatures, pseudo-random generators, cryptographic protocols, SSL/TLS, SET. Credit not allowed for both CS 6260 and ECE 6280.

CS 6262. Network Security. 3 Credit Hours.
Design principles of secure network protocols and systems, authentication, integrity, confidentiality, privacy, information hiding, digital watermarking, access control, firewall, intrusion detection, and case studies.

CS 6263. Intro to Cyber-Physical Systems Security. 3 Credit Hours.
This course provides an introduction to security issues relating to various cyber-physical systems including industrial control systems and those considered critical infrastructure systems.

CS 6265. Information Security Laboratory. 3 Credit Hours.
Computer systems and network vulnerabilities, information warfare, network and operating system security techniques, security analysis tools.

CS 6266. Information Security Practicum. 5 Credit Hours.
Capstone independent study placing each student in a commercial, industrial, academic, or government setting where they must solve real-world security problems.

CS 6269. Formal Models and Methods for Information Assurance. 3 Credit Hours.
Logical foundations of high-assurance systems, formal models for access control, authentication, and trust; techniques for constructing high-assurance systems.

CS 6280. Performance Evaluation of Communication Networks. 3 Credit Hours.
Methods for evaluating the performance of communication networks with emphasis on modeling, mathematical analysis, computer simulation, and measurement.

CS 6290. High-Performance Computer Architecture. 3 Credit Hours.
Topics concerning very high-performance computers including techniques exploiting parallelism in single and multiple processor systems. Credit not allowed for both CS 6290 and any of the following courses: CS 4290, ECE 4100, ECE 6100.

First, this course introduces the student to embedded domain-specific processor design and instruction set design issues. Next, machine-specific optimizations for performance and for energy consumption are discussed.
CS 6300. Software Development Process. 3 Credit Hours.
The process of developing software systems. Includes development and assessment of processes, their instantiation in actual product development, and techniques ensuring quality of developed products.

CS 6301. Advanced Topics in Software Engineering. 3 Credit Hours.
This project-based course will cover fundamental principles, advanced techniques, and tools for the development of high-quality, industrial-strength software.

CS 6310. Software Architecture and Design. 3 Credit Hours.
Principles and concepts involved in the design and analysis of large software systems.

CS 6320. Software Requirements Analysis and Specification. 3 Credit Hours.
Methods and principles for determining, documenting, analyzing, and formally specifying requirements for software systems.

CS 6330. Software Generation, Testing, and Maintenance. 3 Credit Hours.
Introduction to methods and principles for programming, testing, and managing the evolution of software systems.

CS 6340. Advanced Topics in Software Analysis and Testing. 3 Credit Hours.
Fundamental principles and advanced techniques for static and dynamic program analysis and software testing. Software reliability, resilience, and trustworthiness.

CS 6350. Intro Enterprise Comput.. 3 Credit Hours.
Survey of basic software concepts and techniques used in mission-critical systems and applications, combined with in-depth study of fundamental principles underlying enterprise computing. Credit not allowed for both CS 6365 and CS 4365.

CS 6390. Programming Language Design. 3 Credit Hours.
Design, structure, and goals of programming languages. Object-oriented, logic, functional, and traditional languages. Semantic models. Parallel programming languages.

CS 6400. Database Systems Concepts and Design. 3 Credit Hours.
Study of fundamental concepts with regard to relational databases. Topics covered include database design, query processing, concurrency control, and recovery. Credit not given for both CS 6400 and CS 4754.

CS 6402. Databases and Information Security. 3 Credit Hours.
Fundamentals of designing and using databases: conceptual data models to database-specific models, SQL, storage structures. Security-related topics include privacy, access control, backup, recovery, SQL injection. Credit not allowed for both CS 6402 and CS 4400.

CS 6411. Object-Oriented Database Models and Systems. 3 Credit Hours.
Study of advanced database concepts as they apply to object-oriented database systems. Topics include semantic data models, object-oriented query languages, tools, and applications.

CS 6421. Temporal, Spatial and Active Databases. 3 Credit Hours.
Study of advanced database concepts for temporal databases with emphasis on storage structure, processing and query languages, as well as active database concepts and implementation.

CS 6422. Database System Implementation. 3 Credit Hours.
Design and implementation of a database system covering: storage manager, query optimizer, transaction manager, and recovery manager. Study of the advantages of different implementation algorithms. Credit not allowed for both CS 6422 and CS 4420.

CS 6430. Parallel and Distributed Database Systems and Applications. 3 Credit Hours.
Study of algorithms and performance in advanced databases. Systems include parallel, distributed, and client-server databases. Applications include data mining and on-line analytical processing.

CS 6440. Information to Health Informatics. 3 Credit Hours.
A broad review of the US health system and the application of informatics to the clinical practice of medicine, digital imaging, public health and bioinformatics.

CS 6451. Introduction to Human-Centered Computing. 3 Credit Hours.
Introduction to the range of issues across the HCC disciplines, including design and research methodologies: cognitive, social, and cultural theories; assessment and evaluation: ethical issues.

CS 6452. Prototyping Interactive Systems. 3 Credit Hours.
Introduction to design, prototyping and implementation of systems for human-centered computing. Focuses on core concepts in computer science and implications for interactive systems.

CS 6454. Qualitative Methods for Design of Human Computer Interaction. 3 Credit Hours.
Qualitative methods for HCI including data collection through interviews, observations and design, analysis using research and industry standards, and methods for communicating findings to industry.

CS 6455. User Interface Design and Evaluation. 3 Credit Hours.
Examines usability in the software development process with an emphasis on usability, requirements, methodology, design, and evaluation.

CS 6456. Principles of User Interface Software. 3 Credit Hours.
Considers the architectural and algorithmic principles behind the implementation of interactive software systems and the tools that support them.

CS 6457. Video Game Design and Programming. 3 Credit Hours.
Techniques for electronic game design and programming, including graphics, game engines, animation, behavioral control for autonomous characters, interaction, social and interface issues of multi-user play. Credit not allowed for both CS 6457 and CS 4455.

CS 6460. Educational Technology: Conceptual Foundations. 3 Credit Hours.
Introduction to educational technology, with an emphasis on theoretical foundations. Introduces basic philosophies, approaches, and technologies. Analyzes issues surrounding technology’s impact on education.

CS 6461. CS Education Research. 3 Credit Hours.
Introduction to computing education research (CER). History and influential early work. Learning goals for different populations. Design of research studies in CER.

CS 6465. Computational Journalism. 3 Credit Hours.
Technology is rapidly affecting how news information is gathered, reported, visualized, aggregated, summarized, distributed, and consumed. This class studies the computational technologies that impact journalism. Credit not allowed for both CS 6455 and CS 4464.

CS 6470. Design of Online Communities. 3 Credit Hours.
Introduction to the design of online communities. Students study an existing community in depth, and then develop a new community design. Credit not allowed for both CS 6470 and CS 4472.
CS 6670. Distributed Control Algorithms. 3 Credit Hours.
Algorithms for synchronous, asynchronous, and partially synchronous networks; analysis, control, and implementation of distributed systems such as robot fleets, animal groups.

CS 6675. Advanced Internet Computing Systems and Applications. 3 Credit Hours.
Survey of basic Internet computing concepts and techniques used in Internet systems and applications, combined with in-depth study of fundamental principles underlying Internet computing. Credit not allowed for both CS 6675 and CS 4675.

CS 6705. Applications of Artificial Intelligence. 3 Credit Hours.
A study of the principles and practice of artificial intelligence in areas other than computer science, with particular focus on engineering, science, and business applications. Computer science majors cannot receive credit for this course.

CS 6725. Information Security Strategies and Policies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy, and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends.

CS 6726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics, law, and business realms. Credit will not be awarded for both CS 6726 and CS 4726 or MGT 4726 or MGT 6726.

CS 6727. Cyber Security Practicum. 5 Credit Hours.
Capstone independent study project placing each student in a commercial, academic or government setting where he or she identifies a major cyber security problem, and explores and evaluates a solution that addresses it with realistic assumptions about the organizational context. The chosen problem must be approved by course instructor. Cross-listed with ECE and PUBP 6727.

CS 6730. Data Visualization: Principles and Applications. 3 Credit Hours.
Introductory course on design principles and applications of data visualization. This course teaches best practices for visualizing datasets from diverse domains intended to help people make sense of data.

CS 6745. Information and Communication Technologies and Global Development. 3 Credit Hours.
Focus on technology design, adoption, and use as seen through the lens of global development.

CS 6750. Human-Computer Interaction. 3 Credit Hours.
Describes the characteristics of interaction between humans and computers and demonstrates techniques for the evaluation of user-centered systems. Crosslisted with PSYC 6750.

CS 6753. Human-Computer Interaction-Professional Preparation and Practice. 1 Credit Hour.
Preparation for a professional career in HCI. Speakers. Atlanta-area lab visits. Career trajectories. Project presentations. Technical, resume and interviewing skills. Atlanta-area HCI resources. Credit not allowed for both CS 6753 and PSYC 6753 or LCC 6753.

CS 6754. Engineering Data Base Management Systems. 3 Credit Hours.
Modeling and managing engineering information systems, integration of design and manufacturing functions in engineering product development, logical models of engineering product and processes. Credit not given for CS 6400 and CS 6754. Crosslisted with ME 6754.
CS 6755. Human-Computer Interaction Foundations. 3 Credit Hours.
Describes the theory and practice of designing effective and efficient
interactions between people and technology. Students do not receive
credit for both CS 6755 and PSYC 6755.

CS 6763. Design of Design Environments. 3 Credit Hours.
Analysis of design processes; analysis of current design tools at both
the user interface and functional levels; procedures for developing
better design tools. Credit not allowed for both CS 6763 and ID 6763 or
COA 6763.

CS 6764. Geometric Modeling. 3 Credit Hours.
Software development course focusing on 3D geometric constructions
and modeling; emphasizes solid modeling and its role in design.
Crosslisted with COA 6764.

CS 6770. Mixed Reality Experience Design. 3 Credit Hours.
Introduction to the design of Mixed Reality experiences. Focuses on
informal design, integration of media theory, HCI and technology issues.
Significant group design projects.

CS 6780. Medical Image Processing. 3 Credit Hours.
A study of methods for enhancing, analyzing, interpreting, and visualizing
information from two- and three-dimensional data obtained from a variety
of medical image modalities. Crosslisted with ECE and BMED 6780.

CS 6795. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary
approaches to issues in cognition, including memory, language, problem
solving, learning, perception, and action. Crosslisted with ISYE and
PSYC 6795.

CS 6998. HCI Master's Project. 1-9 Credit Hours.

CS 6999. Master's Project. 1-9 Credit Hours.
Final project for students completing a master's degree in the College of

CS 6XXX. Computer Sci Elective. 1-21 Credit Hours.

CS 7000. Master's Thesis. 1-21 Credit Hours.

CS 7001. Overview of Graduate Studies in Computing. 5 Credit Hours.
Research tools including computer systems, as well as fundamental
problem-solving skills, are introduced. Lectures on current computing
research are presented and projects are required. Credit not allowed in a
program of study for a graduate degree.

CS 7110. Parallel Computer Architectures. 3 Credit Hours.
Issues in the design, implementation, and programming of parallel
machines. Credit not allowed for both CS 7110 and CS 4233.

CS 7210. Distributed Computing. 3 Credit Hours.
Fundamental concepts in distributed systems, including global states,
logical clocks, and failure models. Distributed algorithms and their
implementations using advanced distributed programming systems.

CS 7230. Systems Software Design, Implementation, and Evaluation. 3
Credit Hours.
Design, implementation, and evaluation of systems software. Distributed/
parallel applications will be constructed and evaluated using the systems
support that is developed.

CS 7250. Broadband Networking Systems. 3 Credit Hours.
Focus on the data link layer and its relationship to layers below and
above. Gigabit Ethernet, SONTET, fibre channel; media including wireless,
satellite, xDSL, cable.

CS 7260. Internetworking Architectures and Protocols. 3 Credit Hours.
Detailed discussion of the problems and solution techniques that arise
in internetworking. Topics include routing, addressing, quality of service,
and security.

CS 7270. Networked Applications and Services. 3 Credit Hours.
End-to-end functional building blocks and their use in adaptive and
non-adaptive applications, including multimedia: coding, compression,
security, directory services.

CS 7280. Network Science: Methods and Applications. 3 Credit Hours.
Characteristics of real networks in nature and technology, network
measurement methods, network analysis, evolving networks, dynamic
network processes, co-evolution of structure and function.

CS 7290. Advanced Topics in Microarchitecture and organization of high-
performance processors. 3 Credit Hours.
Low-level organization and hardware algorithms for the implementation
of modern high-performance microprocessors including concept designs
and real-world case studies.

CS 7292. Reliability and Security in Computer Architecture. 3 Credit
Hours.
Hardware support for process isolation, virtualization, debugging, and
protection from side-channel attacks. Faults and failures, error tolerance,
error rate budgeting, lifetime reliability of devices.

CS 7450. Information Visualization. 3 Credit Hours.
Study of computer visualization principles, techniques, and tools used for
explaining and understanding symbolic, structured, and/or hierarchical
information. Includes data and software visualization. Students cannot
receive credit for both CS 7450 and CS 4460.

CS 7455. Issues in Human-Centered Computing. 3 Credit Hours.
In-depth focus on theoretical, methodological, conceptual, and technical
issues across the HCC disciplines associated with humans (cognitive,
biological, socio-cultural); design; ethics; and analysis and evaluation.

CS 7460. Collaborative Computing. 3 Credit Hours.
Introduction to computer-supported collaborative work, workflow
automation, and meeting augmentation. The course deals with models,
enabling technology, systems, and applications.

CS 7465. Educational Technology: Design and Evaluation. 3 Credit Hours.
Intensive project class in which students design, implement, and
evaluate a piece of educational technology, applying the theory learned in

CS 7467. Computer-Supported Collaborative Learning. 3 Credit Hours.
Computer-supported collaborative learning is the use of Internet-based
technologies to support learning in social settings. Focus on issues of
implementation and evaluation.

CS 7470. Mobile and Ubiquitous Computing. 3 Credit Hours.
Investigates the infrastructure required to develop mobile and ubiquitous
computing applications and establishes major research themes and
experimental practices.

CS 7476. Advanced Computer Vision. 3 Credit Hours.
Advanced topics in computer vision, which includes a deep dive into both
the theoretical foundations of computer vision to the practical issues of
building real systems that use computer vision. Credit will not be awarded
for CS 7476 and CS 7495.

CS 7490. Advanced Computer Graphics. 3 Credit Hours.
Advanced techniques in realistic image synthesis based on the physics of
light. Anti-aliasing, textures, surface reflectance, distribution ray tracing,
volume rendering, radiosity, and image-based rendering.
CS 7491. 3D Complexity Techniques for Graphics, Modeling, and Animation. 3 Credit Hours.
Multiresolution, compression, collision, morphing, visibility, and computational geometry techniques for accessing, rendering, and animating complex 3D models in engineering, scientific, business, or entertainment applications.

CS 7492. Simulation of Biological Systems. 3 Credit Hours.
Study different computer simulation methods for use in investigating biological systems, including bio-molecules, cells and full organisms.

CS 7495. Computer Vision. 3 Credit Hours.
An introduction to computer vision and machine perception. An intensive study of the process of generating a symbolic description of the scene by interpretation of images(s). Credit will not be awarded for both CS 7495 and CS 7476.

CS 7496. Computer Animation. 3 Credit Hours.
Motion techniques for computer animation and interactive games (keyframing, procedural methods, motion capture, and simulation) and principles for storytelling, composition, lighting, and interactivity.

CS 7497. Virtual Environments. 3 Credit Hours.
An introduction to virtual reality and virtual environments. Issues covered will include VR technology, software design, 3D human-computer interaction, and applications for VR.

CS 7499. 3D Reconstruction and Mapping in Computer Vision, Robotics, and Augmented Reality. 3 Credit Hours.
In this course we study the principles and algorithms underlying 3D Reconstruction and Mapping in Computer Vision, Robotics, and Augmented Reality.

CS 7510. Graph Algorithms. 3 Credit Hours.
Algorithms for graph problems such as maximum flow, matching, network reliability, minimum cuts, covering, coloring, planarity, shortest paths, and connectivity. Crosslisted with MATH 7510 and ISYE 7510.

CS 7520. Approximation Algorithms. 3 Credit Hours.
Approximation algorithms for NP-hard optimization problems, design and analysis techniques for such algorithms. Credit not allowed for both CS 7520 and CS 4520.

CS 7525. Algorithmic Game Theory and Economics. 3 Credit Hours.
Algorithmic aspects of game theory covering topics at the intersection of computer science, economics, and game theory with applications to domains such as internet.

CS 7530. Randomized Algorithms. 3 Credit Hours.
Techniques for designing and analyzing randomized algorithms, derandomization techniques. Credit not allowed for both CS 7530 and CS 4530.

CS 7535. Markov Chain Monte Carlo Algorithms. 3 Credit Hours.
This course studies Markov Chain Monte Carlo algorithms, widely-used in a variety of scientific fields, focusing on mathematical techniques for analyzing their convergence rates.

CS 7540. Spectral Algorithms and Representations. 3 Credit Hours.
Spectral methods mathematics and algorithmic insights driving applications with large data sets in domains such as web-search, information-retrieval, and medical diagnosis and prediction.

CS 7545. Theoretical Foundations of Machine Learning. 3 Credit Hours.
This course provides a basic arsenal of powerful mathematical tools for the analysis of learning algorithms, focusing on both statistical and computational aspects.
CS 7636. Computational Perception. 3 Credit Hours.
Study of statistical and algorithmic methods for sensing people using video and audio. Topics include face detection and recognition, figure tracking, and audio-visual sensing.

CS 7637. Knowledge-Based AI. 3 Credit Hours.
Structured knowledge representation; knowledge-based methods of reasoning and learning; problem-solving, modeling and design.

CS 7638. Artificial Intelligence Techniques for Robotics. 3 Credit Hours.
AI techniques with applications to autonomous vehicles. Extensive programming exercises. Topics include probabilistic inference, Kalman/particle filters, planning/search algorithms, PID control, SLAM.

CS 7639. Cyber Physical Design and Analysis. 3 Credit Hours.

CS 7640. Learning in Autonomous Agents. 3 Credit Hours.
An in-depth look at agents that learn, including intelligent systems, robots, and humans. Design and implementation of computer models of learning and adaptation in autonomous intelligent agents.

CS 7641. Machine Learning. 3 Credit Hours.
Machine learning techniques and applications. Topics include foundational issues; inductive, analytical, numerical, and theoretical approaches; and real-world applications.

CS 7642. Reinforcement Learning and Decision Making. 3 Credit Hours.
Efficient algorithms for multiagent planning, and approaches to learning near-optimal decisions using possibly partially observable Markov decision processes; stochastic and repeated games; and reinforcement learning.

CS 7643. Deep Learning. 3 Credit Hours.
This course will cover theory and practice of deep learning, including neural network and structured models, optimization algorithms, and applications to perception and Artificial Intelligence.

CS 7644. Machine Learning for Robotics. 3 Credit Hours.
Overview of a portfolio of machine learning techniques useful for robotic application: from regression to deep learning, applied on simulated real-time mobile robotic applications.

CS 7645. Numerical Machine Learning. 3 Credit Hours.
This course explores problems in classification/pattern recognition (OCR, speech, vision, fault detection, medical diagnosis), regression/function approximation, robot control, and reinforcement learning.

CS 7646. Machine Learning for Trading. 3 Credit Hours.
Introduces machine learning based trading strategies. Topics: Information processing, probabilistic analysis, portfolio construction, generation of market orders, KNN, random forests.

CS 7649. Robot Intelligence: Planning. 3 Credit Hours.
We investigate algorithms for robots and complex systems that make intelligent decisions. Emphasis on the theoretical and empirical properties of classical, geometric, stochastic/dynamic planning.

CS 7650. Natural Language. 3 Credit Hours.
Topics include lexical analysis, parsing, interpretation of sentences, semantic representation, organization of knowledge, inference mechanisms. Newer approaches combining statistical language processing and information retrieval techniques. Credit not allowed for both CS 7650 and CS 4650.

CS 7695. Philosophy of Cognition. 3 Credit Hours.
Examines problems in the foundations of cognition in relation to current issues in cognitive sciences. Topics include meaning, mental imagery, consciousness, and mind/body problem.

CS 7697. Cognitive Models of Science and Technology. 3 Credit Hours.
Examines how models of reasoning and representation developed in the cognitive sciences can provide a basis for an enriched understanding of scientific theories and research practices in science and technology.

CS 7741. Robotics Professional Preparation. 1 Credit Hour.

CS 7742. Robotics Professional Preparation 2. 1 Credit Hour.

CS 7743. Robotics Professional Preparation 3. 1 Credit Hour.

CS 7785. Introduction to Robotics Research. 3 Credit Hours.
Familiarizes students with the core areas of robotics; mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research.

CS 7790. Cognitive Modeling. 4 Credit Hours.
A hands-on course covering a range of cognitive modeling methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with ISYE and PSYC 7790.

CS 7999. Preparation for Doctoral Qualifying Exams. 1-21 Credit Hours.
Consent of the College required.

CS 8001. Seminar. 1 Credit Hour.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8002. Seminar. 2 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8003. Seminar. 3 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8004. Seminar. 4 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8005. Seminar. 5 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8006. Seminar. 6 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8030. Software Engineering Seminar. 1 Credit Hour.
This seminar provides students with an opportunity to explore contemporary topics in software engineering.

CS 8740. Robotics Internship. 1-21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.
CS 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

CS 8750. Robotics Research Foundation I. 3 Credit Hours.
Multidisciplinary research course supervised by two robotics faculty from different schools participating in the robotics Ph.D. program.

CS 8751. Robotics Research Foundation II. 3 Credit Hours.
Continuation of AE 8751 (Robotics Research Foundation I).

CS 8795. Colloquium in Cognitive Sciences. 1 Credit Hour.
Reading of research papers by leading cognitive scientists, attendance at their colloquia and meeting with them to discuss research. Crosslisted with ISYE and PSYC 8795.

CS 8801. Special Topics. 1 Credit Hour.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8802. Special Topics. 2 Credit Hours.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8803. Special Topics. 3 Credit Hours.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8804. Special Topics. 4 Credit Hours.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8805. Special Topics. 5 Credit Hours.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8806. Special Topics. 6 Credit Hours.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8811. Special Topics. 1 Credit Hour.
Special Topics in CS - Lab.

CS 8893. Special Topics in Cognitive Science. 3 Credit Hours.
Topics of current interest in cognitive science.

CS 8901. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics in computing. Guided study and research.

CS 8902. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics in computing. Guided study and research.

CS 8903. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics in computing. Guided study and research.

CS 8997. Teaching Assistantship. 1-6 Credit Hours.
For graduate students holding graduate teaching assistantships.

CS 8998. Research Assistantship. 1-6 Credit Hours.
For graduate students holding graduate research assistantships.

CS 8999. Doctoral Thesis Preparation. 1-21 Credit Hours.

CS 9000. Doctoral Thesis. 1-21 Credit Hours.

Computational Science & Engr (CSE)

CSE 6001. Introduction to Computational Science and Engineering. 1 Credit Hour.
This course will introduce students to major research areas in computational science and engineering.

CSE 6010. Computational Problem Solving for Scientists and Engineers. 3 Credit Hours.
Computing principles, computer architecture, algorithms and data structure; software development, parallelism. No credit for graduate students or undergraduates in Computer Science or Computational Media.

CSE 6040. Computing for Data Analysis: Methods and Tools. 3 Credit Hours.
Computational techniques needed for data analysis; programming, accessing databases, multidimensional arrays, basic numerical computing, and visualization; hands-on applications and case studies. Credit is will not be awarded for both CSE 6040 and CX 4240.

CSE 6140. Computational Science and Engineering Algorithms. 3 Credit Hours.
This course will introduce students to designing high-performance and scalable algorithms for computational science and engineering applications. The course focuses on algorithms design, complexity analysis, experimentation, and optimization, for important science and engineering applications.

CSE 6141. Massive Graph Analysis. 3 Credit Hours.
Algorithms and data structures for massive graphs; programming, parallelism; principles, challenges, opportunities in graph analysis; hands-on application, case studies.

CSE 6220. High Performance Computing. 3 Credit Hours.
This course will introduce students to the design, analysis, and implementation of high performance computational science and engineering applications.

CSE 6221. Multicore Computing: Concurrency and Parallelism on the Desktop. 3 Credit Hours.
This course will introduce students to the design and analysis of real-world algorithms on multicore computers.

CSE 6230. High Performance Parallel Computing: Tools and Applications. 3 Credit Hours.
Introduction to MIMD parallel computation, using textbook excerpts, research papers, and projects on multiple parallel machines. Emphasizes practical issues in high-performance computing.

CSE 6236. Parallel and Distributed Simulation. 3 Credit Hours.
Algorithms and techniques used in parallel/distributed discrete event simulation systems. Synchronization algorithms, data distribution, applications to high performance analytic simulations and distributed virtual environments.

CSE 6240. Web Search and Text Mining. 3 Credit Hours.
Basic and advanced methods for Web information retrieval and text mining: indexing and crawling, IR models, link and click data, social search, text classification and clustering.

CSE 6241. Pattern Matching Algorithms. 3 Credit Hours.
Foundations and algorithms underlying the development and application of tools for the efficient searching, matching and discovery of discrete.
CSE 6242. Data and Visual Analytics. 3 Credit Hours.
The course introduces students to analysis and visualization of complex high dimensional data. Both theory and applications will be covered including several practical case studies.

CSE 6243. Advanced Topics in Machine Learning. 3 Credit Hours.
Advanced machine learning topics including graphical models, kernel methods, boosting, bagging, semi-supervised and active learning, and tensor approach to data analysis.

CSE 6250. Big Data Analytics for Healthcare. 3 Credit Hours.
Big data systems, scalable machine learning algorithms, health analytic applications, electronic health records.

CSE 6301. Algorithms for Bioinformatics and Computational Biology. 3 Credit Hours.
Foundations and algorithms underlying the development and application of tools for the efficient management and processing of biomolecular data.

CSE 6643. Numerical Linear Algebra. 3 Credit Hours.
Introduction to numerical solutions of the classical problems of linear algebra including linear systems, least squares, singular value decomposition, and eigen value problems. Crosslisted with MATH 6643.

CSE 6644. Iterative Methods for Systems of Equations. 3 Credit Hours.
Iterative methods for linear and nonlinear systems of equations including Jacobi, G-S, SOR, CG, multigrid, Newton, quasi-Newton, updating, and gradient based methods. Crosslisted with MATH 6644.

CSE 6710. Numerical Methods in Computational Science and Engineering I. 3 Credit Hours.
Introduction to numerical algorithms widely used in computational science and engineering. Numerical linear algebra, linear programming, and applications. Crosslisted with MATH 6710.

CSE 6711. Numerical Methods in Computational Science and Engineering II. 3 Credit Hours.
Efficient numerical techniques for solving partial differential equations and large-scale systems of equations arising from discretization of partial differential equations or variational problems in applications in science and engineering. Crosslisted with MATH 6711.

CSE 6730. Modeling and Simulation: Foundations and Implementation. 3 Credit Hours.
Foundations and algorithms concerning the development of conceptual models for systems, and their realization in the form of computer software; discrete and continuous models. Crosslisted with ECE 6730.

CSE 6740. Computational Data Analysis: Learning, Mining, and Computation. 3 Credit Hours.
Theoretical/computational foundations of analyzing large/complex modern datasets, including the fundamental concepts of machine learning and data mining needed for both research and practice. Crosslisted with ISYE 6740.

CSE 6742. Modeling, Simulation and Military Gaming. 3 Credit Hours.
Focuses on the creation and use of modeling and simulation tools to analyze and train students regarding strategic events in international relations. Crosslisted with INTA 6742.

CSE 6748. Applied Analytics Practicum. 6 Credit Hours.
Practical analytics project experience applying ideas from the classroom to a significant project of interest to a business, government agency, or other organization.

CSE 6XXX. Comput. Sci. & Engr Elective. 1-21 Credit Hours.

CSE 7000. Master's Thesis. 1-21 Credit Hours.

CSE 7999. Preparation for Doctoral Qualifying Examination. 1-21 Credit Hours.

CSE 7XXX. Comput. Sci. & Engr Elective. 1-21 Credit Hours.

CSE 8001. Computational Science and Engineering Seminar. 1 Credit Hour.
Group discussion concerning advanced topics in Computational Science and Engineering.

CSE 8002. Computational Science and Engineering Seminar. 2 Credit Hours.
Group discussion concerning advanced topics in Computational Science and Engineering.

CSE 8003. Computational Science and Engineering Seminar. 3 Credit Hours.
Group discussion concerning advanced topics in Computational Science and Engineering.

CSE 8004. Computational Science and Engineering Seminar. 4 Credit Hours.
Group discussion concerning advanced topics in Computational Science and Engineering.

CSE 8005. Computational Science and Engineering Seminar. 5 Credit Hours.
Group discussion concerning advanced topics in Computational Science and Engineering.

CSE 8801. Special Topics. 1 Credit Hour.
Topics of current interest in Computational Science and Engineering.

CSE 8802. Special Topics. 2 Credit Hours.
Topics of current interest in Computational Science and Engineering.

CSE 8803. Special Topics. 3 Credit Hours.
Topics of current interest in Computational Science and Engineering.

CSE 8804. Special Topics. 4 Credit Hours.
Topics of current interest in Computational Science and Engineering.

CSE 8805. Special Topics. 5 Credit Hours.
Topics of current interest in Computational Science and Engineering.

CSE 8901. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics with a faculty member.

CSE 8902. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics with a faculty member.

CSE 8903. Special Problems. 1-21 Credit Hours.
Small-group or individual investigation of advanced topics with a faculty member.

CSE 8997. Teaching Assistantship. 1-6 Credit Hours.
For students holding graduate teaching assistantships.

CSE 8998. Research Assistantship. 1-6 Credit Hours.
For students holding graduate research assistantships.

CSE 8XXX. Comput. Sci. & Engr Elective. 1-21 Credit Hours.

CSE 9000. Doctoral Thesis. 1-21 Credit Hours.
Computational Mod, Sim, & Data (CX)

CX 1801. Special Topics in Computational Science and Engineering. 1 Credit Hour.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 1802. Special Topics in Computational Science and Engineering. 2 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 1803. Special Topics in Computational Science and Engineering. 3 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 1804. Special Topics in Computational Science and Engineering. 4 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 1805. Special Topics in Computational Science and Engineering. 5 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 1XXX. CSE Elective. 1-21 Credit Hours.

CX 2801. Special Topics in Computational Science and Engineering. 1 Credit Hour.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 2802. Special Topics in Computational Science and Engineering. 2 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 2803. Special Topics in Computational Science and Engineering. 3 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 2804. Special Topics in Computational Science and Engineering. 4 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 2805. Special Topics in Computational Science and Engineering. 5 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 2XXX. CSE Elective. 1-21 Credit Hours.

CX 3801. Special Topics in Computational Science and Engineering. 1 Credit Hour.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 3802. Special Topics in Computational Science and Engineering. 2 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 3803. Special Topics in Computational Science and Engineering. 3 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 3804. Special Topics in Computational Science and Engineering. 4 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 3805. Special Topics in Computational Science and Engineering. 5 Credit Hours.
Course topics will vary. This course number will be used to prototype new courses and/or offer courses on topics of timely interest. The final digit in the course number indicates the number of units offered awarded for the course.

CX 3XXX. CSE Elective. 1-21 Credit Hours.

CX 4010. Computational Problem Solving for Scientists and Engineers. 3 Credit Hours.
Computing principles, computer architecture, algorithms and data structures; software development, parallelism. No credit for graduate students or undergraduates in Computer Science or Computational Media.

CX 4140. Computational Modeling Algorithms. 3 Credit Hours.
Design, analysis and implementation of algorithms for modeling natural and engineered systems; algorithm experimentation, and optimization.

CX 4220. Introduction to High Performance Computing. 3 Credit Hours.
Design of algorithms and software for high performance computing platforms used in computational science and engineering. Topics include parallelism, locality, machine architectures, and programming.

CX 4230. Computer Simulation. 3 Credit Hours.
Algorithms and techniques for creating computer simulations and their realization in software.

CX 4232. Simulation and Military Gaming. 3 Credit Hours.
Creation and use of modeling and simulation tools to analyze and train students regarding strategic events in international relations.
CX 4236. Distributed Simulation. 3 Credit Hours.
Algorithms and techniques used to execute simulations on parallel/
distributed computing platforms. Simulations for analysis, virtual
environments, and computer gaming.

CX 4240. Introduction to Computing for Data Analysis. 3 Credit Hours.
Computational techniques needed for data analysis; programming,
accessing databases, multidimensional arrays, basic numerical
computing, and visualization; hands-on applications and case studies.

CX 4242. Data and Visual Analytics. 3 Credit Hours.
Introduction to the analysis of complex data; theory, applications and
practical case studies.

CX 4640. Numerical Analysis I. 3 Credit Hours.
Introduction to numerical algorithms for some basic problems in
computational mathematics. Discussion of both implementation issues
and error analysis.

CX 4641. Numerical Analysis II. 3 Credit Hours.
Introduction to the numerical solution of initial and boundary value
problems in differential equations.

CX 4777. Introduction to Parallel and Vector Scientific Computing. 3
Credit Hours.
Scientific computational algorithms on vector and parallel computers.
Speed-up and algorithm complexity, interprocess communication,
synchronization, modern algorithms for linear systems, programming
techniques, code optimization.

CX 4801. Special Topics in Computational Science and Engineering. 1
Credit Hour.
Course topics will vary. This course number will be used to prototype new
courses and/or offer courses on topics of timely interest. The final digit in
the course number indicates the number of units offered awarded for the
course.

CX 4802. Special Topics in Computational Science and Engineering. 2
Credit Hours.
Course topics will vary. This course number will be used to prototype new
courses and/or offer courses on topics of timely interest. The final digit in
the course number indicates the number of units offered awarded for the
course.

CX 4803. Special Topics in Computational Science and Engineering. 3
Credit Hours.
Course topics will vary. This course number will be used to prototype new
courses and/or offer courses on topics of timely interest. The final digit in
the course number indicates the number of units offered awarded for the
course.

CX 4804. Special Topics in Computational Science and Engineering. 4
Credit Hours.
Course topics will vary. This course number will be used to prototype new
courses and/or offer courses on topics of timely interest. The final digit in
the course number indicates the number of units offered awarded for the
course.

CX 4805. Special Topics in Computational Science and Engineering. 5
Credit Hours.
Course topics will vary. This course number will be used to prototype new
courses and/or offer courses on topics of timely interest. The final digit in
the course number indicates the number of units offered awarded for the
course.

CX 4803. Special Problems in Computational Science and Engineering. 3
Credit Hours.
An investigation of significant areas of computational science and
engineering. Guided study and research.

CX 4XXX. CSE Elective. 1-21 Credit Hours.

Professional Practive (DOPP)

DOPP 2001. Preparation for Work in a Global Economy. 1 Credit Hour.
Preparation for work in a global economy. May be used as free elective
credit with departmental approval.

Earth and Atmospheric Sciences (EAS)

EAS 1600. Introduction to Environmental Science. 4 Credit Hours.
Introduction to environmental field science. Case study approach.
Exposure to basic field equipment and techniques, analysis of data.

EAS 1601. Habitable Planet. 4 Credit Hours.
Introduction to the origin and evolution of Planet Earth, creation of
the universe and the elements, early history of Earth, radioisotope
geochemistry and the timing of events in the universe, the galaxy, and on
Earth. Formation of the atmosphere and oceans. Climate.

EAS 1XXX. Earth&Atmos Sci Elective. 1-21 Credit Hours.

EAS 2420. Environmental Measures of Urban and Regional Change. 3
Credit Hours.
Identify and quantify nature's physical and chemical contributions to
human-made urban environments, and measure the impacts of urban
area feedback on these natural systems.

EAS 2551. Introduction to Meteorological Analysis. 1 Credit Hour.
An introduction to analysis of forecasting data and moel output.

EAS 2600. Earth Processes. 4 Credit Hours.
An introduction to earth materials and processes.

EAS 2602. Earth Through Time. 3 Credit Hours.
Dynamic processes affecting the Earth system on all time scales.

EAS 2655. Quantitative Techniques in Earth and Atmospheric Sciences. 3
Credit Hours.
Integrated course in mathematical, physical, and computing techniques
for applications in earth and atmospheric sciences.

EAS 2698. Research Assistantship. 1-12 Credit Hours.
EAS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

EAS 2750. Physics of the Weather. 3 Credit Hours.
An introductory treatment of the application of the basic physical laws to
the understanding of weather phenomena. Crosslisted with PHYS 2750.
EAS 2801. Special Topics. 1 Credit Hour.
EAS 2802. Special Topics. 2 Credit Hours.
EAS 2803. Special Topics. 3 Credit Hours.
EAS 2804. Special Topics. 4 Credit Hours.
EAS 2900. Special Problems. 1-21 Credit Hours.
EAS 2XXX. Earth&Atmos Sci Elective. 1-21 Credit Hours.
EAS 3110. Energy, Environment, and Society. 3 Credit Hours.
This course analyzes the path towards alternative energy infrastructures for the 21st century with careful consideration of economic, environmental, technological, and political factors.
EAS 3603. Thermodynamics of Earth Systems. 3 Credit Hours.
Introduction to the principles of equilibrium thermodynamics and physical chemistry with applications to the atmosphere, ocean, and solid earth.
EAS 3610. Introduction to Geophysics. 3 Credit Hours.
An introduction to visualizing and understanding earth history, structure, and dynamics through geophysical methods including seismology, gravity, magnetism, heat flow, geochronology, and geodesy.
EAS 3620. Geochemistry. 4 Credit Hours.
A quantitative treatment of geochemical processes in the Earth and natural waters, with emphasis on chemical reactions among atmospheric gases, minerals, and aqueous solutions.
EAS 3XXX. Earth&Atmos Sci Elective. 1-21 Credit Hours.
EAS 4110. Resources, Energy and the Environment. 3 Credit Hours.
Learn about the science behind the nature, occurrence and extraction of earth resources used by humans and the environmental impacts of that use.
EAS 4200. Structural Geology and Continuum Mechanics. 4 Credit Hours.
Structural geology and continuum mechanics for scientists and civil engineers. Stress and strain in rocks; faults, joints, and folds; basic field mapping; laboratory exercises.
EAS 4205. Geomorphology. 4 Credit Hours.
Overview of the mechanical, chemical, and biological processes that shape topography.
EAS 4220. Environmental Geochemistry. 3 Credit Hours.
An exploration of the chemical, biological, and geological processes controlling the distribution of chemical nutrients and pollutants in aquatic and soil environments.
EAS 4221. Environmental Geochemistry Lab. 1 Credit Hour.
Lab and field exploration of the chemical, biological, and geological processes controlling the distribution of chemical nutrients and pollutants in aquatic and soil environments.
EAS 4224. Mineral Surface Geochemistry. 3 Credit Hours.
Fundamental principles concerning mineral surface properties, element distribution at the mineral-water interface and analytical techniques relevant to interfacial reactions.
EAS 4300. Introduction to Physical and Chemical Oceanography. 3 Credit Hours.
EAS 4305. Physical and Chemical Oceanography. 3 Credit Hours.
Study of the dynamics of large-scale ocean circulation, air-sea interaction and their roles in biogeochemical cycling of carbon and nutrients.
EAS 4312. Geodynamics. 3 Credit Hours.
Quantitative discussion of dynamic processes in the solid Earth; lithospheric dynamics, continuum mechanics, lithospheric flexure and elasticity, heat transfer, viscous rheology, fluid mechanics, and earthquake dynamics. Credit not allowed for both EAS 4312 and EAS 6312.
EAS 4313. Tectonics. Climate, and Landscape Evolution. 3 Credit Hours.
Introduction to the interactions and feedbacks between tectonics and climate that act to shape landscapes. Includes field- and computer-based data collection and analysis. Credit not allowed for both EAS 4313 and EAS 6313.
EAS 4314. Seismology. 3 Credit Hours.
Introduction to elastic wave propagation, and studies of the solid Earth’s interior and earthquake source from seismic waves. Credit not allowed for both EAS 4314 and EAS 6314.
EAS 4315. Geofluids. 3 Credit Hours.
This course focuses on the fundamental concepts of fluid dynamics merged with geophysical applications.
EAS 4316. Earthquake Physics. 3 Credit Hours.
Fundamental physics of processes that control fault slips and earthquakes with a focus on the latest emerging research topics in the field.
EAS 4331. Physical Volcanology. 3 Credit Hours.
This class examines the dynamics and thermodynamics of planetary volcanism. The course material covers the generation and transport of magma in the mantle and crust, and the fluid dynamics of eruptions and their impact on the landscape and atmosphere. Credit not allowed for both EAS 4331 and EAS 6331.
EAS 4350. Paleoclimatology and Paleoceanography. 3 Credit Hours.
This course will explore the history of the Earth’s climate, covering methods for reconstructing past climate and the mechanisms behind these climate changes.
EAS 4360. Space Physics and Space Instrumentation. 3 Credit Hours.
This course will explore the interaction of the solar wind with the Earth’s magnetosphere using a combination spacecraft observations and fundamental plasma physics. Credit not allowed for both EAS 4360 and EAS 6360.
EAS 4370. Physics of Planets. 3 Credit Hours.
In this course we will study the forces and influences that determine the composition, structure and evolution of the planets in our solar system.
EAS 4375. Earth and Planetary Materials. 3 Credit Hours.
Fundamental principles and applications of mineralogy and petrology for understanding the composition of surface and subsurface materials on Earth and other planetary bodies.
EAS 4380. Land Remote Sensing. 3 Credit Hours.
Techniques for making remote measurements of the composition, morphology, and thermophysical properties of solid surfaces on Earth and other planetary bodies.
EAS 4410. Climate and Global Change. 3 Credit Hours.
The physics behind the climate and its potential changes, as well as an introduction to the policy issues in global change.
EAS 4420. Environmental Field Methods. 4 Credit Hours.
Semester-long focus on single environmental project in the local area. Chemical and physical techniques for parameterizing environmental problems, data analysis, report writing, and interpretation of results in societal context.
EAS 4430. Remote Sensing and Data Analysis. 3 Credit Hours.
Introduction to the remote sensing of the atmosphere and the Earth. Laboratory examples of data and image analysis for remote sensing applications.

EAS 4450. Synoptic Meteorology. 3 Credit Hours.
A description of physical and mathematical procedures used in weather forecasting. Students will practice forecasting.

EAS 4460. Satellite and Radar Meteorology. 3 Credit Hours.
Interpretation of satellite and radar data for meteorological forecasting based on understanding radiative transfer and the resulting strengths and limitations of the imagery.

EAS 4470. Large-scale Atmospheric Circulations. 3 Credit Hours.
Structure and dynamics of phenomena including weather regimes, storm tracks, El Nino-Southern Oscillations, teleconnections, monsoons, Arctic Oscillation, stratospheric polar vortex, and stratosphere-troposphere coupling.

EAS 4480. Environmental Data Analysis. 3 Credit Hours.
Data Analysis methods used in environmental research are taught through examples. Students learn to implement these methods to areas of their own interests.

EAS 4510. Exploration Geophysics. 4 Credit Hours.
Methods of exploration geophysics, including refraction and reflection seismology, resistivity, gravity, magnetics, and ground penetrating radar. Includes laboratory work and introduction to operation of field equipment.

EAS 4515. Fluids in the Earth's Crust I. 3 Credit Hours.
Fundamentals of porosity and permeability in soils, sediments, and crystalline rocks; basic physics of fluid flow through interconnected pore spaces and cracks; introductory analysis of fluid flow as an agent of heat and chemical transport in geological systems.

EAS 4520. Seismic Methods in Exploration Geophysics. 3 Credit Hours.
A study of seismic reflection exploration methods and theory. Examples are taken from oil industry exploration and production and near-surface environmental imaging.

EAS 4525. Weather Risk and Catastrophe Modeling. 3 Credit Hours.
Overview of the physics and dynamics behind different types of hazardous weather and the mathematical tools to model the risks associated with these events.

EAS 4602. Biogeochemical Cycles. 3 Credit Hours.
An investigation of global change focusing on the chemical, physical, geological, and biological processes that cycle the elements through the Earth system.

EAS 4610. Earth System Modeling. 3 Credit Hours.
An introduction to computer modeling in Earth system science.

EAS 4625. Water Quality Modeling. 3 Credit Hours.
Gain hands-on experience using geochemical software and understanding governing geochemical principles pertaining to transformation of contaminants and other subsurface species through case studies.

EAS 4630. Physics of the Earth. 3 Credit Hours.
Introduction to methods and observational data used to determine solid Earth structure and to understand the dynamical processes driving surface deformation and plate tectonics.

EAS 4641. Atmospheric Chem Lab. 1 Credit Hour.
A hands-on laboratory course in which students will learn basic concepts and techniques used by atmospheric chemists including analysis, data quality and experimental design.

EAS 4651. Practical Internship. 3 Credit Hours.
Faculty-supervised and approved independent internship, employment, or research project related to earth and atmospheric sciences.

EAS 4655. Atmospheric Dynamics. 3 Credit Hours.
An introduction to the atmospheric physical and dynamic processes that control weather and climate.

EAS 4656. Atmospheric Dynamics Practicum. 1 Credit Hour.
Students learn to apply meteorological analysis tools to atmospheric observations to interpret the structure and dynamics of historical and real-time weather events.

EAS 4670. Atmospheric Dynamics II. 3 Credit Hours.
This course emphasizes physical concepts and analytic techniques for solving problems in atmospheric instabilities and wave dynamics at various temporal and spatial scales.

EAS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

EAS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

EAS 4740. Atmospheric Chemistry Laboratory. 3 Credit Hours.
This course provides a general chemical description of the Earth's atmospheric system with a major focus on the two lowest layers of the atmosphere, i.e., the troposphere and the stratosphere. Crosslisted with CHEM 4740.

EAS 4795. Groundwater Hydrology. 3 Credit Hours.
Dynamics of flow and solute transport in groundwater, including theory, implementation, and case studies. Crosslisted with CEE 4795.

EAS 4801. Special Topics. 1 Credit Hour.

EAS 4802. Special Topics. 2 Credit Hours.

EAS 4803. Special Topics. 3 Credit Hours.

EAS 4804. Special Topics. 4 Credit Hours.

EAS 4813. Special Topics. 3 Credit Hours.
Special Topics in Earth and Atmospheric Sciences.

EAS 4814. Special Topics-Lab. 4 Credit Hours.

EAS 4821. Special Topics. 1 Credit Hour.
Special Topics in EAS (1-credit hour supervised lab).

EAS 4900. Special Problems. 1-21 Credit Hours.

EAS 4XXX. Earth&Atmos Sci Elective. 1-21 Credit Hours.

EAS 6000. Intro Research & Ethics. 1 Credit Hour.
Identify and discuss ethical challenges that will be confronted in research, and give an overview of the research areas of the faculty in EAS.

EAS 6053. Preparing Future Faculty. 1 Credit Hour.
A guide to a career in academia for scientists. Learn about getting a faculty position, establishing a successful research.

EAS 6111. The Earth System. 2 Credit Hours.
Exploration of processes linking the Earth and atmosphere.

EAS 6120. Environmental Field Methods. 4 Credit Hours.
Environmental site characterization through a field-based project that advances student's research. Theory, field data acquisition, and data fusion using geochemical, geophysical, hydrologic, and related methods.
EAS 6121. Modeling and Computer Programming for Geosciences. 3 Credit Hours.
This course gives students first-hand experience on the development process of problem solving in Earth and Atmospheric Sciences from mathematically describing a problem to solving it by parallel programming on a high performance computer.

EAS 6122. Biogeochemical Cycles. 3 Credit Hours.
A multidisciplinary exploration of the chemical, physical, geological, and biological processes that cycle the nutrient elements through the Earth system and thereby maintain a habitable planet.

EAS 6124. Principles of Oceanography. 3 Credit Hours.

EAS 6125. Water Quality Modeling. 3 Credit Hours.
Gain hands-on experience using geochemical software and understanding governing geochemical principles pertaining to transformation of contaminants and other subsurface species through case studies.

EAS 6128. Fluids in the Earth’s Crust. 3 Credit Hours.
Advanced treatment of fluid flow, heat transfer, and reactive transport in porous and cracked rocks; stability of flow; double-diffusive systems; evolution of permeability in geologic systems; introduction to multiphase flow.

EAS 6130. Earth System Modeling. 3 Credit Hours.
An introduction to computer modeling in earth system science.

EAS 6131. Ocean Modeling. 3 Credit Hours.
Developing and using ocean models from the simple shallow water to the full primitive equation model. Includes hands-on programming.

EAS 6132. Introduction to Climate Change. 3 Credit Hours.
The climate of the Earth, its radiation budget, greenhouse gases and their sources and sinks, potential changes due to anthropogenic activities, detection of climate changes.

EAS 6133. Marine Ecosystem Modeling. 3 Credit Hours.
Modeling population dynamics in the context of ocean circulation. Numerical techniques and simulation development.

EAS 6134. Inverse Methods and Time Series Analysis in Earth and Atmospheric Sciences. 3 Credit Hours.
Theory of data acquisition, time series analysis, and discrete inverse theory, with applications in the earth and atmospheric sciences.

EAS 6135. Introduction to Complex Environmental Systems. 3 Credit Hours.
Introduction to the concepts of environmental complexity through the inter-relationships between natural, human, and built systems.

EAS 6136. Paleoclimatology and Paleoceanography. 3 Credit Hours.
This course will explore the history of the Earth’s climate, covering methods for reconstructing past climate and the mechanisms behind these climate changes.

EAS 6140. Thermodynamics of Atmospheres and Oceans. 3 Credit Hours.
The instabilities and flows created by exchanges of heat.

EAS 6142. Atmospheric Radiative Transfer. 3 Credit Hours.
Fundamentals of the interaction of electromagnetic radiation with atmospheric constituents, including absorption and scattering processes by the atmospheric gases, aerosols, and clouds.

EAS 6145. Remote Sensing of the Atmosphere and Oceans. 3 Credit Hours.
Provides a foundation for understanding the physical principles of remote sensing and its applications to the study of atmospheric gases, clouds, and ocean surfaces.

EAS 6155. Advanced Geophysical Fluid Dynamics. 3 Credit Hours.
Fundamental mathematical tools for graduate students interested in Geophysical Fluid Dynamics (GFD) and related disciplines.

EAS 6200. Environmental Geochemistry. 3 Credit Hours.
An exploration of the chemical, biological, and geological processes controlling the distribution of chemical nutrients and pollutants in aquatic and soil environments.

EAS 6201. Environmental Geochemistry Lab. 1 Credit Hour.
Lab and field exploration of the chemical, biological, and geological processes controlling the distribution of chemical nutrients and pollutants in aquatic and soil environments.

EAS 6211. Geochemical Thermodynamics. 3 Credit Hours.
Fundamental principles of chemical equilibria in geochemical systems with emphasis on solution properties and mineral water equilibria.

EAS 6212. Geochemical Kinetics. 3 Credit Hours.
Fundamental principles of biogeochemical kinetics and mathematical treatment of coupled transport and reaction in natural environments. Interpretation of field and experimental data using kinetic theory.

EAS 6214. Aqueous Geochemistry. 3 Credit Hours.
Chemical processes that regulate compositions of natural waters at or near the Earth’s surface, with emphasis on quantitative calculations of acid-base, solubility, and redox equilibria.

EAS 6216. Isotope Geochemistry. 3 Credit Hours.
Biogeochemical significance of nuclear isotopes, both radioactive and stable.

EAS 6224. Mineral Surface Geochemistry. 3 Credit Hours.
Fundamental principles concerning mineral surface properties, element distribution at the mineral-water interface, and analytical techniques relevant to interfacial reactions.

EAS 6240. Organic Geochemistry. 3 Credit Hours.
Origin and transformation of organic matter in the Earth’s environments, with emphasis on properties and reactions of highly complex mixtures such as humic substances.

EAS 6305. Physical and Chemical Oceanography. 3 Credit Hours.
Study of the dynamics of large-scale ocean circulation, air-sea interaction and their roles in biogeochemical cycling of carbon and nutrients.

EAS 6311. Physics of the Earth. 3 Credit Hours.
Physics of the Earth’s interior. Composition and structure of core, mantle, crust. Introduction to seismic wave propagation, gravitational, geomagnetic, and temperature fields.

EAS 6312. Geodynamics. 3 Credit Hours.
Quantitative discussion of dynamical processes in the solid Earth; viscous flow, glacial rebound, fluid dynamical instabilities, thermal convection; lithospheric dynamics; evolution of the core.

EAS 6313. Tectonics, Climate, and Landscape Evolution. 3 Credit Hours.
Introduction to the interactions and feedbacks between tectonics and climate that act to shape landscapes. Includes field- and computer-based data collection and analysis. Credit not allowed for both EAS 6313 and EAS 4313.
EAS 6314. Seismology. 3 Credit Hours.
The propagation of seismic waves, the description of earthquake motion, and evaluation of earthquake damage. Examples provide experience in the interpretation of seismic data.

EAS 6315. Geofluids. 3 Credit Hours.
This course focuses on the fundamental concepts of fluid dynamics merged with geophysical applications.

EAS 6316. Earthquake Physics. 3 Credit Hours.
Fundamental physics of processes that control fault slips and earthquakes with a focus on the latest emerging research topics in the field.

EAS 6320. Structural Geology and Continuum Mechanics. 4 Credit Hours.
Structural geology and continuum mechanics for scientists and civil engineers. Stress and strain in rocks; faults, joints, and folds; basic field mapping, laboratory exercises.

EAS 6325. Geomorphology. 4 Credit Hours.
Overview of the mechanical, chemical, and biological processes that shape the topography.

EAS 6331. Physical Volcanology. 3 Credit Hours.
This class examines the dynamics and thermodynamics of planetary volcanism. The course material covers the generation and transport of magma in the mantle and crust, and the fluid dynamics of eruptions and their impact on the landscape and atmosphere. Credit not allowed for both EAS 6331 and EAS 4331.

EAS 6333. Field Methods in Volcanic Terrain. 3 Credit Hours.
A field-based course to connect process-based models and field observations related to volcanic eruptions, subsurface magma interaction, and crustal heat flow and tectonics.

EAS 6360. Space Physics and Space Instrumentation. 3 Credit Hours.
This course will explore the interaction of the solar wind with the Earth's magnetosphere using a combination spacecraft observation and fundamental plasma physics. Credit not allowed for both EAS 6360 and EAS 4360.

EAS 6370. Physics of Planets. 3 Credit Hours.
In this course we will study the forces and influences that determine the composition, structure, and evolution of the planets of our solar system.

EAS 6375. Earth and Planetary Materials. 3 Credit Hours.
Fundamental principles and application of mineralogy and petrology for understanding the composition of surface and subsurface materials on Earth and other planetary bodies.

EAS 6380. Land Remote Sensing. 3 Credit Hours.
Techniques for making remote measurements of the composition, morphology, and thermophysical properties of solid surfaces on Earth and other planetary bodies.

EAS 6401. Introduction to Atmospheric Chemistry. 2 Credit Hours.
Introduction to basic chemical principles related to chemical processes in the atmosphere.

EAS 6405. Introduction to Atmospheric and Aqueous Chemistry. 3 Credit Hours.
An introduction to the basics of atmospheric and aqueous chemistry for first semester graduate students. The class goes over photochemistry, thermodynamics, kinetics, redox systems, carbon chemistry, radioactive and stable isotopes, and gas/solid reactions.

EAS 6410. Atmospheric Chemistry. 3 Credit Hours.
Application of fundamental principles of chemistry to understanding the critical factors controlling the levels and distributions of atmospheric trace gases and their variation in time.

EAS 6412. Introduction to Physical Meteorology. 3 Credit Hours.
Application of the fundamental principles of thermodynamics to the atmosphere; including hydrostatic equilibrium and static stability, derivation of Clausius-Clapeyron Equation, cloud microphysics, radiative transfer, and the Earth’s energy budget.

EAS 6420. Introduction to Principles of Atmospheric Chemical. 4 Credit Hours.
Introduction to the mechanical, electrical, and optical aspects of modern instrumentation used in atmospheric chemical research.

EAS 6430. Experimental Methods in Air Quality. 3 Credit Hours.
Presents experimental and field methods through a focus on measurements of atmospheric gases and particulates associated with poor air quality. Experiments will involve laboratory measurements and an air quality filed experiment on the order of one week duration.

EAS 6490. Advanced Environmental Data Analysis. 3 Credit Hours.
A unified view of the theories and applications underlying the statistical analysis of environmental data in the space, time and spectral domain.

EAS 6500. Climate and Global Change. 3 Credit Hours.
The physics behind the climate and its potential changes, as well as an introduction to the policy issues in global change.

EAS 6501. Introduction to Atmospheric Dynamics. 2 Credit Hours.
Introduction to the basic fundamental fluid dynamics that control atmospheric motions.

EAS 6502. Introductory Fluid Dynamics and Synoptic Meteorology. 3 Credit Hours.
Fundamental principles of atmospheric fluid dynamics, analysis of meteorological codes, weather data and patterns, and numerical weather prediction.

EAS 6512. Dynamic Meteorology. 3 Credit Hours.
An introduction to the use of geophysical fluid dynamics in describing and modeling the atmosphere.

EAS 6522. Dynamics of the Tropical Atmosphere and Oceans. 3 Credit Hours.
Explores the dynamics of the tropical atmosphere and ocean and how they interact to produce climatic features such as the monsoons, El Nino, and La Nina.

EAS 6525. Weather Risk and Modeling. 3 Credit Hours.
Overview of the physics and dynamics behind different types of hazardous weather and the mathematical tools to model the risks associate with these events.

EAS 6532. Large-scale Atmospheric Circulations. 3 Credit Hours.
Structure and dynamics of phenomena including weather regimes, storm tracks, El Nino-Southern Oscillation, teleconnections, monsoons, Artic Oscillation, stratospheric polar vortex, and stratosphere-troposphere coupling.

EAS 6670. Atmospheric Dynamics II. 3 Credit Hours.
This course emphasizes physical concepts and analytic techniques for solving problems in atmospheric instabilities and wave dynamics at various temporal and spatial scales.

EAS 6672. Ocean Dynamics. 3 Credit Hours.
An advanced class on the ocean circulation as a dynamical system to understand the basic equations governing it, together with its variability.

EAS 6751. Physical Properties and Rheology of Rocks. 3 Credit Hours.
Structure, physical properties, and rheology of minerals and rocks with applications to engineering structures and natural phenomena in the Earth. Fundamentals of rock mechanics and crack propagation. Crosslisted with CEE 6751.
EAS 6761. Contaminated Sediment Geochemistry. 3 Credit Hours.
Acquaints students with fate of major pollutants, nutrients, organic compounds such as pesticides, PAH’s, and trace metals in sedimentary systems. Crosslisted with CEE 6761.

EAS 6765. Geomicrobiology. 3 Credit Hours.
Interactions between microorganisms and the geosphere; microbial energetics and genetics; geochemical controls on microbial diversity and activity; redox and acid-base balances; biogeochemical cycles; evolution. Crosslisted with BIOL 6765.

EAS 6790. Air Pollution Physics and Chemistry. 3 Credit Hours.
Interaction to the physical and chemical processes affecting the dynamics and fate of air pollutants at the local, regional, and global scales. Particular emphasis is on tropospheric pollutant chemistry and transport. Crosslisted with CEE 6790.

EAS 6792. Air Pollution Meteorology. 3 Credit Hours.
Air pollution history, atmospheric stability and boundary layer dynamics, atmospheric dispersion, atmospheric transport, air pollution modeling. Crosslisted with CEE 6792.

EAS 6793. Atmospheric Boundary Layer. 3 Credit Hours.
Structure and dynamics of atmospheric boundary layers. Introduction to turbulence and turbulent transport. Crosslisted with CEE 6793.

EAS 6794. Atmospheric Chemical Modeling. 3 Credit Hours.
Application of modern numerical methods to the prediction of atmospheric chemical and physical compositions; specific applications using computer models developed by the students are included. Crosslisted with CEE 6794.

EAS 6795. Atmospheric Aerosols. 3 Credit Hours.
Chemical and physical properties of natural and anthropogenic aerosols. Sources, transport, transformation, and fate of primary/secondary, organic/inorganic, atmospheric semi-volatiles and aerosols. Crosslisted with CEE 6795.

EAS 6XXX. Earth & Atmos Sci Elective. 1-21 Credit Hours.

EAS 7000. Master’s Thesis. 1-21 Credit Hours.

EAS 7999. Preparation for Ph.D. Qualifying Exam. 1-21 Credit Hours.

EAS 8001. Seminar. 1 Credit Hour.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8011. Seminar. 1 Credit Hour.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8012. Seminar. 2 Credit Hours.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8013. Seminar. 3 Credit Hours.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8813. Special Topics. 3 Credit Hours.
Special Topics in Earth and Atmospheric Sciences.

EAS 8821. Special Topics. 1 Credit Hour.
Special Topics in EAS (1-credit hour supervised lab).

EAS 8823. Special Topics with a Laboratory. 3 Credit Hours.

EAS 8824. Special Topics with a Laboratory. 4 Credit Hours.

EAS 8825. Special Topics with a Laboratory. 5 Credit Hours.

EAS 8826. Special Topics-Lab. 4 Credit Hours.

EAS 8901. Special Problems. 1-21 Credit Hours.

EAS 8902. Special Problems. 1-21 Credit Hours.

EAS 8903. Special Problems. 1-21 Credit Hours.

EAS 8904. Special Problems. 1-21 Credit Hours.

EAS 8997. Teaching Assistantship. 1-9 Credit Hours.

EAS 8998. Research Assistantship. 1-9 Credit Hours.

EAS 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours.

EAS 9000. Doctoral Thesis. 1-21 Credit Hours.

Electrical & Computer Engr (ECE)

ECE 1010. Introduction to ECE Design. 2 Credit Hours.
An introduction to basic concepts useful for all areas of Electrical and Computer Engineering. Focus on hands-on, team-based activities using robotics.

ECE 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ME, and MSE 1750.
ECE 1801. Special Topics. 1 Credit Hour.
ECE 1802. Special Topics. 2 Credit Hours.
ECE 1803. Special Topics. 3 Credit Hours.
ECE 1804. Special Topics. 4 Credit Hours.
ECE 1805. Special Topics. 5 Credit Hours.
ECE 1811. Special Topics. 1 Credit Hour.
ECE 1812. Special Topics. 2 Credit Hours.
ECE 1813. Special Topics. 3 Credit Hours.
ECE 1814. Special Topics. 4 Credit Hours.
ECE 1815. Special Topics. 5 Credit Hours.
ECE 1881. Special Topics. 1 Credit Hour.
ECE 1882. Special Topics. 2 Credit Hours.
ECE 1883. Special Topics. 3 Credit Hours.
ECE 1884. Special Topics. 4 Credit Hours.
ECE 1891. Special Topics. 1 Credit Hour.
ECE 1892. Special Topics. 2 Credit Hours.
ECE 1893. Special Topics. 3 Credit Hours.
ECE 1894. Special Topics. 4 Credit Hours.
ECE 1900. Special Problems. 1-21 Credit Hours.
ECE 1901. Special Problems. 1-21 Credit Hours.
ECE 1902. Special Problems. 1-21 Credit Hours.
ECE 1903. Special Problems. 1-21 Credit Hours.
ECE 1XXX. Elec/Comp Engr Elective. 1-21 Credit Hours.
ECE 2001. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 2002. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 2003. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 2020. Digital System Design. 3 Credit Hours.
Computer system and digital design principles. Switch and gate design, Boolean algebra, number systems, arithmetic, storage elements. Datapath, memory organization, instruction set architecture, assembly language. Credit not allowed for both ECE 2020 and ECE 2030.

ECE 2025. Introduction to Signal Processing. 4 Credit Hours.
Introduction to signal processing for discrete-time and continuous-time signals. Filtering. Frequency response. Fourier Transform. Z Transform. Laboratory emphasizes computer-based signal processing. Credit not allowed for both ECE 2025 and ECE 2026.

ECE 2026. Introduction to Signal Processing. 3 Credit Hours.
Introduction to discrete-time signal processing and linear systems. Sampling theorem, filtering, frequency response, Discrete Fourier Transform, Z-Transform. Laboratory emphasizes computer-based signal processing. Credit not allowed for both ECE 2026 and ECE 2025.

ECE 2030. Introduction to Computer Engineering. 3 Credit Hours.
Computer system and digital design principles. Architectural concepts, software, Boolean algebra, number systems, combinational datapath elements, sequential logic, and storage elements. Design of DRAM control and I/O bus. Credit not allowed for both ECE 2030 and ECE 2020.

ECE 2031. Digital Design Laboratory. 2 Credit Hours.
Design and implementation of digital systems, including a team design project. CAD tools, project design methodologies, logic synthesis, and assembly language programming.

ECE 2035. Programming for Hardware/Software Systems. 4 Credit Hours.
Creation of complex execution and storage mechanisms, based on instruction set architecture, for software design including high-level programming languages and operating systems. Programming design projects. Credit not allowed for both ECE 2035 and ECE 3035.

ECE 2036. Engineering Software Design. 4 Credit Hours.
Object-oriented software methods for engineering applications. Numerical analysis methods; simulations and graphical presentation of simulation results; analysis of numerical precision. Programming projects. Credit not allowed for both ECE 2036 and ECE 3090.

ECE 2040. Circuit Analysis. 3 Credit Hours.
Basic concepts of DC and AC circuit theory and analysis.

ECE 2045. Practical Skills and Design. 1 Credit Hour.
This course teaches practical skills, such as soldering and prototyping, and introduces students to ECE design.

ECE 20X2. Transfer-Digital Des Lab. 2 Credit Hours.
ECE 20X3. Transfer-Digital Systems. 3 Credit Hours.

ECE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ECE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent Research conducted under the guidance of a faculty member.
ECE 2801. Special Topics. 1 Credit Hour.
ECE 2802. Special Topics. 2 Credit Hours.
ECE 2803. Special Topics. 3 Credit Hours.
ECE 2804. Special Topics. 4 Credit Hours.
ECE 2805. Special Topics. 5 Credit Hours.
ECE 2811. Special Topics. 1 Credit Hour.
ECE 2812. Special Topics. 2 Credit Hours.
ECE 2813. Special Topics. 3 Credit Hours.
ECE 2814. Special Topics. 4 Credit Hours.
ECE 2815. Special Topics. 5 Credit Hours.
ECE 2881. Special Topics. 1 Credit Hour.
ECE 2882. Special Topics. 2 Credit Hours.
ECE 2883. Special Topics. 3 Credit Hours.
ECE 2884. Special Topics. 4 Credit Hours.
ECE 2891. Special Topics. 1 Credit Hour.
ECE 2892. Special Topics. 2 Credit Hours.
ECE 2893. Special Topics. 3 Credit Hours.
ECE 2894. Special Topics. 4 Credit Hours.
ECE 2900. Special Problems. 1-21 Credit Hours.
ECE 2901. Special Problems. 1-21 Credit Hours.
ECE 2902. Special Problems. 1-21 Credit Hours.
ECE 2903. Special Problems. 1-21 Credit Hours.
ECE 2XXX. Elec/Comp Engr Elective. 1-21 Credit Hours.

ECE 3005. Professional and Technical Communications for ECE. 1 Credit Hour.
Written, oral, and visual communication skills required by electrical and computer engineers. Prepares students for advanced communication tasks required in academic and professional settings.
ECE 3006. Co-Curricular Professional Communications for ECE. null Credit Hours.
This course documents student completion of ECE professional communications requirement through workshops, seminars, research projects, co/extra-curricular activities, etc.
ECE 3020. Mathematical Foundations of Computer Engineering. 3 Credit Hours.
Fundamental concepts in discrete mathematics and their efficient realization via algorithms, data structures, computer programs, and hardware. Discussion of engineering and computational applications.
ECE 3025. Electromagnetics. 3 Credit Hours.
To present the laws and applications of electromagnetics.
ECE 3030. Physical Foundations of Computer Engineering. 3 Credit Hours.
Basic principles governing the physical realization of computing systems and their relationship to characteristics such as performance, energy, and robustness. Implementation technologies.
ECE 3035. Mechanisms for Computing Systems. 4 Credit Hours.
Computing system execution and storage mechanisms, starting with instruction set architecture and concluding with support for high level languages and operating systems. Credit not allowed for both ECE 3035 and ECE 2095.

ECE 3040. Microelectronic Circuits. 4 Credit Hours.
Basic concepts of microelectronic materials, devices, and circuits.
ECE 3041. Instrumentation and Circuits Laboratory. 2 Credit Hours.
Fundamental experimental techniques for the laboratory analysis of signals and passive electrical circuits using basic electronic test and measurement instrumentation. Component characterization, computer-automated measurements, and simulation. Technical writing. Credit not allowed for both ECE 3041 and ECE 3043.
ECE 3042. Microelectronic Circuits Laboratory. 2 Credit Hours.
Design, analysis, simulation, implementation, and evaluation of electronic circuits. Employs op amp, clock, counter, and converter integrated circuits, discrete diodes, bipolar junction, and field effect transistors; and some integrated circuits.
ECE 3043. Measurements, Circuits, and Microelectronics Laboratory. 2 Credit Hours.
Basic electronic test instrumentation. Elementary passive and active circuits using both discrete (diodes, bipolar junction transistors, MOSFETs) and integrated devices (operational amplifiers). Credit not allowed for both ECE 3043 and ECE 3041.
ECE 3050. Analog Electronics. 3 Credit Hours.
To present concepts of analysis and design of electronic circuits and systems. Biasing, small-signal analysis, frequency response, feedback amplifiers, active filters, non-linear op-amp applications, and oscillators.
ECE 3055. Computer Architecture and Operating Systems. 4 Credit Hours.
Core concepts of computer architecture and operating systems. Instruction set architectures (ISA), compiler/ISA relationships, pipelined datapaths. Memory hierarchy, memory management, and protection. Processes, threads, CPU scheduling, and associated techniques. Credit not allowed for both ECE 3055 and ECE 3056.
ECE 3057. Architecture, Systems, Concurrency and Energy in Computation. 3 Credit Hours.
Basic organizational principles of the major components of a processor - the core, memory hierarchy, I/O subsystem and basic operating system constructs that utilize them.
ECE 3060. VLSI and Advanced Digital Design. 4 Credit Hours.
Advanced digital design issues in the context of VLSI systems. Introduction to a design methodology that encompasses the range from behavioral models to circuit simulation. Credit will not be awarded for ECE 3060 and ECE 3150.
ECE 3065. Electromagnetic Applications. 3 Credit Hours.
To present concepts in waveguiding and radiation, with application to microwaves, antennas, and optics. Credit will not be awarded for ECE 3065 and ECE 4350.
ECE 3070. Electromechanical and Electromagnetic Energy Conversion. 3 Credit Hours.
This course serves as an introduction to three-phase power systems, electromechanical energy conversion, and operating principles of electric machines.
ECE 3071. Modern Electric Energy Systems. 3 Credit Hours.
Non-renewable and renewable/sustainable energy sources. Processes, costs, and environmental impact of conversion into electric energy. Delivery and control of electric energy, electromechanical systems. Credit not allowed for both ECE 3071 and ECE 3072.
ECE 3072. Electrical Energy Systems. 3 Credit Hours.
Non-renewable and renewable/sustainable energy sources. Processes, costs, and environmental impact of conversion into electric energy. Delivery and control of electric energy, electromechanical systems. Credit not allowed for both ECE 3072 and ECE 3071.

ECE 3075. Random Signals. 3 Credit Hours.
Study of random variables and random processes for applications in electrical and computer engineering. Includes an introduction to statistical filtering, parameter estimation, Markov processes.

ECE 3076. Computer Communications. 3 Credit Hours.
Presents the basic concepts of computer communications network protocols.

ECE 3077. Prob/Stats for ECE. 3 Credit Hours.
Introduction to probability, random variables, distributions, estimation, confidence intervals, linear regression and other tools for describing and managing uncertainty in electrical and computer engineering.

ECE 3080. Semiconductor Devices for Computer Engineering and Telecommunication Systems. 3 Credit Hours.
To gain an understanding of the device needs for current and future computers, and fiber optic and wireless communication systems addressing the future needs of high-frequency, GHz-range, device operation.

ECE 3084. Signals and Systems. 3 Credit Hours.
Continuous-time linear systems and signals, their mathematical representations, and computational tools. Fourier and Laplace transforms, convolutions, input-output responses, stability.

ECE 3085. Introduction to Systems and Controls. 3 Credit Hours.
Theory of linear time-invariant systems for continuous and discrete time. Laplace and Z-Transforms. Transfer function and state space representations. Introduction to feedback control theory.

ECE 3090. Software Fundamentals for Engineering Systems. 4 Credit Hours.
Using computer algorithms for solving electrical engineering problems arising in various application domains. Development of effective algorithms and their implementation by object-oriented code. Credit not allowed for both ECE 3090 and ECE 2036.

ECE 3150. VLSI and Advanced Digital Design. 4 Credit Hours.
Advanced digital design issues in the context of VLSI systems. Introduction to a design methodology that encompasses the range from architectural models to circuit simulation. Credit not awarded for ECE 3150 and ECE 3060.

ECE 3300. Electromechanical and Electromagnetic Energy Conversion. 3 Credit Hours.
Introduction to three phase power systems, electromechanical energy conversion and operating principles of electric machines.

ECE 3400. Analog Electronics. 3 Credit Hours.
Analysis and design of electronic circuits and systems. Biasing, small-signal analysis, frequency response, feedback amplifiers, active filters, non-linear op-amp applications, and oscillators.

ECE 3431. Analog Electronics Laboratory. 2 Credit Hours.
Design, analysis, simulation, implementation, and evaluation of advanced electronic circuits. Employs bipolar junction, metal oxide semiconductor and field effect transistors; and some integrated circuits.

ECE 3450. Semiconductor Devices. 3 Credit Hours.
Properties of semiconductor devices. Applications in current and future computers, fiber optic and wireless communication systems. Future needs of high frequency, GHz-range, device operation.

ECE 3550. Feedback Control Systems. 3 Credit Hours.
Analysis and design of control systems. Laplace transforms, transfer functions, and stability. Feedback systems: tracking and disturbance rejection. Graphical design techniques.

ECE 3600. Computer Communications. 3 Credit Hours.
Basic concepts of computer communication network protocols.

ECE 3710. Circuits and Electronics. 2 Credit Hours.
An introduction to electronic circuit elements and electronic devices and a study of circuits containing such devices.

ECE 3741. Instrumentation and Electronics Lab. 1 Credit Hour.
Basic analog and digital electronic circuits and principles. Techniques of electrical and electronic measurements with laboratory instruments.

ECE 3801. Special Topics. 1 Credit Hour.
ECE 3802. Special Topics. 2 Credit Hours.
ECE 3803. Special Topics. 3 Credit Hours.
ECE 3804. Special Topics. 4 Credit Hours.
ECE 3805. Special Topics. 5 Credit Hours.
ECE 3811. Special Topics. 1 Credit Hour.
ECE 3812. Special Topics. 2 Credit Hours.
ECE 3813. Special Topics. 3 Credit Hours.
ECE 3814. Special Topics. 4 Credit Hours.
ECE 3815. Special Topics. 5 Credit Hours.
ECE 3881. Special Topics. 1 Credit Hour.
ECE 3882. Special Topics. 2 Credit Hours.
ECE 3883. Special Topics. 3 Credit Hours.
ECE 3884. Special Topics. 4 Credit Hours.
ECE 3891. Special Topics. 1 Credit Hour.
ECE 3892. Special Topics. 2 Credit Hours.
ECE 3893. Special Topics. 3 Credit Hours.
ECE 3894. Special Topics. 4 Credit Hours.
ECE 3900. Special Problems. 1-21 Credit Hours.
ECE 3901. Special Problems. 1-21 Credit Hours.
ECE 3902. Special Problems. 1-21 Credit Hours.
ECE 3903. Special Problems. 1-21 Credit Hours.

ECE 3951. Undergraduate Research I. 1-21 Credit Hours.
Participation in an individual or group research project under the direction of a faculty member.

ECE 3952. Undergraduate Research II. 1-21 Credit Hours.
Participation in an individual or group research project under the direction of a faculty member. Requires a formal research report.

ECE 3XXX. Elec/Comp Engr Elective. 1-21 Credit Hours.

ECE 4001. Engineering Practice and Professionalism. 2 Credit Hours.
Technical tools and professional issues for engineering practice and early career development. Engineering ethics, design tools, financial and economic principles, project management, probabilistic and statistical techniques, and decision making. Credit not allowed for both ECE 4001 and ECE 4000.
ECE 4007. ECE Culminating Design Project. 4 Credit Hours.
Team-oriented culminating design project in electrical/computer engineering, incorporating engineering standards and realistic constraints. Requires formal reports and group presentations. Credit not allowed for both ECE 4007 and ECE 4006.

ECE 4011. ECE Culminating Design Project I. 2 Credit Hours.
First semester of ECE culminating design sequence. Design tools, financial principles, project management, probabilistic and statistical techniques, team forming. Requires formal reports and group presentations.

ECE 4012. ECE Culminating Design Project II. 3 Credit Hours.
Second semester of ECE culminating design sequence. Team project in ECE incorporating engineering standards and realistic constraints. Requires formal reports and group presentations.

ECE 4043. Senior Analog Electronics Laboratory. 2 Credit Hours.
Experiments in analog electronics using discrete devices and off-the-shelf integrated circuits.

ECE 4100. Advanced Computer Architecture. 3 Credit Hours.
Comprehensive coverage of the architecture and system issues that confront the design of high-performance workstation/PC computer architectures with emphasis on quantitative evaluation. Credit is not allowed for both ECE 4100 and any of the following courses: ECE 6100, CS 4290, CS 6290.

ECE 4110. Internetwork Programming. 4 Credit Hours.
Exploration of Internet implementation as a network of computing systems. Internetworking skills for design and implementation of hardware and software Internet products.

ECE 4112. Internetwork Security. 3 Credit Hours.
Hands-on experimentation and evaluation of internet security theory, principles, and practices. Laboratory component involves implementing both defensive and offensive security techniques.

ECE 4115. Introduction to Computer Security. 4 Credit Hours.
Introductory topics in computer security are presented with an emphasis on fundamental security primitives and current security challenges facing society. Credit not awarded for both ECE 4115 and ECE 4112.

ECE 4122. Advanced Programming Techniques for Engineering Applications. 3 Credit Hours.
Course covers a number of programming techniques for distributed and parallel computing and other advanced methods, such as multiprecision arithmetic and nonblocking I/O. Credit not awarded for ECE 4122 and ECE 6122.

ECE 4130. Advanced VLSI Systems. 4 Credit Hours.
An advanced treatment of VLSI systems analysis, design, and testing with emphasis on complex systems and how they are incorporated into a silicon environment. Credit is not allowed for both ECE 4130 and ECE 6130.

ECE 4150. Cloud Computing. 3 Credit Hours.
Cloud computing technologies, computation models, and applications, design methodologies for cloud applications, use of cloud-based languages and tools in developing advanced applications.

ECE 4170. Introduction to HDLs with Applications to Digital System. 3 Credit Hours.
Introduction to hardware description languages and associated methodologies for digital system design. In-depth coverage includes applications to the simulation and synthesis of digital systems.

ECE 4175. Embedded Microcontroller Design. 4 Credit Hours.

ECE 4180. Embedded Systems Design. 4 Credit Hours.
Processors, chipsets, busses, and I/O devices for high-ended embedded systems. Embedded operating systems; device drivers and applications for embedded systems.

ECE 4181. Embedded Computing Systems. 4 Credit Hours.
Algorithms and methodologies for the design of real-time, low-power embedded computing systems.

ECE 4185. Embedded Microcontroller Design. 4 Credit Hours.
Design, implement, and debug embedded micro-controller systems. Develop code; understand underlying assembly code instructions and addressing modes. Use ADC, timers, and other resources.

ECE 4260. Random Signals and Applications. 3 Credit Hours.
Introduction to random signals and processes with emphasis on applications in ECE. Includes basic estimation theory, linear prediction, and statistical modeling.

ECE 4270. Fundamentals of Digital Signal Processing. 3 Credit Hours.

ECE 4271. Applications of Digital Signal Processing. 4 Credit Hours.
Applications of DSP in speech, image processing, radar, pattern recognition, and adaptive filtering requiring working software implementations applied to the analysis of real signals.

ECE 4273. Design Synthesis of Application-specific Signal Processors. 3 Credit Hours.
Fundamentals of theory and practice of DSP chip design in VHDL. Exposure to tools and environments for chip design, simulation, and verification.

ECE 4320. Power System Analysis and Control. 3 Credit Hours.
Introduces basic concepts in electric power generation, distribution, system control, and economic operation.

ECE 4321. Power System Engineering. 3 Credit Hours.
To introduce basic concepts of electric power system design, encompassing protection, stability, and control.

ECE 4325. Electric Power Quality. 3 Credit Hours.
Transients and harmonics in power systems, analysis methods and mitigation practices. Causes of power quality problems and relationship to equipment susceptibility. Credit not allowed for both ECE 4325 and ECE 6340.

ECE 4330. Power Electronics. 3 Credit Hours.
Introduces power semiconductor devices and power electronic converters, including single-phase and three-phase ac/dc rectifiers, ac voltage controllers, dc/dc converters, and dc/ac inverters.

ECE 4335. Electric Machinery Analysis. 3 Credit Hours.
Advanced theory of AC machines, including AC motor winding design, finite element analysis, induction motor design, permanent magnet machine design, and synchronous machine dynamics. Credit is not allowed for both ECE 4335 and ECE 6335.

ECE 4350. Electromagnetic and Microwave Applications. 3 Credit Hours.
Presents concepts of electromagnetic fields applied to microwave circuit design and antenna radiation. Credit will not be awarded for ECE 4350 and ECE 3065.
ECE 4360. RF-Microwave Measurement Laboratory. 2 Credit Hours.
RF/microwave measurement theory and techniques. Use of state-of-the-art equipment operating into the GHz range.

ECE 4370. Antenna Engineering. 3 Credit Hours.
Basic theory, application, and design of a broad range of antennas.

ECE 4371. Antenna Engineering Laboratory. 1 Credit Hour.
Experimentation to develop a practical understanding of antennas and their properties.

ECE 4390. Introduction to Radar and Electromagnetic Sensing. 3 Credit Hours.
Introduces students to radar systems, including pulsed, CW, CWFM, and MTI radars. Other techniques for electromagnetic sensing such as radiometry and EM tagging are discussed.

ECE 4391. Electromagnetic Compatibility. 3 Credit Hours.
To study electromagnetic interference and susceptibility of electrical systems, with application to analog and digital circuits.

ECE 4410. Analog Filters. 3 Credit Hours.
An introduction to the theory, design techniques, and applications of analog passive, active, and switched-capacitor filters.

ECE 4411. RF Engineering I. 3 Credit Hours.
Fundamentals of RF engineering. Components at high frequencies, device modeling, amplifiers, lumped-element and microstrip impedance transformation networks, S-parameter-based design of RF and microwave amplifiers.

ECE 4418. RF Engineering II. 3 Credit Hours.
Fundamentals learned in RF-I are employed to design the elements of radio receivers, transmitters, and similar systems. Systems analysis, mixers, detectors, power amplifiers, low-noise amplifiers, and oscillators are covered.

ECE 4420. Digital Integrated Circuits. 3 Credit Hours.
Analysis and design of bipolar and MOS digital integrated circuit families and their applications in modern electronic systems.

ECE 4430. Analog Integrated Circuits. 3 Credit Hours.
Analysis and design of analog ICs using analytic techniques and CAD tools. Topics include amplifiers, current sources, output circuits, and other analog building blocks.

ECE 4435. Operational Amplifier Design. 3 Credit Hours.
Analysis and design techniques for utilization of integrated circuit operational amplifiers for applications in electronic systems.

ECE 4445. Audio Engineering. 3 Credit Hours.
Concepts of acoustics and electroacoustic modeling for the analysis and design of microphones, loudspeakers, and crossover networks. Methods of analysis and design of audio power amplifiers.

ECE 4446. Audio Engineering Laboratory. 1 Credit Hour.
A companion laboratory to ECE 4445. Design, analysis, construction, modeling, and testing of circuits and systems pertaining to audio engineering.

ECE 4450. Analog Circuits for Music Synthesis. 3 Credit Hours.
Circuits from classic analog synthesizers: nonlinear waveshapers and voltage-controlled oscillators, filters, and amplifier using operational transconductance amplifiers and the dynamic resistance of semiconductors.

ECE 4451. Semiconductor Devices for Wireless and Fiber Communication. 3 Credit Hours.
Advanced development of semiconductor device theory focusing on optoelectronic emitters, detectors, and high-frequency transistors to provide an understanding of devices used in communications systems.

ECE 4452. IC Fabrication. 3 Credit Hours.
Introduction to microelectronic processing technologies and CMOS. Includes a laboratory for fabrication/testing of MOS transistors, basic CMOS circuits, integrated resistors and capacitors. Credit will not be awarded for ECE 4452 and ECE 4752.

ECE 4460. Introduction to Electronic Systems Packaging. 3 Credit Hours.
Introduction to packaging technologies, technology drivers, electrical performance, thermal management, materials, optoelectronics, RF integration, reliability, system issues, assembly, testing.

ECE 4500. Optical Engineering. 3 Credit Hours.
Introduction to applications of geometric, physical optics to engineering, including optical measurements, matrix methods, instruments, interference, holography, beam optics, Fourier optics, and diffraction.

ECE 4501. Fiber Optics. 5 Credit Hours.
Combined lecture-laboratory exploration of the technology of fiber optics, with special emphasis on optical fiber communications systems. Credit will not be awarded for ECE 4501 and ECE 4502.

ECE 4502. Optical Fiber Communications. 4 Credit Hours.
Combined lecture-laboratory exploration of the technology of fiber optics, with emphasis on optical fiber communication systems. Credit will not be awarded for ECE 4502 and ECE 4501.

ECE 4550. Control System Design. 4 Credit Hours.
Design of control algorithms using state-space methods, microcontroller implementation of control algorithms, and laboratory projects emphasizing motion control applications.

ECE 4551. Systems and Controls I. 4 Credit Hours.
Introduction to feedback control. Root locus and bode design for SISO systems, continuous and discrete. Introduction to state space formulation, continuous and discrete.

ECE 4555. Embedded and Hybrid Control Systems. 3 Credit Hours.
Modeling, analysis, and design of embedded and hybrid control systems.

ECE 4560. Introduction to Automation and Robotics. 4 Credit Hours.
Concurrent engineering principles; robotic manipulator kinematics, dynamics, and control; applications of robots in industry, medicine, and other areas; team projects and hands-on laboratory experience.

ECE 4562. Neural Networks and Fuzzy Logic in Control. 3 Credit Hours.
Principles of neural networks and fuzzy systems; the MATLAB Neural Network and Fuzzy Logic Toolboxes; examples from system identification, classification, and control; laboratory experience.

ECE 4563. Game Theory and Multiagent Systems. 3 Credit Hours.
An introduction to game theory and its application to multiagent systems, including distributed routing, multivehicle control, and networked systems.

ECE 4570. System Theory for Communication and Control. 4 Credit Hours.
Study of the basic concepts in linear system theory and numerical linear algebra with applications to communication, computation, control, and signal processing. A unified treatment.
ECE 4575. Numerical Methods for Optimization and Optimal Control. 3 Credit Hours.
Algorithms for numerical optimization and optimal control, Gradient-descent techniques, linear programming, numerical linear system solvers, second-order methods of optimizing performance of dynamical systems.

ECE 4580. Computational Computer Vision. 3 Credit Hours.
Computational and theoretical aspects of computer vision. Application areas include robotics, autonomous vehicles, tracking, and image-guided surgery. Includes project major.

ECE 4601. Communication Systems. 3 Credit Hours.
To present the fundamentals of modern digital communication systems and evaluate their performance with realistic channel models.

ECE 4602. Communication Systems Laboratory. 1 Credit Hour.
To examine the performance of analog and digital telecommunications systems and components. Credit will not be awarded for ECE 4612 and ECE 4602.

ECE 4604. Network Design and Simulation. 4 Credit Hours.
Introduces the principles of Monte Carlo techniques and network simulation, and applies them to design issues in ATM systems.

ECE 4605. Advanced Internetworking. 4 Credit Hours.
Networking fundamentals, including TCP/IP protocol suite. Latest networking technologies in wireless networks and mobile computing, network quality of service, network programmability, and miscellaneous topics. Project intensive.

ECE 4606. Wireless Communications. 3 Credit Hours.
Cellular concept, wireless propagation modeling; types of digital modulation used in wireless systems, diversity combining, performance over fading channels, and multiple access techniques.

ECE 4607. Mobile and Wireless Networks. 3 Credit Hours.

ECE 4612. Telecommunications Systems Laboratory. 1 Credit Hour.
Basic digital telecommunications systems are examined in a laboratory setting using electronic modules, covering concepts such as modulation, channel coding, AWGN, eye diagrams, and BER. Credit will not be awarded for ECE 4612 and ECE 4602.

ECE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ECE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent Research conducted under the guidance of a faculty member.

ECE 4751. Laser Theory and Applications. 3 Credit Hours.
Provides an introduction to the theory and applications of laser principles and related instrumentation. Emphasis is on the fundamental principles underlying laser action. Crosslisted with PHYS 4751.

ECE 4752. Integrated Circuit Fabrication. 3 Credit Hours.
Gives students exposure to the various steps involved in the fabrication of integrated circuits and devices. The course will include a laboratory segment in which students fabricate MOS transistors, diffused resistors, and MOS capacitors from a bare silicon substrate. Crosslisted with CHE 4752. Credit will not be awarded for ECE 4752 and ECE 4452.

ECE 4753. Topics in Engineering Practice. 3 Credit Hours.
Topics of current importance offered in collaboration with an approved partner of Georgia Tech's Distance Learning Program. Crosslisted with ME 4753.

ECE 4754. Electronics Packaging Assembly, Reliability, Thermal Management, and Test. 3 Credit Hours.
The course provides hands-on instruction in electronics packaging, including assembly, reliability, thermal management, and test of next-generation microsystems. Crosslisted with ME and MSE 4754.

ECE 4755. Electronic Packaging Substrate Fabrication. 3 Credit Hours.
This course provides hands-on instruction in basic packaging substrate fabrication techniques, including interconnect design and testing, dielectric deposition, via formation, and metallization. Crosslisted with CHE 4755.

ECE 4761. Industrial Controls and Manufacturing. 3 Credit Hours.
Students are introduced to industrial controls and the fundamentals of manufacturing with hands-on experience based on lab projects using industry software and hardware for communications and control. Crosslisted with PTFE 4761.

ECE 4781. Biomedical Instrumentation. 3 Credit Hours.
A study of medical instrumentation from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. Credit not allowed for both ECE 4781 and (CHE 4781 or CHBE 4781 or BMED 4781 or ME 4781).

ECE 4782. Biosystems Analysis. 3 Credit Hours.
Analytical methods for modeling biological systems, including white-noise protocols for characterizing nonlinear systems. Crosslisted with BMED, CHE and ME 4782.

ECE 4783. Introduction to Medical Image Processing. 3 Credit Hours.
A study of mathematical methods used in medical acquisition and processing. Concepts, algorithms, and methods associated with acquisition, processing, and display of two- and three-dimensional medical images are studied. Crosslisted with BMED 4783.

ECE 4784. Engineering Electrophysiology. 3 Credit Hours.
Basic concepts of electrophysiology from an engineering perspective. Functionality of relevant organs and systems; instrumentation tools which monitor electrophysiology function. Crosslisted with BMED 4784.
ECE 4811. Special Topics. 1 Credit Hour.
ECE 4812. Special Topics. 2 Credit Hours.
ECE 4813. Special Topics. 3 Credit Hours.
ECE 4814. Special Topics. 4 Credit Hours.
ECE 4815. Special Topics. 5 Credit Hours.
ECE 4823. Special Topics. 3 Credit Hours.
ECE 4833. Special Topics. 3 Credit Hours.
ECE 4881. Special Topics. 1 Credit Hour.
ECE 4882. Special Topics. 2 Credit Hours.
ECE 4883. Special Topics. 3 Credit Hours.
ECE 4884. Special Topics. 4 Credit Hours.
ECE 4891. Special Topics. 1 Credit Hour.
ECE 4892. Special Topics. 2 Credit Hours.
ECE 4893. Special Topics. 3 Credit Hours.
ECE 4894. Special Topics. 4 Credit Hours.
ECE 4900. Special Problems. 1-21 Credit Hours.
ECE 4901. Special Problems. 1-21 Credit Hours.
ECE 4902. Special Problems. 1-21 Credit Hours.
ECE 4903. Special Problems. 1-21 Credit Hours.
ECE 4951. Undergraduate Research I. 1-21 Credit Hours.
Participation in an individual or group research project under the direction of a faculty member.
ECE 4952. Undergraduate Research II. 1-21 Credit Hours.
Participation in an individual or group research project under the direction of a faculty member.
ECE 4XXX. Elec/Comp Engr Elective. 1-21 Credit Hours.
ECE 6100. Advanced Computer Architecture. 3 Credit Hours.
Comprehensive coverage of the architecture and system issues that confront the design of high-performance workstation/PC computer architectures with emphasis on quantitative evaluation. Credit is not allowed for both ECE 6100 and any of the following courses: ECE 4100, CS 4290, CS 6290.
ECE 6101. Parallel and Distributed Computer Architecture. 3 Credit Hours.
An advanced study of the critical issues and limiting factors in the design of asynchronous and synchronous parallel and distributed architectures.
ECE 6102. Dependable Distributed Systems. 3 Credit Hours.
Concepts, theory, and practice of dependable distributed systems. Techniques for tolerating hardware and software faults. Security aspects such as confidentiality, availability, and integrity.
ECE 6110. CAD for Computer Communication Networks. 3 Credit Hours.
Investigation of the methodologies and algorithms used for designing and optimizing computer/communications networks with a focus on the algorithmic aspects of network design.
ECE 6115. Interconnection Networks for High-Performance Systems. 3 Credit Hours.
This course teaches the fundamentals of Interconnection Networks (topology, routing, flow-control, microarchitecture and system interface), which form the communication backbone of computer systems, from on-chip many-core to HPC datacenters.
ECE 6120. Automata Theory. 3 Credit Hours.
The course presents a broad base of topics in modern automata and switching theory. These elements form the essentials upon which modern digital systems are constructed.
ECE 6121. Combinatorial Strategies for Engineers. 3 Credit Hours.
Modern counting theory and algorithmic approaches necessary for discrete computation.
ECE 6122. Advanced Programming Techniques. 3 Credit Hours.
Covers a number of advanced topics in programming methods, data management, distributed computing, and advanced algorithms used in typical engineering applications. Credit will not be awarded for ECE 6122 and ECE 4122.
ECE 6130. Advanced VLSI Systems. 3 Credit Hours.
An advanced treatment of VLSI systems analysis, design, and testing with emphasis on complex systems and how they are incorporated into a silicon environment. Credit is not allowed for both ECE 4130 and ECE 6130.
ECE 6132. Computer-aided VLSI System Design. 3 Credit Hours.
Theory and practice of computer-aided VLSI digital systems design. Logic synthesis, semi-custom VLSI design, high-level synthesis, low-power systems, and hardware/software co-design. Individual and group projects.
ECE 6133. Physical Design Automation of VLSI Systems. 3 Credit Hours.
Various design automation problems in the physical design process of VLSI circuits including clustering, partitioning, floor planning, placement, routing, and compaction.
ECE 6135. Digital Systems in Nanometer Nodes. 3 Credit Hours.
An advanced treatment of design challenges, such as power, variability, and reliability associated with digital integrated circuits and systems in nanometer nodes.
ECE 6140. Digital Systems Test. 3 Credit Hours.
Introduction to the basic concepts in digital systems testing. Advanced topics in fault modeling and simulation, test pattern generation, and design for testability.
ECE 6150. Computational Aspects of Cyber-Physical Systems. 3 Credit Hours.
Fundamental concepts, foundations, and methodologies for the design of high-performance cyber-physical systems, including control/computing co-design.
ECE 6200. Biomedical Applications of Microelectromechanical Systems. 3 Credit Hours.
MEMS processing technologies, design of fabrication process flows, and applications of the technologies to the development of biomedical micro instrumentation and detection methodologies.
ECE 6229. Introduction to Microelectromechanical Systems. 3 Credit Hours.
Introduction to Micro-Electro-Mechanical systems: Microfabrication techniques including: photolithography, etching, physical and chemical vapor deposition, electroplating, bonding and polymer processing. Application to sensors and actuators. Credit not allowed for both ECE 6229 and ME 6229 or CHBE 6229.
ECE 6250. Advanced Digital Signal Processing. 3 Credit Hours.
An introduction to advanced signal processing methods that are used in a variety of applications areas.

ECE 6254. Statistical Digital Signal Processing and Modeling. 3 Credit Hours.
An introduction to the theory of statistical learning and practical machine learning algorithms with applications in signal processing and data analysis.

ECE 6255. Digital Processing of Speech Signals. 3 Credit Hours.
The application of digital signal processing to problems in speech communication. Part of this goal requires a laboratory project.

ECE 6258. Digital Image Processing. 3 Credit Hours.
An introduction to the theory of multidimensional signal processing and digital image processing, including key applications in multimedia products and services, and telecommunications.

ECE 6260. Data Compression and Modeling. 3 Credit Hours.
Theory and algorithms of signal encoding and decoding for data compression. Applications in information systems, digital telephony, digital television, and multimedia Internet.

ECE 6271. Adaptive Filtering. 3 Credit Hours.

ECE 6272. Fundamentals of Radar Signal Processing. 3 Credit Hours.
Signal modeling including radar cross section, multipath, and clutter. Properties of the ambiguity function and coded waveforms. Algorithms for Doppler processing, detection, and radar imaging.

ECE 6273. Methods of Pattern Recognition with Application to Voice. 3 Credit Hours.
Theory and application of pattern recognition with a special application section for automatic speech recognition and related signal processing.

ECE 6274. Statistical Natural Language Processing. 3 Credit Hours.
Foundations of statistical natural language processing established for text data analysis, language engineering, information extraction, and statistical inference. Applications using large text datasets are illustrated.

ECE 6276. DSP Hardware Systems Design. 3 Credit Hours.
A study of theory and practice in the design and implementation of DSP algorithms on programmable processors, multiprocessors, and ASICs.

ECE 6277. DSP Software Systems Design. 3 Credit Hours.
Specification, evaluation, and implementation of real-time DSP applications on embedded DSP-based environments.

ECE 6279. Spatial Array Processing. 3 Credit Hours.
Introduce application areas where signals are sampled over space and time. Transfer knowledge of time-based techniques to spatial processing. Develop algorithms unique to spatial processing.

ECE 6280. Cryptography & Security. 3 Credit Hours.
Algebraic and number theory approaches to cryptographic techniques, information security, secret key and public key encryption, signature schemes, hash functions, message authentication, and key distribution. Credit not allowed for both ECE 6280 and CS 6260.

ECE 6282. Radar Imaging. 3 Credit Hours.
An indepth study of digital signal processing methods for Synthetic Aperture Radar (SAR) image formation. Methods are also applicable to sonar.

ECE 6283. Harmonic Analysis for Signal Processing. 3 Credit Hours.
Explores the role of sparse representations in signal processing. Specific topics include: frame decompositions, approximation theory, inverse problems, imaging, and compressed sensing.

ECE 6280 and ECEP 6301.

ECE 6282. Power Systems Control and Operation. 3 Credit Hours.
Introduction to methods used in the real-time operation and control of power systems as well as to the hardware and software technology of energy management systems (EMS). Credit will not be awarded for both ECE 6280 and ECEP 6301.

ECE 6281. Power System Stability. 3 Credit Hours.
Techniques for stability analysis of electric power systems and applications of these methods.

ECE 6282. Power System Planning and Reliability. 3 Credit Hours.
To introduce basic concepts as well as analysis and optimization techniques underlying reliability assessment of electric power systems and planning techniques. Credit will not be awarded for both ECE 6282 and ECEP 6305.

ECE 6283. Power System Protection. 3 Credit Hours.
Theory and practice of modern power system protection techniques. Credit will not be awarded for both ECE 6283 and ECEP 6351.

ECE 6284. Power Electronic Devices and Subsystems. 3 Credit Hours.
Physical considerations involved in the fabrication and use of power semiconductor devices and high-frequency magnetic transformers and inductors.

ECE 6285. Power Electronic Circuits. 3 Credit Hours.
The analysis, control, and design of switching power converters: rectifiers, cycloconverters, voltage-sourced and current-source inverters, dc-dc converters, pfc and resonant converters.

ECE 6286. Power Electronic CAD Laboratory. 1 Credit Hour.
To introduce the use of CAD tools in the simulation, analysis, and design of power electronic circuits and systems.

ECE 6287. Electric Machinery Analysis. 3 Credit Hours.
An introduction to the analysis and basic construction principles of rotating electric machines and transformers, including ac synchronous and induction machines and dc machines. Credit is now allowed for both ECE 4335 and ECE 6335.

ECE 6288. Dynamics and Control of Electric Machine Drives. 3 Credit Hours.
A study of the dynamics and control of electric machinery and variable speed machine drive systems.

ECE 6289. Electricity Markets. 3 Credit Hours.
Comprehensive introduction to markets for electrical energy, including economic theory, market design, utility models, effects of the physical grid, and grid services.

ECE 6305. Applied Electromagnetics. 3 Credit Hours.
The methodology and application of advanced electromagnetic theory.

ECE 6350. Microwave Design. 3 Credit Hours.
Applications of electromagnetic theory to microwave components and systems. Introduction to the latest characterization and design techniques including monolithic microwave integrated circuit (MMIC) technology.

ECE 6351. Microwave Design Laboratory. 3 Credit Hours.
This laboratory course will teach microwave measurement/design fundamentals for both passive and active components. Students will use both CAD tools and network analyzers.
ECE 6370. Electromagnetic Radiation and Antennas. 3 Credit Hours.
The fundamentals of electromagnetic radiation and antennas.

ECE 6380. Introduction to Computational Electromagnetics. 3 Credit Hours.
The practical application of the finite-difference time-domain and finite element techniques to electromagnetic problems. Computer projects are required.

ECE 6390. Satellite Communications and Navigation Systems. 3 Credit Hours.
To introduce satellite communications and navigation system design including microwave transmission, satellite transponders, earth station hardware, and satellite networks. A design project is required.

ECE 6412. Analog Integrated Circuit Design. 3 Credit Hours.
Design of analog circuits using CMOS and bipolar technologies.

ECE 6414. Analog Integrated System Design. 3 Credit Hours.
Design of analog systems using CMOS and bipolar technologies. A higher level of design for analog and digital systems is presented.

ECE 6416. Low Noise Electronic System Design. 3 Credit Hours.
A study of the sources of noise found in electronic instrumentation. Teaches the recognition of sources of noise and the design techniques to achieve noise reduction.

ECE 6420. Wireless IC Design. 3 Credit Hours.
Wireless system specifications are translated to architectures and building blocks compatible with silicon technology. The course focuses on the analysis and design of these blocks.

ECE 6422. Interface IC Design for MEMS and Sensors. 3 Credit Hours.
Design of high-performance integrated interface circuits for various MEMS and sensing devices. System level issues in integrated microsystems.

ECE 6430. Digital MOS Integrated Circuits. 3 Credit Hours.
Detailed analysis of the operation and design of high-performance MOS digital integrated circuits. Emphasis is on circuit design techniques with examples from the literature.

ECE 6435. Neuromorphic Analog VLSI Circuits. 3 Credit Hours.
Large-scale analog computation for sensory and motor processing. Analog building blocks are presented, leading to VLSI systems inspired by neurobiological architectures and computational paradigms.

ECE 6440. Frequency Synthesizers. 3 Credit Hours.
Frequency synthesizers generate many discrete RF frequencies from one reference frequency. General synthesizers, digital PLL, direct digital, and hybrid synthesizers are covered.

ECE 6442. Electronic Oscillators. 3 Credit Hours.
Starting from nonlinear differential equations, this course presents a systematic approach to the design of electronic oscillators. Design of negative resistance and feedback oscillators is discussed. CAD techniques are employed.

ECE 6444. Silicon-Based Heterostructure Devices and Circuits. 3 Credit Hours.
Theory and design of novel silicon-germanium microelectronic devices and circuits. Materials, device physics, fabrication, measurement, circuit design, and system applications.

ECE 6445. Power IC Design. 3 Credit Hours.
Analysis and design of linear dc-dc regulators and switched-inductor dc-dc supplies with CMOS and BICMOS integrated circuits (ICs).

ECE 6450. Introduction to Microelectronics Technology. 3 Credit Hours.
Presents the fundamentals of microelectronics material, device, and circuit fabrication.

ECE 6451. Introduction to the Theory of Microelectronics. 3 Credit Hours.
Basis of quantum mechanics, statistical mechanics, and the behavior of solids to serve as an introduction to the modern study of semiconductors and semiconductor devices.

ECE 6453. Theory of Electronic Devices. 3 Credit Hours.
Presents the fundamentals of electronic device operation.

ECE 6455. Semiconductor Process Control. 3 Credit Hours.
This course is designed to explore methods of applying statistical process control and statistical quality control to semiconductor manufacturing processes. Students will be required to complete a design project.

ECE 6456. Solar Cells. 3 Credit Hours.
To provide a practical understanding of semiconductor materials and technology as it relates to design and development of efficient solar cells and photovoltaic systems.

ECE 6458. Gigascale Integration. 3 Credit Hours.
Hierarchy of physical principles that enable understanding and estimation of future opportunities to achieve multibillion transistor silicon chips using sub-0.25 micron technology.

ECE 6460. Microelectromechanical Devices. 3 Credit Hours.
Fundamental concepts for design of microelectromechanical devices (MEMS), including mechanical and thermal behavior of materials and structures, transduction principles, transducer design, and modeling.

ECE 6461. Carbon and Molecular Nanoelectronics. 3 Credit Hours.
In this course carbon nanotubes are used as a framework to teach quantum transport as the foundatoin for all emerging nanoelectronic devices.

ECE 6500. Fourier Techniques and Signal Analysis. 3 Credit Hours.
Introduction to the use of Fourier Methods for analysis of signals.

ECE 6501. Fourier Optics and Holography. 3 Credit Hours.
Applications of the Fourier transform and linear systems theory to the analysis of optical propagation, diffraction imaging, holography, wavefront modulation, and signal processing.

ECE 6510. Electro-Optics. 3 Credit Hours.
Study of the fundamental principles and primary applications of lasers, and of detectors of optical radiation.

ECE 6515. Nanophotonics. 3 Credit Hours.
Design of nano-structures to guide light and to develop a new set of optical devices.

ECE 6520. Integrated Optics. 3 Credit Hours.
Theory and design of optical waveguides and optical waveguide devices.

ECE 6521. Optical Fibers. 3 Credit Hours.
Provides an in-depth understanding of the light-guiding properties of optical fibers as used in communication systems.

ECE 6522. Nonlinear Optics. 3 Credit Hours.
Provides an introduction to the field of nonlinear optics, exploring the physical mechanisms, applications, and experimental techniques.

ECE 6530. Modulation, Diffractive, and Crystal Optics. 3 Credit Hours.
Provides a working knowledge of temporal and spatial optical modulation, diffractive optical devices, and crystal optics.
ECE 6540. Organic Optoelectronics. 3 Credit Hours.
Fundamental understanding of the optical and electronic properties of organic materials and devices that form the basic of the emerging technological area of printed flexible optoelectronics.

ECE 6542. Optoelectronics: Devices, Integration, Packaging, Systems. 3 Credit Hours.
Optoelectronic devices (detectors, emitters, modulators) from the practical realized and theoretical performance perspective. Explores monolithic and hybrid integration of devices, packaging, and system implementation.

ECE 6543. Fiber-optic Networks. 3 Credit Hours.
Architectural, performance and design aspects of fiber-optic communications networks, components, and technologies. Relationship between the physical network implementation and the higher-level network architecture.

ECE 6550. Linear Systems and Controls. 3 Credit Hours.
Introduction to linear system theory and feedback control. Topics include state space representations, controllability and observability, linear feedback control. Credit will not be awarded for both ECE 6550 and AE 6530.

ECE 6551. Digital Control. 3 Credit Hours.
Techniques for analysis and synthesis of computer-based control systems. Design projects provide an understanding of the application of digital control to physical systems.

ECE 6552. Nonlinear Systems and Control. 3 Credit Hours.
Classical analysis techniques and stability theory for nonlinear systems. Control design for nonlinear systems, including robotic systems. Design projects.

ECE 6553. Optimal Control and Optimization. 3 Credit Hours.
Optimal control of dynamic systems, numerical optimization, techniques and their applications in solving optical-trajectory problems.

ECE 6554. Adaptive Control. 3 Credit Hours.
Methods of parameter estimation and adaptive control for systems with constant or slowly varying unknown parameters. MATLAB design projects emphasizing applications to physical systems.

ECE 6555. Optimal Estimation. 3 Credit Hours.
Techniques for signal and state estimation in the presence of measurement and process noise with the emphasis on Wiener and Kalman filtering.

ECE 6556. Intelligent Control. 3 Credit Hours.
Principles of intelligent systems and their utility in modeling, identification, and control of complex systems; neuro-fuzzy tools applied to supervisory control; hands-on laboratory experience.

ECE 6557. Manufacturing Systems Design. 3 Credit Hours.
Analytic and simulation tools for design, control, and optimization of manufacturing systems. Discrete event dynamic systems and optimization.

ECE 6558. Stochastic Systems. 3 Credit Hours.
Advanced techniques in stochastic analysis with emphasis on stochastic dynamics, nonlinear filtering and detection, stochastic control, and stochastic optimization and simulation methods.

ECE 6559. Advanced Linear Systems. 3 Credit Hours.
Study of multivariable linear system theory and robust control design methodologies.

ECE 6560. Partial Differential Equations in Image Processing and Computer Vision. 3 Credit Hours.
Mathematical foundations and numerical aspects of partial differential equation techniques used in computer vision. Topics include image smoothing and enhancement, edge detection, morphology, and image reconstruction.

ECE 6561. Computing for Control Systems. 3 Credit Hours.
Introduction to real-time computing, distributed computing, and software engineering in control systems. The particular requirements of control systems will be presented.

ECE 6562. Autonomous Control of Robotic Systems. 3 Credit Hours.
Fundamental issues associated with autonomous robot control. Emphasizes biological perspective that forms the basis of many current developments in robotics.

ECE 6563. Networked Control and Multiagent Systems. 3 Credit Hours.
Covers tools and techniques for networked control systems as well as application domains and promising research directions.

ECE 6601. Random Processes. 3 Credit Hours.
To develop the theoretical framework for the processing of random signals and data.

ECE 6602. Digital Communications. 3 Credit Hours.
Basic M-ary digital communications systems, with emphasis on system design and performance analysis in the presence of additive noise.

ECE 6603. Advanced Digital Communications. 3 Credit Hours.
The theory and practice of efficient digital communications over linear dispersive channels, including adaptive equalization and synchronization.

ECE 6604. Personal and Mobile Communications. 3 Credit Hours.
To introduce various topics that are fundamental to cellular mobile telephone systems.

ECE 6605. Information Theory. 3 Credit Hours.
To introduce the mathematical theory of communications. Emphasis will be placed on Shannon's theorems and their use in the analysis and design of communication systems.

ECE 6606. Coding Theory and Applications. 3 Credit Hours.
To introduce the theory and practice of error control coding, with emphasis on linear, cyclic, convolutional, and parallel concatenated codes.

ECE 6607. Computer Communication Networks. 3 Credit Hours.
Fundamental concepts of computer network architecture and protocols.

ECE 6608. Performance Analysis of Communications Networks. 3 Credit Hours.
Fundamental concepts of queuing systems, and applications of queuing theory to the performance evaluation of computer networks.

ECE 6610. Wireless Networks. 3 Credit Hours.
Fundamental concepts of wireless networks.

ECE 6611. Broadband Networking. 3 Credit Hours.
Fundamental concepts of broadband networking, including network models, ATM networks, quality of service, and traffic management.

ECE 6612. Computer Network Security. 3 Credit Hours.
Fundamental concepts of network information security, including encryption, secure access methods, and vulnerabilities in network protocols, operating systems, and network applications.

ECE 6613. Broadband Access Networks. 3 Credit Hours.
Study and comparison of ongoing and emerging access network technologies, including hybrid-fiber-coax, FTTP/FTTH, Gigabit Ethernet, ADSL/VDSL, and ultra wideband wireless data over fiber systems.
ECE 6710. Ethics of Biotechnology and Bioengineering Research. 3 Credit Hours.
This course examines the ethics of biotechnological research, including issues in the realm of research ethics, bioethics, and healthcare robotics.

ECE 6727. Cyber Security Practicum. 5 Credit Hours.
Capstone independent study project placing each student in a commercial, academic or government setting where he or she identifies a major cyber security problem, and explores and evaluates a solution that addresses it with realistic assumptions about the organizational context. The chosen problem must be approved by course instructor. Cross-listed with PUBP and CS 6727.

ECE 6730. Modeling and Simulation: Foundations and Implementation. 3 Credit Hours.
Foundations and algorithms concerning the development of conceptual models for systems, and their realization in the form of computer software; discrete and continuous models. Crosslisted with CSE 6730.

ECE 6744. Topics in Engineering Practice. 3 Credit Hours.
Topics of current importance offered in collaboration with an approved partner of Georgia Tech's Distance Learning Program. Crosslisted with ME 6744.

ECE 6759. Plasma Processing of Electronic Materials and Devices. 3 Credit Hours.
Fundamental physics, chemistry, chemical engineering, and electrical engineering principles inherent in plasma processes. Includes etching, deposition, diagnostic methods, and control schemes. Crosslisted with CHE 6759.

ECE 6771. Optoelectronics: Materials, Processes, Devices. 3 Credit Hours.
Optoelectronic materials, physical processes, and devices. Includes compound semiconductor materials, excitation, recombination, gain, and modulation processes and devices such as emitters, detectors, and modulators. Crosslisted with PHYS 6771.

ECE 6776. Integrated Low-Cost Microelectronics Systems Packaging. 3 Credit Hours.
Broad overview of system-level, cross-disciplinary microelectronics packaging technologies, including design, test, thermal, reliability, optoelectronics, and RF integration. Comparison of system-on-chip and system-on-package. Crosslisted with ME and MSE 6776.

ECE 6779. Thermal Engineering for Packaging of Micro and Nano Systems. 3 Credit Hours.
Passive, active, and hybrid thermal management techniques, and computational modeling of micro systems. Air cooling, single phase and phase change liquid cooling, heat pipes, and thermoelectrics. Crosslisted with ME 6779.

ECE 6780. Medical Image Processing. 3 Credit Hours.
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two- and three-dimensional data obtained from a variety of medical imaging modalities. Crosslisted with CS and BMED 6780.

ECE 6781. Biomedical Sensing Systems. 3 Credit Hours.
A study of physiological sensing topics from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. No prior knowledge of physiology or biology is needed.

ECE 6786. Medical Imaging Systems. 3 Credit Hours.
A study of the principles and design of medical imaging systems such as X-ray, ultrasound, nuclear medicine, and nuclear magnetic resonance. Crosslisted with BMED 6786.

ECE 6787. Quantitative Electrophysiology. 3 Credit Hours.
A quantitative presentation of electrophysiological systems in biological organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with BMED and PHYS 6787.

ECE 6790. Information Processing Models in Neural Systems. 3 Credit Hours.
Examines "top-down" modeling approaches for sensorineural systems, where optimal computational principles used in engineering (e.g., information theory, Bayesian inference, control theory) explain observed information processing.

ECE 6792. Manufacturing Seminar. 1 Credit Hour.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ISYE and ME 6792.

ECE 6XXX. Elec/Comp Engr Elective. 1-21 Credit Hours.

ECE 7000. Master's Thesis. 1-21 Credit Hours.

ECE 7055. GT-SJTU. 12 Credit Hours.
For GT-SJTU dual-MS students during terms when they are not taking other GT courses. Placeholder course.

ECE 7056. GT-TU. 12 Credit Hours.
For GT-TU double-MS students during terms when they are not taking other GT courses.

ECE 7057. GT-Shenzhen Research. 12 Credit Hours.
For GT-Shenzhen students during terms when they are in Atlanta on research internship with GT-Atlanta faculty.

ECE 7102. RISC Architectures. 3 Credit Hours.
An advanced design-oriented class studying the design techniques and operational principles of modern Superscalar RISC datapaths.

ECE 7103. Advanced Memory System. 3 Credit Hours.
Covers the basic trade-offs in architecting a high performance memory hierarchy at all levels, starting from the on-chip cache to main memory and storage sub-system.

ECE 7131. Asynchronous and Self-timed Systems. 3 Credit Hours.
Specification and design of asynchronous digital systems.

ECE 7142. Fault Tolerant Computing. 3 Credit Hours.
Key concepts in fault-tolerant computing. Understanding and use of modern fault-tolerant hardware and software design practices. Case studies.

ECE 7251. Signal Detection and Estimation. 3 Credit Hours.
Detection theory and estimation theory and their application to communications and statistical signal processing problems.
ECE 7252. Advanced Signal Processing Theory. 3 Credit Hours.
A lecture and seminar treatment of the latest developments in signal processing. Emphasis is placed on current literature and emerging research areas.

ECE 7350. Topics in Analytical Electromagnetics. 3 Credit Hours.
An in-depth treatment of several analytical techniques used in current practice for solving real-world EM wave propagation problems and their impact on wireless communications.

ECE 7370. Antennas and Wave Propagation in Matter. 3 Credit Hours.
Basic methods for characterizing the electromagnetic properties of common materials (geophysical, biological, etc.) and techniques for analyzing antennas and wave propagation in these materials.

ECE 7380. Topics in Computational Electromagnetics. 3 Credit Hours.
Computational approaches for applications such as radar signature prediction, microwave antenna and device design, and modeling techniques for electronic packaging.

ECE 7611. Advanced Communication Theory. 3 Credit Hours.
Latest developments in communications and networking are treated in lecture and seminar. Emphasis on current literature and open research areas.

ECE 7741. Robotics Professional Preparation. 1 Credit Hour.

ECE 7742. Robotics Professional Preparation 2. 1 Credit Hour.

ECE 7743. Robotics Professional Preparation 3. 1 Credit Hour.

ECE 7785. Introduction to Robotics Research. 3 Credit Hours.
Familiarizes students with the core areas of robotics: mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research.

ECE 7999. Preparation for Doctoral Qualifying Examination. 1-21 Credit Hours.
This course is reserved for students who are studying for the ECE Preliminary Exam.

ECE 8001. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 8002. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 8003. ECE Seminar. 1 Credit Hour.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 8010. Research Seminar. 1 Credit Hour.
Seminar presentations describing ECE-related research projects, centers, and other activities at Georgia Tech.

ECE 8020. Professional Communication Skills. 3 Credit Hours.
Written, oral, and graphical communication skills needed by electrical and computer engineering professionals.

ECE 8022. Professional Communication Seminar. 1 Credit Hour.
Seminar presentations on oral and written technical communication skills needed by electrical and computer engineering professionals. Credit for this course may not be used toward the master’s degree in ECE.

ECE 8740. Robotics Internship. 1-21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.

ECE 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

ECE 8750. Robotics Research Foundation I. 3 Credit Hours.
Multidisciplinary research course supervised by two robotics faculty from different schools participating in the robotics Ph.D. program.

ECE 8751. Robotics Research Foundation II. 3 Credit Hours.
Continuation of AE 8751 (Robotics Research Foundation I).

ECE 8801. Special Topics. 1 Credit Hour.

ECE 8802. Special Topics. 2 Credit Hours.

ECE 8803. Special Topics. 3 Credit Hours.

ECE 8804. Special Topics. 4 Credit Hours.

ECE 8805. Special Topics. 5 Credit Hours.

ECE 8811. Special Topics. 1 Credit Hour.

ECE 8812. Special Topics. 2 Credit Hours.

ECE 8813. Special Topics. 3 Credit Hours.

ECE 8814. Special Topics. 4 Credit Hours.

ECE 8815. Special Topics. 5 Credit Hours.

ECE 8823. Special Topics. 3 Credit Hours.

ECE 8833. Special Topics. 3 Credit Hours.

ECE 8843. Special Topics. 3 Credit Hours.

ECE 8853. Special Topics. 3 Credit Hours.

ECE 8863. Special Topics. 3 Credit Hours.

ECE 8873. Special Topics. 3 Credit Hours.

ECE 8881. Special Topics-Laboratory. 1 Credit Hour.

ECE 8882. Special Topics-Laboratory. 2 Credit Hours.

ECE 8883. Special Topics-Laboratory. 3 Credit Hours.

ECE 8884. Special Topics-Laboratory. 4 Credit Hours.

ECE 8891. Special Topics-Laboratory. 1 Credit Hour.

ECE 8892. Special Topics-Laboratory. 2 Credit Hours.

ECE 8893. Special Topics-Laboratory. 3 Credit Hours.

ECE 8894. Special Topics-Laboratory. 4 Credit Hours.

ECE 8900. Special Problems. 1-21 Credit Hours.

ECE 8901. Special Problems. 1-21 Credit Hours.

ECE 8902. Special Problems. 1-21 Credit Hours.

ECE 8903. Special Problems. 1-21 Credit Hours.

ECE 8997. Teaching Assistantship. 1-9 Credit Hours.
For students holding graduate teaching assistantships.

ECE 8998. Research Assistantship. 1-9 Credit Hours.
For students holding graduate research assistantships.
ECE 8999. Preparation for Doctoral Dissertation. 1-21 Credit Hours. This course is reserved for students who are actively seeking Ph.D. advisors and/or dissertation topics.

ECE 9000. Doctoral Thesis. 1-21 Credit Hours.

Elect & Comp Engr-Professional (ECEP)

ECEP 6301. Power System Control and Operation. 3 Credit Hours. Introduction to methods for the real time operation and control of power systems; to study the hardware and software technologies of modern energy management systems. Credit will not be awarded for both ECEP 6301 and ECE 6320.

ECEP 6304. Power Systems Economics. 3 Credit Hours. Comprehensive introduction to electricity economics, including economic theory, markets, and policy. Renewable energy, information systems, smart grid, and consumers examined as drivers for market architecture.

ECEP 6305. Power System Planning & Reliability. 3 Credit Hours. To introduce basic concepts as well as analysis and optimization techniques underlying reliability assessment of electric power systems and planning techniques. Credit not awarded for both ECEP 6305 and ECE 6322.

ECEP 6310. Capstone Project. 3 Credit Hours. Apply methods and techniques learned throughout the program to conduct energy system design. Students prepare a project proposal leading to a final report and presentation.

ECEP 6351. Power System Protection. 3 Credit Hours. The theory and practice of modern power system protection techniques. Credit will not be awarded for both ECEP 6351 and ECE 6323.

ECEP 8803. Special Topics. 3 Credit Hours. Special topics for ECEP.

ECEP 8813. Special Topics. 3 Credit Hours. Special topics in ECEP.

ECEP 8823. Special Topics. 3 Credit Hours. Special Topics for ECEP.

Economics (ECON)

ECON 1001. Economics at Work. 1 Credit Hour. Students are introduced to career opportunities in economics and explore/identify how economics is used in different employment contexts.

ECON 1XXX. Economics Elective. 1-21 Credit Hours.

ECON 2100. Economic Analysis and Policy Problems. 3 Credit Hours. Practice in analysis of decision problems of relevance to students in public policy and personal decision areas. Issues relating to individual decisions to produce, consume, invest, and trade will be explored. Analytical approaches will enable students to use and incorporate basic elements of micro- and macro-economic analysis and to appreciate issues regarding testing and measurements. Students can receive credit for either ECON 2100 or ECON 2101, or for ECON 2105/2106. Students cannot receive credit for ECON 2100 and ECON 2101 or for ECON 2100 and ECON 2105/2106 or for ECON 2101 and ECON 2105/2106.

ECON 2101. The Global Economy. 3 Credit Hours. Historical and theoretical understanding of global economy, including international trade, finance, investment production; regional economic integration; economic development; environment, using micro and macroeconomic principles. Students can receive credit for either ECON 2100 or ECON 2101 or for ECON 2105/2106. Students cannot receive credit for ECON 2100 and ECON 2101 or for ECON 2100 and ECON 2105/2106 or for ECON 2101 and ECON 2105/2106.

ECON 2105. Principles of Macroeconomics. 3 Credit Hours. This principles of economics course is intended to introduce students to concepts that will enable them to understand and analyze economic aggregates and evaluate economic policies. Students can receive credit for either ECON 2100 or ECON 2101 or for ECON 2105/2106. Students cannot receive credit for ECON 2100 and ECON 2101 or for ECON 2100 and ECON 2105/2106 or for ECON 2101 and ECON 2105/2106.

ECON 2106. Principles of Microeconomics. 3 Credit Hours. This principles of economics course is intended to introduce students to concepts that will enable them to understand and analyze structure and performance of the market economy. Students can receive credit for either ECON 2100 or ECON 2101 or for ECON 2105/2106. Students cannot receive credit for ECON 2100 and ECON 2101 or for ECON 2100 and ECON 2105/2106 or for ECON 2101 and ECON 2105/2106.

ECON 2250. Statistics for Economists. 3 Credit Hours. This course provides an introduction to probability theory and statistical inference. Students will explore tools and concepts relevant to the study of economics and gain a familiarity with statistical software widely used by economists.

ECON 2698. Undergraduate Research Assistantship. 1-12 Credit Hours. Independent research conducted under the guidance of a faculty member.

ECON 2699. Undergraduate Research. 1-12 Credit Hours. Independent research conducted under the guidance of a faculty member.

ECON 2803. Special Topics. 3 Credit Hours. Special topic offerings of current interest not included in permanent courses.

ECON 2XXX. Economics Elective. 1-21 Credit Hours.

ECON 3110. Advanced Microeconomic Analysis. 3 Credit Hours. Review of important mathematical tools and techniques used in advanced microeconomics. Advanced topics include the estimation of demand and cost functions; the role of government in the economy (externalities, property rights, and public goods); public choice theory; factor markets (especially labor and capital markets); models of monopoly; pricing techniques used by firms with market power (monopolies and oligopolies); and game theory.

ECON 3120. Advanced Macroeconomic Analysis. 3 Credit Hours. Integrates issues arising from international economic relationships with the macroeconomic dynamics of domestic economies. Income determination in the open economy and the effect of stabilization policies on the international monetary system.

ECON 3150. Economic and Financial Modeling. 3 Credit Hours. The course develops student ability to model the essential elements of the investment decision through use of a valuation model and spreadsheet analysis. Expands upon basic knowledge of present value analysis to recognize risk, growth, capital markets, and market valuation of ongoing operations.
ECON 3160. Introduction to Empirical Economics: Data Visualization, Analysis, and Presentation. 3 Credit Hours.
Develops student abilities to logically formulate economic issues; identify and collect data from traditional and Internet sources; analyze data using spreadsheet and presentation software; generate sound and defensible conclusions and recommendations; and make effective presentations of analysis and conclusions.

ECON 3161. Econometric Analysis. 3 Credit Hours.
Econometric techniques and applications in economic and business analysis. Practical issues involving modeling, estimation, hypothesis testing, and emphasizing computer implementation through econometric software.

ECON 3300. Economics of International Energy Markets. 3 Credit Hours.
Economics of international energy markets and how business and government policy decisions are made. Economic models, and financial, institutional and regulatory aspects of energy markets.

ECON 3XXX. Economics Elective. 1-21 Credit Hours.

ECON 4060. Money and Capital Markets. 3 Credit Hours.
An examination of the role of money in the exchange process, the Federal Reserve's monetary policy strategy, and the impact of monetary policy on financial markets and aggregate economic activity.

ECON 4160. Economic Forecasting. 3 Credit Hours.
An introduction to widely used economic and business forecasting methods, emphasizing quantitative approaches and computer implementation through time-series econometric software.

ECON 4170. Mathematics for Economic Modeling. 3 Credit Hours.
The application of mathematical tools to economic analysis. Topics include static analysis, comparative-static analysis, optimization, and dynamic analysis.

ECON 4180. Game Theory for Economics. 3 Credit Hours.
Course covers static games of complete information, dynamic games of complete information, static games of incomplete information and dynamic games of incomplete information.

ECON 4232. Labor Economics. 3 Credit Hours.
Provides an introduction to the theory and practice of contemporary labor economics. The aim is to understand the forces that influence behavior in the labor market.

ECON 4301. Economics of Information, Transactions Costs, and Contracts. 3 Credit Hours.
Builds from analysis of the individual in a trading or transaction situation to study organizations as groups of affiliated individuals. Assesses the situations when organizations are preferable to markets as forms of organizing economic and social activity. Institutional economics and transaction cost economics are studied. Analysis of corporate restructuring and privatization.

ECON 4311. Strategic Economics for Global Enterprise. 3 Credit Hours.
This introductory course on the multinational enterprise (MNE) will examine from an economic and interdisciplinary perspective the challenges facing MNE's in a fast-changing international business environment. The emphasis will be on the use of economic tools to analyze these issues and understand their managerial implications.

ECON 4321. Economics of Technology, Innovation, and Entrepreneurship. 3 Credit Hours.
Analysis of level and type of entrepreneurial activity. Study of business and economic history, legal, and institutional arrangements.

ECON 4340. Economics of Industrial Competition. 3 Credit Hours.
This course examines the theory of the firm, the relationship between market structure, practices, and performance, and the determinants of technological change. The role (and ability) of government policy to solve various market failures, via antitrust enforcement, regulation, etc., is also discussed.

ECON 4345. Economic Regulation. 3 Credit Hours.
This course examines how government economically regulates private industry, how it might regulate more efficiently, and when it should not regulate at all. General theories of antitrust enforcement and economic regulation are developed and applied to a variety of industry cases.

ECON 4350. International Economics. 3 Credit Hours.
This is an introductory course in international economics and will cover important topics in trade theory, trade policy, and international finance. The emphasis will be on using economic tools to analyze a variety of current events in the world economy.

ECON 4351. International Financial Economics. 3 Credit Hours.
This course familiarizes students with concepts, models, theories and applications in international markets.

ECON 4355. Global Financial Economics. 3 Credit Hours.
Examines the system of markets and institutions for exchange of capital, money, and goods, in the global marketplace; impact on national economics and fundamental economic global relationships.

ECON 4357. Law and Economics of the Global Trading System. 3 Credit Hours.

ECON 4360. Network Economics. 3 Credit Hours.
This course will examine alternative network architectures (e.g. simple ring networks, two star networks connected by a trunk line), explore how differences in a network’s economic characteristics have different market structure implications and accordingly, lead to alternative public policy stances.

ECON 4370. Law and Economics. 3 Credit Hours.
To introduce students to economic aspects of legal decision-making and to develop students’ ability to critically analyze the purposes and efficiency of legal decision-making from an economic perspective.

ECON 4411. Economic Development. 3 Credit Hours.
Concepts and studies of developing economies. Selected topics include development experience and theories, growth, agriculture, urbanization, industrialization, and links between trade policy and development.

ECON 4412. Cost-Benefit Analysis. 3 Credit Hours.
This course will acquaint the student with the principles, tools, issues, strengths, and limitations of cost-benefit analysis (CBA); to prepare the student to competently review, criticize, and use CBA studies; and to enable the student to carry out limited CBA studies.

ECON 4415. Conflict and Security in Developing Countries. 3 Credit Hours.
This course engages undergraduate students in the analysis of multiple dimensions of contemporary civil conflict and serves as an introduction to economic studies of terrorism.

ECON 4421. Urban and Regional Economics. 3 Credit Hours.
Economics of regions, cities, and space. Theories of growth and location, effects of urbanization, agglomeration, and congestion. Public policy relating to urban and regional problems.
ECON 4430. Economics of Transportation and Communication Systems. 3 Credit Hours.
Economic analysis for the design, operation, and management of transportation and communication systems. Study of systems analysis and modeling. Application to industry and study of industrial change and dynamics. Special attention to corporate restructuring and industrial consolidation and merger.

ECON 4440. Economics of Natural Resources and the Environment. 3 Credit Hours.
This course covers three aspects of environmental economics. First, it considers policy interventions appropriate to problems involving environmental externalities. Second, it explains methods used to estimate economic values for environmental goods. Finally, it explains the economics of depletable and renewable resources.

ECON 4450. Topics in African American Entrepreneurship. 3 Credit Hours.

ECON 4460. Public Economics. 3 Credit Hours.
This course focuses on public goods, how public decisions regarding public goods are made, the "free-rider" problem, voting and taxation principles, welfare, the Tiebout Hypothesis, budgeting, and fiscal policies.

ECON 4510. Economics of Health and Health Care. 3 Credit Hours.
This course surveys the theoretical and empirical evidence regarding current issues in health and health care. Individual-level models of health behaviors and the demand for health and medical insurance are presented. The economic behaviors of physicians, hospitals, and insurance companies are also characterized. The possible role of government in encouraging the equitable and efficient performance of health markets is discussed with a particular emphasis on current debates involving individual health decisions, health care reform, and the diffusion of new medical technologies.

ECON 4520. Economics of Sports. 3 Credit Hours.
Economic tools will be used to assess the role sports plays in our society.

ECON 4610. Seminar in Economic Policy. 3 Credit Hours.
The objective of the course is to enable students to interpret current economic problems and policies using the economic models learned in their theory courses. Students study the current "Economic Report of the President" and apply analytical tools to the data included in the text. Each student selects a current issue for detailed examination and report.

ECON 4620. History of Economic Thought. 3 Credit Hours.
This course is concerned with the economists who interpreted and influenced the development of capitalism and socialism over the last two centuries.

ECON 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ECON 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ECON 4740. Seminar in Political Economy. 3 Credit Hours.
Capstone experience in which students apply the tools of political economy to international issues. Crosslisted with INTA 4740.

ECON 4741. Thesis in Political Economy. 3 Credit Hours.
Individual project applying the tools of political economy to international issues. Crosslisted with INTA 4741.

ECON 4803. Special Topics in Economics. 3 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4811. Special Topics in Economics. 1 Credit Hour.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4812. Special Topics in Economics. 2 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4813. Special Topics in Economics. 3 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4814. Special Topics in Economics. 4 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4815. Special Topics in Economics. 5 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 4901. Individual Research in Economics. 1-21 Credit Hours.
Designed to permit independent study with a faculty member.

ECON 4910. Individual Research in Economics. 3 Credit Hours.
Course related to independent student research. Topics determined by instructor and student.

ECON 4990. Georgia Internship Program. 1-21 Credit Hours.
Course projects related to professional internships. Topics and requirements to be arranged by student, instructor, and sponsor.

ECON 4XX. Economics Elective. 1-21 Credit Hours.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the School.

ECON 5100. Macroeconomics. 3 Credit Hours.
Macroeconomic theory, including determination of national income, employment, the general price level, and potential for economic growth. Sources of macroeconomic instability and stabilization policies.

ECON 5110. Microeconomic Analysis. 3 Credit Hours.
Microeconomics, resource allocation decisions of households, businesses, and government agencies. Enables the student to understand and apply economic principles to consumer, business, and government decisions.

ECON 5110. Economics of Corporate Strategy. 3 Credit Hours.
Applies microeconomic and macroeconomic theory to the development of modern corporate strategy, including organizational boundaries, market structure and competition, industry analysis, and competitive advantage.
ECON 6121. Research Methods. 3 Credit Hours.
Introduces students to issues related to conducting research in economics. Topics include the derivation of empirical models from theoretical constructs, causality, experimental and non-experimental data, hypothesis testing, and policy analysis. Students also become familiar with electronic data sources and retrieval and are introduced to several professional software packages.

ECON 6130. Quantitative Methods in Economics. 3 Credit Hours.
This course covers fundamental quantitative tools used in economic and econometric analysis, which includes topics in differential calculus, optimization, and linear algebra.

ECON 6140. Probability and Statistics. 3 Credit Hours.
This course gives students the necessary background for taking courses in the econometrics sequence. Topics include descriptive statistics, continuous and discrete probability distributions, parameter estimation, one- and two-sample hypothesis testing, and bivariate regression models.

ECON 6150. Cost-Benefit Analysis. 3 Credit Hours.
The application of economic, financial, and quantitative reasoning and tools to issues of resource allocation and policy, primarily in the public sector.

ECON 6160. Econometric Analysis. 3 Credit Hours.
This course introduces advanced econometric methods on estimation and testing, including instrumental variable estimation, panel data analysis, limited dependent variable models, and simultaneous equation system. The course emphasizes applications of these techniques to real-world problems using professional software packages.

ECON 6161. Econometric Modeling and Forecasting. 3 Credit Hours.
This course introduces techniques on economic and business forecasting, focusing on regression analysis and ARIMA models. Testing for unit roots and cointegration are also discussed. Professional software packages for forecasting are used in applications.

ECON 6162. Discrete Choice Econometrics. 3 Credit Hours.
Focuses on econometric methods for which the dependent variable represents an “either-or” choice. Included in the set of topics are binary and multinomial logic, ordered choice, heteroskedastic extreme value, bivariate and multivariate probit, nested logit structures, discrete/ continuous, and Poisson models. The course includes numerous applications using professional software programs.

ECON 6200. Money and Capital Markets. 3 Credit Hours.
The role of money in the exchange process, Federal Reserve strategy, and the impact of monetary policy on financial markets and aggregate economic activity.

ECON 6310. Public Economics. 3 Credit Hours.
An examination of public goods, public decision making, voting, free riders, taxation principles, welfare, the Tiebout Hypothesis, budgeting, and fiscal policy.

ECON 6330. Urban and Regional Economics. 3 Credit Hours.
Economics of regions, cities, and space. Theories of growth and location, effects of urbanization, agglomeration, and congestion. Public policy relating to urban and regional problems.

ECON 6341. Transportation Economics. 3 Credit Hours.
Examines the economics of transportation markets, including resource allocation, economic welfare, government regulation, and public policy. Using an econometric case study approach, the course develops the necessary steps for testing hypotheses, analyzing the finding of recent studies, and exploring implications for the development and implementation of transportation policy.

ECON 6360. Development Economics. 3 Credit Hours.
Concepts and models of development and growth in Third World countries, emphasizing modeling and testing of recent changes in the Third World. Topics include economic growth, trade and globalization, poverty and inequality, migration, population growth, unemployment, agricultural development, the environment, and the role of the market versus the state.

ECON 6380. Economics of Natural Resources and the Environment. 3 Credit Hours.
Examines the management of natural resources and the environment from an economic perspective. Topics include resource valuation methods, optimal resource management, regulation of pollution and sustainable development. Issues are studied through economic models and empirical testing.

ECON 6431. Strategic Economics for Global Enterprise. 3 Credit Hours.
This course uses economic tools to examine strategic aspects of competition and collaboration in an integrated global market. Topics include the determinants and changes in the boundaries of global firms, competitive advantage and value creation, the nature of global markets, and strategic positioning in the global market place.

ECON 6440. The Economics of Technology, Innovation, and Entrepreneurship. 3 Credit Hours.
This course explores the impact that innovation, technology progress, and R&D activities have upon a firm’s pricing and output behavior. Based upon computer case studies, biotechnology, and telecommunications sectors, the course further analyzes the economic role that firm size and entrepreneurial opportunities play in technological development and innovation.

ECON 6450. Topics in African American Entrepreneurship. 3 Credit Hours.
Explores African-American entrepreneurship from the ante-bellum period to the present. Implications of economic and socio-political developments are given particular attention, including the urbanization of blacks, the rise of benevolent societies following slavery, institutionalization of Jim Crow segregation, desegregation, and affirmative action’s role in an emerging class of black entrepreneurs.

ECON 6460. Industrial Organization. 3 Credit Hours.
This course examines modern theories of the firm, market power, and competitive strategy. Game theory is employed throughout the course.

ECON 6510. Economics of Health and Health Care. 3 Credit Hours.
A critical survey of the current theoretical and empirical issues involving the economics of health and health care.

ECON 6610. Seminar in Economic Policy. 3 Credit Hours.
Interprets current economic problems and policies using fundamental economic principles.

ECON 6620. History of Economic Thought. 3 Credit Hours.
Economists who interpreted and influenced the development of capitalism and socialism over the last two centuries.

ECON 6650. International Economics and Policy Analysis. 3 Credit Hours.
Explores international economic issues. The first part examines aspects of international trade, including specialization and exchange, strategy, labor and capital movements, preferential trading arrangements, and economic development. The second part analyzes international finance, including exchange rates, open economy macro policies, Eurocurrency markets, and the international monetary system.
ECON 6XXX. Economics Elective. 1-21 Credit Hours.

ECON 7000. Master's Thesis. 1-21 Credit Hours.

ECON 7004. Mathematics for Economists. 3 Credit Hours.
Topics include matrix algebra, limits and open sets, implicit functions and their derivatives, quadratic forms and definite matrices, unconstrained and constrained static optimization, dynamic optimization and economic applications.

ECON 7012. Microeconomic Theory I. 3 Credit Hours.
The topics covered in this course are axiomatic theory of consumer behavior, consumer choice, classical demand theory, aggregate demand, choice under uncertainty, producer theory and partial equilibrium analysis.

ECON 7013. Microeconomic Theory II. 3 Credit Hours.
The subject areas in this course are general equilibrium, welfare economics, externalities, public goods, economics of information and inter-temporal dynamic analysis.

ECON 7015. Game Theory. 3 Credit Hours.
Static and dynamic games of complete and incomplete information, and mechanism design. Economic applications include Cournot, Bertrand and Stackelberg duopolies, voluntary provision of public goods, auctions, procurement contracts and time inconsistency issues.

ECON 7022. Econometrics I. 3 Credit Hours.
This course is a comprehensive introduction to mathematical statistics principles underlying statistical analyses in economics. It covers probability theory, expectation, sampling, asymptotic results, the main families of probability distributions studied in economics, estimation and hypothesis testing.

ECON 7023. Econometrics II. 3 Credit Hours.
Linear and nonlinear regression analyses, hypothesis testing, ordinary and generalized least squares, instrumental variables estimation, the generalized method of moments, the method of maximum likelihood, methods for stationary time series, unit roots and cointegration, and specification testing.

ECON 7025. Empirical Research Methods. 3 Credit Hours.
Topics include up-to-date theory for data analysis, including time series, cross section and panel, and empirical applications using panel data, time series data and cross-sectional data.

ECON 7026. Microeconomet Analysis. 3 Credit Hours.
Focus on empirical microeconometric methods, including binary, multinomial, and ordered response models, and event history models. Topics include sampling, estimation, and model interpretation.

ECON 7031. Microeconomics of Innovation. 3 Credit Hours.
Historical evolution of institutions that promote innovation, knowledge as a public good, prizes and intellectual property rights as incentive mechanisms, models of cumulative innovation, patent and copyright enforcement and litigation, private versus public funding, and the effects introduced by network externalities and globalization issues.

ECON 7032. Macroeconomics of Innovation. 3 Credit Hours.
Macroeconomic factors that lead to technological change, the roles played by technological innovation and knowledge spillovers as promoters of economic growth, and the scope for fiscal and monetary policies to foment research and development and hence economic growth.

ECON 7102. Environmental Economics I. 3 Credit Hours.
Topics include externalities, property rights, incentive design, emission taxes, tradable emission permits, renewable and nonrenewable resources, innovation incentives originating with environmental regulations and globalization, trans-boundary pollutants within and across nations, international environmental agreements, and the globalization impacts on the environment.

ECON 7103. Environmental Economics II. 3 Credit Hours.
Empirical course, built upon the theoretical topics covered in Environmental Economics I. Students are given an in-depth coverage of key empirical papers in environmental economics, either papers that have tested several hypotheses derived from theoretical models or papers that are advancing knowledge in the field, generating empirical results for which no theory yet exists.

ECON 7111. Industrial Organization I. 3 Credit Hours.
Topics include market structures and the strategic behavior of firms (monopoly, oligopoly, imperfect competition), research and development, adoption of new technologies, regulations, procurement, antitrust law and competition policy.

ECON 7112. Industrial Organization II. 3 Credit Hours.
Empirical course that trains students to empirically examine the theoretical issues arising in Industrial Organization I. Students are taught about how to use existing data, collect and compile their own datasets and use frontier methods in empirical Industrial Organization to test hypotheses that originate from the theories related to pricing, product and process innovation, among others.

ECON 7121. International Economics I. 3 Credit Hours.
Topics include Ricardian and Heckscher-Ohlin models, extensions to many goods and factors, trade in intermediate inputs and wages, increasing returns, gains from trade and regional agreements, import tariffs and dumping, import quotas and export subsidies, political economy of trade policy and trade and endogenous growth. It also examines the relationship between international trade, foreign direct investment and technological innovation and diffusion.

ECON 7122. International Economics II. 3 Credit Hours.
Empirical extension of International Economics I, which surveys the empirical literature and presents the key empirical results related to the topics discussed in the theoretical course. It also discusses frontier empirical work in the field, empirical studies that go beyond the testable hypotheses originated with theory.

ECON 7130. Research Development and Presentation Workshop. 3 Credit Hours.
Lecture topics include instructions on writing research papers in Economics and presenting their work. Contents of presentations and research undertaken by students depend on students' research interests. Students receive personalized feedback on research and presentations.

ECON 8801. Special Topics. 1 Credit Hour.

ECON 8802. Special Topics. 2 Credit Hours.

ECON 8803. Special Topics. 3 Credit Hours.

ECON 8910. Special Problems. 1-21 Credit Hours.

ECON 8990. Special Problems. 1-21 Credit Hours.

ECON 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding teaching assistantships.

ECON 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding research assistantships.

ECON 9000. Doctoral Thesis. 1-21 Credit Hours.
English (ENGL)

ENGL 0199. Support for English Composition (co-requisite to accompany ENGL 1101). 2 Credit Hours. This course provides support for students taking ENGL 1101, reinforces student competencies, develops language skills, and encourages reflection.

ENGL 0999. Foundations for English Composition. 3 Credit Hours. This course provides development of basic skills used in writing the sentence, paragraph, and short essay. Preparing students for college-level composition, ENLG 0999, and ENGL 1101.

ENGL 1101. English Composition I. 3 Credit Hours. Develops analytical reading and writing skills through the investigation of methods used in cultural and literary studies and the application of those methods to specific texts.

ENGL 1102. English Composition II. 3 Credit Hours. Develops communication skills in networked electronic environments, emphasizes interpretation and evaluation of cultural texts, and incorporates research methods in print and on the Internet.

Free Elective (FREE)

FREE 1XXX. Free Elective. 1-21 Credit Hours.

FREE 2XXX. Free Elective. 1-21 Credit Hours.

FREE 3XXX. Free Elective. 1-21 Credit Hours.

FREE 4XXX. Free Elective. 1-21 Credit Hours.

FREE 6XXX. Free Elective. 1-21 Credit Hours.

French (FREN)

FREN 1001. Elementary French I. 3 Credit Hours. An introduction to the French language and culture of the French-speaking world. Beginning of a survey of basic French grammar and the development of the four language skills of listening, speaking, reading, and writing French. Some aspects of everyday life in the French speaking world will also be introduced. Humanities credit awarded for FREN 1001 upon successful completion of FREN 1002 or FREN 2001.

FREN 1002. Elementary French II. 3 Credit Hours. The second part of an introduction to the French language and the culture of the French-speaking world. Completion of the survey of basic French grammar and further development of the four language skills. Aspects of everyday life in the French-speaking world will be introduced.

FREN 1813. Special Topics. 3 Credit Hours. Topics of current interest in French.

FREN 1XXX. French Elective. 1-21 Credit Hours.

FREN 2001. Patterns of French Culture I. 3 Credit Hours. Proficiency-based introduction to selected sociocultural aspects of France: geography, demography, social institutions, history, art, socioeconomic problems, and current events; incorporates grammar review. Conducted in French.

FREN 2002. Patterns of French Culture II. 3 Credit Hours. Proficiency-based introduction to selected sociocultural aspects of France: geography, demography, social institutions, history, art, socioeconomic problems, and current events; incorporates grammar review. Conducted in French.

FREN 2005. LBAT French Culture and Language. 6 Credit Hours. Proficiency-based introduction to sociocultural aspects of the French speaking world. Part of the French intensive summer LBAT program. Admission by application only. Conducted in French.

FREN 2698. Undergraduate Research Assistantship. 1-12 Credit Hours. Independent research conducted under the guidance of a faculty member.

FREN 2699. Undergraduate Research. 1-12 Credit Hours. Independent research conducted under the guidance of a faculty member.

FREN 2813. Special Topics. 3 Credit Hours. Topics of current interest in French.

FREN 2XXX. French Elective. 1-21 Credit Hours.

FREN 3000. Survey of French Literature. 3 Credit Hours. This course introduces students to French literature. Taught in French.

FREN 3001. French Literature from 1800 to 1850. 3 Credit Hours. Romanticism, the reappearance of lyric poetry, the importance of the individual as opposed to classical anonymity. Realism and naturalism with emphasis on the development of the novel. Conducted in French.

FREN 3002. French Literature from 1850 to 1900. 3 Credit Hours. Exploration of currents in modern prose, poetry, and drama. Conducted in French.

FREN 3004. Drama Workshop. 3 Credit Hours. Literary and theatrical aspects of French drama are explored through class discussion and performance of selections from contemporary and classical plays.

FREN 3011. France Today I. 3 Credit Hours. Culture, history, and geography of modern France through lectures, videos, downloads from the Internet, audio and video tapes, and class discussions. Short papers, generated by use of a computer software package, treating assigned topics to enhance writing skills. Conducted in French.

FREN 3012. France Today II. 3 Credit Hours. Culture, history, and geography of modern France through lectures, videos, downloads from the Internet, audio and video tapes, and class discussions. Short papers, generated by use of a computer software package, treating assigned topics to enhance writing skills. Conducted in French.

FREN 3014. Introduction to Contemporary France. 3 Credit Hours. This course will introduce students enrolled in the Georgia Tech Lorraine summer program to issues in contemporary France. Taught in French.

FREN 3015. Social Identities in Contemporary French Culture. 3 Credit Hours. Analysis of production, reception and perceptions of clashing class identities in France via films, novels, plays, short stories, and newspapers. Conducted in French.

FREN 3017. Paris: Modernity Today. 3 Credit Hours. This course explores contemporary Paris and its representations in light of its modern history and culture. Taught in French.
FREN 3030. French Phonetics. 3 Credit Hours.
A detailed analysis of the significant features of the French sound system, intonation curves, and graphic representation of individual sounds. Conducted in French.

FREN 3040. Reading and Translation. 3 Credit Hours.
This course will prepare students to the techniques of rapid reading in French, and give them tools to translate and use texts. Taught in French.

FREN 3061. France: Culture, Economy, Commerce I. 3 Credit Hours.
Advanced Business French, overview of French commerce, communications, publicity, various social milieus, and the work place.

FREN 3062. France: Culture, Economy and Commerce II. 3 Credit Hours.
Advanced Business French. Overview of French commerce, communications, publicity, various social milieus, and the work place.

FREN 3110. Comics & Graphic Arts. 3 Credit Hours.
This course studies French comics as a genre and its interrelationships with graphic arts and literature. Conducted in French.

FREN 3120. French Conversation. 3 Credit Hours.
This class is designed to help students improve their French speaking skills, and use French at an advanced level. Not for beginners. Conducted in French.

FREN 3121. Advanced Composition. 3 Credit Hours.
In-depth study of advanced grammar patterns as used in written expressions. Conducted in French.

FREN 3500. Field Work Abroad. 1-3 Credit Hours.
This course will focus on theme-based individual projects abroad.

FREN 3551. French for the Professions I. 3 Credit Hours.
Study aspects of literature, philosophy, culture, geography, history, business, and industry in France and other francophone countries in these applied-language courses. Taught in French.

FREN 3691. Business Communication and Correspondence in France. 3 Credit Hours.
Refinement of accuracy and flexibility in oral/written expression. Focus on appropriate use of strategies, business negotiation protocols, lexical precision. Incorporates grammar review. Part of the French intensive summer language program. See catalog p. ??. Admission by application only.

FREN 3692. French Business and Technology. 3 Credit Hours.
Study of business, technological, and cultural issues, tendencies and patterns of behavior among French speaking people. Value systems and their manifestations. Part of the French intensive summer language program. See catalog p. ?? Admission by application only.

FREN 3693. French Business and Technology II. 3 Credit Hours.
Business organizations and use of technology in France. Specialized vocabularies of economics, engineering, and computer science. Attention to geographical and anthropological aspects of selected social and political situations. Part of the French intensive summer language program. See catalog p. ?? Admission by application only.

FREN 3694. French Business and Technology Abroad. 3 Credit Hours.
Two-week seminar in France highlighting business and technology. Field study of technology firms, economic trends, business institutions, and cultural protocols. Journals and papers assigned. Admission by application only.

FREN 3697. Paris in Cinema/Cinema in Paris. 3 Credit Hours.
This course offers an in-depth look at the history, industry, and scope of French cinema through the myth of Paris in films. Conducted in French.

FREN 3813. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the French language not covered in other courses in the department.

FREN 3821. Special Topics. 1 Credit Hour.
Topics of current interest in French.

FREN 3822. Special Topics. 2 Credit Hours.
Topics of current interest in French.

FREN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in French.

FREN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in French.

FREN 3XXX. French Elective. 1-21 Credit Hours.

FREN 4001. French Stylistics. 3 Credit Hours.
Advanced study of syntax and semantics, aimed at development of stylistic sensitivity. Analysis of representative literary and current interest texts for practice in conversation and composition. Conducted in French.

FREN 4005. Contemporary French Literature. 3 Credit Hours.
This course will study contemporary French authors and their ideas in context, with a focus on specific authors or texts. Taught in French.

FREN 4011. French Art. 3 Credit Hours.
This course will explore contemporary French art in the historical, economic and cultural contexts of production and reception. Taught in French.

FREN 4013. French Literature and the Visual Arts. 3 Credit Hours.
This course studies French Literature and its interrelationships with various arts (painting, music, cinema, architecture or opera), often through several periods. Conducted in French.

FREN 4061. French Science and Technology I. 3 Credit Hours.
Introduction to scientific and technical French. Analysis and discussion of scientific and technical material pertaining to current issues in the scientific and technical communities. Background in chemistry, physics, or biology required.

FREN 4064. Sustainability & Development in the Francophone World. 3 Credit Hours.
This course will analyze current sustainability & development issues in the Francophone World and policies initiated to address them. Taught in French.

FREN 4080. Politics and Public Policy in France. 3 Credit Hours.
This course will analyze current issues in French society and the public policies initiated to address them. Taught in French.

FREN 4089. Food, Arts And Media. 3 Credit Hours.
This course will focus on the culture of food in French arts, literature and media, examining its social and symbolic values through the centuries. Taught in French.

FREN 4101. French Art. 3 Credit Hours.
This course will explore contemporary French art in the historical, economic and cultural contexts of production and reception. Taught in French.

FREN 4103. Francophone Africa Today. 3 Credit Hours.
This course will explore contemporary Africa and its representations in light of its modern history and culture.
FREN 4105. Francophone Cinema. 3 Credit Hours.
This course will explore contemporary Africa and its representations in light of its modern history and culture. Taught in French.

FREN 4107. The African Diasporas in France. 3 Credit Hours.
Intercultural class taught in French about the complex nature of the African Diasporas in France from their historical development to our present day society.

FREN 4110. Gender in French-Speaking Societies. 3 Credit Hours.
Course explores the intersection of gender with French history, politics, ethics, laws, professions, medical fields, social classes, religious, nationalisms, and (perceived) ethnicity. Taught in French.

FREN 4200. Introduction to French Philosophy. 3 Credit Hours.
Introduction to major French philosophical texts with an emphasis on post-WWI thinkers (includes Existentialism, Structuralism, Post-Structuralism, Postmodernism, Deconstructionism). Conducted in French.

FREN 4241. French Cinema I: Cinematic Experiences. 3 Credit Hours.
A topical approach focusing on the major contributions of French cinema and cinematographic aesthetics, from the 1908s to contemporary films. Conducted in French.

FREN 4242. French Cinema II: The French New Wave. 3 Credit Hours.
In-depth and concentrated study of French cinema. Particular attention devoted to the French New Wave, the development of film theory and criticism in France. Conducted in French.

FREN 4246. French and Francophone Films and Media. 3 Credit Hours.
This course examines socio-historical, political, economic and cultural issues through films and other media in France and/or the Francophone world through films. Taught in French.

FREN 4250. Reading Les Miserables. 3 Credit Hours.
This course examines its entirety the world famous novel from Victor Hugo: Les Miserables within its artistic and social environments and messages. Taught in French.

FREN 4300. France and Globalization. 3 Credit Hours.
Intercultural class about French attitudes and policies toward globalization as well as France's role in the European Community. Conducted in French.

FREN 4500. Advanced Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in the French-speaking world. Intended for students who have some study-abroad experience in a French-speaking country. Conducted in French.

FREN 4695. French Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in French in relation to the practical goals/objectives of the entity.

FREN 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

FREN 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

FREN 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

FREN 4823. Special Topics. 3 Credit Hours.
Topics of current interest in French.

FREN 4833. Special Topics. 3 Credit Hours.
Topics of current interest in French.

FREN 4901. Special Problems in French. 1-21 Credit Hours.
Provides the special instruction required under special programs.

FREN 4902. Special Problems in French. 1-21 Credit Hours.
Provides the special instruction required under special programs.

FREN 4XXX. French Elective. 1-21 Credit Hours.

FREN 6013. Literature & Visual Arts. 3 Credit Hours.
This course examines the relationship between Word and Image (including cinema/ film adaptations, photography, hypertext, graphic design, and diverse artistic genres). Taught in French.

FREN 6101. Contemporary Francophone Literature. 3 Credit Hours.
This course will analyze Francophone Literatures produced outside of France since 1960 with a focus on their modern and innovative aspects. Taught in French.

FREN 6105. Francophone Cinema. 3 Credit Hours.
This interdisciplinary course will explore through modern and contemporary Francophone films representations of Africa in light of its modern history and culture. Taught in French.

FREN 6300. France and Globalization. 3 Credit Hours.
Intercultural class about French attitudes and policies toward globalization as well as France's role in the European Community. Conducted in French.

FREN 6500. Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in the French-speaking world. Taught in French.

FREN 6510. Applied Language Practicum. 1 Credit Hour.
Students will serve as researchers, student aides and apprentice instructors for any 3/4000-level undergraduate course approved by their adviser and the course.

FREN 6511. Applied Language Practicum Abroad. 1 Credit Hour.
Students serve as researchers and apprentice instructors in the LBAT or other faculty-led overseas language immersion program of the School of Modern Languages.

FREN 6695. French Internship Abroad. 3 Credit Hours.
Students complete internships abroad in a French-speaking country. Conducted in French. Online course.

FREN 6696. French Internship Abroad. 6 Credit Hours.
Students complete internships abroad in a French-speaking country. Conducted in French. Online course.

FREN 7000. Master’s Thesis. 1-6 Credit Hours.
Optional thesis course.

FREN 8803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in the regular course offerings.

Foreign Studies (FS)

FS 4000. Foreign Studies. 12 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

FS 4003. Foreign Studies. 3 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

FS 4006. Foreign Studies. 6 Credit Hours.
Course used by students participating in an exchange program with a foreign university.
FS 4009. Foreign Studies. 9 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

FS 6000. Foreign Studies. 12 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

FS 6003. Foreign Studies. 3 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

FS 6006. Foreign Studies. 6 Credit Hours.
Course used by students participating in an exchange program with a foreign university.

German (GRMN)

GRMN 1001. Elementary German I. 3 Credit Hours.
An introduction to German language and culture. Beginning of a survey of basic German grammar and the development of the four language skills of listening, speaking, reading and writing. Some aspects of everyday life in the German-speaking world will also be introduced. Humanities credit awarded for GRMN 1001 upon successful completion of GRMN 1002 or 2001.

GRMN 1002. Elementary German II. 3 Credit Hours.
The second part of an introduction to German language and culture. Survey of more basic German grammar and the development of the four language skills of listening, speaking, reading and writing. Some aspects of everyday life in the German-speaking world will also be introduced.

GRMN 1813. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 1XXX. German Elective. 1-21 Credit Hours.

GRMN 2001. Intermediate German I. 3 Credit Hours.
Review of basic grammatical concepts and vocabulary build-up. Selected readings, audio and video material on the cultural, historical, and intellectual development of Germany. Teaching and class discussion in German.

GRMN 2002. Intermediate German II. 3 Credit Hours.
Continuation of GRMN 2001.

GRMN 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

GRMN 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

GRMN 2813. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 2XXX. German Elective. 1-21 Credit Hours.

GRMN 3010. Introduction to German Literature. 3 Credit Hours.
Introduction to the periods and genres of German literature from the Middle Ages to modern times. Conducted in German.

GRMN 3011. Germany Today. 3 Credit Hours.
Introduction to current issues in contemporary Germany. Lectures, papers, and class discussions. Conducted in German.

GRMN 3024. Conversation and Composition. 3 Credit Hours.
A combination of conversation, composition, and stylistics, this course is designed to promote listening, speaking, and writing proficiency; expansion of vocabulary; stylistic skills.

GRMN 3026. German Stylistics. 3 Credit Hours.
This course introduces students to stylistic difference and idiomatic usages of German, expands vocabulary, and enlarges upon grammatical and syntactic structures. Taught in German. Credit not allowed for both GRMN 3026 and GRMN 3026.

GRMN 3030. Crossing Borders in Literature & Culture. 3 Credit Hours.
The class examines politics of immigration and integration such as national, geographic, ethnic, race, gender, and sexuality boundaries in literature and film. Taught in German.

GRMN 3055. German Fairy Tales: From the Grimm Brothers to Disney. 3 Credit Hours.
Discussion of socio-historical, cultural, and literary themes in German fairy tales, their place in Western tradition, and their echo in contemporary society. Conducted in German.

GRMN 3071. Introductory Business German I. 3 Credit Hours.
Analysis and discussion of texts and videos pertaining to issues in the current business world.

GRMN 3110. Television & Electronic Culture. 3 Credit Hours.
This course examines the significance of television, computer games, film and online sites (among other sources) in contemporary German culture. Taught in German.

GRMN 3695. German Business and Technology: Structure, Communication and Correspondence. 3 Credit Hours.
Overview of Germany's business structure, such as industries, service sector, banking system, relation to the European Union, the United States, and the global economy. Site visits. Admission by application only.

GRMN 3696. German Business and Technology: Current Issues. 3 Credit Hours.
Themes oriented toward business German, with emphasis on historical, social, cultural, and political questions pertaining to the development of modern Germany. Admissions by application only.

GRMN 3697. German Business and Technology: Communication. 3 Credit Hours.
Development of language skills through discussions, compositions, journals, oral reports, and presentations. Individual and group projects use interviews, explore German surroundings, and focus on cross-cultural issues. Admission by application only.

GRMN 3813. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the German language not covered in other courses in the department.

GRMN 3821. Special Topics. 1 Credit Hour.
Topics of current interest in German.

GRMN 3822. Special Topics. 2 Credit Hours.
Topics of current interest in German.

GRMN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 3901. Special Problems. 1-21 Credit Hours.
Small group or individual instruction.

GRMN 3XXX. German Elective. 1-21 Credit Hours.

GRMN 4001. Advanced German Grammar. 3 Credit Hours.
Study and practice of advanced grammatical structures for complex communicative practice. Taught in German.
GRMN 4010. Perspectives of German Media. 3 Credit Hours.
A comparison of differences in representation between various
German media sources applied towards the development of a critical
understanding of media language to influence, persuade, inform and
entertain.

GRMN 4012. Typical German Towards a German Identity. 3 Credit Hours.
Images of a nation are composed of characteristic traits, some cliches
and stereotypes. This course examines a possible German Identity from
a variety of viewpoints: history, geography, linguistics, culture, values and
traditions, literature, music and the arts, architecture, film, politics and
daily life.

GRMN 4023. Selected Readings in German Literature. 3 Credit Hours.
Study of selected authors, movements, genres, in German literature.
Selection varies. Conducted in German.

GRMN 4024. German Film and Literature. 3 Credit Hours.
A survey of German culture and recent past as presented through films
and related literary works illuminating Germany's quest for identity since
1945.

GRMN 4025. German Culture & Film. 3 Credit Hours.
This course offers a survey of German Cinema from the 1930s to the
1900s. These films will be analyzed as reflections of the historical, social,
and cultural context in which they originated.

GRMN 4026. German Post-Wall Cinema. 3 Credit Hours.
This course covers a cross-section of the most important German
films since 1989. Students will analyze the narratives in the context of
contemporary German history, society, and culture.

GRMN 4027. Political Songwriting in Germany, 1945 to Present. 3 Credit Hours.
This class offers an overview of political songwriting in Germany(GDR
and FRG) between 1945 and the present. Taught in German.

GRMN 4028. Americanization and Anti-Americanism in the Federal
Republic of Germany. 3 Credit Hours.
This class surveys the reception of US culture in West Germany from the
end of WWII to today. Taught in German.

GRMN 4061. Advanced Business German I. 3 Credit Hours.
Advanced principles of German business organization and language.
Taught through the use of reading, audio, and video materials. Conducted
in German.

GRMN 4065. The European Union: History, Institutions and Current
Issues and Challenges. 3 Credit Hours.
The European Union plays an increasing role in European politics and
daily life. This seminar examines the origins of the European Union, its
institutions, legal framework, and current topics such as immigration,
enlargement, and relationships with other countries.

GRMN 4120. Literary Representations of German History. 3 Credit Hours.
This course examines how literary representation reveals interpretations
of historical events and the relationship between history and fiction in
selected German history. Taught in German.

GRMN 4126. Advanced Stylistics: Grammar and Discourse. 3 Credit Hours.
This course incorporates study of stylistic difference and idiomatic
usages of German, expands vocabulary, and solidifies and enlarges upon
grammatical and syntactic structures. Taught in German.

GRMN 4310. S&T in German History and Culture. 3 Credit Hours.
Course surveys the history of science, technology, and industrialization in
German-speaking countries, as well as current STEM research in German.
Taught in German.

GRMN 4500. Advanced Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of
current issues Germany. Intended for students who have had some study-
abroad experience in Germany. Conducted in German.

GRMN 4691. Berlin: The Capital in the 20th Century. 3 Credit Hours.
By engaging contemporaneous topics in film, literature, photography, etc.,
students will investigate topics that dominated the different periods of
Berlin's turbulent history. Taught in German.

GRMN 4693. Industrial Transformation and German Society/Economy. 3 Credit Hours.
Examination of technological and societal changes resulting from
transformation of an industrial area to one dominated by high tech and
media industries. Taught in German.

GRMN 4695. German Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students
enhance their language skills and cultural knowledge in German in
relation to the practical goals/objectives of the entity.

GRMN 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

GRMN 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

GRMN 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

GRMN 4823. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 4833. Special Topics. 3 Credit Hours.
Topics of current interest in German.

GRMN 4901. Special Problems in German. 1-21 Credit Hours.
Special problems course for advanced students. Topics to be arranged
with instructor.

GRMN 4902. Special Problems in German. 1-21 Credit Hours.
Special problems course for advanced students. Topics to be arranged
with instructor.

GRMN 4XXX. German Elective. 1-21 Credit Hours.

GRMN 6001. Advanced German Grammar. 3 Credit Hours.
Study and practice of advanced grammatical structures for complex
communicative settings. Taught in German.

GRMN 6010. Perspectives of German Media. 3 Credit Hours.
Studies of various German media sources applied towards the
development of a critical understanding of media languages to influence,
persuade inform and entertain. Taught in German.

GRMN 6028. Americanization and Anti-Americanism in the Federal
Republic of Germany. 3 Credit Hours.
This class surveys the reception of US culture in West Germany from the
end of WWII to today. Taught in German.

GRMN 6310. S&T in German History and Culture. 3 Credit Hours.
Course surveys the history of science, technology, and industrialization in
German-speaking countries, as well as current STEM research in German.
Taught in German.

GRMN 6500. Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of
current issues in Germany. Taught in German.
GRMN 6510. Applied Language Practicum. 3 Credit Hours.
Students will serve as researchers, student aides and apprentice
instructors for any 3/4000-level undergraduate course approved by their
adviser and the course.

GRMN 6511. Applied Language Practicum Abroad. 3 Credit Hours.
Students serve as researchers and apprentice instructors in the LBAT or
other faculty-led overseas language immersion program of the School of
Modern Languages.

GRMN 6695. German Internship Abroad. 3 Credit Hours.
German Internship Abroad.

GRMN 6696. German Internship Abroad. 6 Credit Hours.
Students complete internships abroad in a German-speaking country.
Conducted in German. Online course.

GRMN 7000. Master’s Thesis. 1–6 Credit Hours.
Optional thesis course.

GRMN 8803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in the regular course offerings.

Georgia Tech (GT)

GT 0900. Challenge Summer Intensive Residential Program:
Interpersonal Development Course. 2 Credit Hours.
Challenge is a summer residential program for incoming freshman. This
course provides critical skills and competencies for the interpersonal and
communication development components of Challenge.

GT 1000. Freshman Seminar. 1 Credit Hour.
Discussion of topics related to academic, social and professional
success including learning styles, time management, major and career
exploration, leadership and teamwork.

GT 1201. Exploring Grand Challenges. 3 Credit Hours.
A problem-based learning approach to developing problem solving skills
for multidisciplinary teams of freshmen to tackle Grand Challenges facing
humanity.

GT 1900. Re-entry Planning. 1 Credit Hour.
Placeholder for returning student.

GT 2000. Transfer Student Seminar. 1 Credit Hour.
Discussion of topics related to academic, social and professional
success including learning styles, time management, major and career
exploration, leadership and teamwork.

GT 2100. Seminar on Academic Success. 1 Credit Hour.
This academic skills seminar is designed to help students develop
personalized strategies for success within the rigorous academic
environment at Georgia Tech. This is a non-credit bearing course which
cannot be used toward degree requirements.

GT 2201. Grand Challenges Research Project. 1 Credit Hour.
This course is for participants in year 2 of the Grand Challenges program.
Students will organize into small teams of 4-8 student to pursue research
and development projects that were approved and funded in year 1.
Participating students can also propose new projects.

GT 2202. Grand Challenges Research Project. 2 Credit Hours.
This course is for participants in year 2 of the Grand Challenges program.
Students will organize into small teams of 4-8 student to pursue research
and development projects that were approved and funded in year 1.
Participating students can also propose new projects.

GT 2500. ThinkBig@Tech. null Credit Hours.
ThinkBig@Tech are faculty led Living Learning Communities. Students
participating in these programs will be engaging closely with faculty.
The topic of each Living Learning Community is based on the faculty
interests, and students sign up for the one they are interested in.

GT 2694. Undergraduate Internship. 1–21 Credit Hours.
Undergraduate Internship for which the student is paid, Freshmen and
Sophomores only.

GT 2801. Special Topics. 1 Credit Hour.

GT 2802. Special Topics. 2 Credit Hours.

GT 2803. Special Topics. 3 Credit Hours.
Special Topics - content varies.

GT 2811. Special Topics. 1 Credit Hour.

GT 2812. Special Topics. 2 Credit Hours.

GT 2813. Transfer Student Seminar. 1 Credit Hour.
Discussion of topics related to the academic and personal transition of
new transfer students, including campus resources, major and career
exploration, and academic and personal success strategies.

GT 2901. Special Problems. 21 Credit Hours.

GT 3801. Special Topics. 1 Credit Hour.

GT 3811. Special Topics. 1 Credit Hour.

GT 3821. Special Topics. 1 Credit Hour.

GT 4500. ThinkBig@Tech. null Credit Hours.
ThinkBig@Tech are faculty led Living Learning Communities. Students
participating in these programs will be engaging closely with faculty.
The topic of each Living Learning Community is based on the faculty
interests, and students sign up for the one they are interested in.

GT 4694. Undergraduate Internship. 1–21 Credit Hours.
Undergraduate Internship for which the student is paid, Juniors and
Seniors only.

GT 4701. Inventions and Startups. 3 Credit Hours.
The theory and practice of innovation and startup creation.

GT 4801. Special Topics. 1 Credit Hour.

GT 4802. Special Topics. 2 Credit Hours.

GT 4803. Special Topics. 3 Credit Hours.
Special Topics - content varies.

GT 4813. Project in Energy Systems. 3 Credit Hours.
Multidisciplinary project in the area of energy systems. Open to students
completing the minor in Energy Systems. Students must have completed
or be on track to complete all requirements for the energy systems minor
except this course.

GT 4822. Special Topics. 2 Credit Hours.
Special Topics (lab and lecture)

GT 4823. Special Topics - Design. 3 Credit Hours.
Seniors will work in teams to apply a systematic design process to real
multidisciplinary problems. Problems selected from a broad spectrum
of interest areas, including biomedical, environmental, mechanical,
industrial design, electrical and thermal/fluids.

GT 4824. Special Topics. 4 Credit Hours.
Special Topics (lecture and lab)

GT 4833. Special Topics. 3 Credit Hours.
Special Topics course - content varies.
GT 4903. Special Problems. 1-21 Credit Hours.
Multi-disciplined research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor(s).

GT 8801. Special Topics. 1 Credit Hour.
Special Topics for Graduate Level.

Georgia Tech Lorraine (GTL)

GTL 2000. Georgia Tech Lorraine Seminar. 1 Credit Hour.
Seminar discussing aspects of European cities. Part of the Georgia Tech Lorraine summer program.

GTL 6001. GTL-SUPELEC. 1-11 Credit Hours.
GTL - SUPELEC.

GTL 6010. CentraleSupelec. 12 Credit Hours.

GTL 6011. GTL and SUPELEC. 12 Credit Hours.
For students attending both GTL and SUPELEC.

GTL 6012. GTL and ENSAM. 12 Credit Hours.
For students attending both GTL and ENSAM.

GTL 6014. GTL and ENSEA. 12 Credit Hours.
For students attending both GTL and ENSEA.

GTL 6015. GTL and INPL ENSEM. 12 Credit Hours.
For students attending both GTL and INPL ENSEM.

GTL 6016. GTL and INPT ENSEEIHT. 12 Credit Hours.
For students attending both GTL and INPT ENSEEIHT.

GTL 6018. GTL - UTC. 12 Credit Hours.

GTL 6020. GTL-INSIA. 12 Credit Hours.
For students attending both GTL and INSA.

GTL 6021. CentraleSupelec. 1-21 Credit Hours.

GTL 6022. ENSTA Bretagne. 12 Credit Hours.

GTL 6023. IMT. 12 Credit Hours.
For Ecoles des Mines(all) + Telecom Sud Paris.

GTL 6024. USTL. 12 Credit Hours.

GTL 6025. GTL and ENSAM. 1-11 Credit Hours.

GTL 6110. GTL - BRESCLAIA. 12 Credit Hours.

GTL 6114. GTL-UTT. 12 Credit Hours.
For students attending both GTL and UTT (universite de Technologie de Troye)

GTL 6119. GTL-ESIE. 12 Credit Hours.

Hindi (HIN)

HIN 1801. Special Topics. 1 Credit Hour.
Topics of current interest in Hindi languages.

HIN 1803. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 1804. Special Topics. 4 Credit Hours.
Topics of current interest in Hindi languages.

HIN 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 1814. Topics of current interest in Hindi Languages. 4 Credit Hours.
Topics of current interest in Hindi Languages.

HIN 1823. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 1824. Topics of current interest in Hindi Languages. 4 Credit Hours.
Topics of current interest in Hindi Languages.

HIN 2813. Topics of current interest in Hindi Languages. 3 Credit Hours.
Topics of current interest in Hindi Languages.

HIN 3813. Topics of current interest in Hindi Languages. 3 Credit Hours.
Topics of current interest in Hindi Languages.

HIN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 4813. Topics of current interest in Hindi Languages. 3 Credit Hours.
Topics of current interest in Hindi Languages.

HIN 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

HIN 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Hindi languages.

History (HIST)

HIST 2111. The United States to 1877. 3 Credit Hours.
Colonial settlement, the American Revolution and the Constitution, antebellum expansion, slavery and plantation economy, sectional conflict and Civil War, Reconstruction.

HIST 2112. The United States since 1877. 3 Credit Hours.
The social, political, and economic history of the United States since Reconstruction. Topics include American industrialization, two world wars, New Deal, and the Civil Rights movement.

Health Physics (HP)

HP 6403. Radiological Health I. 3 Credit Hours.
Applied nuclear and atomic physics, radioactive decay, radiation interactions, radiation dosimetry, and safety guidelines; instrumentation, radiation protection and basics of criticality safety.

HP 6406. Radiological Health II. 3 Credit Hours.
Radiation quantities, microdosimetry, biological effects of ionizing radiation, radiation risk, internal radiation protection, ALARA, and radiological emergency response.

HP 6416. Applied Radiological Health Laboratory. 3 Credit Hours.
Advanced laboratory course in radiochemical and instrumental analysis. Practical radiation/radioactivity monitoring problems in nuclear facilities and environmental surveillance.

HP 6506. Operational Health Physics. 3 Credit Hours.
Radiation sources, radiological safety practices and procedures for nuclear facilities, and the impact of radiological safety in the design of such facilities.

HP 6601. Industrial Hygiene. 3 Credit Hours.
Chemical, physical, biological, and ergonomic exposures. Occupational environment regulations. Application of scientific and engineering principles to hazard evaluation and general occupational health control measures.

HP 6755. Radiological Assessment and Waste Management. 3 Credit Hours.
Critical analyses of sources and human exposures, mathematical models for movement through the biosphere, environmental transport, and exposure for nuclear facilities and waste disposal processing. Crosslisted with NRE 6755.
HP 6756. Radiation Physics. 3 Credit Hours.
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity and isotopes, cross sections, electromagnetic radiation, neutrons, and charged particle interaction with matter. Crosslisted with NRE 6756.

HP 6757. Radiation Detection. 3 Credit Hours.
Introduction to the theory and application of radiation detectors, measurement methods, signal processing, and data analysis. Crosslisted with NRE 6757.

HP 6758. Numerical Methods in Mechanical Engineering. 3 Credit Hours.
Numerical methods for solution of engineering problems; initial, eigenvalue, and boundary-value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with ME and NRE 6758.

HP 6XXX. Health Phys Eelective. 1-21 Credit Hours.

HP 7000. Master's Thesis. 1-21 Credit Hours.

HP 7757. Teaching Practicum. 3 Credit Hours.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with NRE, ME, and CHBE 7757.

HP 8011. Seminars in Health Physics. 1 Credit Hour.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

HP 8012. Seminars in Health Physics. 1 Credit Hour.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

HP 8801. Special Topics in Health Physics. 1 Credit Hour.
Special topic offerings of current interest in health physics not included in regular courses.

HP 8802. Special Topics in Health Physics. 2 Credit Hours.
Special topic offerings of current interest in health physics not included in regular courses.

HP 8803. Special Topics in Health Physics. 3 Credit Hours.
Special topics offerings of current interest in health physics not included in regular courses.

HP 8804. Special Topics in Health Systems. 4 Credit Hours.
Special topic offerings of current interest in health systems not included in regular courses.

HP 8805. Special Topics in Health Physics. 5 Credit Hours.
Special topic offerings of current interest in health physics not included in regular courses.

HP 8806. Special Topics in Health Physics. 6 Credit Hours.
Special topic offerings of current interest in health physics not included in regular courses.

HP 8901. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8902. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8903. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8904. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8905. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8906. Special Problems in Health Physics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8907. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate teaching assistantship.

HP 8908. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate research assistantship.

HP 9000. Doctoral Thesis. 1-21 Credit Hours.

Health Systems (HS)

HS 4001. Introduction to Health Systems. 3 Credit Hours.
Background of U.S. healthcare; the workforce; mechanisms and costs of delivery; facilities; ambulatory care; regulation and quality; managed care, finance, and role of government.

HS 6000. Introduction to Healthcare Delivery. 3 Credit Hours.
Historical background; the healthcare workforce; nature, problems, and costs of delivery sites; health planning, finance, role of government, alternative delivery models, and health policy.

HS 6100. Healthcare Delivery Systems Models. 3 Credit Hours.
Progression in service delivery from individual providers to complex financing and delivery organizations. Alternative models are explored with an emphasis on access, efficiency, and effectiveness.

HS 6200. Healthcare Financial Management. 3 Credit Hours.
Applications of accounting and finance in the healthcare delivery system; methods of reimbursement, product costing, strategic financial planning, and capital formation.

HS 6300. Healthcare Information Systems. 3 Credit Hours.
Application of information systems to assist in medical practice including communication within the healthcare enterprise, reimbursement for care, clinical decision making, and assessment of outcomes.

HS 6400. Health Systems Practice. 3 Credit Hours.
An actual project conducted by individual graduate students within a healthcare institution or a health service organization. Project has both a faculty and site sponsor.

HS 6XXX. Health Systems Elective. 1-21 Credit Hours.

HS 8803. Special Topics. 3 Credit Hours.
Topics of current interest in health systems.

HS 8811. Special Topics. 1 Credit Hour.

HS 8813. Special Topics. 3 Credit Hours.
Topics of current interest in health systems.

HS 8900. Special Problems. 1-21 Credit Hours.

HS 8901. Special Problems. 1-21 Credit Hours.

HS 8907. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate teaching assistantship.

HS 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate research assistantship.
History, Technology & Society (HTS)

HTS 1XXX. Hist, Tech & Soc Elective. 1-21 Credit Hours.

HTS 2001. The American Revolution and Constitution. 3 Credit Hours.
A study of the political, economic, and social developments in the United States from the end of the American Revolution to the beginning of the Jacksonian era.

HTS 2002. The American Revolution and Constitution. 3 Credit Hours.
The American Revolution as political debate, war, and social upheaval, with attention to the framing and ratification of the Constitution.

HTS 2003. The Gilded Age and the Progressive Era. 3 Credit Hours.
An introduction to social, political, and economic developments in the United States from 1870 to 1917, with a focus on the growth of big business, labor unions, and the rise of Progressive political movements.

HTS 2004. The Gilded Age and the Progressive Era. 3 Credit Hours.
An introduction to social, political, and economic developments in the United States from 1870 to 1917, with a focus on the growth of big business, labor unions, and the rise of Progressive political movements.

HTS 2005. The Gilded Age and the Progressive Era. 3 Credit Hours.
An introduction to social, political, and economic developments in the United States from 1870 to 1917, with a focus on the growth of big business, labor unions, and the rise of Progressive political movements.

HTS 2006. History of the Old South to 1865. 3 Credit Hours.
A study of the political, economic, and social developments in the South from the colonial period through the Civil War.

HTS 2007. History of the New South since 1865. 3 Credit Hours.
A study of the political, economic, and social developments in the South from Reconstruction period to the present.

HTS 2008. History of the New South since 1865. 3 Credit Hours.
A study of the political, economic, and social developments in the South from Reconstruction period to the present.

HTS 2009. History of the New South since 1865. 3 Credit Hours.
A study of the political, economic, and social developments in the South from Reconstruction period to the present.

HTS 2010. History of the New South since 1865. 3 Credit Hours.
A study of the political, economic, and social developments in the South from Reconstruction period to the present.

HTS 2011. The Gilded Age and the Progressive Era. 3 Credit Hours.
Populism, the currency question, immigration, the rise of big business, war, and reform in one of the most turbulent periods of American history.

HTS 2012. The Gilded Age and the Progressive Era. 3 Credit Hours.
Populism, the currency question, immigration, the rise of big business, war, and reform in one of the most turbulent periods of American history.

HTS 2013. Modern America: World War II and After. 3 Credit Hours.
Dawning of the atomic age, anticommunism, the Civil Rights Movement, New Frontier and Great Society, Vietnam and the tumultuous 1960s, and end of Cold War.

HTS 2014. Modern America: World War II and After. 3 Credit Hours.
Dawning of the atomic age, anticommunism, the Civil Rights Movement, New Frontier and Great Society, Vietnam and the tumultuous 1960s, and end of Cold War.

HTS 2015. History of Sports in America. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2016. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2017. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2018. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2019. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2020. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2021. Social Issues and Public Policy. 3 Credit Hours.
Examines the development of American sport from colonial to contemporary times, with a focus on the rise of organized sports and the influence of race, class, gender, and ethnicity.

HTS 2031. History of the Modern Middle East. 3 Credit Hours.
The transformation of the Middle East in the modern era and the relationship of the "East" and "West" in the contemporary world.

HTS 2032. History of the Modern Middle East. 3 Credit Hours.
The transformation of the Middle East in the modern era and the relationship of the "East" and "West" in the contemporary world.

HTS 2033. History of the Modern Middle East. 3 Credit Hours.
The transformation of the Middle East in the modern era and the relationship of the "East" and "West" in the contemporary world.

HTS 2034. History of the Modern Middle East. 3 Credit Hours.
The transformation of the Middle East in the modern era and the relationship of the "East" and "West" in the contemporary world.

HTS 2035. History of the Modern Middle East. 3 Credit Hours.
The transformation of the Middle East in the modern era and the relationship of the "East" and "West" in the contemporary world.

HTS 2036. Revolutionary Europe: 1789-1914. 3 Credit Hours.
Industrialization and political revolution, the development of political ideologies and labor activism, modern nation-state building, and imperialism from the French Revolution to World War I.

HTS 2037. Twentieth Century Europe: 1914 to Present. 3 Credit Hours.
Global war and the Bolshevik Revolution, rise and fall of Mussolini and Hitler, Stalinism, the Holocaust, Cold War, decolonization, and the movement toward European integration.

HTS 2038. Twentieth Century Europe: 1914 to Present. 3 Credit Hours.
Global war and the Bolshevik Revolution, rise and fall of Mussolini and Hitler, Stalinism, the Holocaust, Cold War, decolonization, and the movement toward European integration.

HTS 2039. Twentieth Century Europe: 1914 to Present. 3 Credit Hours.
Global war and the Bolshevik Revolution, rise and fall of Mussolini and Hitler, Stalinism, the Holocaust, Cold War, decolonization, and the movement toward European integration.

HTS 2040. History of Islamic Societies. 3 Credit Hours.
Survey of Middle East from pre-Islamic times to Ottoman rule, tracing the development of Islamic society and emphasizing the plurality of culture in the region.
HTS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

HTS 2801. Special Topics. 1 Credit Hour.

HTS 2803. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 2813. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 2823. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 2927. Special Problems. 1-21 Credit Hours.

HTS 2928. Special Problems. 1-21 Credit Hours.

HTS 2929. Special Problems. 1-21 Credit Hours.

HTS 2XXX. Hist., Tech. & Soc. Elective. 1-21 Credit Hours.

HTS 3001. American Economic History. 3 Credit Hours.
U.S. economic history since 1607, including regional specialization, agriculture, industrialization, technology, government and economy, money and banking, labor, international trade, and contemporary economic problems.

HTS 3002. History of American Business. 3 Credit Hours.
Evolution of business institutions from colonial period to present, including entrepreneurship, business-government relations, institutional innovation, and twentieth-century managerial capitalism.

HTS 3003. Sociology of Economic Institutions. 3 Credit Hours.
Examines links between economic structures-markets, regulatory bodies, and labor relations systems and the wider structural and cultural context.

HTS 3005. American Environmental History. 3 Credit Hours.
Transformation of the North American environment since 1500, including different notions of nature, romantic responses to wilderness during industrialization, rise of conservation movements, and environmental policy.

HTS 3006. United States Labor History. 3 Credit Hours.
The changing nature of work and labor relations, with focus on unionization and government regulation, and equity issues in the workplace.

HTS 3007. Sociology of Work, Industry, and Occupations. 3 Credit Hours.
Analyzes paid employment as a decisive social attachment, emphasizing work organizations, technological change and authority relations, and social inequality among diverse groups of employees.

HTS 3008. Class, Power, and Social Inequality. 3 Credit Hours.
This course examines how social class and the market economy affect inequality and stratification in the U.S., with additional attention to the roles of race and gender.

HTS 3009. The American Civil War. 3 Credit Hours.
Social, economic, political, and military aspects of the Civil War, including causes of the war, military campaigns, and long-term consequences.

HTS 3011. The City in American History. 3 Credit Hours.
Examines the historical background of the American city since colonial times, including city planning, urban technology and services, neighborhoods, and race relations.

HTS 3012. Urban Sociology. 3 Credit Hours.
Sociological perspectives on the city, urbanization, and problems of community, evolution of cities and problems of urban life in the United States and Third World.

HTS 3015. History of the Vietnam War. 3 Credit Hours.
Diplomatic, military, and social aspects of America's war in Vietnam, including antiwar protests, the defense industry boom, and the war's enduring impact on American life.

HTS 3016. Women and Gender in the United States. 3 Credit Hours.
Course examines themes and theories of women's and gender history since the colonial period, including work, family, race, sexuality, and politics.

HTS 3017. Sociology of Gender. 3 Credit Hours.
Gender as a dimension of social life that shapes and is shaped by the economy, schooling, family, politics, medicine and health, race, and social class.

HTS 3018. New Religions and Cults in America. 3 Credit Hours.
Explores controversial and influential new religious movements and cults in America, focusing on their origin, appeal, and impact.

HTS 3019. The Family, Sexuality, and Social Change in America. 3 Credit Hours.
Changing patterns of family life and sex roles since colonial times, with a focus on mainstream ideals, utopian alternatives, and social criticism.

HTS 3020. Gender and Technology. 3 Credit Hours.
Course examines the ways in which the design, development, and application of technologies, as well as cultural responses to them, have been gendered historically.

HTS 3021. Women in Science and Engineering. 3 Credit Hours.
Women in science and engineering and gender differences in participation, location, and status. Examines education, access, and apprenticeship, culture of science and engineering.

HTS 3022. Gender and Sports. 3 Credit Hours.
Examines how gender norms and beliefs shape sport structures, participation opportunities and experiences in American sport.

HTS 3023. Slaves without Masters: Free People of Color before 1865. 3 Credit Hours.
Free people of color during the era of slavery, including everyday life, political and social philosophies, literature, community development, and movements for social change.

HTS 3024. African American History to 1865. 3 Credit Hours.
The experience of African and African American people in North America from the beginnings of slavery until the era of emancipation in the Civil War.

HTS 3025. African American History since 1865. 3 Credit Hours.
The African American experience since 1865, including Reconstruction, segregation, the African American family, the Harlem Renaissance, the Civil Rights Movement, and Black Power.

HTS 3026. Sociology of Race and Ethnicity. 3 Credit Hours.
Nature and significance of dominant/minority relations, including legacies of colonialism and slavery, roots of residential segregation, and effects of race on American politics.

HTS 3027. The Civil Rights Movement. 3 Credit Hours.
Examines why the civil rights movement emerged, how it was successful, and the impact it had on the U.S.
HTS 3028. Ancient Greece: Gods, Heroes, and Ruins. 3 Credit Hours.
Classical Athens and Sparta, myths and legends in historical context.
Course ends with Alexander the Great and the rise of Rome.

HTS 3029. Ancient Rome: From Greatness to Ruins. 3 Credit Hours.

HTS 3030. Medieval Europe: 350 to 1400. 3 Credit Hours.
The rise of barbarian kingdoms from Rome's ashes, the explosion of Islam, the monastic movement, Charlemagne's empire, the blossoming of medieval culture, and developing European monarchies.

HTS 3031. European Labor History. 3 Credit Hours.
The labor movement from 1700s to the present, including an examination of Marxism and socialism, unionization, and work conditions, especially in Britain, Germany, and France.

HTS 3032. Modern European Intellectual History. 3 Credit Hours.
Introduction to intellectual problems and trends in modern Europe, including loss of faith in progress, evil and ethics, post-colonialism, feminism, linguistics, and psycho-analytic thought.

HTS 3033. Medieval England. 3 Credit Hours.
Political, economic, and cultural development of England during the Middle Ages (c. 350-1400). Myths and legends of Stonehenge, the Druids, and King Arthur's Camelot explored.

HTS 3035. Britain from 1815-1914. 3 Credit Hours.
Developments in nineteenth-century Britain, including the industrial revolution, the growth of political democracy, imperialism, and movements for Irish Home rule and democratic socialism.

HTS 3036. Britain Since 1914. 3 Credit Hours.
Britain's experience of two world wars, the growth of Labour and decline of the Liberals, the Welfare State, Thatcherism, and Tony Blair's "New Labour".

HTS 3038. The French Revolution. 3 Credit Hours.
Economic, intellectual, and cultural causes of the French Revolution, Jacobinism and the Terror, careers of Robespierre and Danton, and rise and fall of Napoleon's empire.

HTS 3039. Modern France. 3 Credit Hours.
France from 1815 to 1968, emphasizing the continuing project of creating France as a powerful nation within the context of global culture and politics.

HTS 3041. Modern Spain. 3 Credit Hours.
Resistance to Napoleon, deformed industrialization, Anarchist and fascist experiments form the background for Spain's transition from dictatorship to democracy after Franco's death.

HTS 3043. Modern Germany. 3 Credit Hours.
Consolidation of Germany since Napoleonic wars, Germany's contributions both hideous and glorious to Europe and the West, and recent unification of East and West Germany.

HTS 3045. Nazi Germany and the Holocaust. 3 Credit Hours.
Genocide in the twentieth century, emphasizing the extermination of European Jews. Course investigates roots of racism, eugenics, and ideologies of genocide in comparative perspective.

HTS 3046. Science, Politics, and Culture in Nazi Germany. 3 Credit Hours.
Examines the social, political and cultural context of science and technology in Nazi Germany to understand the interaction of science and politics under totalitarian regimes.

HTS 3048. Modern Russian History. 3 Credit Hours.
Provides an overview of Russian history during the 20th Century. Special emphasis will be on the Soviet period of Russian history from 1917-1991.

HTS 3051. Women and the Politics of Gender in the Middle East. 3 Credit Hours.
The role of women in imperial, nationalist, and Islamist political programs in the Middle East and the impact of politics on women's lives.

HTS 3055. Globalization in the Modern Era. 3 Credit Hours.
This course examines the process of globalization and global change in the twentieth century. Also offers a critical examination of various theories of globalization.

HTS 3061. Modern China. 3 Credit Hours.
The decline of Confucian order, the impact of the West, changes and continuities of Chinese culture, the Communist revolution, nationalism, and economic reforms since 1978.

HTS 3062. Modern Japan. 3 Credit Hours.
Japan's transformation in one century from a feudal state into an economic superpower and the impact of these changes on the Japanese people.

HTS 3063. Outposts of Empire: Comparative History of British. 3 Credit Hours.
Analysis of four British settlement colonies-Australia, New Zealand, Canada, and South Africa-emphasizing settlement, race relations, and national identity.

HTS 3064. Sociology of Development. 3 Credit Hours.
Course examines competing perspectives on international development and surveys some of the crucial issues, including political instability, facing the Third World today.

HTS 3065. History of Global Societies. 3 Credit Hours.
Examines the historical patterns of interaction and inter-dependence between world regions, from approximately the 13th century to global interdependence to the contemporary world.

HTS 3066. Sociology of Politics and Society. 3 Credit Hours.
Political sociology studies the way power is distributed in society. This course takes a comparative and historical approach, focusing on the development of the nation-state.

HTS 3067. Revolutionary Movements in the Modern World. 3 Credit Hours.
Comparative analysis of the origin, development, and impact of major twentieth century revolutionary movements.

HTS 3068. Social Movements. 3 Credit Hours.
Why do social movements emerge? Why might they succeed? This course examines how ordinary people challenge powerful segments of society and contribute to social change.

HTS 3069. Modern Cuba. 3 Credit Hours.
Cuba since 1492 emphasizing slavery and sugar, wars of independence, the revolution of 1959, and the regime of Fidel Castro.

HTS 3070. Culture and Society. 3 Credit Hours.
Covers core issues in the study of culture. Focuses on key sites, social practices, and institutions. Topics include education, medicine, consumption, and the mass media.

HTS 3071. Sociology of Crime. 3 Credit Hours.
This course examines the theories and issues such as perceptions of crime and criminals, characteristics of offenders and victims, and how crime is studied.
HTS 3072. Sociology of Education. 3 Credit Hours.
Examines sociological perspectives on how individual, school, and social factors influence students and teachers. Particular attention is paid to gender, race, ethnicity, and social class.

HTS 3073. Sociology of Sports. 3 Credit Hours.
Examines what constitutes “sports” and uses sociological lens to study sports relationship to education, policy, media, deviance, violence as well as gender, race, and class.

HTS 3075. Foundations of Sports Studies. 3 Credit Hours.
Offers case studies of the multidisciplinary study of sports using the lenses of history, sociology, economics, science and technology to understand sports practices and controversies.

HTS 3076. History of Intelligence and National Security. 3 Credit Hours.
Examines the Cold War's most important spy cases and operations to better understand the interplay between the world of secrets and intelligence and the world of statecraft and technology.

HTS 3080. History of Rocketry. 3 Credit Hours.
Examines the history of rocketry, scientists, and organizations in the US, USSR, and Europe during the twentieth century.

HTS 3081. Technology and the Environment. 3 Credit Hours.
Examines how technology affected the environment during the 20th Century, with special attention to issues like industrialization, pollution, overcrowding, and the biotech revolution.

HTS 3082. Sociology of Science. 3 Credit Hours.
The growth of science, its social structure; deviance and norms, the social context of scientific knowledge and practice, and science policy. Credit not allowed for both HTS 3082 and HTS 6115.

HTS 3083. Technology and the Shaping of American Society. 3 Credit Hours.
The complex interplay between technical innovation and cultural change in the United States since 1850, with emphasis on the emergence of modern consumer-oriented society.

HTS 3084. Culture and Technology. 3 Credit Hours.
Modernism and post-modernism: this course investigates culturally creative responses to modern manufacturing, transportation (trains, cars, airplanes), evolving gender ideals, and new communications.

HTS 3085. Law, Technology, and Politics. 3 Credit Hours.
Examines the ways in which courts, legislatures, and regulatory agencies have responded to challenges posed by new technology and shaped the course of technical change.

HTS 3086. Sociology of Medicine and Health. 3 Credit Hours.
Relationship between health and society, including health care problems in the United States and culture's role in defining health and sickness and in determining appropriate therapies.

HTS 3087. History of Medicine. 3 Credit Hours.
An introduction to historical perspectives on the development of medicine, and its relationship to health, illness, and society. Credit not allowed for both HTS 3087 and HTS 2080.

HTS 3088. Race, Medicine & Science. 3 Credit Hours.
Examines how race is an issue in medicine and science in ways such as education, professions, treatments, experiments, and as a subject of analysis.

HTS 3089. Science, Technology and Sports. 3 Credit Hours.
This course examines what constitutes a “sport,” debates on the role of social inequality in sports, and the intersection of science, technology and sport.

HTS 3100. Introduction to Museum Studies. 3 Credit Hours.
Covers theoretical and practical issues in museum studies, including the role of material culture in scholarly work, registration of artifacts, exhibit design, and public relations.

HTS 3102. Social Theory and Social Structure. 3 Credit Hours.
Introduction to social theory, providing students with skills for reading theory and examining works of major social theorists, including Marx, Weber, Durkheim, Gilman, and Bourdieu.

HTS 3103. Honor's Thesis. 4 Credit Hours.
This course is designed to allow honor's students to distinguish themselves by producing a significant, original research paper.

HTS 3803. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 3813. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 3823. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 3XXX. Hist,Tech & Soc Elective. 1-21 Credit Hours.

HTS 4001. Seminar in United States History. 4 Credit Hours.
Advanced undergraduate topics in U.S. history. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4011. Seminar in Sociology. 4 Credit Hours.
Advanced undergraduate topics in sociology. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4031. Seminar in European History. 4 Credit Hours.
Advanced undergraduate topics in European history. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4051. Seminar in Asian History. 4 Credit Hours.
Advanced undergraduate topics in Asian history. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4081. Seminar in History of Technology. 4 Credit Hours.
Advanced undergraduate topics in the history of technology. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4086. Seminar in Health, Medicine, and Society. 4 Credit Hours.
Advanced undergraduate topics in health and medicine. Designed for HTS majors and HMS minors, but open to other students with junior or senior standing.

HTS 4091. Seminar in Global Issues. 4 Credit Hours.

HTS 4694. HTS Internship-Paid. 1-12 Credit Hours.
Undergraduate internship for which the student is paid and receives audit credit. Juniors and seniors only.

HTS 4695. HTS Internship-Credit. 1-12 Credit Hours.
Unpaid undergraduate internship for which the student receives pass/fail credit. Juniors and seniors only.

HTS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

HTS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

HTS 4811. Special Topics. 1 Credit Hour.
Topics of interest not covered in the regular course offering.
HTS 4812. Special Topics. 2 Credit Hours.
Topics of interest not covered in the regular course offerings.

HTS 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

HTS 4814. Special Topics. 4 Credit Hours.
Topics of current interest not covered in the regular course offerings.

HTS 4815. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular course offerings.

HTS 4823. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 4833. Special Topics. 3 Credit Hours.
Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 4843. Special Topics. 3 Credit Hours.
Allows a student and a professor to study topics not included in other courses in the department.

HTS 4925. Special Problems in History, Technology, and Society. 1-21 Credit Hours.
Individual studies of topics of current interest in history, technology, and society.

HTS 4926. Special Problems in History, Technology, and Society. 1-21 Credit Hours.
Individual studies of topics of current interest in History, Technology, and Society.

HTS 4927. Special Problems in History, Technology, and Society. 1-21 Credit Hours.
Individual studies of topics of current interest in History, Technology, and Society.

HTS 4928. Special Problems in History, Technology, and Society. 1-21 Credit Hours.
Individual studies of topics of current interest in History, Technology, and Society.

HTS 4929. Special Problems in History, Technology, and Society. 1-21 Credit Hours.
Individual studies of topics of current interest in History, Technology, and Society.

HTS 4990. History, Technology and Society Internship. 1-12 Credit Hours.
Recognition for a paid or unpaid, full or part-time, employment experience that is relevant to a student’s history and sociology education.

HTS 4XXX. Hist, Tech & Soc Elective. 1-21 Credit Hours.

HTS 6001. Proseminar in Social Theory. 3 Credit Hours.
An introduction to key theoretical traditions in modern social theory, including both classical and contemporary works.

HTS 6002. Proseminar in the History of Technology. 3 Credit Hours.
Identifies major areas of interest in the history of technology and introduces a variety of approaches to the discipline.

HTS 6101. Social and Political History of the United States. 3 Credit Hours.
Examines the social experiences of Americans and the political contexts in which they lived.

HTS 6102. Social and Political History of Europe. 3 Credit Hours.
Classic works and debates in European social history, including transition from feudalism to capitalism, French Revolution, rural history and industrialization, and origins of nationalism.

HTS 6103. Social and Political History of the Nonwestern World. 3 Credit Hours.
Covers basic empirical and relevant theoretical literature in English on the social and political history of Africa, Asia, and/or Latin America.

HTS 6106. Business Organizations and Political Economy. 3 Credit Hours.
Examines the historical evolution and contemporary operations of business institutions within the larger context of political economy; emphasis on business, government, and technology.

HTS 6110. Gender, Science, and Technology. 3 Credit Hours.
Examines the ways in which gendered relations shape scientific and technological institutions, careers, artifacts, knowledge, and culture.

HTS 6111. Technology and Modern Culture. 3 Credit Hours.
Introduces the complex interplay between technological systems and diffuse systems of consumption, social organization, and culture beyond the act of production.

HTS 6112. Studies in Science and Engineering. 3 Credit Hours.
Empirical investigation of scientific and engineering practice in historical and contemporary settings.

HTS 6113. Development, Technology and Science. 3 Credit Hours.
Explores the impact of science and technology on development and modernization. Credit not allowed for both HTS 6113 and HTS 4011.

HTS 6114. Topics in the History of Science. 3 Credit Hours.
Explores topics in the history of science in their social and political contexts.

HTS 6115. Sociology of Science and Technology. 3 Credit Hours.
Explores current debates in the history of the sociology of science and technology. Credit not allowed for both HTS 6115 and HTS 3082.

HTS 6116. The Environment in World History. 3 Credit Hours.
Surveys the field of global environmental history with examples taken from biology, geography, sociology and anthropology.

HTS 6117. Urbanization. 3 Credit Hours.
An intensive introduction to the political, social, and economic forces involved in the process of urbanization. Credit not allowed for both HTS 6117 and HTS 6105.

HTS 6118. Sci Tech and the Economy. 3 Credit Hours.
Examines how science and technology are related to economic institutions and processes. Credit not allowed for both HTS 6118 and HTS 6107.

HTS 6119. Race and Ethnicity. 3 Credit Hours.
Examines the structural impact of racism and ethnic discrimination on American society, and the controversies over racial and ethnic identity. Credit not allowed for both HTS 6119 and HTS 6108.

HTS 6120. Inequality, Science and Technology. 3 Credit Hours.
Explores the impacts of science and technology on inequality, as well as how notions of difference have shaped science and technology. Credit not allowed for both HTS 6120 and HTS 6109.

HTS 6121. Science, Technology and Security. 3 Credit Hours.
Topics in the study of the relationship between national security and the scientific-technological enterprise from diverse perspectives.

HTS 6122. History of Medicine. 3 Credit Hours.
The impact of disease in history, modern developments in medicine and health focusing on western medicine in a global context.

HTS 6123. Social and Cultural Studies of Biomedicine. 3 Credit Hours.
Introduces students to the changing social, political, and corporate worlds of the biological sciences, biotechnology, and biomedicine.
HTS 6124. Science and Technology Beyond Borders. 3 Credit Hours.
Discusses the roles of science and technology as instruments of social
control and of social change in development and modernization. Credit
not allowed for both HTS 6124 and HTS 6104.

HTS 6743. Science, Technology & Society: Core Seminar. 3 Credit Hours.
This survey course covers key works in Science, Technology & Society,
and guest lectures introduce students to faculty doing STS-related
research across the Ivan Allen College. Credit not allowed for both
HTS 6743 and PUBP 6743 or LCC 6743.

HTS 6801. Research Paper. 3 Credit Hours.
Under the direct supervision of one or more faculty members, graduate
students will complete an original research design and execute that
study.

HTS 6XXX. Hist, Tech & Society Elect. 1-21 Credit Hours.

HTS 7001. Foundations of Socio-historical Analysis. 3 Credit Hours.
Introduces key concepts and methods used in the historical analysis of
social phenomena.

HTS 7002. Research and Writing Seminar. 3 Credit Hours.
Introduces methods of sociohistorical research and writing; requires
preparation of an original research paper based on primary sources.

HTS 7999. Comprehensive Exam Preparation. 3 Credit Hours.
Preparation for comprehensive exam in fields of history or sociology.

HTS 8001. Comparative History of Labor, Industry, Technology, and
Society. 3 Credit Hours.
An intensive, team-taught reading seminar covering major themes and
classic works in these fields.

HTS 8801. Special Topics. 1 Credit Hour.

HTS 8802. Special Topics. 2 Credit Hours.

HTS 8803. Special Topics. 3 Credit Hours.

HTS 8804. Special Topics. 4 Credit Hours.

HTS 8805. Special Topics. 5 Credit Hours.

HTS 8806. Special Topics. 6 Credit Hours.

HTS 8901. Special Problems. 1-21 Credit Hours.

HTS 8902. Special Problems. 1-21 Credit Hours.

HTS 8903. Special Problems. 1-21 Credit Hours.

HTS 8904. Special Problems. 1-21 Credit Hours.

HTS 8905. Special Problems. 1-21 Credit Hours.

HTS 8906. Special Problems. 1-21 Credit Hours.

HTS 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a teaching assistantship.

HTS 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a research assistantship.

HTS 9000. Doctoral Thesis. 1-21 Credit Hours.

Ivan Allen College (IAC)

IAC 2001. Global Religions and Community Engagement. 3 Credit Hours.
This course prepares students for leadership in a multi-faith society
through the study of global religions and active engagement with diverse
religious communities of Atlanta.

Credit Hours.
This course gathers diverse students serious about faith to explore topics
at the intersection of science, engineering, and religion.

IAC 2801. Special Topics in IAC. 1 Credit Hour.
Special Topics in IAC.

IAC 2803. Special Topics in IAC. 3 Credit Hours.
Special Topics courses for IAC.

IAC 2813. Special Topics in IAC. 3 Credit Hours.
Special Topics courses in IAC.

IAC 3803. Special Topics in IAC. 3 Credit Hours.
Special Topics courses in IAC.

IAC 3813. Special Topics in IAC. 3 Credit Hours.
Special Topics courses in IAC.

IAC 4803. Special Topics in IAC. 3 Credit Hours.
Special Topics courses in IAC.

IAC 4811. Special Topics in IAC. 1 Credit Hour.
Special Topics in IAC.

IAC 4813. Special Topics in IAC. 3 Credit Hours.
Special Topics courses in IAC.

Industrial Design (ID)

ID 1011. Industrial Design Fundamentals 1. 2 Credit Hours.
Theory and practice in Industrial Design including an introduction to
process, methodology, ergonomics, research tools and user research.
Focus is on fundamental design principles.

ID 1012. Industrial Design Fundamentals 2. 2 Credit Hours.
Theory and practice in Industrial Design including an introduction to
process, methodology, ergonomics, research tools and user research.
Focus is on CAD and digital prototyping.

ID 1101. Introduction to Industrial Design 1. 1 Credit Hour.
Introduction to Industrial Design – a survey of evolving diverse career
options and the designer’s impact on society. Emphasis on traditional
product design, research, and strategy.

ID 1102. Introduction to Industrial Design 2. 1 Credit Hour.
Introduction to Industrial Design – a survey of evolving diverse career
options and the designer’s impact on society. Emphasis is on user
experience and interaction design.

ID 1401. Introduction to Graphic Communications 1. 1 Credit Hour.
Introduction to graphic design, composition, layout, color, typography,
photography, social media & videography. Emphasis of this first course is
on development of basic visual literacies.

ID 1402. Introduction to Graphic Communications 2. 1 Credit Hour.
Introduction to graphic design, composition, layout, color, typography,
photography, social media & videography. This second course in the
sequence will emphasize digital skill development.
ID 1418. Introduction to Sketching and Modeling 1. 1 Credit Hour.
Introduction to basic visual representation techniques that empower designers of products, services and systems through sketching, model making, computer-assisted drawing, rapid prototyping, and other methods.

ID 1419. Introduction to Sketching and Modeling 2. 1 Credit Hour.
Introduction to intermediate visual representation techniques that empower designers of products, services and systems through sketching, model making, computer-assisted drawing, rapid prototyping, and other methods.

ID 1XXX. Industrial Dsgn Elective. 1-21 Credit Hours.

ID 2011. Introductory Design I. 4 Credit Hours.
Foundation course in visual communications theory and practice, continuing the development of two-dimensional visual literacy. Emphasis on both analog and digital media.

ID 2012. Introductory Design II. 4 Credit Hours.
Foundation course in form giving and representing, continuing the development of three-dimensional visual literacy. Emphasis on visual relationships between form and image.

ID 2021. Industrial Design Studio 1. 4 Credit Hours.
This course provides an introduction to the design process on visual principles and presentation techniques with a focus on sketching and modeling techniques related to 3D form.

ID 2022. Industrial Design Studio 2. 4 Credit Hours.
This course applies more structured design methods to research and exploration of product form and function and introduces concepts of universal design and user centered design.

ID 2023. Industrial Design Studio 1. 3 Credit Hours.
This course applied structured design methods to research and exploration of product form and function and introduces concepts of user centered design.

ID 2024. Industrial Design Studio 2. 3 Credit Hours.
This course applies more structured design methods to research and exploration of product form and function and introduces concepts of universal design.

ID 2101. Digital Design Methods. 3 Credit Hours.
This course introduces the basics of product design in the CAD environment. Students design a product, apply 3D scanning, produce an animation and 3D print.

ID 2102. 3D Modeling. 2 Credit Hours.
This course introduces 3D modeling methods for solid and surface modeling in CAD software. Students create multi-component assembly drawings and explore product rendering techniques.

ID 2201. Sustainable Issues for Design. 3 Credit Hours.
Introduction to the broad environmental issues that face humankind as a participant in the biosphere.

ID 2202. History of Modern Industrial Design. 3 Credit Hours.
History and development of industrial design from the beginning of the Industrial Revolution to the present.

ID 2241. History of Art 1. 3 Credit Hours.
This course surveys art from Prehistory through the Renaissance and is organized around stylistic periods that are arranged chronologically. Classes will consist of lectures with slides that focus on these stylistic periods.

ID 2242. History of Art 2. 3 Credit Hours.
This course surveys the major artistic movements and aesthetics of the 17th, 18th, 19th, 20th, and early 21st centuries in painting, sculpture and architecture.

ID 2320. Human Factors in Design. 3 Credit Hours.
This course examines the theory of Human Factors to provide a working knowledge of the physical and cognitive attributes of people that designers must accommodate.

ID 2325. User Centered Design Methods. 3 Credit Hours.
This course introduces students to user-centric design methods used to identify, understand, assess and prioritize the factors that contribute to more effective design solutions.

ID 2401. Visual Design Thinking. 3 Credit Hours.
Introduction to techniques to help designers build a vocabulary to support effective visual communication including fundamentals of layout, sketching, rendering, schematics, information graphics & storyboarding.

ID 2510. Introduction to Smart Product Design. 3 Credit Hours.
This course provides an introduction to smart product design including the basics of sensor technologies, electronics and programming required to produce working product concept prototypes.

ID 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ID 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ID 2XXX. Industrial Dsgn Elective. 1-21 Credit Hours.

ID 3011. Intermediate Design I. 5 Credit Hours.
The systematic design process as applied to industrial design and packaging problems.

ID 3012. Intermediate Design II. 5 Credit Hours.
Various dimensions of human factors applied to design, including: aging, disability, normal age change, childhood and adult anthropometrics, and human capability.

ID 3031. Health Design Studio 1. 4 Credit Hours.
The application of systematic design methods to projects focused on the design development of new and/or improved health-related products with an emphasis on inclusive design.

ID 3032. Health Design Studio 2. 4 Credit Hours.
The application of systematic design methods to projects focused on the design development of new and/or improved health-related products with an emphasis on products and product systems.

ID 3041. Product Development Studio 1. 4 Credit Hours.
The application of systematic design methods to projects focused on the use of parametric design and CNC capabilities in the design development of products, services & systems.

ID 3042. Product Development Studio 2. 4 Credit Hours.
The application of systematic design methods to projects focused on new applications of sensor-based technologies with an emphasis on the importance of user-centered design.
ID 3052. Interactive Product Design Studio 2. 4 Credit Hours.
The application of systematic design methods to projects focused on new applications of sensor-based technologies with an emphasis on interactive environments, navigation and mobility.

ID 3103. Industrial Design Computing I. 3 Credit Hours.
Introduction to 2-D computer drawing systems.

ID 3104. Industrial Design Computing II. 3 Credit Hours.
Introduction to 3-D modeling systems.

ID 3201. Design & Community: The Social and Environmental Impact of Design. 3 Credit Hours.
Students explore socially and environmentally responsible industrial design practices at home and abroad, and partner with local organizations to develop community-based design projects.

ID 3301. Materials I: Renewables. 3 Credit Hours.
This course examines the characteristics, production technologies, histories, and environmental impacts of nine categories of renewable materials familiar to industrial design.

ID 3302. Materials and Processes II: Nonrenewables. 3 Credit Hours.
Examination of characteristics, production technologies, histories, and environmental impacts of nonrenewable materials used in industrial design.

ID 3320. Design Methods: User Centered Design. 3 Credit Hours.
This course introduces students to current user-centric design methods used to identify, understand, assess and prioritize the factors that contribute to more effective design solutions.

ID 3510. Introduction to Interactive Product Design. 3 Credit Hours.
This course provides an introduction to interactive product design including the basics of sensor technologies, electronics and programming required to produce working product concept prototypes.

ID 3520. Tangible Interaction. 3 Credit Hours.
This course addresses the design process related to interactive environments. Projects will emphasize the inclusion of ubiquitous and emerging interactive technologies.

ID 3803. Special Topics. 3 Credit Hours.
Topics of current interest in industrial design.

ID 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Industrial Design.

ID 3814. Special Topics. 4 Credit Hours.
Special Topics in Industrial Design (lecture and lab).

ID 3901. Special Problems. 1-21 Credit Hours.

ID 3902. Special Problems. 1-21 Credit Hours.

ID 3XXX. Industrial Dsgn Elective. 1-21 Credit Hours.

ID 4011. Advanced Design I. 5 Credit Hours.
Application of the design process to advanced multidisciplinary design problems. Experience in solving real design problems from areas such as consumer products and equipment, transportation and equipment.

ID 4012. Advanced Design II. 5 Credit Hours.
Capstone industrial design project of student’s own choosing, with consent of instructor, to refine problem-solving and design ability in preparation for professional practice.

ID 4061. ID Capstone Design Studio 1. 4 Credit Hours.
Comprehensive team-based projects incorporating an iterative approach to design development of products, & systems with emphasis on integration of research, design, prototyping and testing.

ID 4062. ID Capstone Design Studio 2. 4 Credit Hours.
Comprehensive individual projects incorporating an iterative approach to design development of products, & systems with emphasis on integration of research, design, prototyping and testing.

ID 4071. Invention Studio 1. 4 Credit Hours.
Comprehensive projects incorporating an iterative approach to design development of products, systems & services with emphasis on invention, design and manufacturing.

ID 4072. Invention Studio 2. 4 Credit Hours.
Comprehensive projects incorporating an iterative approach to design development of products, systems & services with emphasis on invention, innovation and entrepreneurship.

ID 4081. ID/ME Collaborative Design Studio 1. 4 Credit Hours.
An interdisciplinary team-based approach to integrate industrial design and engineering competencies in design development of products and systems with emphasis on corporate-sponsored projects.

ID 4082. ID/ME Collaborative Design Studio 2. 4 Credit Hours.
An interdisciplinary team-based approach to integrate industrial design and engineering competencies in design development of products and systems with emphasis on humanitarian projects.

ID 4103. Alias Studio I. 3 Credit Hours.
Introduction to modeling, rendering, and animation with Alias Studio software.

ID 4104. Alias Studio II. 3 Credit Hours.
Introduction to product animation using Alias Studio software.

ID 4105. Advanced Modeling Concepts for Creating Complex Forms. 3 Credit Hours.
The Advance Modeling Concepts Course explores concepts, tools and theories used to model and validate complex forms encountered in the product design process.

ID 4106. Parametric Product Modeling. 3 Credit Hours.
This course focuses on advanced digital methods in product modeling for visual analysis, flexible design approaches and digital fabrication methods.

ID 4201. Design/Research Methods. 3 Credit Hours.
Research methods applicable to industrial design including task definition, information gathering, and analysis.

ID 4202. Professional Practice and Preparation. 3 Credit Hours.
Principles of consulting and corporate industrial design including preparation of the professional portfolio.

ID 4203. French Society and Culture. 3 Credit Hours.
Studies in French society and culture.

ID 4204. Theorizing Design. 3 Credit Hours.
Introduction to what designers do and how they undertake their tasks; examples will come from a variety of design disciplines.

ID 4205. French Design and Culture. 3 Credit Hours.
Studies in French design and culture.

ID 4206. Culture of Objects: A Seminar on the Design and Culture of Objects. 3 Credit Hours.
This seminar surveys the theories and methodologies within the field of industrial design that locate meaning in the designed object as derived from culture.
ID 4210. Introduction to Universal Design in the Built Environment. 3 Credit Hours.
This course provides an introduction to universal design focusing on the implications of ability on the usability of places, products, and systems for all individuals.

ID 4320. Prototyping Interaction: Designing for Experience. 3 Credit Hours.
This course exposes students to a range of practical methods for research and design exploration to support the design development of interactive products and technologies.

ID 4418. Design Sketching. 3 Credit Hours.
This course addresses drawing and visualization techniques necessary for design thinking and development and introduces methods and processes to formulate and present visual information.

ID 4450. Developing a Professional Design Portfolio. 3 Credit Hours.
The portfolio development course provides students with a structured approach to preparing a professional visual record of their work in print and digital formats.

ID 4510. Wearable Product Design. 3 Credit Hours.
Wearable Product Design explores techniques in producing designs and prototypes for on-body interactions, and general textile knowledge for making effective wearable products.

ID 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ID 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ID 4803. Special Topics: Furniture. 3 Credit Hours.
Special topics in furniture design not covered in the professional curriculum.

ID 4813. Special Topics: Sustainability. 3 Credit Hours.
Special topics in sustainability not included in the professional curriculum.

ID 4823. Special Topics: Information Technology. 3 Credit Hours.
Special topics in information technology not included in the professional curriculum.

ID 4833. Special Topics: Collaborative. 3 Credit Hours.
Application of the design process to advanced multidisciplinary problems by a team. Projects from a range of interest areas: consumer, industrial products, transportation, furniture.

ID 4843. Special Topics: History and Theory. 3 Credit Hours.
Special topics in history and theory not included in the professional curriculum.

ID 4900. Special Problems: Visual Communications. 1-21 Credit Hours.
Special problems in communication not covered in the professional curriculum.

ID 4901. Special Problems: Mentor Program. 1-21 Credit Hours.
Special problems in teaching pedagogy; mentoring by senior faculty in basic and intermediate design courses.

ID 4902. Special Problems: Mentor Program. 1-21 Credit Hours.
Special problems in teaching pedagogy; mentoring by senior faculty in basic and intermediate design courses.

ID 4903. Special Problems: Research. 1-21 Credit Hours.
Special research topics for advanced students not covered in the professional curriculum.

ID 4904. Special Problems: Research. 1-21 Credit Hours.
Special research topics for advanced students not covered in the professional curriculum.

ID 4XX. Industrial Dsgn Elective. 1-21 Credit Hours.

ID 6100. Introduction to Graduate Studies in Industrial Design. 3 Credit Hours.
Introduction to the theory and practice of graduate studies in Industrial Design in relation to behavior research and consumer products.

ID 6101. Human Centered Design. 3 Credit Hours.
This course examines design artifacts in relation to the human body, aging, disabilities, and environments.

ID 6102. Graduate Studio A. 4 Credit Hours.
Studio introduces the MID certificate in Design. The ID studio class stands at the heart of design education and professional practice. Industrial Design is considered from a strategic perspective. Assignments explore the business, technology and use experience components.

ID 6103. Graduate Studio B. 4 Credit Hours.
This course is a project-based ID studio that gives students an overview of and practice with the insights-driven, iterative ID process.

ID 6104. Drawing. 2 Credit Hours.
This course trains students in the basics of sketching and free hand drawing needed in the Industrial Design studio environment.

ID 6105. Brand and Visual Design. 3 Credit Hours.
This course introduces the principles of branding and visual identity. It emphasizes branded experiences in a service/product/mobile context.

ID 6106. 3D Design Methods. 2 Credit Hours.
3D Design Methods teaches students body scanning, free form CAD software and 3D printing through an iterative design process.

ID 6107. Integrated Product Design. 3 Credit Hours.
Introduction to smart products teaches students to create IOT products. Students work with sensors and signals, U/I design, and multi-platform prototyping.

ID 6108. Survey of Industrial Design History. 3 Credit Hours.
This course surveys the history of industrial design from the Industrial Revolution to contemporary times.

ID 6109. Human Factors and Ergonomics. 3 Credit Hours.
This course will cover an introduction to the topics of Human Factors and Ergonomics and their practical application in the design of workplace products, consumer products and services.

ID 6200. Industrial Design Graduate Studio I. 6 Credit Hours.
Graduate application of the design process to advanced multidisciplinary design problems. Experience in solving real design problems for consumer products.

ID 6201. Industrial Design Graduate Studio II. 6 Credit Hours.
Graduate-level application of the design process to advanced multidisciplinary problems.

ID 6211. Graduate Studio One. 4 Credit Hours.
Studio introduces MID program philosophy. Industrial Design is considered from a strategic perspective. Assignments explore the business, technology and user experience components.

ID 6212. Grad Studio Two: Health and Wellness. 4 Credit Hours.
The application of systematic design methods to projects focused on the design of new and/or improved health products, services and interactions.
ID 6213. Grad Studio Two: Interactive Products. 4 Credit Hours.
The application of systematic design methods to projects focused on
the design development of new and/or improved interactive or smart
products.

ID 6214. Strategic Design Language. 3 Credit Hours.
Introduction to techniques to help designers clarify and support design
ideas in a strategic business context by exploring methods to better
leverage visual design skills.

ID 6215. Service Design. 3 Credit Hours.
This course introduces best practices of service design and focuses
on the alignment and design of multiple brand touch points to optimize
customer experience.

ID 6216. Service Design, Brand and Value Creation. 3 Credit Hours.
This course introduces students to how visual design, product design,
and service design align to optimize user experiences that drive business.

ID 6271. Healthcare Design of the Future. 3 Credit Hours.
Introduction to research-based approaches to integrated healthcare
design innovation.

ID 6400. Master’s Project. 1-21 Credit Hours.
Student produces a product prototype that must meet with instructor’s
approval.

ID 6401. Visualizing Interaction. 3 Credit Hours.
Introduction to techniques that empower designers to plan and create
effective and clear visual communication depicting the interaction and
relationships between people, products, and services.

ID 6420. Advanced Sketching. 3 Credit Hours.
This class will focus on developing advanced, traditional (non-digital)
sketching, rendering, and presentation techniques.

ID 6509. Computation, Creativity and Design Cognition. 3 Credit Hours.
This course investigates computational methods, models, tools that
support design creativity and cognition. Credit not allowed for both
ID 6509 and ARCH 6509.

ID 6510. Design for Interaction: Working with New Technologies. 3 Credit
Hours.
This course examines opportunities for designers to leverage
visualization and prototyping methods to foster new applications of
technology to enhance user experience in everyday life.

ID 6515. Interface Prototyping: Exploring Tools & Theories. 3 Credit
Hours.
This course focuses on the development of interactive prototypes for
digital displays. Students learn how graphic and interactive design
principles and accessibility.

ID 6753. Human-Computer Interaction Professional Preparation and
Practice. 1 Credit Hour.
Preparation for a professional career in HCI. Speakers. Atlanta-area lab
visits. Career trajectories. Project presentations. Technical, resume and
interviewing skills. Atlanta-area HCI resources.

ID 6763. Design of Interactive Environments. 3 Credit Hours.
Investigate and design ambient, intelligent, interactive interfaces and
computational applications in tangible and physical environment to
support health, wellness and quality of life. Credit not allowed for both
ID 6763 and COA 6763 or CS 6763.

ID 6800. Investigations of Universal Design in the Built Environment. 3
Credit Hours.
This course provides an advanced level to universal design focusing
on the implications of ability on the usability of places, products, and
systems for all individuals.

ID 6820. Web Design, Usability and Accessibility. 3 Credit Hours.
This course will teach students the fundamentals of web design and
usability issues in online environments, with an emphasis on universal
design principles and accessibility.

ID 6998. HCI Master’s Project. 1-9 Credit Hours.
Final project for students completing a Human-Computer Interaction
master’s degree in the Digital Media track. Repeatable for multi-semester
projects.

ID 7000. Master’s Thesis. 1-21 Credit Hours.
Provides students with the opportunity to pursue advanced research
under the guidance of a faculty member.

ID 8802. Special Topics in ID. 2 Credit Hours.
Special Topics in Industrial Design.

ID 8803. Special Topics. 3 Credit Hours.
Special Topics in Industrial Design.

ID 8804. Special Topics. 4 Credit Hours.
Special Topics in Industrial Design (lecture and supervised lab).

ID 8900. Special Problems. 1-21 Credit Hours.
Special problems in industrial design.

ID 8903. Special Problems in Human-Computer Interaction. 1-3 Credit
Hours.
Small-group of individual investigation of advanced topics in human-
computer interaction. Guided study and research.

ID 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistanthips.

ID 8998. Reasearch Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.

International Logistics (IL)

IL 6450. Analytical Methods. 1 Credit Hour.
This course provides an overview of optimization, statistical, and
stochastic models and methods with special emphasis on application to
logistics.

IL 6451. Demand and Yield Management. 1 Credit Hour.
This course focuses on demand estimation and modeling and revenue
management.

IL 6452. Reverse Green Logistics. 1 Credit Hour.
This course addresses issues, driving forces, and analytical approaches
to aid in designing operating reverse logistics systems.

IL 6453. Labor Relations. 1 Credit Hour.
This course compares labor practices in Europe, North America, and Asia
with special attention on the influences on logistics.

IL 6454. European Trade and Transport. 1 Credit Hour.
This course provides an overview of legal, cultural, political, and
infrastructure issues influencing logistics in Europe.

IL 6455. Finance for the Logistics Practitioner. 1 Credit Hour.
This course provides an in-depth understanding of concepts of finance
that relate to logistics, such as valuing logistics activities and measuring
logistics performance.

IL 6456. Financial Decision Making for Logistics. 1 Credit Hour.
This course provides a thorough understanding of the key elements of
building a better logistics business case.

IL 6457. Trade and Transportation in the Americas. 1 Credit Hour.
This course provides an overview of legal, cultural, political, and
infrastructure issues influencing logistics practices in the Americas.
IL 6458. Warehousing and Cross-Docking. 1 Credit Hour.
This course surveys the different types of warehouses and their functions, principles of operation, and strategic relationship to the supply chain.

IL 6459. International Trade and Transportation. 1 Credit Hour.
This course discusses how international trade is financed, what instruments are used and how they work, how transactions are settled, and the role of documentation.

IL 6460. International Freight Management. 1 Credit Hour.
This course focuses on international freight management including consolidation, export packaging, customs, tracking, terminal operations, mode selection, and carrier selection.

IL 6461. Asian Trade and Transportation. 1 Credit Hour.
This course provides an overview of legal, cultural, political, and infrastructure issues influencing logistics practices in Asia.

IL 6464. Supply Chain Management II: ERP Systems. 1 Credit Hour.
This course provides a strategic view of Enterprise Resource Planning and its relationship to logistics functions.

IL 6465. Marketing Channels and Partnering. 1 Credit Hour.
This course focuses on logistics and supply chain issues as they impact the global marketing strategies of companies.

IL 6466. Global Supply Chain Design and Measurement. 1 Credit Hour.
This course focuses on concepts and models for designing and measuring a global supply chain, with special focus on the impact of e-commerce.

IL 6467. Transportation. 1 Credit Hour.
This course focuses on logistics planning, execution, and performance measurement in the transportation industry.

IL 6468. Manufacturing. 1 Credit Hour.
This course focuses on logistics issues within the manufacturing facility including inventory, throughput, lead-time batching, and managing variability.

IL 6472. Supply Chain Integration Lab III. 1 Credit Hour.
This course integrates supply chain management techniques in the Americas, Asia, and Europe through case studies.

IL 6475. Cases in International Logistics I. 2 Credit Hours.
In this course, cases are used to integrate strategic, management, and operating issues in international logistics and supply chain design.

IL 6476. Cases in International Logistics II. 2 Credit Hours.
In this course, cases are used to integrate strategic, management, and operating issues in international logistics and supply chain design.

IL 6477. Cases in International Logistics III. 2 Credit Hours.
In this course, cases are used to integrate strategic, management, and operating issues in international logistics and supply chain design.

IL 6478. Cases in International Logistics IV. 2 Credit Hours.
In this course, cases are used to integrate strategic, management, and operating issues in international logistics and supply chain design.

IL 6480. Supply Chain Lab I. 1 Credit Hour.
This course integrates supply chain management techniques in the region through readings, case studies, meetings and site visits. Typically Supply Chain Lab I focuses on the US. Credit not allowed for both IL 6480 and IL 6470.

IL 6481. Supply Chain Lab II. 1 Credit Hour.
This course integrates supply chain management techniques in the region through readings, case studies, meetings and site visits. Typically Supply Chain Lab II focuses on Europe. Credit not allowed for both IL 6481 and IL 6471.

IL 6483. Supply Chain Lab IV. 1 Credit Hour.
This course integrates supply chain management techniques in the region through readings, case studies, meetings and site visits. Typically Supply Chain Lab IV focuses on Asia. Credit not allowed for both IL 6483 and IL 6473.

IL 6484. Supply Chain Lab V. 1 Credit Hour.
This course integrates supply chain management techniques in the region through readings, case studies, meetings, and site visits. Typically Supply Chain Lab V focuses on Mexico and NAFTA. Credit not allowed for both IL 6484 and IL 6474.

IL 8801. Special Topics. 1 Credit Hour.

Intl Executive MBA (IMBA)

IMBA 6000. Strategic Decision Making and Compromise Game. 1 Credit Hour.
A multiform, competitive management simulation. The objective is to sharpen intra-firm communications skills using the internet as the communications channel and the art of compromise.

IMBA 6010. Cross-cultural Communications for Management. 2 Credit Hours.
Participants learn tools and information to improve communications skills with new approaches and increased understanding while taking into account the effects of cross-cultural differences on communications.

IMBA 6021. Data Analysis for Business. 2 Credit Hours.
Covers common statistical tools for the analysis of corporate data such as descriptive statistics, probability concepts, sampling and estimation, hypothesis testing, and regression analysis.

IMBA 6030. Organizational Behavior and Theory. 3 Credit Hours.
Students learn the basic concepts and principles of organizational behavior and utilize such to analyze and solve organizational decision-making problems.

IMBA 6031. Leadership and Organizational Behavior. 2 Credit Hours.
This course focuses on the challenges in leading teams and organizations in increasingly complex, global, and dynamic business environments.

IMBA 6040. Economic Analysis of Decisions in a Global Economy. 3 Credit Hours.
Participants are provided with a non-traditional approach using an analytical method with a global perspective to the concepts and role of economics in the world environment.

IMBA 6050. Financial and Managerial Accounting. 3 Credit Hours.
Course covers financial reporting and analysis issues facing firms, and managerial accounting information necessary for planning, controlling, and decision making within such firms.

IMBA 6061. Information Systems for Global Organizations. 2 Credit Hours.
Tools and techniques to manage the information technology infrastructure that supports a global organization.
IMBA 6070. Managerial Finance in World Markets. 4 Credit Hours.
A two-part course providing an understanding of finance concepts and how they are used. The course then further integrates international and ethical considerations wherever applicable.

IMBA 6071. Financial Management. 3 Credit Hours.
An introduction to finance. Topics include time value of money, capital budgeting, risk and return, capital structure, dividend policy, and working capital management.

IMBA 6081. Manufacturing and Service Management. 2 Credit Hours.
Covers the basic conceptual and analytical skills that are required in managing operations and confronting operational problems in competitive markets.

IMBA 6090. Marketing and Consumer Behavior. 3 Credit Hours.
Students are provided with an understanding of marketing and consumer behavior concepts and tools with an international environment approach.

IMBA 6101. Product Strategies for Global Markets. 2 Credit Hours.
Developing and marketing new products and services with an emphasis on international markets.

IMBA 6110. Risk Management and Technology Transfer. 2 Credit Hours.
A course based upon a combination of cases, historical data, and theoretical interpretation on the analysis and allocation of risk in international investment and technology transfer.

IMBA 6121. Managing the Global Workforce. 2 Credit Hours.
A survey of global workforce management principles and the skills necessary to function effectively in a supervisory role in a global organization.

IMBA 6131. Strategic Management Theory and Analysis. 2 Credit Hours.
Integrate knowledge of the functional areas of a business to understand how firms gain and sustain a competitive advantage in a globally competitive environment.

IMBA 6140. Comparative Management Systems. 2 Credit Hours.
This course utilizes case studies of companies in various industries and in national cultures to highlight organizational and cultural differences between major economies in the global environment.

IMBA 6150. Entrepreneurship and Entrepreneurial Firms. 1 Credit Hour.
Participants explore the increasing importance of small and medium-sized businesses and new ventures in international business.

IMBA 6160. National and International Regulation of Business. 2 Credit Hours.
Deals with learning how to control the legal aspects of international decisions.

IMBA 6170. Quality, Sustainable Technology, Competitiveness. 1 Credit Hour.
Students learn the philosophy and techniques of strategic quality management while focusing on assessment and group decisions centered on sustaining technology and competitiveness.

IMBA 6180. Leadership Skills and Processes. 1 Credit Hour.
Focuses on identifying and developing the attributes of successful leadership.

IMBA 6200. Strategic Business Simulation. 2 Credit Hours.
A unifying course providing a simulated application of the material taught in the core courses of the program.

IMBA 6210. Analysis of Emerging Technology. 2 Credit Hours.
A case-based course dealing with the role and impact of digital technology in large and small organizations, with special emphasis on multinational companies.

IMBA 6220. Applied Entrepreneurship Seminar. 1 Credit Hour.
A case course building an information bank of theory and practice on start-up enterprises. Several entrepreneurs will co-teach the course with a faculty leader.

IMBA 6230. International Business Negotiations. 1 Credit Hour.
A role-play course involving the complex international negotiation simulation dealing with an international business enterprise and its relationship with one or more governments.

IMBA 6240. Ethical Issues in Global Business Environments. 1 Credit Hour.
Examines the appropriate roles of business in global society, the roles of government and regulation in monitoring business, and the ethical responsibilities of managers in global organizations.

IMBA 6250. International Finance. 2 Credit Hours.
Analysis of foreign exchange markets, exchange rate risk management, international portfolio investments, international asset pricing, cross-border M&A, and equilibrium conditions in international markets.

IMBA 6260. Global Supply Chain and Electronic Commerce. 2 Credit Hours.
Examines business, managerial and economic issues in the management of global supply chains and the role of electronic commerce in the supply chain.

IMBA 6300. Analysis of Global Environments I. 2 Credit Hours.
Analysis of a specific region through an international study tour with emphasis on understanding the economy, culture and business environment.

IMBA 6310. Analysis of Global Environments II. 3 Credit Hours.
Analysis of a specific region through an international study tour with emphasis on understanding the economy, culture and business environment.

IMBA 6311. Analysis of Global Environments. 4 Credit Hours.
Analysis of a specific region through an international study tour with emphasis on understanding its economy, culture and business environment.

IMBA 6400. Global Strategy Project I. 1 Credit Hour.
Students work on a real world problem related to global strategy. The focus in this course is on data collection and problem definition.

IMBA 6401. Global Strategy Project I. 2 Credit Hours.
Students work on a real world problem related to global strategy. The focus in this course is on problem definition, data collection and client engagement management.

IMBA 6410. Global Strategy Project II. 1 Credit Hour.
Students work on a real world problem related to global strategy. The focus in this course is on defining a preliminary solution that has desirable characteristics.

IMBA 6411. Global Strategy Project II. 2 Credit Hours.
Students work on a real world problem related to global strategy. The focus in this course is on problem definition, data collection and client engagement management.

IMBA 6420. Global Strategy Project II. 2 Credit Hours.
Students work on a real world problem related to global strategy. The focus in this course is on defining and presenting a comprehensive solution.

IMBA 6430. Business Strategies for Sustainability. 2 Credit Hours.
Cross-functional strategies to address competitive and regulatory demands placed on firms for achieving sustainable business practices.
INTA 1001. Careers in International Affairs. 1 Credit Hour.
Introduces the practical, management, and policy aspects of international careers. Provides experience in using computer software programs to perform statistical tests including t-tests, chi-square, and regression.

INTA 1002. Effective Study Abroad. 1 Credit Hour.
Introduces essential background information concerning countries, concepts, and what to do in order to gain maximum benefit from participation in school-sponsored study abroad programs.

INTA 1050. The World Today. 3 Credit Hours.
Introduction to current issues of politics, geography, and history around the globe, using a wide variety of media and sources.

INTA 1110. Introduction to International Relations. 3 Credit Hours.
An introduction to the major principles, concepts, actors, and theories of the international system and their application to current issues in world affairs.

INTA 1200. American Government in Comparative Perspective. 3 Credit Hours.
Examines American government in relation to other political and economic systems in countries around the world. Credit not allowed for both POL 1101 and INTA 1200.

INTA 1XXX. International Affairs Elective. 1-21 Credit Hours.

INTA 2001. Careers in International Affairs. 1 Credit Hour.
Reinforces career development and planning process for international affairs majors. Includes facilitation of decision-making skills, job search strategies, self-assessment, and overview from industry speakers. Credit not allowed for both INTA 2001 and INTA 1001.

INTA 2010. Empirical Methods. 3 Credit Hours.
Develops skills in research design, model building, and hypothesis construction. Provides experience in using computer software programs to perform statistical tests including t-tests, chi-square, and regression.

INTA 2030. Ethics in International Affairs. 3 Credit Hours.
Surveys the main traditions and theories of international ethics with a focus on intervention and the use of force, human rights, self-determination, and global distributive justice.

INTA 2040. Science, Technology, and International Affairs. 3 Credit Hours.
An overview of science and technology as a determinant in the development and functioning of states and societies worldwide and the international context for the development of science and technology.

INTA 2042. Introduction to Global WMD Issues. 3 Credit Hours.
This course will explore the challenges, history, and major theoretical frameworks relating to weapons of mass destruction (WMD).

INTA 2050. Intro to Global Development. 3 Credit Hours.
Mainstream and critical approaches to development, the role of diverse institutions and projects, and implications for sustainability in the countries of the global south.

INTA 2100. Theoretical Approaches to Great Power Relations. 3 Credit Hours.
Juxtaposes competing explanations for the patterns of conflict and cooperation among nations, illustrated by relations among the great powers of Europe and Asia during the past two centuries.

INTA 2120. Introduction to International Security. 3 Credit Hours.
Introduction to the role of theory and provide an understanding of the significance of various issues in international security.

INTA 2121. Politics of the European Union. 3 Credit Hours.
Introduction and overview of the history and politics of the European Union from its inception to the new era of development under the 2009 Lisbon Treaty.

INTA 2220. Government and Politics of Western Europe. 3 Credit Hours.
A comparative analysis of the politics and major institutions of the countries of contemporary Western Europe.

INTA 2221. Politics of the European Union. 3 Credit Hours.
Introduction and overview of the history and politics of the European Union from its inception to the new era of development under the 2009 Lisbon Treaty.

INTA 2230. Government and Politics of Asia. 3 Credit Hours.
An introduction to the major issues and aspects of the politics, societies, and cultures of East Asia, and the changing role of the region in international affairs.

INTA 2241. Government, Politics and Society of Latin America. 3 Credit Hours.
Introduction to the study of historical forces, cultural production, identity, political development and contemporary issues in Latin America.

INTA 2260. Government, Politics and Society of the Middle East. 3 Credit Hours.
Introduction to the study and analysis of contemporary Middle East politics with an emphasis on the Arab states.

INTA 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

INTA 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

INTA 2803. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 2813. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 2823. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 2833. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 2901. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2902. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2903. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2904. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2905. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2906. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 2910. International Technology Transfer. 3 Credit Hours.
Explores the impact of technology transfer on key contexts such as economic development and the international diffusion of defense production and technology.

INTA 3010. International Technology Transfer. 3 Credit Hours.
Explores the impact of technology transfer on key contexts such as economic development and the international diffusion of defense production and technology.

INTA 3012. War in the 20th Century. 3 Credit Hours.
Provides historical foundation and understanding of the causes, conduct and consequences of modern war to support informed discussion and analysis of contemporary crisis and conflict.
INTA 3020. Contemporary Mexico. 3 Credit Hours.
This course examines the socio-economic and political history and development of twentieth century Mexico, with a focus on current problems and issues.

INTA 3031. Human Rights in a Technological World. 3 Credit Hours.
Explores how processes of globalization and advances in communication and technology have heightened and shaped human rights as a concern in international politics.

INTA 3040. Energy, Environment, and Policy. 3 Credit Hours.
Explores the interface between energy security and environmental sustainability with the aim of understanding the consequences of policy decisions for ecological, social, and economic systems.

INTA 3042. Energy and International Security. 3 Credit Hours.
Examines issues at the intersection of national energy security and international conflict and cooperation.

INTA 3043. Space Policy. 3 Credit Hours.
Examination of the origins, evolution and range of current challenges and debates in international space policy issues, including civil, military, and commercial activities.

INTA 3044. Global Politics of Technology. 3 Credit Hours.
Examines the economic and political dynamics that influence how regulations governing technology are adopted around the world.

INTA 3050. The Meaning of Global Citizenship. 3 Credit Hours.
Explore the meaning of global citizenship in scholarly and public debates and how it is “practiced” by individuals and “institutionalized” by universities, corporations and organizations.

INTA 3101. International Institutions. 3 Credit Hours.
Scrubinizes the evolution of international institutions, and juxtaposes competing theoretical approaches for understanding the changing roles and functions of institutions in world affairs.

INTA 3102. The Problem of Proliferation. 3 Credit Hours.
Explores the political and economic issues, both international as well as domestic, involved in the spread of the weapons of mass destruction since the end of the Second World War.

INTA 3103. The Challenge of Terrorism. 3 Credit Hours.
Examines the contexts that nurture domestic and international terrorism, the variety of terrorist organizations, and alternative approaches to combating the problem.

INTA 3104. International Negotiations. 3 Credit Hours.
Examines the theories of bargaining and negotiation, with an emphasis on explaining success and failure in U.S. foreign policy and national security negotiations.

INTA 3110. U.S. Foreign Policy. 3 Credit Hours.
Analyzes the formulation and implementation of America’s foreign policy from 1914 to the present, stressing economic, political, and strategic factors.

INTA 3111. U.S. Defense Policy. 3 Credit Hours.
Examines contemporary American defense policy, including the formulation of strategy, the defense budget, force structure, and nontraditional uses of military force.

INTA 3120. European Security Issues. 3 Credit Hours.
Explores the contemporary European security environment, including threats, challenges, and various security architectures (e.g., NATO, the WEU, and the OSCE).

INTA 3121. Foreign Policies of Russia and Eurasia. 3 Credit Hours.
Examines the many dimensions of the foreign and security policies of Russia and the other new post-Soviet states of Russia and Eurasia.

INTA 3130. Foreign Policy of China. 3 Credit Hours.
Analyzes the major dimensions of the foreign policies of the People’s Republic of China and the domestic and international influences shaping those policies.

INTA 3131. Pacific Security Issues. 3 Credit Hours.
Examines past, present, and future security concerns in the Pacific, including the Korean peninsula, Japanese defense, the emergence of China as a military power, and the forward basing of American troops and materiel.

INTA 3203. Comparative Politics. 3 Credit Hours.
Contrasts competing theoretical perspectives in the comparative analysis of political systems.

INTA 3220. Government and Politics of Germany. 3 Credit Hours.
Examines the government and politics of Germany with an in-depth focus on the post-1945 period. NOTE: When taught jointly with the School of Modern Languages, all lectures, assignments, and readings are in German.

INTA 3221. Post-Soviet Government and Politics. 3 Credit Hours.
Focuses on the challenge of building new social, political, and economic systems in Russia, but also considers some of the special problems confronting the other fourteen post-Soviet states.

INTA 3223. Transatlantic Relations. 3 Credit Hours.
Analysis of the different aspects of the relationship between the US and the EU and how it is characterized by cooperation, conflict and competition.

INTA 3230. Government and Politics of China. 3 Credit Hours.
Investigates the structure and institutions of political power as well as the patterns and features of political change in the contemporary People’s Republic of China.

INTA 3231. Government and Politics of Japan. 3 Credit Hours.
Examines the main institutions, policies, and politics of contemporary Japan. Investigates the impact of social, cultural, and economic forces on Japan’s government and politics.

INTA 3232. Sustainable Megaregion. 3 Credit Hours.
Explores the ways in which environmental, economic, social, and technological forces shape megaregion sustainability in through comparison with megaregions in countries around the world.

INTA 3240. Government and Politics of Africa. 3 Credit Hours.
A survey of the history, cultures, social systems, governments, economies, and international roles of Africa. Selected case studies of individual countries are presented.

INTA 3241. Latin American Politics. 3 Credit Hours.
Surveys the government and politics of Latin America. The course begins with an overview of the region’s geography and history, and then explains why demographic government has had a tenuous existence in this area.

INTA 3242. Soccer and Global Politics. 3 Credit Hours.
An examination of regional and national identity, development, and politics through the history of soccer.

INTA 3243. US - Latin American Relations. 3 Credit Hours.
Study of government and non-governmental influences on policy and effectiveness of political, economic, and military instruments of power in Latin America.
INTA 3260. Middle East Relations. 3 Credit Hours.
Course will provide an in-depth understanding of the Arab-Israeli conflict using theories of international relations and comparative politics.

INTA 3301. International Political Economy. 3 Credit Hours.
Analyzes the relationship between political and economic issues in international affairs. Examines the interaction of states and markets in the context of trade, investment, and production.

INTA 3303. Political Economy of Development. 3 Credit Hours.
Surveys theories of economic development and political change, and examines a range of cases that include the European-American experience, the East Asian episode, and the transition from socialism.

INTA 3304. International Trade and Production. 3 Credit Hours.
Examines the political economy of international trade and the global production process with particular emphasis on conflict and cooperation in national competition for high-technology industries.

INTA 3321. Political Economy of European Integration. 3 Credit Hours.
Explores the processes and problems of political and economic integration in the European Union, the world's largest trading bloc.

INTA 3330. Political Economy of China. 3 Credit Hours.
Examines the centuries of stagnation and the recent rapid growth of the Chinese economy, and seeks to understand the current interaction between politics and economic development in the People's Republic of China.

INTA 3331. Political Economy of Japan. 3 Credit Hours.
Surveys the political foundations and economic achievements of modern Japan. Explores the interaction of domestic and international forces, and analyzes Japan's changing world role.

INTA 3773. Global Issues and Leadership. 3 Credit Hours.
Invited project based seminar: Uses global issues to explore diverse viewpoints, cultures and cognitive biases to develop leadership and presentation skills in small diverse groups.

INTA 3803. Special Topics. 3 Credit Hours.
Selected topics will vary from term to term.

INTA 3813. Special Topics. 3 Credit Hours.
Selected topics will vary from term to term.

INTA 3823. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 3833. Special Topics. 3 Credit Hours.
Topics of current interest in International Affairs.

INTA 3XXX. International Affairs Elective. 1-21 Credit Hours.

INTA 4007. Intelligence and International Security. 3 Credit Hours.
This course examines the history, nature and business of secret intelligence as a critical element of national and international security, with special emphasis given to its role in the global war on terror, and the relationship between the intelligence community and policy makers.

INTA 4011. Technology and Military Organization. 3 Credit Hours.
Addresses the impact of technological developments on the evolution of military organization and on international conflict from the Battle of Agincourt (1415) to the Gulf War (1991).

INTA 4014. Scenario Writing and Pathgaming. 3 Credit Hours.
Introduces students to the construction and presentation of formalized scenarios for international planning, and into the formation, implementation, and assessment of path games. Credit not allowed for both INTA 4014 and INTA 6014.

INTA 4016. Strategy and Arms Control. 3 Credit Hours.
Explores elements of military strategy and tactics, weapons proliferation, and arms control efforts.

INTA 4040. Environmental Politics. 3 Credit Hours.
Examines the interface between politics and the environment. Foci include sustainable development, the politics of the rain forest, eco-tourism, and export agriculture and the environment.

INTA 4050. International Affairs and Technology Policy Making. 3 Credit Hours.
International policy issues in which science and technology figure prominently. Topics include: health, environment, information technologies, arms control and defense, critical infrastructure, transportation, and energy. Emphasis placed on policy analysis and formation.

INTA 4060. International Law. 3 Credit Hours.
Explores major issues, concepts and cases in public international law and their policy ramifications. Specific topics include human rights, armed conflict, crimes against humanity, and the environment.

INTA 4101. Politics of the Vietnam War. 3 Credit Hours.

INTA 4121. Seminar in Europe: European Security. 3 Credit Hours.
Examines the history, institutional structure, and functions, as well as current policy challenges facing NATO and other European security arrangements.

INTA 4230. Seminar in Europe: European Union. 3 Credit Hours.
Explores the history and processes of economic and political integration within the framework of the European Union.

INTA 4240. Argentine Politics, History, and Culture. 3 Credit Hours.
Survey of the politics, history, and culture of Argentina. Topics include Argentine economic and political failure, the politics of immigration, and the relationship between culture and development.

INTA 4241. Democracy in the Global South. 3 Credit Hours.
Surveys the Third World democratization. Assesses various theories of democratization. Examines various measures of democracy and explores the depth and consolidation of the current democratization boom.

INTA 4330. Chinese Economic Reform. 3 Credit Hours.
Addresses the profound and consequential process of the Chinese economic reform that started at the end of the 1970s and has led to China's rapid economic growth.

INTA 4331. Chinese Politics in Transition. 3 Credit Hours.
Investigates the organizational apparatus through which the Chinese Communist Party exercises leadership over politics and society, and the way in which reforms have changed those relationships.

INTA 4332. Chinese Institutions and Policy Process. 3 Credit Hours.
Supervised field research on the Chinese institutions and policy-making process especially in the areas of economic and social issues.

INTA 4333. Korean Security Policy. 3 Credit Hours.
An examination of the principal policy issues facing the United States with regard to the Korean Peninsula and the principal neighboring states, China and Japan.

INTA 4340. Latin American Regional Economic and Political Integration. 3 Credit Hours.
Examines institutional, interest group, international, and economic inputs and outputs of regional integration.
INTA 4500. Pro-Seminar in International Affairs. 3 Credit Hours.
Capstone experience in which students formulate strategies and policies to cope with international problems. Themes vary from seminar to seminar. Credit not allowed for both INTA 4500 and INTA 4400.

INTA 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

INTA 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

INTA 4740. Seminar in Political Economy. 3 Credit Hours.
Capstone experience in which students apply tools of political economy to international issues. Crosslisted with ECON 4740.

INTA 4741. Thesis in Political Economy. 3 Credit Hours.
Individual project applying the tools of political economy to international issues. Crosslisted with ECON 4741.

INTA 4742. Modeling, Simulation, and Military Gaming. 3 Credit Hours.
Creation and use of modeling and simulation tools to analyze and train students regarding strategic events in international relations. Credit not allowed for both INTA 4742 and INTA 6742 (or CSE 6742 or CS 4343).

INTA 4743. Japanese Society and Politics. 3 Credit Hours.

INTA 4744. Global Development Capstone. 3 Credit Hours.
Teams develop solutions to multidisciplinary problems selected from globalization, food security, infrastructure, health, water, sanitation, hygiene, ecosystem resilience, services, capacity building, and urbanization.

INTA 4745. Information and Communication Technologies and Global Development. 3 Credit Hours.
Focus on technology, design, adoption, and use as seen through the lens of global development.

INTA 4803. Special Topics. 3 Credit Hours.
Selected topics will vary from term to term.

INTA 4811. Special Topics. 1 Credit Hour.
Topics of interest not covered in the regular course offerings.

INTA 4812. Special Topics. 2 Credit Hours.
Topics of interest not covered in the regular course offerings.

INTA 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

INTA 4814. Special Topics. 4 Credit Hours.
Topics of interest not covered in the regular course offerings.

INTA 4815. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular course offerings.

INTA 4823. Special Topics. 3 Credit Hours.
Selected topics will vary from term to term.

INTA 4833. Special Topics. 3 Credit Hours.
Selected topics will vary from term to term.

INTA 4901. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 4902. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 4903. Special Problems. 1-21 Credit Hours.
Independent study with a faculty member.

INTA 4XXX. International Affairs Elective. 1-21 Credit Hours.

INTA 6002. Strategic Decision Making. 3 Credit Hours.
Examines the dynamics of individual, group, organizational, cross-cultural, and international interaction.

INTA 6003. Empirical Research Methods. 3 Credit Hours.
This course introduces research methods in international affairs. It emphasizes writing research proposals, empirical techniques, gathering and assembling data, and methods for analyzing and reporting results.

INTA 6004. Modeling, Forecasting, and Decision Making. 3 Credit Hours.
This course introduces modeling and forecasting in strategic decision making, analysis of long-term developments, path gaming, formal analysis of games, and simulation.

INTA 6011. International Trade and Technology Transfer. 3 Credit Hours.
This course examines the relationship between international trade and technology transfer and their effect on national competitiveness, national security, and international cooperation and coercion.

INTA 6014. Scenario Writing and Path Gaming. 3 Credit Hours.
Introduces students to the construction and presentation of formalized scenarios for international planning, and into the formulation, implementation and assessment of path games. Credit not allowed for both INTA 6014 and INTA 4014.

INTA 6015. Technology and Military Organizations. 3 Credit Hours.
Explores changes in military technology, organization, and operations leading to new conceptions of the conduct of warfare as a result of revolutions in military affairs.

INTA 6016. Strategy and Arms Control. 3 Credit Hours.
Explores elements of military strategy and tactics, weapons proliferation, and arms control efforts.

INTA 6022. Ethics and International Affairs. 3 Credit Hours.
An overview of the main tradition and theories of international ethics applied to four major issues: intervention and the use of force; human rights; self- determination; and global distributive justice.

INTA 6102. International Relations Theory. 3 Credit Hours.
This course provides an introduction to theoretical approaches to understanding international relations. The focus of the course is on system-level theories and sub-systematic-level theories.

INTA 6103. International Security. 3 Credit Hours.
Examines traditional and nontraditional issues in international security, including the uses of military force, military strategy and policy, arms control, peacekeeping, the environment, and migration.

INTA 6105. International Institutional Design. 3 Credit Hours.
This course examines international institutions and their effect on foreign policy decision makers. Specific topics include: the theoretical study of cooperation; supranatural organizations and informal institutions.

INTA 6106. The State in International Affairs. 3 Credit Hours.
Explores various concepts of the state in international affairs as well as the concepts of sovereignty and revolution.

INTA 6111. U.S. Foreign and National Security Strategy. 3 Credit Hours.
This course focuses on the design and implementation of U.S. foreign policy and national strategy in the areas of arms control, the Third World, and economic policy.
INTA 6121. Seminar In Europe: European Security. 3 Credit Hours.
This course examines the history, institutional structure and functions, and current policy challenges facing the North Atlantic Treaty Organization (NATO) and other European security institutions.

INTA 6122. Science, Technology and National Security. 3 Credit Hours.
Topics in the study of the relationship between national security and the scientific-technological enterprise from diverse perspectives.

INTA 6131. Pacific Security Issues. 3 Credit Hours.
Examines past, present, and future security concerns in the Pacific, including the Korean peninsula, Japanese defense, the emergence of China as a military power, and the forward basing of American troops and material.

INTA 6202. Comparative Politics. 3 Credit Hours.
This course surveys the major political types of the late twentieth century world and explores their various development characteristics.

INTA 6203. Comparative Institutional Design. 3 Credit Hours.
This course examines the creation, maintenance, and evolution of political institutions, and the ways in which institutions affect policy choice.

INTA 6302. International Political Economy. 3 Credit Hours.
This course is an introduction to the politics of international economic relations. Major theoretical approaches are applied to international trade, international monetary relations, and global production in the modern era.

INTA 6304. Modernization and Development. 3 Credit Hours.
This course empirically examines processes in which a country’s organizational structure is altered through economic development, political democratization, and/or social liberalization.

INTA 6306. Globalization. 3 Credit Hours.
Research seminar exploring theoretical perspectives on globalization and the political and economic issues facing modern states and their citizens in a “borderless” world.

INTA 6320. Seminar in Europe: European Union. 3 Credit Hours.
This course explores the history and processes of economic and political integration within the framework of the European Union.

INTA 6330. Political Economy of East Asia. 3 Credit Hours.
This course explores the politics of economic development in China, Japan, and Korea. Focal issues include: trade patterns, financial institutions, trade-bloc formation, industrial competitiveness, and the status of U.S.-East Asian economic relations.

INTA 6331. Chinese Political Economy. 3 Credit Hours.
This course examines the Chinese social and economic development from the seventh century to current day. Specific emphasis is placed on the political economic reforms of Deng Xiaoping and assessing the implications of continued Chinese modernization.

INTA 6340. Innovation, the State and Industrial Development in International Perspective. 3 Credit Hours.
Research seminar exploring the role of the state in industrial development, innovation and business-government relations. Special attention given to science and technology policies and their influence in different international and industrial contexts. Crosslisted with PUBP 6740.

INTA 6742. Modeling, Simulation and Military Gaming. 3 Credit Hours.
Focuses on the creation and use of modeling and simulation tools to analyze and train students regarding strategic events in international relations. Credit not allowed for both INTA 6742 and CSE 6742 (or INTA 4742 or CS 4343).

INTA 6745. Information and Communication Technologies and Global Development. 3 Credit Hours.
Focus on technology design, adoption, and use as seen through the lens of global development.

INTA 6753. Comparative Science and Technology Policy. 3 Credit Hours.
Examination of the social, political, and cultural contexts of science and technology, and how they affect the research, development, and regulatory policies of nations. Crosslisted with PUBP 6753.

INTA 6XXX. Intl Affairs Elective. 1-21 Credit Hours.
INTA 7000. Master’s Thesis. 1-21 Credit Hours.
Under the direct supervision of one or more faculty members, graduate students will complete an original research design and execute that study.

INTA 8000. Seminar in Science, Technology and International Affairs I. 3 Credit Hours.
Research course introducing engineers and scientists to issues in science and technology as related to international security policy and development.

INTA 8001. Seminar in Science, Technology and International Affairs II. 3 Credit Hours.
Research course introducing engineers and scientists to issues in science and technology as related to international security policy and development.

INTA 8010. International Affairs, Science and Technology Ph.D. Proseminar. 1 Credit Hour.
An overview of resources and practices of doctoral research in International Affairs, Science, and Technology. Meetings will consist of faculty guest lectures and talks from Library personnel and others.

INTA 8801. Special Topics. 1 Credit Hour.
INTA 8802. Special Topics. 2 Credit Hours.
INTA 8803. Special Topics. 3 Credit Hours.
INTA 8804. Special Topics. 4 Credit Hours.
INTA 8805. Special Topics. 5 Credit Hours.
INTA 8813. Special Topics. 3 Credit Hours.
Topics of interest in the field of international affairs.
INTA 8823. Special Topics. 3 Credit Hours.
Topics of interest in International Affairs.
INTA 8833. Special Topics. 3 Credit Hours.
Topics of interest in the field of International Affairs.
INTA 8901. Special Problems. 1-21 Credit Hours.
INTA 8902. Special Problems. 1-21 Credit Hours.
INTA 8903. Special Problems. 1-21 Credit Hours.
INTA 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students with a teaching assistantship.
INTA 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students with a research assistantship.
INTA 9000. Doctoral Thesis. 1-21 Credit Hours.

Internship (INTN)

INTN 2000. Professional Internship. 12 Credit Hours.
Academic related professional work experience.
Int'l Plan Co-op Abroad (IPCO)

IPCO 3011. International Plan Co-op Abroad. 12 Credit Hours.
International Plan Co-ops working outside the United States.

Int'l Plan Intern Abroad (IPIN)

IPIN 3011. International Plan Intern Abroad. 12 Credit Hours.
International Plan interns working outside the United States.

Int'l Plan-Exchange Prgm (IPFS)

IPFS 3012. International Plan Exchange Program. 1 Credit Hour.
Placeholder course to document International Plan students who are studying abroad in participation with an exchange program and in fulfillment of their International Plan requirements.

Int'l Plan-Study Abroad (IPSA)

IPSA 3012. International Plan Study Abroad. 1 Credit Hour.
Placeholder course to document International Plan students who are studying abroad in participation with a summer, faculty-led program and in fulfillment of their International Plan requirements.

Industrial & Systems Engr (ISYE)

ISYE 1XXX. Indus&Sys Engr Elective. 1-21 Credit Hours.

ISYE 2027. Probability with Applications. 3 Credit Hours.
Topics include conditional probability, density and distribution functions from engineering, expectation, conditional expectation, laws of large numbers, central limit theorem, and introduction to Poisson Processes.

ISYE 2028. Basic Statistical Methods. 3 Credit Hours.
Point and interval estimation of system parameters, statistical decision making about differences in system parameters, analysis and modeling of relationships between variables.

ISYE 2127. Honors Probability. 3 Credit Hours.
Topics parallel those in ISYE 2027 with an intended treatment that is more innovative and challenging. Credit not allowed for both ISYE 2127 and 2027.

ISYE 2128. Honors Statistics. 3 Credit Hours.
Topics parallel to those in ISYE 2028 with an intended treatment that is more innovative and challenging. Credit not given for both ISYE 2028 and 2128.

ISYE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ISYE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ISYE 2801. Special Topics. 1 Credit Hour.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 2803. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 2XXX. Indus&Sys Engr Elective. 1-21 Credit Hours.

ISYE 3025. Essentials of Engineering Economy. 1 Credit Hour.
Introduction to engineering economic decision making, economic decision criteria, discounted cash flow, replacement and timing decisions, risk, depreciation, and income tax.
ISYE 3039. Methods of Quality Improvement. 3 Credit Hours.
Topics include quality system requirements, designed experiments, process capability analysis, measurement capability, statistical process control, and acceptance sampling plans. Credit will not be awarded for both ISYE 3039 and ISYE 6382.

ISYE 3044. Simulation Analysis and Design. 3 Credit Hours.
Discrete event simulation methodology emphasizing the statistical basis for simulation modeling and analysis. Overview of computer languages and simulation design applied to various industrial situations.

ISYE 3103. Introduction to Supply Chain Modeling: Logistics. 3 Credit Hours.
Course focuses on engineering design concepts and optimization models for logistics decision making in three modules: supply chain design, planning and execution, and transportation.

ISYE 3104. Introduction to Supply Chain Modeling: Manufacturing and Warehousing. 3 Credit Hours.
Design and operation of manufacturing and warehousing facilities.

ISYE 3133. Engineering Optimization. 3 Credit Hours.
Topics include modeling with networks and graphs; linear, nonlinear, and integer programming, construction of models employing modern modeling languages; and general solution strategies.

ISYE 3232. Probabilistic Operations Research. 3 Credit Hours.
Methods for describing stochastic movements of material in manufacturing facilities, supply chain, and equipment maintenance networks. Includes analysis of congestion, delays, and inventory ordering policies.

ISYE 3770. Statistics and Applications. 3 Credit Hours.
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression, and analysis of variance. Crosslisted with MATH 3770 and CEE 3770. Also, credit not awarded for both ISYE 3770 and MATH 3670.

ISYE 3790. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and PSYC 3790.

ISYE 3803. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession conducted by resident or visiting faculty.

ISYE 3833. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 3XXX. Indus&Tsys Engr Elective. 1-21 Credit Hours.

ISYE 4009. Design of Human-Integrated Systems. 3 Credit Hours.
Topics include general cognitive systems engineering concepts and principles, and specific concepts and principles of interface design, task analysis, prototyping, and empirical usability of evaluation methods.

ISYE 4031. Regression and Forecasting. 3 Credit Hours.
Regression analysis: multiple linear regression, diagnostics, and variable selection. Forecasting: exponential smoothing techniques and autoregressive moving average models.

ISYE 4034. Decision and Data Analytics. 3 Credit Hours.
This course integrates decision and data analytics to solve real-world business problems. It includes hands-on system modeling, data collection and analysis, and reporting writing projects.

ISYE 4106. Senior Design. 4 Credit Hours.
Senior design project requiring student to formulate a project plan with an off-campus enterprise. Includes specific milestones, targets, and evaluation criteria.

ISYE 4111. Advanced Supply Chain Logistics. 3 Credit Hours.
This course is a follow-up to ISYE 3103 that covers optimization models and case studies for logistics network design and logistics operations.

ISYE 4133. Advanced Optimization. 3 Credit Hours.
Theory and implementation of practical methods to find good or optimal solutions to optimization problems too large or complex to solve in a straightforward way.

ISYE 4232. Advanced Stochastic Systems. 3 Credit Hours.
The course will cover Jackson Networks and Markov Decision Processes with applications to production/inventory systems, customer contact centers, revenue management, and health care.

ISYE 4301. Supply Chain Economics. 3 Credit Hours.
The course studies techniques for coordination and collaboration in supply chains. Applications include pricing strategies, revenue management, gaming, and incentives.

ISYE 4311. Capital Investment Analysis. 3 Credit Hours.
Students learn core concepts and techniques for economic decision and analysis of complex capital investment problems that involve dimensions of time, uncertainty and strategy.

ISYE 4331. Honors Optimization. 3 Credit Hours.
Topics parallel those in ISYE 4231 with an intended treatment that is more innovative and challenging. Credit not given for both ISYE 4331 and 4231.

ISYE 4501. Energy, Efficiency, and Sustainability. 3 Credit Hours.
Analysis and modeling of energy production and use, material and energy efficiency, sustainability, and cost for systems, products, and services.

ISYE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ISYE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ISYE 4740. Bio-Inspired Design. 3 Credit Hours.
We examine evolutionary adaptation as a course for engineering design inspiration, utilizing principles of scaling, adaptability, and robust multifunctionality that characterize biological systems. Credit not allowed for both ISYE 4740 and (BIOL 4740, or PTFE 4740 or MSE 4740 or ME 4740).

ISYE 4800. Special Topics. null Credit Hours.
ISYE Senior Design Preparation.

ISYE 4801. Special Topics. 1 Credit Hour.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4802. Special Topics. 2 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4803. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4813. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession conducted by resident or visiting faculty.
ISYE 4823. Special Topics. 3 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4833. Honors Topics. 3 Credit Hours.
Topics of current interest in the field of ISYE that are covered with an appropriately high level of innovation and rigor.

ISYE 4843. Special Topics. 3 Credit Hours.
Topics of current interest in the field of ISYE.

ISYE 4852. Special Topics. 2 Credit Hours.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4991. Special Problems. 1-21 Credit Hours.
A variable credit opportunity to develop initiative and apply fundamental principles by performing semi-original laboratory or research work in ISYE.

ISYE 4992. Special Problems. 1-21 Credit Hours.
A variable credit hour opportunity to develop initiative and apply fundamental principles by performing semi-original laboratory or research work in ISYE.

ISYE 4993. Special Problems. 1-21 Credit Hours.
A variable credit hour opportunity to develop initiative and apply fundamental principles by performing semi-original laboratory or research work in ISYE.

ISYE 4XXX. Indust&Sys Engr Elective. 1-21 Credit Hours.

ISYE 6101. Organizational Behavior for Engineers. 3 Credit Hours.
Studies the scientific generation, formalization, and application of the knowledge of individual and group behaviors that engineers need to function effectively within contexts.

ISYE 6201. Manufacturing Systems. 3 Credit Hours.
Topics include analysis of flows, bottlenecks and queuing, types of operations, manufacturing inventories, aggregate production planning, lot sizes and lead times, and pull production systems.

ISYE 6202. Warehousing Systems. 3 Credit Hours.
Topics include design and analysis of materials handling systems, warehouse layout, order picking strategies, warehousing inventories, warehouse management systems, integration of production and distribution systems. Credit will not be awarded for both ISYE 6202 and ISYE 6383.

ISYE 6203. Transportation and Supply Chain Systems. 3 Credit Hours.
Topics include supply chain characterization, site location, mode selection, distribution planning, vehicle routing, demand management, replenishment management, geographic information systems, and real-time control issues. Credit will not be awarded for both ISYE 6203 and ISYE 6383.

ISYE 6205. Cognitive Engineering. 3 Credit Hours.
Application of cognitive science concepts to system design, and the development of concepts appropriate for understanding and aiding cognition in naturally or technologically complex environments.

ISYE 6215. Models in Human-Machine Systems. 3 Credit Hours.
The development and use of mathematical models of human behavior are considered. Approaches from estimation theory, control theory, queuing theory, and fuzzy set theory are considered.

ISYE 6223. Understanding and Aiding Human Decision Making. 3 Credit Hours.
Prescriptive and descriptive theories of human decision making are discussed/contrasted. Approaches to aiding human decision making are considered in context of these theoretical frameworks.

ISYE 6224. Advances in Human-Machine Systems Research. 3 Credit Hours.
State-of-the-art research directions including supervisory control models of human command control tasks; human-computer interface in scheduling and supervision of flexible manufacturing systems.

ISYE 6225. Advanced Engineering Economy. 3 Credit Hours.
Advanced engineering economy topics, including economic worth, economic optimization under constraints, risk and uncertainty, foundations of utility theory.

ISYE 6227. Introduction to Financial Engineering. 3 Credit Hours.
Advanced techniques for economic analysis of capital investment. Basic terminology and financial engineering concepts for managing and valuing project risk. Real options applications in systems engineering.

ISYE 6229. Productive Measurement and Analysis. 3 Credit Hours.
Modern measurement of productivity measurement and analysis including principles, issues, and latest techniques associated with benchmarking, efficiency measurement, and productivity tracking. Empirical studies and group projects.

ISYE 6230. Economic Decision Analysis. 3 Credit Hours.
Topics include preferences and utilities, social choice, equilibrium concepts, noncooperative and cooperative game theory, price mechanisms, auction mechanisms, voting theory, and incentive compatibility.

ISYE 6231. Design of Human-integrated Systems. 3 Credit Hours.
Analysis and design of complex work domains in technological environments. Credit not allowed for both ISYE 6231 and AE 6721.

ISYE 6232. Safety-critical Real-time Systems. 3 Credit Hours.
Study of system safety, human error, and software reliability.

ISYE 6234. Measurement and Evaluation of Human-integrated Systems. 3 Credit Hours.
Measurements of complex systems including workload, operator strategy, and performance.

ISYE 6307. Scheduling Theory. 3 Credit Hours.
Includes topics in sequencing and scheduling with emphasis on deterministic machine scheduling problems with some stochastic results examined. Complexity of various problems will be analyzed.

ISYE 6320. Public Impact Applications of Operations Research and Management Science. 3 Credit Hours.
The focus is on the health and public applications of Operations Research. Students will complete a group project with a non-profit organization and discuss papers.

ISYE 6331. Statistics for Supply Chain Engineering. 3 Credit Hours.
Collection, management, and analysis of supply chain data.

ISYE 6332. Finance for Supply Chain Engineering. 3 Credit Hours.
Investment and analysis of operating capital.

ISYE 6333. Operations Research for Supply Chain Engineering I. 3 Credit Hours.
Deterministic models of supply chains including location and material flow. Optimization techniques including linear programming, network flows, integer programming, and heuristics.
ISYE 6334. Operations Research for Supply Chain Engineering II. 3 Credit Hours.
Probabilistic models of supply chains, including the effects of variability; models of wholesale and retail demand; forecasting and simulation.

ISYE 6335. Supply Chain Engineering I. 3 Credit Hours.
Production scheduling; inventory systems; warehousing, including stock-keeping strategies, order-picking, sortation, automation; distribution.

ISYE 6336. Supply Chain Engineering II. 3 Credit Hours.
Transportation: truck-load and less-than-truckload, and package-courier systems; container shipping, including port operations, steamship scheduling; railroad operations, including intermodal; air cargo. The international freight network and patterns of freight flow. Management and recirculation of trailers/containers. Labor issues.

ISYE 6337. Supply Chain Engineering III. 3 Credit Hours.
Problems of coordination and collaboration along the supply chain; make-or-buy decisions; pricing and auctions; wholesale and retail channels; supply chain dynamics, including the bullwhip effect. Distinctive supply chain issues in key economies.

ISYE 6338. Supply Chain Strategy. 3 Credit Hours.
Case studies of notable supply chains successes and failures.

ISYE 6339. Supply Chain Information Systems. 3 Credit Hours.
Planning and executing systems for inventory, warehousing, transportation, import/export, etc. Services-oriented architecture, cloud computing; systems integration; RFID and other technologies for scanning and monitoring.

ISYE 6340. Supply Chain Engineering Seminar. 3 Credit Hours.
Through a program of industry speakers and facility tours, student will learn to assess and critique supply chain practice.

ISYE 6341. Capstone Project for Supply Chain Engineering I. 3 Credit Hours.
Small groups of students undertake an industry-sponsored project under faculty guidance.

ISYE 6342. Capstone Project for Supply Chain Engineering II. 3 Credit Hours.
Small groups of students undertake an industry-sponsored project under faculty guidance.

ISYE 6380. Production Planning and Control. 3 Credit Hours.
Fundamentals of Production Planning and Lean Manufacturing.

ISYE 6381. Manufacturing Reliability. 3 Credit Hours.
Fundamentals of Reliability and Maintainability Engineering.

ISYE 6382. Quality Control and Six Sigma. 3 Credit Hours.
Fundamentals of Quality Control and Six Sigma Methods. Credit will not be awarded for both ISYE 6382 and ISYE 3039.

ISYE 6383. Fundamentals of Manufacturing Supply Chain Operations. 3 Credit Hours.
Fundamentals of Manufacturing Supply Chain Operations. Credit will not be awarded for both ISYE 6383 and ISYE 6202 or ISYE 6383 and ISYE 6203.

ISYE 6401. Applied Regression Analysis I. 3 Credit Hours.
Fundamental coverage of topics in multiple regression and factorial experiments.

ISYE 6402. Time Series Analysis. 3 Credit Hours.
Basic forecasting methods, ARIMA models, transfer functions.

ISYE 6404. Nonparametric Data Analysis. 3 Credit Hours.
Nonparametric statistics and basic categorical data analysis.
ISYE 6661. Optimization I: Linear Programming. 3 Credit Hours.
Theory, algorithms, and applications of linear programming. Topics include the simplex method and resolution of degeneracy, duality and sensitivity analysis, basis factorization, the dual and revised simplex methods, and geometry of polyhedra. Intended for Ph.D. students.

ISYE 6662. Optimization II: Network Flows and Discrete Optimization. 3 Credit Hours.
Fundamentals of integer and combinatorial optimization. Topics include polyhedra, cuts, Lagrangean duality, complexity, and others. This course is intended for Ph.D. students.

ISYE 6663. Optimization III: Nonlinear Programming. 3 Credit Hours.
Fundamentals of nonlinear optimization. Topics include optimality conditions; convex programming and duality; unconstrained and constrained methods. Polynomial algorithms and interior point methods. Dual methods. This course is for students seriously considering a PhD.

ISYE 6664. Stochastic Optimization. 3 Credit Hours.
An introduction to sequential decision making under uncertainty. Much of the course is devoted to the theoretical, modeling, and computational aspects of Markov decision processes.

ISYE 6669. Deterministic Optimization. 3 Credit Hours.
An introduction to deterministic optimization methodologies including approaches from linear, discrete, and nonlinear optimization including algorithms and computations. Applications will be introduced as appropriate.

ISYE 6673. Financial Optimization Models. 3 Credit Hours.
An introduction to optimization techniques with special emphasis on applications to finance, including portfolio optimization, immunization, and risk management.

ISYE 6679. Computational Methods in Optimization. 3 Credit Hours.
Strategies and techniques for converting optimization theory into effective computational procedures. Emphasis is on applications in linear, integer, and nonlinear programming; networks and graphs.

ISYE 6701. Energy Technology and Policy. 3 Credit Hours.
Examines energy production, use, and production, use, and policy using quantitative engineering and policy analysis. Addresses resource constraints, physical principles, and policy analysis methods.

ISYE 6739. Basic Statistical Methods. 3 Credit Hours.
Overview of basic tools used in statistical analysis and modeling. Credit not allowed to students seeking a degree in ISYE.

ISYE 6740. Computational Data Analysis: Learning, Mining, and Computation. 3 Credit Hours.
Theoretical/computational foundations of analyzing large/complex modern datasets, including the fundamental concepts of machine learning and data mining needed for both research and practice. Crosslisted with CSE 6740.

ISYE 6748. Applied Analytics Practicum. 6 Credit Hours.
Practical analytics project experience applying ideas from the classroom to a significant project of interest to a business, government agency, or other organization.

ISYE 6759. Stochastic Processes in Finance. 3 Credit Hours.
Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed. Crosslisted with MATH 6759.

ISYE 6761. Stochastic Processes I. 3 Credit Hours.
Discrete time Markov chains, Poisson and renewal processes; transient and limiting behavior; average cost and utility measures of systems. Intended for Ph.D students. Crosslisted with MATH 6761.

ISYE 6762. Stochastic Processes II. 3 Credit Hours.
Continuous time Markov chains; uniformization, transient and limiting behavior; Brownian motion and martingales; optional sampling and convergence. Intended for Ph.D. students. Crosslisted with MATH 6762.

ISYE 6767. Design and Implementation of Systems to Support. 3 Credit Hours.
Introduction to large-scale system design to support computational finance for options, stocks, or other financial instruments. Some programming experience and previous exposure to stocks, bonds, and options required. Crosslisted with MATH 6767.

ISYE 6769. Fixed Income Securities. 3 Credit Hours.
Description, institutional features, and mathematical modeling of fixed income securities. Use of both deterministic and stochastic models. Crosslisted with MATH 6769.

ISYE 6772. Management of Technology II. 3 Credit Hours.
This course explores the competitive advantage manufacturing and service firms derive from the effective management of their technology, workforce, materials, and information resources. Crosslisted with MGT 6772.

ISYE 6773. Management of Technology III. 3 Credit Hours.
This course provides a forum for the in-depth examination of issues involving the strategic management of high-tech corporate start-ups and small technology-based businesses. Crosslisted with MGT 6773.

ISYE 6774. Management of Technology Project. 3 Credit Hours.
This course organizes students into multidisciplinary teams devoted to solving a real problem for a technology-based firm. Crosslisted with MGT 6774.

ISYE 6775. Management of Technology Seminar. 1 Credit Hour.
This course introduces the frontiers of key technologies, provides a forum for visiting speakers from the corporate world, and supplements topics from other MGT courses. Crosslisted with MGT 6775.

ISYE 6777. Analysis of Emerging Technologies. 3 Credit Hours.
Methods for technology monitoring, forecasting, and assessment. Crosslisted with PUBP 6777.

ISYE 6779. Dynamic System Simulation and Modeling. 3 Credit Hours.
Models of dynamic systems, such as aircraft, ground vehicles, and machinery, and manual control. Numerical simulation techniques and applications. Interactive simulators. Student programming project. Crosslisted with AE 6779.

ISYE 6781. Reliability Theory. 3 Credit Hours.
Structural properties and reliability of coherent systems.

ISYE 6783. Statistical Techniques of Financial Data Analysis. 3 Credit Hours.
Fundamentals of statistical inference for models used in the modern analysis of financial data. Crosslisted with MATH 6783.

ISYE 6785. The Practice of Quantitative and Computational Finance. 3 Credit Hours.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance. Crosslisted with MATH and MGT 6785.

ISYE 6792. Computer Integrated Manufacturing Systems Seminar. 1 Credit Hour.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ECE and ME 6792.
ISYE 6793. Advanced Topics in Quantitative and Computational Finance. 3 Credit Hours.
Advanced foundational material and analysis techniques in quantitative and computational finance. Crosslisted with MATH 6793.

ISYE 6795. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS and PSYC 6795.

ISYE 6805. Reliability Engineering. 3 Credit Hours.
Topics include hazard functions, life distributions, censoring, life tables, nonparametric and parametric estimation and inference, accelerated life testing, structure functions, reliability and maintenance systems, replacement theory.

ISYE 6810. Systems Monitoring and Prognostics. 3 Credit Hours.
The course focuses on sensor-based condition monitoring techniques, modeling of degradation processes, fault diagnostics and prognostics of failures in engineering systems using stochastic and statistical methods.

ISYE 6831. Advanced Simulation. 3 Credit Hours.
Topics include generalized semi-Markov processes; input and output analysis; random number, variate, and sample path generation, rare event simulation; and optimization via simulation.

ISYE 6832. Simulation Theory and Methods. 3 Credit Hours.
Theory, algorithms, and applications of computer simulation. Topics include generalized semi-Markov processes; input-output analysis; random number, variate, and sample path generation; variance reduction techniques; and optimization via simulation. This course is intended for Ph.D. students.

ISYE 6XXX. Indust&Sys Engr Elective. 1-21 Credit Hours.

ISYE 7000. Master's Thesis. 1-21 Credit Hours.
Required of degree candidates in the master's thesis option.

ISYE 7201. Production and Service Systems Engineering. 3 Credit Hours.
Advanced models in operations planning, scheduling and control of supply chain, production and service systems. Intended for Ph.D. students.

ISYE 7203. Logistics Systems Engineering. 3 Credit Hours.
Advanced modeling and analysis of freight transportation and logistics systems. Intended for Ph.D. students.

ISYE 7204. Informatics in Production & Service Systems. 3 Credit Hours.
A course covers integration of statistics, signal processing and control for variability reduction (modeling, analysis, diagnosis, control) for complex systems in a data rich environment.

ISYE 7210. Real-time Interactive Simulation. 3 Credit Hours.
Principles and laboratory experience in design and implementation of interactive simulations of complex dynamic systems.

ISYE 7400. Advanced Design of Experiments. 3 Credit Hours.
Random and mixed models, nested and blocked designs. Intended for Ph.D. students and those seeking the M.S. in Statistics.

ISYE 7401. Advanced Statistical Modeling. 3 Credit Hours.
Nonlinear models, logistic regression, loglinear models. Intended for Ph.D. students and those seeking the M.S. in Statistics.

ISYE 7405. Multivariate Data Analysis. 3 Credit Hours.
Multivariate ANOVA, principal components, factor analysis etc. Intended for Ph.D. students and those seeking the M.S. in Statistics.

ISYE 7406. Data Mining and Statistical Learning. 3 Credit Hours.
Topics include neural networks, support vector machines, classification trees, boosting and discriminant analyses. Intended for Ph.D. students and those seeking the M.S. in Statistics.

ISYE 7441. Linear Statistical Models I. 3 Credit Hours.
Intended for Ph.D. students and those seeking the M.S. in Statistics.

ISYE 7510. Graph Algorithms. 3 Credit Hours.
Algorithms for graph problems such as maximum flow, covering, matching, coloring, planarity, minimum cuts, shortest paths, and connectivity. Crosslisted with MATH 7510 and CS 7510.

ISYE 7653. Case Studies in Logistics/Manufacturing. 3 Credit Hours.
Advanced topics in logistics and manufacturing through the use of industrial case studies. Difficult modeling issues such as data representation and consistency will be introduced.

ISYE 7661. Theory of Linear Inequalities. 3 Credit Hours.
Theoretical foundations of linear and integer programming. Topics include representation of polyhedra, polarity, simplex and ellipsoid algorithms, diophantine equations, Hilbert bases, total dual integrality, and others.

ISYE 7682. Convexity. 3 Credit Hours.
Convex sets, theory of finite systems of linear inequalities, convex functions, convex programming.

ISYE 7683. Advanced Nonlinear Programming. 3 Credit Hours.
Convex programming; linear, conic quadratic and semidefinite programming; cheap optimization methods for extremely large-scale convex problems.

ISYE 7686. Advanced Combinatorial Optimization. 3 Credit Hours.
Typical coverage includes: Matching theory, network optimization, traversals in graphs, integrality of polyhedra, matroids, covers, cliques, and stable sets.

ISYE 7687. Advanced Integer Programming. 3 Credit Hours.
General integer modeling concepts; valid inequalities and facets; duality; general algorithms such as branch-and-bound and branch-and-cut; special purpose algorithms; applications.

ISYE 7688. Computational Mathematical Programming. 3 Credit Hours.
Study of solution techniques in mathematical optimization, emphasizing computational aspects of both theory and algorithms.

ISYE 7790. Cognitive Modeling. 4 Credit Hours.
A hands-on course covering a range of cognitive methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with CS and PSYC 7790.

ISYE 8011. Seminar. 1 Credit Hour.
Audit basis only.

ISYE 8012. Seminar. 1 Credit Hour.
Audit basis only.

ISYE 8013. Seminar. 1 Credit Hour.
Audit basis only.

ISYE 8014. Contemporary Topics in System Informatics and Control. 1 Credit Hour.
A seminar course to introduce important research problems and applications related to the system informatics and control in production and service systems.

ISYE 8795. Colloquium in Cognitive Sciences. 1 Credit Hour.
Reading of research papers by leading cognitive scientists, attendance at their colloquia, and meeting with them to discuss research. Crosslisted with CS and PSYC 8795.
ISYE 8802. Special Topics in ISYE. 2 Credit Hours.
Special Topics in Industrial and Systems Engineering.

ISYE 8803. Special Topics. 3 Credit Hours.
Special topics in Industrial and Systems Engineering.

ISYE 8811. Special Topics. 1 Credit Hour.
Special topics in Industrial and Systems Engineering.

ISYE 8813. Special Topics in Operations Research. 3 Credit Hours.
Special Topics in the field of Operations Research.

ISYE 8843. Advanced Topics in Statistics. 3 Credit Hours.
For Ph.D. students.

ISYE 8851. Topics in Manufacturing. 3 Credit Hours.
Current topics in manufacturing including: manufacturing automation and controls, advanced planning systems, heuristic scheduling techniques, stochastic models of manufacturing systems, advanced warehousing, and materials handling.

ISYE 8852. Topics in Logistics. 3 Credit Hours.
Current topics in logistics including: inventory control in supply chain design, stochastic vehicle routing, computational methods in logistics systems, location theory, and geographic information systems.

ISYE 8861. Advanced Topics in Stochastics. 3 Credit Hours.
Coverage of advanced topics of interest that support research interests of students in the field.

ISYE 8862. Advanced Topics in Simulation. 3 Credit Hours.
Coverage of advanced topics of interest that support research interests of students in the field.

ISYE 8871. Advanced Topics in Linear and Discrete Optimization. 3 Credit Hours.
Topics may vary with each offering and include subjects such as integer programming, combinatorics, graphs and networks, matching, matroids, polyhedral combinatorics, as well as others.

ISYE 8872. Advanced Topics in Nonlinear Optimization. 3 Credit Hours.
Similar to ISYE 8871 but deals with subjects in nonlinear programming, interior-point methods, convexity, global optimization, etc. Topics may vary each term.

ISYE 8893. Special Topics in Cognitive Science. 3 Credit Hours.

ISYE 8900. Special Problems in Industrial Engineering. 1-21 Credit Hours.

ISYE 8901. Special Problems in Operations Research. 1-21 Credit Hours.

ISYE 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistantships.

ISYE 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.

ISYE 9000. Doctoral Thesis. 1-21 Credit Hours.

Japanese (JAPN)

JAPN 1001. Elementary Japanese I. 4 Credit Hours.
Essential principles of Japanese grammar and phonetics, acquisition of vocabulary through conversational exercises, video, and tape material. Introduction to the kana writing system. Humanities credit is awarded for JAPN 1001 upon successful completion of JAPN 1002 or JAPN 2001.

JAPN 1002. Elementary Japanese II. 4 Credit Hours.
Continuation of JAPN 1001. Introduction to kanji symbols.

JAPN 10X1. Trans Elementary Japanese I. 3 Credit Hours.
JAPN 10X2. Trans Elementary Japanese II. 3 Credit Hours.

JAPN 1813. Special Topics. 3 Credit Hours.
Permits a group of students to pursue areas of the Japanese language and culture not extensively treated in other courses.

JAPN 1814. Special Topics. 4 Credit Hours.
Topics of current interest in Japanese.

JAPN 1815. Special Topics. 5 Credit Hours.
JAPN 1816. Special Topics. 6 Credit Hours.
Permits a group of students to pursue areas of the Japanese language and culture not extensively treated in other courses.

JAPN 1XXX. Japanese Elective. 1-21 Credit Hours.

Further principles of Japanese grammar and vocabulary. Introduction to different styles and levels of speech. More kanji.

JAPN 2002. Intermediate Japanese II. 3 Credit Hours.
Continuation of JAPN 2001.

JAPN 2698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

JAPN 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

JAPN 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.

JAPN 2XXX. Japanese Elective. 1-21 Credit Hours.

JAPN 3001. Advanced Japanese I. 3 Credit Hours.
Learn advanced grammar structures and develop the ability to produce longer conversations involving complex styles and levels of speech. More kanji.

JAPN 3691. Technical and Scientific Japanese. 3 Credit Hours.
Reading of intermediate/advanced technical and scientific Japanese texts. Analysis and discussion of scientific issues in society. Part of the Japanese intensive summer language program. Admission by application only.

JAPN 3692. Business Japanese. 3 Credit Hours.
Acquisition of business terminology, protocols, decorum strategies, and improvement of oral communication skills. Reading and writing of notes, correspondence, and reports. Part of the Japanese intensive summer language program. Admission by application only.

JAPN 3693. Japan Today. 3 Credit Hours.
Development of awareness toward cultural differences and potential communication problems through exploration of current socio-economic and corporate-cultural issues in Japan. Part of the Japanese intensive summer language program. Admission by application only.

JAPN 3811. Special Topics. 1 Credit Hour.
Topics of current interest in Japanese.

JAPN 3812. Special Topics. 2 Credit Hours.

JAPN 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.

JAPN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.

JAPN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.
JAPN 3XXX. Japanese Elective. 1-21 Credit Hours.

JAPN 4113. Advanced reading and Listening in Japanese. 3 Credit Hours.
This course introduces advanced grammar and stylistic and idiomatic expressions in Japanese in both written and spoken contexts on a wide range of topics.

JAPN 4123. Technical and Business Japanese Translation. 3 Credit Hours.
This is an applied language course that provides practical experience in translating technical and business documents to and from Japanese.

JAPN 4163. Introduction to Japanese Linguistics. 3 Credit Hours.
This is an introductory course in Japanese literature and culture where students read and interpret authentic literary texts and learn and discuss key cultural concepts. Conducted in Japanese.

JAPN 4165. Critical Readings in Japanese Culture and Arts. 3 Credit Hours.
This course helps improve reading skills of advanced learners by analyzing various written texts on topics of culture and society. Taught in Japanese.

JAPN 4173. Japanese Culture and Society through Anime. 3 Credit Hours.
Students will be able to appreciate anime's significance in historical, societal and cultural contexts, as well as the aesthetic quality of its form. Taught in Japanese.

JAPN 4183. Japanese Culture and Society through Songs. 3 Credit Hours.
Students will be exposed to songs in different historical, societal and cultural contexts of Japan, and appreciate their aesthetic quality. Taught in Japanese.

JAPN 4231. Designing Websites in Japanese. 3 Credit Hours.
This course provides instruction in text input in Japanese and explores language and intercultural communication issues when designing Web pages in Japanese. Taught in Japanese.

JAPN 4233. CALI Pedagogy for Japanese. 3 Credit Hours.
This course explores pedagogical issues in designing Computer-Assisted Language Instruction (CALI) programs for teaching Japanese. Taught in Japanese. Prerequisites: JAPN 3002 (JAPN 4231 highly recommended).

JAPN 4235. 3D RPG Development for Japanese Instruction. 3 Credit Hours.
This course explores pedagogical issues in designing Japanese instructional materials based on the 3D, RPG platform of Second Life. Taught primarily in Japanese. Prerequisites: JAPN 3002 (JAPN 4231 and JAPN 4233 are highly recommended).

JAPN 4500. Advanced Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in Japan. Intended for students who have had some study-abroad experience in Japan. Conducted mostly in Japanese.

JAPN 4543. Advanced Japanese for NLP Development. 3 Credit Hours.
This course will explore advanced linguistic, semantic and pragmatic issues unique to Japanese required for developing a NLP system of text-based Japanese.

JAPN 4695. Japanese Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in Japanese in relation to the practical goals/objectives of the entity.

JAPN 4698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

JAPN 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

JAPN 4743. Japanese Society and Politics. 3 Credit Hours.

JAPN 4750. Japanese Discourse and Grammar. 3 Credit Hours.
This course is about Japanese spoken and written discourse, designed for acquiring skills for managing interpersonal relationships through advanced discourse.

JAPN 4780. Japanese Applied Linguistics. 3 Credit Hours.
This course helps develop analytical skills to better understand human languages, particularly English and Japanese. Taught in English. Credit not allowed for both JAPN 4780 and LING 4780.

JAPN 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

JAPN 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.

JAPN 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Japanese.

JAPN 4901. Special Problems. 1-21 Credit Hours.
Provides the special instruction required under special programs.

JAPN 4902. Special Problems. 1-21 Credit Hours.
Special problems course for advanced students. Topics to be arranged with instructor.

JAPN 4XXX. Japanese Elective. 1-21 Credit Hours.

JAPN 6080. Japanese Applied Linguistics for Graduate Students. 3 Credit Hours.
This course examines current linguistic theories as applied to Japanese in order to acquire analytical skills to better understand human languages, particularly Japanese and English.

JAPN 6173. Culture and Society through Anime. 3 Credit Hours.
Students will be able to appreciate anime's significance in historical, societal and cultural contexts, as well as the aesthetic quality of its form. Taught in Japanese.

JAPN 6183. Songs: Culture & Society. 3 Credit Hours.
Students will be able to appreciate anime's significance in historical, societal and cultural contexts, as well as the aesthetic quality of its form. Taught in Japanese.

JAPN 6231. Japanese Website Design. 3 Credit Hours.
Students will learn how social media is reshaping BSC communication in Japan and explore intercultural communication issues in designing Websites. Taught in Japanese.

JAPN 6500. Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in Japan. For students who have had some study/work-abroad experience in Japan. Conducted in Japanese.

JAPN 6510. Applied Language Practicum. 3 Credit Hours.
Students will serve as researchers, student aides and apprentice instructors for any 3/4000-level undergraduate course approved by their adviser and the course.
Korean (KOR)

KOR 1001. Elementary Korean I. 4 Credit Hours.
Students will be able to speak, comprehend, read and write basic Korean sentences, and they will learn fundamentals in inter-personal relationships in Korean culture. Humanities credit awarded upon successful completion of KOR 1002 or KOR 2001.

KOR 1002. Elementary Korean II. 4 Credit Hours.
A continuation of Korean 1001.

KOR 10X1. Trans Elementary Korean I. 3 Credit Hours.

KOR 10X2. Trans Elementary Korean II. 3 Credit Hours.

KOR 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 1814. Special Topics. 4 Credit Hours.
Topics of current interest in Korean.

KOR 1XXX. Korean Elective. 1-21 Credit Hours.

KOR 2001. Intermediate Korean I. 3 Credit Hours.
This course continues the introduction to modern colloquial Korean.

KOR 2002. Intermediate Korean II. 3 Credit Hours.

KOR 2691. Intensive Intermediate Korean I. 3 Credit Hours.
This course teaches students an intermediate level Korean intensively during the summer LBAT study-abroad period in an immersed environment in Korea.

KOR 2692. Intensive Intermediate Korean II. 3 Credit Hours.
This course teaches students an intermediate level Korean intensively during the summer LBAT study-abroad period in an immersed environment in Korea.

KOR 2698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

KOR 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

KOR 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 2823. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 2XXX. Korean Elective. 1-21 Credit Hours.

KOR 3001. Advanced Korean I. 3 Credit Hours.
Development of richer perspectives about Korean culture and enhanced skills in reading, writing, and vocabulary. Conducted in Korean.

KOR 3002. Advanced Korean II. 3 Credit Hours.
Further development of richer perspectives about Korean culture and enhanced skills in reading, writing, and vocabulary. Conducted in Korean.

KOR 3691. Business Korean. 3 Credit Hours.
This course aims to improve oral/written communication skills in business situations in Korea. Taught in Korean; part of Korean intensive summer language program.

KOR 3692. Current Issues and Technology in Korea. 3 Credit Hours.
This course introduces key terms and discusses advances in technology and science in Korea today. Taught in Korean; part of Korean intensive summer language program.

KOR 3693. Exploring Modern Korea. 3 Credit Hours.
This course equips students to understand contemporary Korea through reading and discussion about contemporary topics. Taught in Korean; part of Korean intensive summer language program.

KOR 3811. Special Topics. 1 Credit Hour.
Topics of current interest in Korean.

KOR 3812. Special Topics. 2 Credit Hours.
Topics of current interest in Korean.

KOR 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 3843. Special Topics. 3 Credit Hours.
Topics of current interest in the Korean languages.

KOR 3XXX. Korean Elective. 1-21 Credit Hours.

KOR 4001. Contemporary Korean. 3 Credit Hours.
This course aims to further the students' knowledge by exposing them to accurate and contemporary expressions in text and multimedia materials. Taught in Korean.

KOR 4002. Selected Readings Of Modern Korean. 3 Credit Hours.
This course aims to enhance students' Korean skills through advanced reading and comprehension, translation, grammar, and writing practice. Taught in Korean.

KOR 4060. Media and Public Culture. 3 Credit Hours.
This is a debating course designed for students who have completed advanced Korean or have demonstrated an equivalent proficiency level. Taught in Korean.

KOR 4500. Intercultural Seminar. 3 Credit Hours.
Enhancement of students' skills and understanding of intercultural communication, skills, and behaviors for globalized business, research, and politics related to South Korea. Taught in Korean.

KOR 4695. Korean Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in German in relation to the practical goals/objectives of the entity.

KOR 4698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

KOR 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.
KOR 4813. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Korean.

KOR 4901. Special Problems. 1-21 Credit Hours.
Special problems course for advanced students. Topics to be arranged with instructor.

KOR 4902. Special Problems. 1-21 Credit Hours.
Special problems for advanced students. Topics to be arranged with instructor.

KOR 4XXX. Korean Elective. 1-21 Credit Hours.

Latin (LATN)

LATN 2XXX. Latin Elective. 1-21 Credit Hours.

Linguistics (LING)

LING 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 1XXX. Linguistics Elective. 1-21 Credit Hours.

LING 2100. Introduction to Linguistics. 3 Credit Hours.
Introductory course that surveys various fields in linguistics, including first/second language acquisition, phonetics/phonology, morphology/syntax, semantics/pragmatics, language variation, computational linguistics/natural language processing, and writing systems. Credit not allowed for both LING 2100 and LING 2001.

LING 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LING 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LING 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 2XXX. Linguistics Elective. 1-21 Credit Hours.

LING 3100. Applications of Linguistics. 3 Credit Hours.
Students will obtain a general understanding of the fields of language change, psycholinguistics, first- and second-language acquisition, and writing systems.

LING 3811. Special Topics. 1 Credit Hour.
Topics of current interest in Linguistics.

LING 3812. Special Topics. 2 Credit Hours.
Topics of current interest in Linguistics.

LING 3813. Special Topics. 3 Credit Hours.
Permits students to work in languages not treated in other courses and/or engage in special language research.

LING 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 3XXX. Linguistics Elective. 1-21 Credit Hours.

LING 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LING 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LING 4780. Japanese Applied Linguistics. 3 Credit Hours.
This course helps to develop analytical skills to better understand human languages, particularly English and Japanese. Taught in English. Credit not allowed for both LING 4780 and JAPN 4780.

LING 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

LING 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Linguistics.

LING 4901. Special Problems in Linguistics. 1-21 Credit Hours.
Special problems course for advanced students; topics to be arranged with instructor.

LING 4902. Special Problems in Linguistics. 1-21 Credit Hours.
Special problems for advanced students; topics to be arranged with instructor.

LING 4XXX. Linguistics Elective. 1-21 Credit Hours.

Literature, Media & Comm (LMC)

LMC 1XXX. Lit,Media,&Comm Elective. 1-21 Credit Hours.

LMC 2000. Introduction to Literature, Media, and Communication. 3 Credit Hours.
An introduction to course to LMC, this course introduces students to key texts and modes of analysis associated with the study of literature, film, digital media, and communication.

LMC 2050. Seminar in Literature, Media, and Communication. 3 Credit Hours.
This course introduces second-semester majors to the intellectual movements, interpretive frameworks, and research skills central to the disciplines represented in LMC.

LMC 2060. Introduction to Literary Studies. 3 Credit Hours.
Students will study literary and cultural texts, methods, and critical movements from a variety of perspectives and historical periods.

LMC 2100. Introduction to Science, Technology and Culture. 3 Credit Hours.
Relation to other courses, programs and curricula: As the introductory course to LMC, this course introduces students to key texts and modes of analysis associated with the study of literature, film, digital media, and communication.

LMC 2200. Introduction to Gender Studies. 3 Credit Hours.
This course introduces the cultural concept of gender, examining topics such as biology and gender, social constructions of gender, and the psychology of sexual roles.

LMC 2350. Introduction to Social Justice. 3 Credit Hours.
Introduces students to the work and theory of social justice through readings from various disciplines, including literature, history, anthropology, philosophy, science, policy, and law.
LMC 2400. Introduction to Media Studies. 3 Credit Hours.
This course offers an introduction to the historical development and cultural impact of various forms of media print, radio, television, film, and interactive electronic applications.

LMC 2410. Introduction to Game Studies. 3 Credit Hours.
Introduction to the games studies and game designs.

LMC 2500. Introduction to Film. 3 Credit Hours.
Introduces film techniques and vocabulary in an historical and cultural context. Written texts are supplemented by viewings of specific shots, scenes, and films.

LMC 2600. Introduction to Performance Studies. 3 Credit Hours.
An examination of the origins of the field of performance studies in literary study of theatre and drama, anthropological investigations of ritual, and sociological analyses of performance in everyday life.

LMC 2661. Theatre Production I. 1 Credit Hour.
In this hands-on course, students learn theatrical construction and painting techniques while building scenery for DramaTech productions.

LMC 2662. Theatre Production II. 1 Credit Hour.
In this hands-on course, students create the lighting, property, and costume effects for two DramaTech Theatre productions.

LMC 2698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LMC 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LMC 2700. Introduction to Computational Media. 3 Credit Hours.
Introduction to key concepts, methods, and achievements in computational media, and the convergence of digital technology with cultural traditions of representation.

LMC 2720. Principles of Visual Design. 3 Credit Hours.
Studio-based course that provides students with basic skills needed to create digital visual images and to analyze designs from historical and theoretical perspectives.

LMC 2730. Constructing the Moving Image. 3 Credit Hours.
Provides the student with the conceptual, formal, aesthetic, and technical approaches to reconsider film, videos, and animation within the context of emerging digital forms.

LMC 2813. Special Topics in STAC. 3 Credit Hours.
Study of one or more topics of current interest in the area of science, technology, and culture.

LMC 2823. Special Topics in Literature and Culture. 3 Credit Hours.
Examination of one or more topics of current interest in literary and cultural studies.

LMC 2XXX. Lit,Media,&Comm Elective. 1-21 Credit Hours.

LMC 3102. Science, Technology, and the Classical Tradition. 3 Credit Hours.
Explores the definition and transmission of science and technology within Greek, Arabic, and medieval Latin contexts.

LMC 3104. The Age of Scientific Discovery. 3 Credit Hours.
Examines the relationships among texts representing the literary, artistic, and scientific thought of the fifteenth and sixteenth centuries.

LMC 3106. The Age of Scientific Revolution. 3 Credit Hours.
Examines interrelation of technological, literary, artistic, and philosophical thought in the late sixteenth and seventeenth centuries.

LMC 3112. Evolution and the Industrial Age. 3 Credit Hours.
Connects later nineteenth century scientific and technological concepts and discoveries, particularly theories of evolution, to the literature and culture of the industrial age.

LMC 3202. Studies in Fiction. 3 Credit Hours.
Examines the elements of fiction and what has made fiction, especially the novel, distinctive, popular, and enduring. Readings may include formal, cultural, and historical theories.

LMC 3204. Poetry and Poetics. 3 Credit Hours.
A study of traditions of poetic practice and poetic theory in English through intensive line by line readings of poems from different periods in literary history.

LMC 3206. Communication and Culture. 3 Credit Hours.
Examines ways in which forms and media of communication create and are created by other cultural constructs.

LMC 3208. African American Literature and Culture. 3 Credit Hours.
Explores the works of African American writers from the Colonial period to the present and examines a variety of cultural constructs that have fundamentally shaped the African American literary tradition.

LMC 3210. Ethnicity in American Culture. 3 Credit Hours.
Explores literary and historical works considering ethnic issues in American culture, including immigration, social assimilation, "double consciousness", the development of ethnic identity/pride, and multiculturalism.

LMC 3212. Women, Literature, and Culture. 3 Credit Hours.
Students in this course will analyze writings by women and examine feminist and other relevant cultural critiques of literature.

LMC 3214. Science Fiction. 3 Credit Hours.
Examines science fiction texts from the last 200 years to show how they reflect ambiguous reactions to change.

LMC 3215. Science Fiction Film and Television. 3 Credit Hours.
This course investigates science fiction as the genre developed during film history and has become one of the most popular forms of television narrative.

LMC 3219. Literature and Medicine. 3 Credit Hours.
This course examines works of literature dealing overtly with illness and healing, works about or by physicians and other caregivers, and works that raise questions about ethical behavior in the face of sickness.

LMC 3225. Gender Studies in the Disciplines. 3 Credit Hours.
This course explores the concept of gender and its usefulness as a theoretical category in a variety of disciplines. It includes cultural studies of literature, communication media, cultural anthropology, sociology, history, and science.

LMC 3226. Major Authors. 3 Credit Hours.
An examination of the works and career of a major author in historical and cultural context.

LMC 3228. Shakespeare. 3 Credit Hours.
An examination of Shakespeare’s works with attention to generic conventions, historical context, and the relationship of text and performance. Major works of Shakespeare’s contemporaries are studied as appropriate.

LMC 3234. Creative Writing. 3 Credit Hours.
This course explores a range of creative literary genres, and combines study and analysis of existing modes of one or more forms in order to establish a basis for original creative work by class members.
LMC 3236. Writing for the Stage and Screen. 3 Credit Hours.
Basic principles of generating creative concepts, dramatic structure, character and dialogue development, and formatting for stage and screenplays.

LMC 3252. Studies in Film and Television. 3 Credit Hours.
Explores in depth a theoretical issue central to film and/or television. Among its concerns are authorship, genre history, spectatorship, ideology, narrative theory, and the relationship between these media and social history.

LMC 3253. Animation. 3 Credit Hours.
This course examines animation from its earliest days as a "cinema of attractions" to its current development as a predominantly digital practice.

LMC 3254. Film History. 3 Credit Hours.
Surveys the history of film from its machine origins to its present digital developments. It focuses on various movements, figures, and narrative developments in world cinema.

LMC 3255. Cinema and Digital Culture. 3 Credit Hours.
This course examines the impact of digital technologies on contemporary cinema as well as the influence of different cinematic traditions on new digital media.

LMC 3256. Major Filmmakers. 3 Credit Hours.
Traces in depth an individual artist's career and affords students the opportunity to immerse themselves in the works of an important figure in the world of film.

LMC 3257. Global Cinema. 3 Credit Hours.
This course examines selected movements, styles, and trends in world cinema, emphasizing how contemporary film's global nature affects cultural representation.

LMC 3258. Documentary Film. 3 Credit Hours.
This course examines significant movements, styles, and trends in fact-based film, emphasizing its cultural implications and formal strategies.

LMC 3259. Experimental Film. 3 Credit Hours.
This course examines the history and trends in experimental film and video, emphasizing the relationship to avant-garde art movements.

LMC 3262. Performance Studies. 3 Credit Hours.
An examination of cultural theories of performance and their application to the analysis of specific performance events.

LMC 3263. Music, Culture, and Society. 3 Credit Hours.
Origins and development of contemporary popular music, including rock, trap, hip-hop, and other emerging and established forms.

LMC 3302. Science, Technology, and Ideology. 3 Credit Hours.
Examines specific scientific, philosophical, and literary/cultural texts in order to determine the role ideology plays in the construction of culture, especially scientific and technological culture.

LMC 3304. Science, Technology, and Gender. 3 Credit Hours.
Examines specific philosophical, scientific, and cultural texts to determine the role that gender has played in the scientific and technological knowledge, currently and historically.

LMC 3306. Science, Technology, and Race. 3 Credit Hours.
Examines specific historical and contemporary construction of race, within the prevailing scientific theories and ideologies in order to determine the role played by "race" in scientific and technological culture.

LMC 3308. Environmentalism and Ecocriticism. 3 Credit Hours.
Surveys the emergence of ecocriticism as an analytical framework for interpreting the verbal and visual rhetorics of environmentalism in both western and nonwestern cultures.

LMC 3310. The Rhetoric of Scientific Inquiry. 3 Credit Hours.
This course takes as its subject the ways in which argumentative and persuasive discourse is used to create and disseminate scientific knowledge.

LMC 3314. Technologies of Representation. 3 Credit Hours.
Explores historical, cultural, and theoretical issues related by technologies of representation, including written, spoken, and gestural languages; print, painting and illustration; still and moving photography; recorded sound; and computer mediated communications and interactive digital media.

LMC 3316. Science, Technology, and Postcolonialism. 3 Credit Hours.
Studies in the development of Postcolonial literary theory and historiography in order to analyze the interdependent discourses and practices of post-Enlightenment science/technology and European imperialism.

LMC 3318. Biomedicine and Culture. 3 Credit Hours.
Discuss the history of biology and medicine; popular representations of health, disease, and the medical establishment; and the cultural implications of medical imaging technologies.

LMC 3352. Film and/as Technology. 3 Credit Hours.
Examines the development of film technology and the implications of that technology for cinema's treatment of technology.

LMC 3402. Graphic and Visual Design. 3 Credit Hours.
Introduction to fundamentals of graphic and visual design of print and digital media. Familiarity with use of the World Wide Web, page layout, and computer graphic software recommended.

LMC 3403. Technical Communication, Theory and Practice. 3 Credit Hours.
This course introduces students to workplace document genres to develop visual and verbal skills in critical analysis and document development.

LMC 3404. Social Media. 3 Credit Hours.
Students learn the cultural history, theory, and practice of social media in a variety of settings, and its impact on personal, professional, and political life.

LMC 3405. Media, Culture, and Society. 3 Credit Hours.
Examines the transformative impact of various kinds of media on culture, politics, communication, and education.

LMC 3406. Video Production. 3 Credit Hours.
An introduction to video production including basic skills in storyboarding, scripting, filming, editing, and sound.

LMC 3407. Advanced Video Production. 3 Credit Hours.
This production course teaches students to create visually compelling and emotionally powerful images through shot design and the use of lights, cameras and prime lenses.

LMC 3408. The Rhetoric of Technical Narratives. 3 Credit Hours.
Focuses on the rhetorical problems posed by such narrative documents as technical proposals, recommendations reports, grant proposals, and marketing studies. Emphasis on document design, graphics, navigation systems, and editing.
LMC 310. The Rhetoric of Nonlinear Documents. 3 Credit Hours.
Focuses on the rhetorical problems posed by hypertext documents.
Emphasis in designing for multiple audiences, page and document
design, and navigation in a nonlinear environment.

LMC 311. The Rhetoric of Visual Communication. 3 Credit Hours.
Focuses on contexts, audiences, arguments, and design in creating
and critiquing visuals. Emphasizes topics such as information design,
technical visuals, and photography.

LMC 312. Communicating Science and Technology to the Public. 3
Credit Hours.
Examines both the theoretical and practical issues involved in
communicating scientific and/or technological material to a variety of lay
audiences.

LMC 331. Technical Communication Approaches. 1 Credit Hour.
Part of a multi-semester sequence that students take in tandem with
major-specific classes to develop professional written, visual, oral, and
analytic strategies.

LMC 332. Technical Communication Strategies. 2 Credit Hours.
Part of a multi-semester sequence that students take in tandem with
major-specific classes to develop professional written, visual, oral, and
analytic strategies.

LMC 3502. Ancient and Medieval Literature and Culture. 3 Credit Hours.
Introduction to Greece, Rome, and Medieval Europe through an
examination of one or a few major culture conflicts expressed in the
literary genres and periods.

LMC 3504. Renaissance Literature and Culture. 3 Credit Hours.
An examination of literature and culture from 1450 to 1650 with an
emphasis on both major achievements and divergent voices.

LMC 3506. Enlightenment and Culture. 3 Credit Hours.
Examines the nature of the age from an initial boldness, optimism, and
faith in reason to a recognition of its limits.

LMC 3508. Formations of American Culture. 3 Credit Hours.
American literature from the Puritan period through the Civil War,
including major movements, key authors and texts, study of literary works
within broader historical and cultural context.

LMC 3510. Rearticulations of American Culture. 3 Credit Hours.
Examines presentations of the United States from its geographical
expansion in the late-nineteenth century to the closing of the frontier and
emergence as global power.

LMC 3511. American Literature & Culture. 3 Credit Hours.
Introduces students to American literature and culture broadly construed,
examining foundational works of critical and historical significance.

LMC 3512. British and Continental Romanticism. 3 Credit Hours.
Examines British and Continental Romanticism as it appeared during the
latter part of the eighteenth century and the first half of the nineteenth
century.

LMC 3514. Victorian Literature and Culture. 3 Credit Hours.
Investigates the period 1830 - 1901 in English literature and culture,
focusing on how that period defined key questions, especially ones about
human nature, society, and the relation of religion to science.

LMC 3516. Literary and Cultural Modernism. 3 Credit Hours.
A partial investigation of the aesthetic ferment that characterizes English-
language cultural production from the turn of the century to the end of
World War II.

LMC 3518. Literary and Cultural Postmodernism. 3 Credit Hours.
A survey of major themes, representational techniques, and social and
cultural concerns of postmodern art and literature.

LMC 3520. Contemporary Issues in Literature & Culture. 3 Credit Hours.
This course will cover a range of possible critical areas of global concern
in contemporary literature and culture. Focus will vary each semester.

LMC 3661. Theatre Production III: Management. 1 Credit Hour.
In this "hands-on" course, students will create and execute a publicity
campaign and operate the box office for DramaTech Theatre productions.

LMC 3662. Theatre Production IV: Acting. 1 Credit Hour.
This course provides students an opportunity to perform onstage in a
production at DramaTech Theatre. Auditions are required.

LMC 3705. Principles of Information Design. 3 Credit Hours.
Examines both the theoretical and practical issues involved in
communicating scientific and/or technological material to a variety of lay
audiences.

LMC 3710. Principles of Interaction Design. 3 Credit Hours.
Examines principles of design for shaping the procedural and
participatory affordances of digital environments, emphasizing the role of
cultural context and media transitions.

LMC 3813. Special Topics. 3 Credit Hours.
Special Topics.

LMC 3823. Special Topics in Literature and Culture. 3 Credit Hours.
Examination of one or more topics of current interest in literary and
cultural studies.

LMC 3834. Special Topics in Communication. 3 Credit Hours.
Examination of one or more topics of current interest in communication
studies.

LMC 3853. Special Topics in Film. 3 Credit Hours.
Examines one or more current topics in film studies.

LMC 3XXX. Lit,Media, & Comm Elective. 1-21 Credit Hours.

LMC 4000. Senior Seminar in Literature, Media, and Communication. 3
Credit Hours.
Capstone seminar that asks majors to draw upon their training to engage
in closer analysis, research, and/or production in topical area. Topic
varies by instructor.

LMC 4100. Seminar in Science, Technology, and Culture. 3 Credit Hours.
A capstone seminar to the LMC major, this course will ask students to
draw upon their training in order to engage topical issues in the cultural
studies of science.

LMC 4102. Senior Thesis. 3 Credit Hours.
Preparation for and writing of a thesis through faculty-directed
independent study.

LMC 4200. Seminar in Literary and Cultural Theory. 3 Credit Hours.
Concentration on a single literary or cultural theorist and/or a major
school of literary or cultural theory. Schools of theory that will be
considered include, among others, Materialist, Feminist, Structuralist,
Post-Structuralist, and Cultural Studies.

LMC 4204. Poetry and Poetics II. 3 Credit Hours.
Advanced study of the traditions of poetic theory and practice with a
special emphasis on processes of poetic conception and revision.

LMC 4300. Seminar in Biomedicine and Culture. 3 Credit Hours.
This course offers an opportunity to investigate in-depth biomedical
issues, biomedical concerns in a particular period, or the impact of
technological development on biomedicine.
LMC 4400. Seminar in Media Studies. 3 Credit Hours.
Offers an in-depth investigation of the historical development and cultural impact of different forms of media including: television, film, and interactive electronic applications.

LMC 4406. Contemporary Issues in Professional Communication. 3 Credit Hours.
Intended primarily for students planning careers in professional communication, this course will alternate among a number of issues including property law, integrating print and electronic media, and cultural studies of corporate environments.

LMC 4500. Seminar in Film Studies. 3 Credit Hours.
An in-depth investigation of a major movement, theory, period, or technological development in film studies.

LMC 4600. Seminar in Performance Studies. 3 Credit Hours.
An in-depth investigation of a specific issue or theme in Performance Studies.

LMC 4602. Performance Practicum. 3 Credit Hours.
Practical experience and theoretical investigations in theatre and performance making including acting, directing, designing, playwriting, performance art, performance and new media.

LMC 4698. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LMC 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

LMC 4701. Undergraduate Research Proposal Writing. 1 Credit Hour.
This course is intended to guide undergraduate students from all disciplines through the stages of writing a proposal for their research option project and thesis.

LMC 4702. Undergraduate Research Thesis Writing. 1 Credit Hour.
This course is intended to guide undergraduate students from all disciplines through the stages of writing their undergraduate thesis.

LMC 4710. Game Studio. 3 Credit Hours.
Project-based course in designing and implementing video games.

LMC 4720. Interactive Narrative. 3 Credit Hours.
Examines significant examples of this emerging genre, including its roots in experimental uses of older media, and engages students in creating their own interactive narrative.

LMC 4725. Games Design as a Cultural Practice. 3 Credit Hours.
Emphasis is on the design elements common to games and the expressive possibilities and cultural concerns specific to digital games.

LMC 4730. Experimental Digital Art. 3 Credit Hours.
Provides students with key conceptual, formal, aesthetic and technical elements needed in creating artifacts in areas ranging from augmented and mixed reality to scientific visualization.

LMC 4731. Game AI. 3 Credit Hours.
Examines expressive possibilities of artificial intelligence techniques in computer games.

LMC 4733. Mixed Reality Experience Design. 3 Credit Hours.
Project-based course in designing implementing experiences using the technologies of Augmented, Mixed, and Virtual Reality.

LMC 4811. Special Topics. 1 Credit Hour.
Topics of current interest not covered in the regular course offerings.

LMC 4812. Special Topics. 2 Credit Hours.
Topics of current interest not covered in the regular course offerings.

LMC 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

LMC 4814. Special Topics. 4 Credit Hours.

LMC 4815. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular course offerings.

LMC 4904. Internship. 1-6 Credit Hours.
Offers students a workplace-based learning experience that stresses application of principles and skills gained in other STAC classes.

LMC 4XXX. Lit, Media, & Comm Elective. 1-21 Credit Hours.

LMC 6213. Edu Applications New. 3 Credit Hours.
This course introduces students to a variety of perspectives on learning as they apply to work in educational technology. Students cannot receive credit for LMC 6213 and LCC 6213.

LMC 6215. Issues in Media Studies. 3 Credit Hours.
This course focuses on the study of mass media from historical, theoretical, and cultural perspectives. Students cannot receive credit for LMC 6215 and LCC 6215.

LMC 6310. The Computer as an "Expressive Medium. 3 Credit Hours.
Explores the development of the representational power of the computer and the interplay between digital technology and culture. Students cannot receive credit for LMC 6310 and LCC 6310.

LMC 6311. Visual Culture and Design. 3 Credit Hours.
Explores visual media through a mutually instructive and integrated interplay between critical analyses and the creation of digital artifacts. Students cannot receive credit for LMC 6311 and LCC 6311.

LMC 6312. Design, Technology & Representation. 3 Credit Hours.
Explores historical, cultural, and theoretical issues raised by technologies of representation through critical analyses and the creation of digital artifacts. Students cannot receive credit for LMC 6312 and LCC 6312.

LMC 6313. Principles of Interaction Design. 3 Credit Hours.
Explores visual media through a mutually instructive and integrated interplay between critical analyses and the creation of digital artifacts. Students cannot receive credit for LMC 6313 and LCC 6313.

LMC 6314. Design of Networked Media. 3 Credit Hours.
Issues in hypertextual and multimedia design in networked environments, including the World Wide Web, interactive television, and wireless applications. Students cannot receive credit for LMC 6314 and LCC 6314.

LMC 6315. Product Production. 3 Credit Hours.
Focuses on defining user and client needs, analysis of competing products, budgeting, scheduling and management of the production process, and the design of the testing process. Students cannot receive credit for LMC 6315 and LCC 6315.

LMC 6316. Historical Approaches to Digital Media. 3 Credit Hours.
Examines digital media in the context of earlier media, such as handwriting and printing as well as photography, radio, film, and television. Students cannot receive credit for LMC 6316 and LCC 6316.

LMC 6317. Interactive Narrative/Fiction. 3 Credit Hours.
Students create interactive fictions in a variety of formats including intersecting story worlds, interactive characters, simulations, and replay worlds. Students cannot receive credit for LMC 6317 and LCC 6317, LMC 6317 and LCC 4720, or LMC 6317 and LMC 4720.

LMC 6318. Experimental Media. 3 Credit Hours.
Students will develop the critical, intellectual, and creative tools necessary to understand, work with, and reimagine design at the developmental stages of emerging technologies. Students cannot receive credit for LMC 6318 and LCC 6318.
LMC 6319. Intellectual Property Policy and Law. 3 Credit Hours.
Students examine constitutionally informed policy and pragmatic legal issues in intellectual property law, focusing on the effects of power structures and information digitization. Students cannot receive credit for LMC 6319 and LCC 6319.

LMC 6320. Globalization and New Media. 3 Credit Hours.
Historical and theoretical approach to the connections between modes of global integration and modes of representing information. Students cannot receive credit for LMC 6320 and LCC 6320.

LMC 6321. Architecture of Responsive Spaces. 3 Credit Hours.
Historical and theoretical approach to the connections between modes of global integration and modes of representing information. Students cannot receive credit for LMC 6321 and LCC 6321.

LMC 6322. Global Intellectual Property Policy and Law. 3 Credit Hours.
This course requires that students gain facility with intellectual property statutory and treaty law and understand US and global policies that affect power and access.

LMC 6325. Game Design and Analysis. 3 Credit Hours.
Focused topics in the theory and practice of game design, theory, and analysis, including issues of creation, and reception, such as a single sub-genre, procedural technique, or media tradition. Students cannot receive credit for LMC 6325 and LCC 6325, LMC 6325 and LCC 4725, or LMC 6325 and LMC 4725.

LMC 6330. Expressive Virtual Space. 3 Credit Hours.
Practical and theoretical investigation of virtual space in real-time 3D environments with a focus on meditation and functionality. Students cannot receive credit for LMC 6330 and LCC 6330.

LMC 6340. Mixed Reality Experience Design. 3 Credit Hours.
This course introduces students to the design of digital experienced for education and entertainment using Augmented Reality, Tangible Computing, or other forms of Mixed Reality. Students cannot receive credit for LMC 6340 and LCC 6340.

LMC 6350. The spatial construction of meaning: Design formulation and design cognition. 3 Credit Hours.
Study of the way in which space is manipulated to construct meaning in design formulation. Emphasis on logical structure, geometry, and experiential correlates. Students cannot receive credit for LMC 6350 and LCC 6350.

LMC 6360. Global Ethnographies and Communication Practices. 3 Credit Hours.
This course employs ethnographic methods to examine how the creation of visual, textual and digital artifacts can be understood as practices of intercultural communication.

LMC 6366. Global Science Fiction. 3 Credit Hours.
Explores how authors and critics across the globe use science fiction to communicate experiences with science and technology across centuries, continents, and cultures.

LMC 6367. Literary and Cultural Theory. 3 Credit Hours.
Concentration on a single literary or cultural theorist and/or major school of literary or cultural theory, including, among others, Materialist, Feminist, Structuralist, Post-Structuralism Cultural Studies.

LMC 6368. Global Cinema. 3 Credit Hours.
This course examines significant movements, styles, and trends in world cinema, with an emphasis on how the global nature of contemporary film affects cultural representation.

LMC 6399. Discovery & Invention. 3 Credit Hours.
Required course for all DM majors. The purpose of this course is to give students a suite of methods they can use in professional settings to discover opportunities for inventive new computational products and services. It complements the design and production skills developed in 6310 and 6313 with applied research skills. For students in the MS DM and MS HCI programs it will also help them in the development of their MS proposals. Students cannot receive credit for LMC 6399 and LCC 6399.

LMC 6650. Project Studio. 3 Credit Hours.
This course offers students the opportunity to work on focused research within existing long-term projects of the New Media(NM) Center.

LMC 6743. STS Core Seminar. 3 Credit Hours.
This survey course covers key works Science, Technology & Society, and guest lectures introduce students to faculty doing STS-related research across the Ivan Allen College. Students cannot receive credit for LMC 6743 and LCC 6743, LMC 6743 and HTS 6743, or LMC 6743 and PUBP 6743.

LMC 6748. Social Justice, Critical Theory, and Philosophy of Design. 3 Credit Hours.
Focuses on social justice from a Science, Technology, and Society(STS) point of view that is informed by critical theory and philosophy of design. Students cannot receive credit for LMC 6748 and LCC 6748 or LMC 6748 and PUBP 6748.

LMC 6749. Feminist theory and STS. 3 Credit Hours.
This course is an advanced science, technology and society (STS) seminar in feminist theory. Students cannot receive credit for LMC 6749 and LCC 6749 or LMC 6749 and PUBP 6749.

LMC 6753. Human-Computer Interaction Professional Preparation and Practice. 1 Credit Hour.
Preparation for a professional career in HCI. Speakers. Atlanta-area lab visits. Career trajectories. Project presentations. Technical, resume and interviewing skills, Atlanta-area HCI resources. Students cannot receive credit for LMC 6753 and CS 6753, LMC 6753 and LCC 6753, LMC 6753 and ID 6753, or LMC 6753 or PSYC 6753.

LMC 6770. Mixed Reality Design. 3 Credit Hours.
This course introduces students to mixed reality design and prototyping with a focus on Augmented Reality. Students cannot receive credit for LMC 6770 and CS 4770.

LMC 6800. Digital Media Master's Project. 3 Credit Hours.
Final project course in Digital Media.

LMC 6998. HCI Master's Project. 1-9 Credit Hours.
Final project for students completing a Human-Computer Interaction master's degree in the Digital Media track. Repeatable for multi-semester projects.

LMC 6XXX. Lit,Media,&Comm Elective. 1-21 Credit Hours.

LMC 7000. Digital Media Master's Thesis. 1-21 Credit Hours.
Final Thesis course in Digital Media.

LMC 7999. PhD Qualifying Prep. 1-21 Credit Hours.
Preparation for Ph.D. Qualifying exam.

LMC 8000. Proseminar in Media Theory. 3 Credit Hours.
Key traditions of media theory that contribute to the study of Digital Media. Students cannot receive credit for LMC 8000 and LCC 8000.

LMC 8001. Proseminar in Digital Media Studies. 3 Credit Hours.
Advanced work in production and critique of new media forms. Students cannot receive credit for LMC 8001 and LCC 8001.
LMC 8801. Special Topics. 1 Credit Hour.
Topic of current interest not covered in the regular course offerings.

LMC 8803. Special Topics in Digital Media. 3 Credit Hours.
Special Topics in Digital Media.

LMC 8813. Advanced Issues in Interactive Narrative. 3 Credit Hours.
Advanced Issues in Interactive Narrative.

LMC 8823. Special Topics in Game Design and Analysis. 3 Credit Hours.
Advanced topics in the theory and practice of game design, theory, and analysis, including creation, reception, procedural technique, and tradition.

LMC 8831. Special Topics in Technologies of Representation. 1 Credit Hour.
Special Topics in Technologies of Representation.

LMC 8903. Special Problems in Human-Computer Interaction. 1-3 Credit Hours.
Small-group of individual investigation of advanced topics in human-computer interaction. Guided study and research.

LMC 8910. Special Problems in Information Design and Technology. 1-21 Credit Hours.
An independent study course.

LMC 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding teaching assistantships.

LMC 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding research assistantships.

LMC 8999. PhD Doctoral Prep. 1-21 Credit Hours.
Doctoral Thesis Prep in Digital Media.

LMC 9000. Doctoral dissertation in Digital Media. 1-21 Credit Hours.
Doctoral Dissertation.

Learning Support (LS)

LS 0198. Reading Skills. 3 Credit Hours.
Development of reading comprehension and speed, vocabulary, and study skills. Review of grammar and usage.

LS 0298. English Skills. 3 Credit Hours.
Development of basic skills used in writing the sentence, paragraph, and short essay. Development of reading speed.

LS 0398. Mathematical Skills. 3 Credit Hours.
Intense review of arithmetic and algebra skills. Development of mathematics study skills.

Mathematics (MATH)

MATH 0399. Support for Precalculus. 2 Credit Hours.
Practice for Learning Support students enrolled in MATH 1113 (Precalculus).

MATH 0999. Support for College Algebra. 2 Credit Hours.
This Learning Support course provides corequisite support in mathematics for students enrolled in MATH 1111. Topics will parallel topics being studied in MATH 1111 and the essential quantitative skills needed to be successful.

MATH 1111. Precalculus for Mathematics without Trigonometry. 4 Credit Hours.
This course is symbolically intensive, functional approach to algebra that incorporates the use of appropriate technology. Emphasis will be placed on the study of functions and their graphs, inequalities, and linear, quadratic, piece-wise defined, rational, polynomial, exponential, and logarithmic functions. Appropriate applications will be included.

MATH 1113. Precalculus. 4 Credit Hours.
Analytic geometry, the function concept, polynomials, exponential, logarithms, trigonometric functions, mathematical induction, and the theory of equations. May only be used for degree credit with departmental approval.

MATH 11X3. Transfer Precalculus. 3 Credit Hours.

MATH 1501. Calculus I. 4 Credit Hours.
Differential calculus and basic integral calculus including the fundamental theorem of calculus. Credit not allowed for both MATH 1501 and 1712.

MATH 1502. Calculus II. 4 Credit Hours.
This course concludes the treatment of single variable calculus and begins linear algebra, the linear basis of the multivariable theory. Credit not allowed for both MATH 1502 and MATH 1522. Credit not allowed for both MATH 1502 and MATH 15X2.

MATH 1503. Calculus I for the Life Sciences. 4 Credit Hours.
Differential and basic calculus: sequences, difference equations, limits, continuity, differentiation, integration, applications. The topics parallel those of MATH 1501 with applications from life sciences.

MATH 1504. Calculus I for the Life Sciences. 4 Credit Hours.
Taylor approximations, introduction to differential equations, linear algebra, and introduction to multivariable calculus. Motivating examples drawn from life sciences.

MATH 1511. Honors Calculus I. 4 Credit Hours.
The topics covered parallel those of 1501 with a somewhat more intensive and rigorous treatment. Credit not allowed for both honors calculus and the corresponding regular calculus course.

MATH 1512. Honors Calculus II. 4 Credit Hours.
The topics covered parallel those of 1502 with a somewhat more intensive and rigorous treatment. Credit not allowed for both honors calculus and the corresponding regular calculus course. Credit not allowed for both MATH 1512 and MATH 1522. Credit not allowed for both MATH 1512 and MATH 15X2.

MATH 1522. Linear Algebra for Calculus. 2 Credit Hours.
Basic topics in linear algebra, such as covered in MATH 1502, and needed for MATH 2401. May not be taken for credit by students who have taken MATH 1502 or MATH 1512.

MATH 1550. Introduction to Differential Calculus. 3 Credit Hours.
An introduction to differential calculus including applications and the underlying theory of limits for functions and sequences. Credit not awarded for both MATH 1550 and MATH 1501, MATH 1551, or MATH 1503.

MATH 1551. Differential Calculus. 2 Credit Hours.
Differential calculus including applications and the underlying theory of limits for functions and sequences. Credit not awarded for both MATH 1551 and MATH 1501, MATH 1503, or MATH 1550.
MATH 1554. Linear Algebra. 4 Credit Hours.
Linear algebra eigenvalues, eigenvectors, applications to linear systems, least squares, diagonalization, quadratic forms.

MATH 1555. Calculus for Life Sciences. 4 Credit Hours.
Overview of integral calculus, multivariable calculus, and differential equations for biological sciences. Credit not awarded for both MATH 1555 and MATH 1502, MATH 1504, MATH 1512 or MATH 2550.

MATH 1556. Linear Algebra with Abstract Vector Spaces. 4 Credit Hours.
This is an intensive first course in linear algebra including the theories of linear transformations and abstract vector spaces. Credit not awarded for both MATH 1556 and MATH 1553, MATH 1554, MATH 1502, MATH 1504 or MATH 1512.

MATH 15X1. Transfer Calculus I. 3 Credit Hours.

MATH 15X2. Transfer Calculus II. 3,4 Credit Hours.
This course includes the treatment of single variable calculus in MATH 1502. This course is not equivalent to MATH 1502. Credit not awarded for both MATH 15X2 and MATH 1502. Credit not awarded for both MATH 15X2 and MATH 1512.

MATH 1601. Introduction to Higher Mathematics. 3 Credit Hours.
This course is designed to teach problem solving and proof writing. Mathematical subject matter is drawn from elementary number theory and geometry.

MATH 1711. Finite Mathematics. 4 Credit Hours.
Linear equations, matrices, linear programming, sets and counting, probability and statistics.

MATH 1712. Mathematics for Management II. 4 Credit Hours.
Techniques of differentiation, integration, application of integration to probability and statistics, multidimensional calculus. Credit not awarded for both MATH 1712 and 1501.

MATH 17X1. Transfer Finite Math. 3 Credit Hours.

MATH 17X2. Transfer Survey-Calc. 3 Credit Hours.

MATH 1803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in Mathematics.

MATH 1X51. Transfer Differential Calc. 2,3 Credit Hours.

MATH 1X52. Transfer Integral Calculus. 3,4 Credit Hours.

MATH 1X53. Transfer Intro Linear Algebra. 2,3 Credit Hours.

MATH 1XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 2106. Foundations of Mathematical Proof. 3 Credit Hours.
An introduction to proofs in advanced mathematics, intended as a transition to upper division courses including Abstract Algebra I and Analysis I.

MATH 2401. Calculus III. 4 Credit Hours.
Multivariable calculus: Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.

MATH 2403. Differential Equations. 4 Credit Hours.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.

MATH 2406. Abstract Vector Spaces. 3 Credit Hours.
A proof-based development of linear algebra and vector spaces, with additional topics such as multilinear algebra and group theory.

MATH 2411. Honors Calculus III. 4 Credit Hours.
The topics covered parallel those of MATH 2401 with a somewhat more intensive and rigorous treatment. Credit is not allowed for both honors calculus and the corresponding regular calculus course.

MATH 2413. Honors Differential Equations. 4 Credit Hours.
The course treats the theory of ordinary differential equations from an advanced perspective, delving into the theory as well as computational aspects. It is designed for mathematics majors, and others who wish to take advanced courses in the area.

MATH 24X1. Transfer Calculus III. 3 Credit Hours.

MATH 24X3. Transfer Diff Equations. 3 Credit Hours.

MATH 2500. Introduction to Multivariable Calculus. 2 Credit Hours.
Vectors in three dimensions, curves in space, functions of several variables, partial derivatives, optimization, integration of functions of several variables. Vector Calculus not covered. Credit will not be awarded for both MATH 2500 and MATH 2605 or MATH 2401 or MATH 2551.

MATH 2551. Multivariable Calculus. 4 Credit Hours.
Multivariable calculus: Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes. Credit will not be awarded for both MATH 2551 and MATH 2401 or MATH 2411 or MATH 2561.

MATH 2552. Differential Equations. 4 Credit Hours.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling. Credit not awarded for both MATH 2552 and MATH 2403 or MATH 2413 or MATH 2562.

MATH 2561. Honors Multivariable Calculus. 4 Credit Hours.
The topics covered parallel those of MATH 2551 with a somewhat more intensive and rigorous treatment. Credit not awarded for both MATH 2561 and MATH 2401 or MATH 2411 or MATH 2551.

MATH 2562. Honors Differential Equations. 4 Credit Hours.
The topics covered parallel those of MATH 2552 with a somewhat more intensive and rigorous treatment.

MATH 2602. Linear and Discrete Mathematics. 4 Credit Hours.
Topics in linear algebra, sequences, differences, finite sums and difference equations, multivariate optimization with an emphasis in discrete and recursive methods.

MATH 2603. Introduction to Discrete Mathematics. 4 Credit Hours.
Mathematical logic and proof, mathematical induction, counting methods, recurrence relations, algorithms and complexity, graph theory and graph algorithms. Credit not awarded for both MATH 2603 and MATH 2602.
MATH 2605. Calculus III for Computer Science. 4 Credit Hours.
Topics in linear algebra and multivariate calculus and their applications in optimization and numerical methods, including curve fitting, interpolation, and numerical differentiation and integration.

MATH 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 26X2. Transfer Linear & Disc Math. 3 Credit Hours.

MATH 26X3. Transfer Discrete Math. 3 Credit Hours.

MATH 2801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 2802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 2X51. Transfer Multivariable Calc. 3,4 Credit Hours.

MATH 2X52. Transfer Differential Equation. 3,4 Credit Hours.

MATH 2XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 3012. Applied Combinatorics. 3 Credit Hours.
Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs.

MATH 3022. Honors Applied Combinatorics. 3 Credit Hours.
Topics are parallel to those of MATH 3012 with a more rigorous and intensive treatment. Credit is not allowed for both MATH 3012 and 3022.

MATH 3215. Introduction to Probability and Statistics. 3 Credit Hours.
This course is a problem-oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.

MATH 3225. Honors Probability and Statistics. 3 Credit Hours.
The topics covered parallel those of MATH 3215, with a more rigorous and intensive treatment. Credit is not allowed for both MATH 3215 and 3225.

MATH 3235. Probability Theory. 3 Credit Hours.
This course is a mathematical introduction to probability theory, covering random variables, moments, multivariable distributions, law of large numbers, central limit theorem, and large deviations. Credit not awarded for both MATH 3235 and MATH 3215 or 3225 or 3670.

MATH 3236. Statistical Theory. 3 Credit Hours.
An introduction to theoretical statistics for students with a background in probability. A mathematical formalism for inference on experimental data will be developed. Credit not awarded for both MATH 3236 and MATH 3215 or 3225 or 3670.

MATH 3406. A Second Course in Linear Algebra. 3 Credit Hours.
This course will cover important topics in linear algebra not usually discussed in a first-semester course, featuring a mixture of theory and applications.

MATH 3670. Probability and Statistics with Applications. 3 Credit Hours.
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance. Students cannot receive credit for both MATH 3670 and MATH 3770 or ISYE 3770 or CEE 3770.

MATH 3801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 3802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 3XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 4012. Algebraic Structures in Coding Theory. 3 Credit Hours.
Introduction to linear error correcting codes with an emphasis on the algebraic tools required, including matrices vector spaces, groups, polynomial rings, and finite fields.

MATH 4022. Introduction to Graph Theory. 3 Credit Hours.
The fundamentals of graph theory: trees, connectivity, Euler torus, Hamilton cycles, matchings, colorings, and Ramsey theory.

MATH 4032. Combinatorial Analysis. 3 Credit Hours.
Combinatorial problem-solving techniques including the use of generating functions, recurrence relations, Polya theory, combinatorial designs, Ramsey theory, matroids, and asymptotic analysis.

MATH 4080. Senior Project I. 2 Credit Hours.
The first of a two-course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.

MATH 4090. Senior Project II. 2 Credit Hours.
The second course of a two-course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.

MATH 4107. Introduction to Abstract Algebra I. 3 Credit Hours.
This course develops in the theme of "Arithmetic congruence and abstract algebraic structures". Strong emphasis on theory and proofs.

MATH 4108. Introduction to Abstract Algebra II. 3 Credit Hours.
Continuation of Abstract Algebra I, with emphasis on Galois theory, modules, polynomial fields, and the theory of linear associative algebra.

MATH 4150. Introduction to Number Theory. 3 Credit Hours.
Primes and unique factorization, congruences, Chinese remainder theorem, Diophantine equations, Diophantine approximations, quadratic reciprocity. Applications such as fast multiplication, factorization, and encryption.

MATH 4211. Probability with Applications I. 3 Credit Hours.
Simple random walk and the theory of discrete time Markov chains.

MATH 4221. Probability with Applications II. 3 Credit Hours.
Renewal theory, Poisson processes and continuous time Markov processes, including an introduction to Brownian motion and martingales.

MATH 4255. Monte Carlo Methods. 3 Credit Hours.
Probability distributions, limit laws, and applications through the computer.
MATH 4261. Mathematical Statistics I. 3 Credit Hours.
Sampling distributions, Normal, t, chi-square, and f distributions. Moment-generating function methods, Bayesian estimation, and introduction to hypothesis testing.

MATH 4262. Mathematical Statistics I. 3 Credit Hours.
Hypothesis testing, likelihood ratio tests, nonparametric tests, bivariate and multivariate normal distributions.

MATH 4280. Elements of Information Theory. 3 Credit Hours.
The measurement and quantification of information. These ideas are applied to the probabilistic analysis of the transmission of information over a channel along which random distortion of the message occurs.

MATH 4305. Finite-dimensional Vector Spaces. 3 Credit Hours.
Finite dimensional vector spaces, inner product spaces, least squares, linear transformations, the spectral theorem for normal transformations. Applications to convex sets, positive matrices, difference equations.

MATH 4317. Analysis I. 3 Credit Hours.
Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, Fourier series.

MATH 4318. Analysis II. 3 Credit Hours.
Differentiation of functions of one real variable, Riemann-Stieltjes integral, the derivative in Rn, and integration in Rn.

MATH 4320. Complex Analysis. 3 Credit Hours.
Topics from complex function theory, including contour integration and conformal mapping.

MATH 4347. Introduction to Partial Differential Equations I. 3 Credit Hours.
Method of characteristics for first- and second-order partial differential equations, conservation laws and shocks, classification of second-order systems and applications.

MATH 4348. Introduction to Partial Differential Equations II. 3 Credit Hours.
Green’s functions and fundamental solutions. Potential, diffusion, and wave equations.

MATH 4431. Introductory Topology. 3 Credit Hours.
Point set topology, topological spaces and metric spaces, continuity and compactness, homotopy, and covering spaces.

MATH 4432. Introduction to Algebraic Topology. 3 Credit Hours.
Introduction to algebraic methods in topology. Includes homotopy, the fundamental group, covering spaces, simplicial complexes. Applications to fixed point theory and group theory.

MATH 4441. Differential Geometry. 3 Credit Hours.
The theory of curves, surfaces, and more generally, manifolds. Curvature, parallel transport, covariant differentiation, Gauss-Bonnet theorem.

MATH 4541. Dynamics and Bifurcations I. 3 Credit Hours.
A broad introduction to the local and global behavior of nonlinear dynamical systems arising from maps and ordinary differential equations.

MATH 4542. Dynamics and Bifurcations II. 3 Credit Hours.
A continuation of Dynamics and Bifurcations I.

MATH 4580. Linear Programming. 3 Credit Hours.
A study of linear programming problems, including the simplex method, duality, and sensitivity analysis with applications to matrix games, integer programming, and networks.

MATH 4581. Advanced Engineering Mathematics. 3 Credit Hours.
The Laplace transform and applications, Fourier series, boundary value problems for partial differential equations.

MATH 4640. Numerical Analysis I. 3 Credit Hours.
Introduction to numerical algorithms for some basic problems in computational mathematics. Discussion of both implementation issues and error analysis.

MATH 4641. Numerical Analysis II. 3 Credit Hours.
Introduction to the numerical solution of initial and boundary value problems in differential equations.

MATH 4695. Undergraduate Internship. 1-21 Credit Hours.
Undergraduate internship for academic credit.

MATH 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MATH 4755. Mathematical Biology. 3 Credit Hours.
Problems from the life sciences and the mathematical methods for solving them are presented. The underlying biological and mathematical principles and the interrelationships are emphasized. Crosslisted with BIOL 4755.

MATH 4777. Vector and Parallel Scientific Computation. 3 Credit Hours.
Scientific computational algorithms on vector and parallel computers. Speed-up and algorithm complexity, interprocesses communication, synchronization, modern algorithms for linear systems, programming techniques, code optimization. Crosslisted with CS 4777.

MATH 4782. Quantum Information and Quantum Computing. 3 Credit Hours.
Introduction to quantum computing and quantum information theory, formalism of quantum mechanics, quantum gates, algorithms, measurements, coding, and information. Physical realizations and experiments. Crosslisted with PHYS 4782.

MATH 4801. Special Topics. 1 Credit Hour.
Courses on special topics of current interest in mathematics.

MATH 4802. Special Topics. 2 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4804. Special Topics. 4 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4805. Special Topics. 5 Credit Hours.
Courses on special topics of current interest in mathematics.

MATH 4873. Special Topics. 3 Credit Hours.
This course enables the school of Mathematics to comply with requests for courses in selected topics.

MATH 4999. Reading or Research. 1-21 Credit Hours.
Reading or research in topics of current interest.

MATH 4XXX. Mathematics Elective. 1-21 Credit Hours.

MATH 6001. Introduction to Graduate Studies in Mathematics. 2 Credit Hours.
This course covers practical information helping students start their careers as a professional mathematician. It also satisfies the Georgia Tech RCR requirements for "in-person" training.
MATH 6014. Graph Theory and Combinatorial Structures. 3 Credit Hours.
Fundamentals, connectivity, matchings, colorings, extremal problems, Ramsey theory, planar graphs, perfect graphs. Applications to operations research and the design of efficient algorithms.

MATH 6021. Algebra and Topology in Finite-dimensional Spaces. 3 Credit Hours.
Metric spaces, normed linear spaces, convexity, and separation; polyhedra and simplicial complexes; surfaces; Brouwer fixed point theorem.

MATH 6112. Advanced Linear Algebra. 3 Credit Hours.
An advanced course in Linear Algebra and applications.

MATH 6121. Modern Abstract Algebra I. 3 Credit Hours.
Graduate-level linear and abstract algebra including groups, finite fields, classical matrix groups and bilinear forms, multilinear algebra, and matroids. First of two courses.

MATH 6122. Modern Abstract Algebra II. 3 Credit Hours.
Graduate-level linear and abstract algebra including rings, fields, modules, some algebraic number theory and Galois theory. Second of two courses.

MATH 6221. Advanced Classical Probability Theory. 3 Credit Hours.
Classical introduction to probability theory including expectation, notions of convergence, laws of large numbers, independence, large deviations, conditional expectation, martingales, and Markov chains.

MATH 6225. Stochastic Processes in Finance II. 3 Credit Hours.
Advanced mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from advanced probability and mathematics are introduced as needed.

MATH 6241. Probability I. 3 Credit Hours.
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics of this course include measure and integration foundations of probability, distribution functions, convergence concepts, laws of large numbers, and central limit theory. First of two courses.

MATH 6242. Probability II. 3 Credit Hours.
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics of this course include results for sums of independent random variables, Markov processes, martingales, Poisson processes, Brownian motion, conditional probability and conditional expectation, and topics from ergodic theory. Second of two classes.

MATH 6262. Advanced Statistical Inference I. 3 Credit Hours.
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.

MATH 6263. Advanced Statistical Inference II. 3 Credit Hours.
Basic theories of testing statistical hypotheses, including a thorough treatment of testing in exponential class families. A careful mathematical treatment of the primary techniques of hypothesis testing utilized by statisticians.

MATH 6266. Linear Statistical Models. 3 Credit Hours.
Basic unifying theory underlying techniques of regression, analysis of variance and covariance, from a geometric point of view. Modern computational capabilities are exploited fully. Students apply the theory to real data through canned and coded programs.

MATH 6267. Multivariate Statistical Analysis. 3 Credit Hours.
Multivariate normal distribution theory, correlation and dependence analysis, regression and prediction, dimension-reduction methods, sampling distributions and related inference problems, selected applications in classification theory, multivariate process control, and pattern recognition.

MATH 6300. Fractal Geometry. 3 Credit Hours.
Hausdorff dimension, box-counting dimension, iterated function systems, continued fractions, number theory. Julia sets.

MATH 6307. Ordinary Differential Equations I. 3 Credit Hours.
This sequence develops the qualitative theory for systems of ordinary differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, normal forms. First of two courses.

MATH 6308. Ordinary Differential Equations II. 3 Credit Hours.
This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. Second of two courses.

MATH 6321. Functions of a Complex Variable I. 3 Credit Hours.
Complex integration, including Goursat’s theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard’s theorem.

MATH 6337. Real Analysis I. 3 Credit Hours.
Measure and integration theory. Topics include measures, measurable functions, integration and differentiation of measures.

MATH 6338. Real Analysis II. 3 Credit Hours.
Topics include Lp spaces, Banach and Hilbert spaces, basic functional analysis.

MATH 6341. Partial Differential Equations I. 3 Credit Hours.
Introduction to the mathematical theory of partial differential equations covering the basic linear models of science and exact solution techniques.

MATH 6342. Partial Differential Equations II. 3 Credit Hours.
This course covers the general mathematical theory of linear stationary and evolution problems plus selected topics chosen from the instructor’s interests.

MATH 6421. Algebraic Geometry I. 3 Credit Hours.
The study of zero sets of polynomials: algebraic varieties, regular and rational mappings, the Zariski topology.

MATH 6422. Algebraic Geometry II. 3 Credit Hours.
A continuation of Algebraic Geometry I.

MATH 6441. Algebraic Topology I. 3 Credit Hours.

MATH 6442. Algebraic Topology II. 3 Credit Hours.

MATH 6451. General Topology. 3 Credit Hours.
MATH 6452. Differential Topology. 3 Credit Hours.

MATH 6453. Geometric Topology. 3 Credit Hours.
Characteristic classes, Morse theory, three-manifolds, four-manifolds, symplectic and contact manifolds, knot theory.

MATH 6455. Differential Geometry I. 3 Credit Hours.
Core topics in differential, including: Lie groups, curvature, and relations with topology.

MATH 6456. Differential Geometry II. 3 Credit Hours.
Introduces students to topics of current interest in geometry.

MATH 6457. Geometry and Topology I. 3 Credit Hours.
The course is an introduction to the fundamental group, covering spaces and techniques used to describe and study differentiable Manifolds and smooth functions.

MATH 6458. Introduction to Geometry and Topology II. 3 Credit Hours.
Introduction to differential geometry and (co) homology.

MATH 6514. Industrial Mathematics I. 3 Credit Hours.
Applied mathematics techniques to solve real-world problems. Topics include mathematical modeling, asymptotic analysis, differential equations and scientific computation. Prepares the student for MATH 6515.

MATH 6515. Industrial Mathematics II. 3 Credit Hours.
Applications of mathematical techniques from MATH 6514 to solve real-world problems. Group projects to solve industrial problems in topics chosen by the instructor.

MATH 6580. Introduction to Hilbert Spaces. 3 Credit Hours.
Geometry, convergence, and structure of linear operators in infinite dimensional spaces. Applications to science and engineering, including integral equations and ordinary partial differential equations.

MATH 6583. Integral Equations and Transforms. 3 Credit Hours.
Volterra and Fredholm linear integral equations; relation to differential equations; solution methods; Fourier, Laplace, and Mellin transforms; applications to boundary value problems and integral equations.

MATH 6584. Special Functions of Higher Mathematics. 3 Credit Hours.
Gamma function; exponential function; orthogonal polynomials; Bessel, Legendre, and hypergeometric functions; application to singular ordinary differential equations; and separation of variables for partial differential equations.

MATH 6635. Numerical Methods in Finance. 3 Credit Hours.
Basic numerical and simulation techniques used in the pricing of derivative securities and in related problems in finance. Some programming experience required.

MATH 6640. Applied Computational Methods for Partial Differential Equations. 3 Credit Hours.
Introduction to the implementation and analysis of numerical algorithms for the numerical solution of the classic partial differential equations of science and engineering. Must have knowledge of a computer programming language, familiarity with partial differential equations and elements of scientific computing.

MATH 6641. Advanced Numerical Methods for Partial Differential Equations. 3 Credit Hours.
Analysis and implementation of numerical methods for nonlinear partial differential equations including elliptic, hyperbolic, and/or parabolic problems. Must have knowledge of classic linear partial differential equations and exposure to numerical methods for partial differential equations at the level of MATH 6640 or numerical linear algebra at the level of MATH 6643.

MATH 6643. Numerical Linear Algebra. 3 Credit Hours.
Introduction to the numerical solution of the classic problems of linear algebra including linear systems, least squares, Singular value decomposition, eigenvalue problems. Crosslisted with CSE 6643.

MATH 6644. Iterative Methods for Systems of Equations. 3 Credit Hours.

MATH 6645. Numerical Approximation Theory. 3 Credit Hours.
Theoretical and computational aspects of polynomial, rational, trigonometric, spline, and wavelet approximation.

MATH 6646. Numerical Methods for Ordinary Differential Equations. 3 Credit Hours.
Analysis and implementation of numerical methods for initial and two-point boundary value problems for ordinary differential equations.

MATH 6647. Numerical Methods for Dynamical Systems. 3 Credit Hours.
Approximation of the dynamical structure of a differential equation and preservation of dynamical structure under discretization. Must be familiar with dynamical systems and numerical methods for initial and boundary value problems in ordinary differential equations.

MATH 6701. Math Methods of Applied Sciences I. 3 Credit Hours.
Review of linear algebra and ordinary differential equations, brief introduction to functions of a complex variable.

MATH 6702. Math Methods of Applied Sciences II. 3 Credit Hours.
Review of vector calculus and its applications to partial differential equations.

MATH 6705. Modeling and Dynamics. 3 Credit Hours.
Mathematical methods for solving problems in the life sciences. Models-based course on basic facts from the theory of ordinary differential equations and numerical methods of their solution. Introduction to the control theory, diffusion theory, maximization, minimization and curve fitting. Math majors may not use this course toward any degree in the School of Mathematics.

MATH 6710. Numerical Methods in Computational Science and Engineering I. 3 Credit Hours.
Introduction to numerical algorithms widely used in computational science and engineering. Numerical linear algebra, linear programming, and applications. Crosslisted with CSE 6710.

MATH 6711. Numerical Methods in Computational Science and Engineering II. 3 Credit Hours.
Efficient numerical techniques for solving partial differential equations and large-scale systems of equations arising from discretization of partial differential equations or variational problems in applications in science and engineering. Crosslisted with CSE 6711.

MATH 6759. Stochastic Processes in Finance I. 3 Credit Hours.
Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed. Crosslisted with ISYE 6759.
MATH 6761. Stochastic Processes I. 3 Credit Hours.

MATH 6762. Stochastic Processes II. 3 Credit Hours.

MATH 6767. Design and Implementation of Systems to Support. 3 Credit Hours.
Computational Finance Introduction to large scale system design to support computational finance for options, stocks, or other financial instruments. Some programming experience, and previous exposure to stocks, bonds, and options required. Crosslisted with ISYE 6767.

MATH 6769. Fixed Income Securities. 3 Credit Hours.
Description, institutional features, and mathematical modeling of fixed income securities. Use of both deterministic and stochastic models. Crosslisted with ISYE 6769.

MATH 6781. Reliability Theory. 3 Credit Hours.
Reliability systems and related distributions, failure rate functions and nonparametric classes, accelerated life testing, dependent failure analysis, statistical inference of reliability data. Crosslisted with ISYE 6781.

MATH 6783. Statistical Techniques of Financial Data Analysis. 3 Credit Hours.
Fundamentals of statistical inference for models used in the modern analysis of financial data. Crosslisted with ISYE 6783.

MATH 6785. The Practice of Quantitative and Computational Finance. 3 Credit Hours.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance. Crosslisted with ISYE and MGT 6785.

MATH 6793. Advanced Topics in Quantitative and Computational Finance. 3 Credit Hours.
Advanced foundational material and analysis techniques in quantitative and computational finance. Crosslisted with ISYE 6793.

MATH 7000. Master's Thesis. 1-21 Credit Hours.

MATH 7006. Mathematics Elective. 1-21 Credit Hours.

MATH 7007. The Practice of Quantitative and Computational Finance. 3 Credit Hours.

MATH 7010. Aural-Oral English Skills for Math ESL International Teaching Assistants. 2 Credit Hours.
Enhancement of English listening/speaking skills for SOM international graduate students, post-docs, and new faculty who speak English as their second language (ESL) and who will be teaching undergraduate students.

MATH 7014. Advanced Graph Theory. 3 Credit Hours.
Advanced topics in graph theory. Selection of arguments varies every year.

MATH 7016. Combinatorics. 3 Credit Hours.
Fundamental combinatorial structures including hypergraphs, transversal sets, colorings, Sperner families, intersecting families, packings and coverings, perfect graphs, and Ramsey theory. Algebraic and topological methods, applications.

MATH 7018. Probabilistic Methods in Combinatorics. 3 Credit Hours.
Applications of probabilistic techniques in discrete mathematics, including classical ideas using expectation and variance as well as modern tools, such as martingale and correlation inequalities.

MATH 7244. Stochastic Processes and Stochastic Calculus I. 3 Credit Hours.
An introduction to the Ito stochastic calculus and stochastic differential equations through a development of continuous-time martingales and Markov processes. First of two courses.

MATH 7245. Stochastic Processes and Stochastic Calculus II. 3 Credit Hours.
An introduction to the Ito stochastic calculus and stochastic differential equations through a development of continuous-time martingales and Markov processes. Continuation of MATH 7244.

MATH 7306. Academic Communication for Intermediate ESL Math International Teaching Assistants. 2 Credit Hours.
Enhancement of English listening/speaking skills for SOM international graduate students, post-docs, and new faculty who speak English as their second language (ESL).

MATH 7334. Operator Theory. 3 Credit Hours.

MATH 7337. Harmonic Analysis. 3 Credit Hours.
Fourier analysis in Euclidean space. Basic topics including L1 and L2 theory; advanced topics such as distribution theory, uncertainty, Littlewood-Paley theory.

MATH 7338. Functional Analysis. 3 Credit Hours.
Topics include the Hahn-Banach theorems, the Baire Category theorem and its consequences, duality in Banach spaces, locally convex spaces, and additional topics.

MATH 7340. Graph Algorithms. 3 Credit Hours.
Algorithms for graph problems such as maximum flow, covering, matching, coloring, planarity, minimum cuts, shortest paths, and connectivity. Crosslisted with ISYE 7510 and CS 7510.

MATH 7581. Calculus of Variations. 3 Credit Hours.
Minimization of functionals, Euler-Lagrange equations, sufficient conditions for a minimum; geodesic, isoperometric, and time of transit problems; variational principles of mechanics; applications to control theory.

MATH 7586. Tensor Analysis. 3 Credit Hours.
Review of linear algebra, multilinear algebra, algebra of tensors, co- and contravariant tensors, tensors in Riemann spaces, geometrical interpretation of skew tensors.

MATH 7999. Preparation for Doctoral Comprehensive Examination. 1-21 Credit Hours.

MATH 8305. Aural-Oral English Skills for Math ESL International Teaching Assistants. 2 Credit Hours.
Enhancement of English listening/speaking skills for SOM international graduate students, post-docs, and new faculty who speak English as their second language (ESL) and who will be teaching undergraduate students.

MATH 8306. Academic Communication for Intermediate ESL Math International Teaching Assistants. 2 Credit Hours.
Continued enhancement of English listening/speaking skills for current and future SOM graduate international teaching assistants and international lead instructors who speak English as their second language (ESL).

MATH 8307. Academic Communication for Advanced ESL Math International Teaching Assistants. 1 Credit Hour.
Continued enhancement of English listening/speaking skills for current and future SOM graduate international teaching assistants and international lead instructors who speak English as their second language (ESL).
MATH 8801. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8802. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8803. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8804. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8805. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8811. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8812. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8813. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8814. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8815. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8821. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8822. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8823. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8824. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8825. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8831. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8832. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8833. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8834. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8835. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8841. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8842. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8843. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8844. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8845. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8851. Special Topics. 1 Credit Hour.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8852. Special Topics. 2 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8853. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8854. Special Topics. 4 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8855. Special Topics. 5 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8863. Advanced Topics in Graph Theory. 3 Credit Hours.
Selection of topics vary with each offering.

MATH 8873. Special Topics. 3 Credit Hours.
This course enables the School of Mathematics to comply with requests for courses in selected topics.
Mechanical Engineering (ME)

ME 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ECE, and MSE 1750.

ME 1770. Introduction to Engineering Graphics and Visualization. 3 Credit Hours.
Introduction to engineering graphics and visualization including sketching, line drawing, and solid modeling. Development and interpretation of drawings and specifications for product realization. Crosslisted with AE and CEE 1770.

ME 1801. Special Topics. 1 Credit Hour.
Special Topics.

ME 1XXX. Mechanical Engr Elective. 1-21 Credit Hours.

ME 2016. Computer Applications. 3 Credit Hours.
An introduction to the use of computers and MATLAB programming for the solution of mechanical engineering problems. Topics include: sources of error in computing, the use of modular software design, basic numerical methods, and signal processing.

ME 2110. Creative Decisions and Design. 3 Credit Hours.
To learn fundamental techniques for creating, analyzing, synthesizing, and implementing design solutions to open-ended problems with flexibility, adaptability, and creativity through team and individual efforts.

ME 2202. Dynamics of Rigid Bodies. 3 Credit Hours.
Kinematics and dynamics of particles and rigid bodies in one, two, and three dimensions. Work-energy and impulse-momentum concepts.

ME 2205. Three-dimensional rigid body dynamics. 1 Credit Hour.
Three-dimensional rigid body dynamics; Newton-Euler methods, inertia properties and principal axes; Euler equations, gyroscopic effects.

ME 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ME 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ME 2801. Special Topics. 1 Credit Hour.
Topics of current interest not offered in the regular course offerings.

ME 2803. Special Topics. 3 Credit Hours.
Topics of current interest not offered in the regular course offerings.

ME 2XXX. Mechanical Engr Elective. 1-21 Credit Hours.

ME 3015. System Dynamics and Control. 4 Credit Hours.
Dynamic modeling and response of systems with mechanical, hydraulic, thermal, and/or electrical elements. Linear feedback control systems design and analysis in time and frequency domains. Credit not allowed for both ME 3015 and ME 4452.

ME 3017. System Dynamics. 3 Credit Hours.
Dynamic modeling and simulation of systems with mechanical, hydraulic, thermal and/or electrical elements. Frequency response analysis, stability, and feedback control design of dynamic systems. Students cannot receive credit for ME 3017 and AE 3530.

ME 3057. Experimental Methodology and Technical Writing. 3 Credit Hours.
Introduction to basic instrumentation and experimental methodology used in mechanical engineering, including calibration, use, precision and accuracy. Consideration errors, precision and accuracy in experimental measurements and technical reports.

ME 3141. Cutting-Edge Eng Seminar. 3 Credit Hours.
Seminar course on advanced engineering technologies directed to a non-technical audience. Distinguished guest speakers.

ME 3180. Machine Design. 3 Credit Hours.
The selection, analysis, and synthesis of springs, joining and fastening methods, bearings, shafts, gears, and other elements. Design of assemblies. Computer-based methods.

ME 3210. Design, Materials, and Manufacture. 3 Credit Hours.
Major manufacturing processes, capabilities, and costs. Interaction between design, materials and manufacturing process selection.

ME 3322. Thermodynamics. 3 Credit Hours.
Introduction to thermodynamics. Thermodynamic properties, energy and mass conservation, entropy and the second law. Second-law analysis of thermodynamic systems, gas cycles, vapor cycles.

ME 3340. Fluid Mechanics. 3 Credit Hours.
The fundamentals of fluid mechanics. Topics include fluid statics; control-volume analysis; the Navier-Stokes equations; similitude; viscous, inviscid and turbulent flows; boundary layers.

ME 3345. Conduction and Radiation Heat Transfer. 3 Credit Hours.
Introduction to the study of heat transfer, transport coefficients, steady state conduction, transient conduction, radiative heat transfer, and forced and natural convection.

ME 3700. Introduction to Energy Systems Engineering. 3 Credit Hours.
Renewable, fossil, and nuclear energy and its conversion into various forms. Electrical grid, energy storage, energy conservation, and mitigation of adverse conversion.

ME 3720. Introduction to Fluid and Thermal Engineering. 3 Credit Hours.
Theory and application, but no exhaustive treatment of fluid mechanics, thermodynamics, and heat transfer in analysis and design of fluid and thermal energy systems.

ME 3743. Analysis of Emerging Technologies. 3 Credit Hours.
Analysis of emerging technologies and their impacts for firm practice, market practice, policy, and society. Credit not allowed for both ME 3743 and MGT 3743 or CS 3743.

ME 3744. Managing Product, Service & Technology Development. 3 Credit Hours.
Analysis of the managerial challenges of the product development process.

ME 3801. Special Topics. 1 Credit Hour.
Special Topics.

ME 3XXX. Mechanical Engr Elective. 1-21 Credit Hours.

ME 4011. Internal Combustion Engines. 3 Credit Hours.
Analysis and design of various types of engines used in transportation systems. Topics include advances in energy efficiency and emissions in automotive applications.

ME 4012. Modeling and Control of Motion Systems. 3 Credit Hours.
Motion systems consisting of mechanical, fluid and electrical components are analyzed, modeled, and controlled. Alternatives are considered for system optimization.
ME 4013. Hybrid Vehicle Powertrains. 3 Credit Hours.
Course details fundamentals of hybrid vehicle powertrains, to include architectures (series, parallel, etc.), components, operation, control, modeling & simulation, and design fundamentals.

ME 4014. Introduction to Automotive Engineering. 3 Credit Hours.
Introduction to automotive engineering from a systems perspective. Major automotive systems and subsystems are described together with appropriate engineering models necessary for analysis and design.

ME 4041. Interactive Computer Graphics and Computer-aided Design. 3 Credit Hours.
Principles of geometric modeling, finite-element method, and interactive computer graphics hardware and software. CAD and CAE applications in thermal and mechanical design problems. Design projects.

ME 4042. Interactive Computer-aided Design and Computer-Aided Engineering. 3 Credit Hours.
Principles of geometric modeling and finite-element method; interactive CAD and CAE software tools. CAD and CAE applications in thermal and mechanical design problems. Design projects.

ME 4053. Mechanical Engineering Systems Laboratory. 2 Credit Hours.

ME 4056. Mechanical Engineering Systems Laboratory. 3 Credit Hours.

ME 4171. Environmentally Conscious Design and Manufacturing. 3 Credit Hours.
Including environmental considerations in engineering design; reducing environmental impact by design; recycling; material selection; de- and remanufacturing; life-cycle considerations, analyses, tradeoffs; ISO 14000.

ME 4172. Designing Sustainable Engineering Systems. 3 Credit Hours.
Understanding sustainability in context of market forces, availability of resources, technology, society. Methods for identifying, modeling, and selecting sustainable designs.

ME 4182. Mechanical Design Engineering. 3 Credit Hours.
Teams apply a systematic design process to real multidisciplinary problems. Problems selected from a broad spectrum of interest areas, including biomedical, ecological, environmental, mechanical, and thermal.

ME 4189. Structural Vibrations. 3 Credit Hours.
Single and multi-degree-of-freedom systems as well as continuous systems are analyzed for their vibrational response characteristics using both exact and approximate methods.

ME 4193. Design and Materials Selection for Tribological Applications. 3 Credit Hours.
Analysis of tribological aspects of machine components, including friction, lubrication, and wear. Group design project to optimize system tribological performance.

ME 4214. Mechanical Behavior of Materials. 3 Credit Hours.
Problems involving resistance of materials to plastic deformation, fracture, fatigue, and creep; mechanical testing; computer-based methods; case studies of failure.

ME 4215. Manufacturing Process Analysis. 3 Credit Hours.
First principles based modeling and analysis of manufacturing processes. Process design and optimization.

ME 4315. Energy Systems Analysis and Design. 3 Credit Hours.
Integrated concepts, laws, and methodologies from thermal sciences are used to analyze, model, and design energy systems and to predict system performance for fixed designs.

ME 4321. Principles of Air Conditioning. 3 Credit Hours.
Application of thermodynamics principles to analysis and design of refrigeration and air conditioning systems, absorption and heat-driven systems, gas-vapor mixture psychrometrics, load estimates, delivery, and control.

ME 4324. Power Generation Technology. 3 Credit Hours.
Technology review and application of engineering sciences and economics to the analysis and design of power generation systems. Fossil, nuclear, and renewable energy systems are considered.

ME 4325. Introduction to Fuel Cell Systems. 3 Credit Hours.
Fuel cell systems are explained and analyzed, including single cells and stacks, and balance-of-plant fundamentals, with emphasis upon prevalent fuel cell types and their applications.

ME 4330. Heat and Mass Exchangers. 3 Credit Hours.
Heat transfer, fluid flow, and thermodynamics principles applied to the analysis and design of heat and mass exchangers, periodic regenerators, and cooling towers.

ME 4340. Applied Fluid Mechanics. 3 Credit Hours.
Advanced study in three areas of fluid mechanics. Topics may be chosen from turbomachinery, flow measurement, compressible flow, applied aerodynamics, and others.

ME 4342. Computational Fluid Dynamics. 3 Credit Hours.
An introduction to computational fluid dynamics (CFD) in mechanical engineering. The theory and numerical techniques of CFD. Modern CFD software including grid generation and flow visualization tools will be used. Projects with complex fluid-flow systems.

ME 4405. Fundamentals of Mechatronics. 3 Credit Hours.
Focuses on fundamentals of microcontrollers, analog and digital electronics, sensors, actuators and their applications to modern mechatronics systems and intelligent manufacturing. Knowledge gained from lectures will be used to complete lab exercises. Credit will not be awarded for both ME 4405 and ME 6405 or ME 4405 and ME 4777.

ME 4447. Microprocessor Control of Manufacturing Systems. 3 Credit Hours.
Lectures address the fundamental aspects of manufacturing elements and microprocessors and their applications. Hands-on application of machine and machine tool control will be stressed.

ME 4451. Robotics. 3 Credit Hours.
Mathematical modeling, simulation, and control of robotic systems with mechanical and sensory elements.

ME 4452. Control of Dynamic Systems. 3 Credit Hours.
Modeling and simulation of dynamic systems in frequency and time domains. Feedback control analysis and design methods including root-locus, frequency response, and pole-placement. Introduction to digital control systems. Credit not allowed for both ME 4452 and ME 3015. Credit not allowed for both ME 4452 and AE 3531.

ME 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

ME 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.
ME 4701. Wind Engineering. 3 Credit Hours.
An introductory course on wind energy and its potential; modeling and design of wind turbines; analysis of the economic benefits of wind turbine systems. Credit not allowed for both ME 4701 and AE 4701.

ME 4720. Pulp and Paper Manufacturing. 3 Credit Hours.
The course provides comprehensive foundational knowledge of the industry enabling the student to understand the role of diverse manufacturing operations and to strategically plan improvements. Cross-listed with ChBE 4720.

ME 4730. Emerging Technologies for Forest Bioproducts. 3 Credit Hours.
The course provides comprehensive knowledge of the manufacture of nontraditional products from forest biomaterials. It analyzes and assesses emerging manufacturing technologies, materials and products. Cross-listed with ChBE 4730.

ME 4740. Biologically Inspired Design. 3 Credit Hours.
We examine evolutionary adaptation as a source for engineering design inspiration, utilizing principles of scaling, adaptability, and robust multifunctionality that characterize biological systems. Credit not allowed for both ME 4740 and (BIOL 4740, or ISYE 4740 or PTFE 4740 or MSE 4740).

ME 4741. Integrative Management Development - Project Preparation. 3 Credit Hours.
Individual and group-based experiential learning activities to develop integrated human system management skills that prepare students for more successful capstone collaboration and learning. Credit not allowed for both ME 4741 and CS 4741 or MGT 4741.

ME 4742. Integrated Technology and Management Capstone Project. 4 Credit Hours.
Project-based course where students in the Technology and Management Program will work in inter-disciplinary teams on projects provided by corporate affiliates. Credit not allowed for both ME 4742 and CS 4742 or MGT 4742.

ME 4744. Global Development Capstone. 3 Credit Hours.
Teams develop solutions to multidisciplinary problems selected from globalization, food security, infrastructure, health, water, sanitation, hygiene, ecosystem resilience, services, capacity building, and urbanization.

ME 4753. Topics in Engineering Practice. 3 Credit Hours.
Topics of current importance offered in collaboration with an approved partner of Georgia Tech’s Distance Learning Program.

ME 4754. Electronics Packaging Assembly, Reliability, Thermal Management, and Test. 3 Credit Hours.
The course provides hands-on instruction in electronics packaging, including assembly, reliability, thermal management, and test of next-generation microsystems. Cross-listed with ECE and MSE 4754.

ME 4757. Biofluid Mechanics. 3 Credit Hours.

ME 4758. Biosolid Mechanics. 3 Credit Hours.

ME 4759. Electrochemical Energy Storage and Conversion. 3 Credit Hours.
An elective class for senior-level students interested in electrochemical storage and conversion, including the fundamentals of electrochemistry and practical battery and fuel cells. Cross-listed with ChBE and MSE 4759.

ME 4760. Engineering Acoustics and Noise Control. 3 Credit Hours.
Study of acoustics related to noise and its control; acoustic terminology, wave propagation, wave equation solutions, instrumentation, data processing, room acoustics, noise control, hearing, noise legislation. Crosslisted with AE 4760.

ME 4763. Pulping and Chemical Recovery. 3 Credit Hours.
Pulping and chemical recovery processes are studied on the reaction, delignification, energy, and liquor reuse. The process optimization, air and water pollution minimization are taught. Crosslisted with CHE 4763.

ME 4764. Bleaching and Papermaking. 3 Credit Hours.
Pulp bleaching and formation of paper/board products are studied along with testing, end uses, chemical and mechanical treatment of pulp, non-wood and recycled fiber utilization. Crosslisted with CHE 4764.

ME 4766. Fabrication and Properties of Nanoscale Devices. 3 Credit Hours.
Fundamental properties at the nanoscale for photonics and sensors. Nanoscale fabrication methods including thin films, ion beam, lithography, electroplating, and example case studies in NEMS/MEMS and photonics. Credit not allowed for both ME 4766 and MSE 4766.

ME 4767. Pulp and Paper Lab. 3 Credit Hours.
The course offers the fundamentals of pulp and paper testing procedures. Cross-listed with ChBE 4767.

ME 4775. Polymer Science and Engineering I: Formation and Properties. 3 Credit Hours.
An introduction to the chemistry, structure and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHEM, CHE, MSE, and PTFE 4775.

ME 4776. Polymer Science and Engineering II: Analysis, Processing and Laboratory. 3 Credit Hours.
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHEM, CHEM, MSE, and TFE 4776.

ME 4777. Introduction to Polymer Science and Engineering. 3 Credit Hours.
An introduction to the structure and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids, and processing of polymers. Crosslisted with MSE and PTFE 4777.

ME 4782. Biosystems Analysis. 3 Credit Hours.
Analytical methods for modeling biological systems, including white noise protocols for characterizing nonlinear systems. Crosslisted with BMED, CHE and ECE 4782.
ME 4790. Materials Selection and Design. 3 Credit Hours.
Principles of selecting materials and processes for engineering applications. Methodologies for designing new materials and conceiving hybrid solutions. Credit not allowed for both ME 4790 and ME 4213 or ME 4790.

ME 4791. Mechanical Behavior of Composites. 3 Credit Hours.
Stress-strain behavior of composites, properties of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, CHE, MSE, and PTFE 4791.

ME 4793. Composite Materials and Processes. 3 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CEE, CHE, ME, MSE, and PTFE 4793.

ME 4794. Composite Materials and Manufacturing. 4 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CEE, CHE, ME, MSE, and PTFE 4794.

ME 4795. Fundamental Elements of Nuclear Reactor Materials. 3 Credit Hours.
Introduction to fundamentals of nuclear reactor materials. Topics covered are basics of radiation damage, defect creation and evolution, microstructure-property correlations in cladding and fuel of nuclear materials.

ME 4801. Special Topics in Mechanical Engineering. 1 Credit Hour.
Special topic offerings of current interest not included in regular courses.

ME 4802. Special Topics in Mechanical Engineering. 2 Credit Hours.
Special topic offerings of current interest not included in regular courses.

ME 4803. Special Topics in Mechanical Engineering. 3 Credit Hours.
Special topic offerings of current interest not included in regular courses.

ME 4804. Special Topics in Mechanical Engineering. 4 Credit Hours.
Special topic offerings of current interest not included in regular courses.

ME 4805. Special Topics in Mechanical Engineering. 5 Credit Hours.
Special topic offerings of current interest not included in regular courses.

ME 4811. Special Topics. 1 Credit Hour.

ME 4812. Special Topics. 2 Credit Hours.

ME 4813. Special Topics. 3 Credit Hours.

ME 4814. Special Topics. 4 Credit Hours.

ME 4815. Special Topics. 5 Credit Hours.

ME 4821. Special Topics. 1 Credit Hour.

ME 4822. Special Topics. 2 Credit Hours.

ME 4823. Special Topics. 3 Credit Hours.

ME 4824. Special Topics. 4 Credit Hours.

ME 4825. Special Topics. 5 Credit Hours.

ME 4831. Special Topics. 1 Credit Hour.

ME 4832. Special Topics. 2 Credit Hours.

ME 4833. Special Topics. 3 Credit Hours.

ME 4834. Special Topics. 4 Credit Hours.

ME 4835. Special Topics. 5 Credit Hours.

ME 4843. Special Topics-ME Lab. 3 Credit Hours.
ME Special Topics with lab component.

ME 4853. Special Topics. 3 Credit Hours.
ME Special Topics with lab component.

ME 4901. Special Problems in Mechanical Engineering. 1-21 Credit Hours.
Individual studies in certain specialized areas, and mathematical analyses and/or experimental investigations of problems of current interest in mechanical engineering.

ME 4902. Special Problems. 1-21 Credit Hours.
Individual studies in certain specialized areas, and mathematical analyses and/or experimental investigations of problems of current interest in mechanical engineering.

ME 4903. Special Problems. 1-21 Credit Hours.
Individual studies in certain specialized areas, and mathematical analyses and/or experimental investigations of problems of current interest in mechanical engineering.

ME 4XXX. Mechanical Engr Elective. 1-21 Credit Hours.

ME 6101. Engineering Design. 3 Credit Hours.
Design concepts, processes, and methodologies, including quality and robustness. Group project.

ME 6102. Designing Open Engineering Systems. 3 Credit Hours.
Decision-based integrated product and process development, meta-design, and decision support problems; mathematical modeling of decisions involving ambiguity and uncertainty; critical thinking and analysis; verification and validation; research issues.

ME 6103. Optimization in Engineering Design. 3 Credit Hours.
Use of single and multi-objective optimization in modeling and solving mechanical engineering design problems. Formulations, solution algorithms, validation and verification, computer implementation. Project.

ME 6104. Computer-Aided Design. 3 Credit Hours.
Fundamentals of CAD, including geometric and solid modeling, parametric representations, features, and human-machine interactions. Applications to design, analysis, and manufacturing.
ME 6105. Modeling and Simulation in Design. 3 Credit Hours.
Modeling and simulation concepts, algorithms, and methods; modeling of energy-based and discrete-event systems; modeling of design decisions; information modeling and knowledge representation; project.

ME 6124. Finite-Element Method: Theory and Practice. 3 Credit Hours.
Line, plane, solid, plate, and shell elements-theory: practical aspects of modeling; applications in mechanical engineering; final project.

ME 6140. Physical Properties of Paper. 3 Credit Hours.
Structure and physical properties of paper and other fiberous composites. Fundamental concepts related to single fibers and web structures.

ME 6201. Principles of Continuum Mechanics. 3 Credit Hours.
Introductory treatment of the fundamental, unifying concepts of the mechanics of continua.

ME 6203. Inelastic Deformation of Solids. 3 Credit Hours.
Phenomenological aspects of nonlinear material behavior and deformation with emphasis on model development.

ME 6204. Micromechanics of Materials. 3 Credit Hours.
Fundamental concepts of micromechanics of solids with emphasis on application to composite materials.

ME 6222. Manufacturing Processes and Systems. 3 Credit Hours.

ME 6223. Automated Manufacturing Process Planning. 3 Credit Hours.

ME 6224. Machine Tool Analysis and Control. 3 Credit Hours.
Mechanics and dynamics of machining, machine tool components and structures, sensors and control of machine tools, machine process planning and optimization.

ME 6225. Metrology and Measurement Systems. 3 Credit Hours.
Metrology techniques and procedures. Precision manufacturing system design and analysis.

ME 6226. Fundamentals of Semiconductor Manufacture and Assembly. 3 Credit Hours.
Basic mechanical and materials processes in production including silicon boule growth, plastic encapsulation, interconnect metal migration, solder joining, printing, manufacturing process cost analysis.

ME 6229. Introduction to Micro-Electro-Mechanical Systems. 3 Credit Hours.
Principles of microfabrication for sensors and actuators. Lumped parameter analysis and computer-aided design; materials properties; case studies include cantilever beam, pressure sensor, and accelerometer.

ME 6242. Mechanics of Contact. 3 Credit Hours.
Mechanics of surface contact, with emphasis on tribological interactions as in rolling element bearings, slider bearings, mechanical seals, and materials processing.

ME 6243. Fluid Film Lubrication. 3 Credit Hours.
Analytical and numerical investigation of full film compressible and incompressible hydrodynamic lubrication problems for steady and unsteady conditions.

ME 6244. Rotordynamics. 3 Credit Hours.
Analysis and design of shafts for rotating machinery. Torsional vibration, synchronous and nonsynchronous whirl, stability, gyroscopic effects, hydrodynamic bearings, hysteresis, squeeze film dampers, and balancing.

ME 6281. Mechanics of Paper Forming and Coating. 3 Credit Hours.
Fundamentals of multiphase flow in paper forming and coating processes, and its impact on the physical properties of composite fiber structure and surface characteristics.

ME 6300. Intermediate Heat Transfer. 3 Credit Hours.
Intermediate topics including multidimensional transient conduction, diffusion, boundary layers, internal flows, radiation, phase change, heat exchangers, multimode transfer, and numerical methods with a project-oriented approach.

ME 6301. Conduction Heat Transfer. 3 Credit Hours.
Steady and transient one- and multi-dimensional conduction. Emphasis on analytical methods, numerical techniques, and approximate solutions.

ME 6302. Convection Heat Transfer. 3 Credit Hours.
Convection (forced and free) in laminar and turbulent, internal and external flows. Analogy between momentum and heat transfer. Scaling laws and modeling.

ME 6303. Thermal Radiation Heat Transfer. 3 Credit Hours.
Fundamentals of thermal radiation, blackbody radiation, surface characteristics, exchange in enclosures, radiation through continua, and combined mode heat transfer.

ME 6304. Principles of Thermodynamics. 3 Credit Hours.
Fundamentals of thermodynamics including energy, entropy, and energy analysis, property relations, equilibrium conditions, and evaluation of properties.

ME 6305. Applications of Thermodynamics. 3 Credit Hours.
Applications of the first and second laws of thermodynamics to analysis and design optimization of power and refrigeration systems incorporating heat exchangers and combustion processes.

ME 6309. Nanoscale Heat Transfer. 3 Credit Hours.
Microscopic concepts and methodology in thermal science, including equilibrium statistics. Boltzmann transport equation, and nano-scale heat conduction and radiation, with applications in contemporary technologies.

ME 6401. Linear Control Systems. 3 Credit Hours.
Theory and applications of linear systems, state space, stability, feedback controls, observers, LQR, LQG, Kalman filters. Credit will not be awarded for both ME 6401 and AE 6530.

ME 6402. Nonlinear Control Systems. 3 Credit Hours.
Analysis of nonlinear systems, geometric control, variable structure control, adaptive control, optimal control, applications.

ME 6403. Digital Control Systems. 3 Credit Hours.
Comprehensive treatment of the representation, analysis, and design of discrete-time systems. Techniques include Z- and W- transforms, direct method, control design, and digital tracking.

ME 6404. Advanced Control System Design and Implementation. 3 Credit Hours.
Analysis, synthesis, and implementation techniques of continuous-time and real-time control systems using classical and state-space methods.

ME 6405. Introduction to Mechatronics. 3 Credit Hours.
Modeling and control of actuators and electro-mechanical systems. Performance and application of microprocessors and analog electronics to modern mechatronic systems.
ME 6406. Machine Vision. 3 Credit Hours.
Design of algorithms for vision systems for manufacturing, farming, construction, and the service industries. Image processing, optics, illumination, feature representation.

ME 6407. Robotics. 3 Credit Hours.
Analysis and design of robotic systems including arms and vehicles. Kinematics and dynamics. Algorithms for describing, planning, commanding, and controlling motion force.

ME 6408. Advanced Mechatronics. 3 Credit Hours.
Focusing on team projects, designing and building intelligent machines and products. Lectures - sensors and transducers, actuators, fluid power, power rectifiers, motion control and modeling of mechatronics systems.

ME 6441. Dynamics of Mechanical Systems. 3 Credit Hours.
Motion analysis and dynamics modeling of systems of particles and rigid bodies in three-dimensional motion.

ME 6442. Vibration of Mechanical Systems. 3 Credit Hours.
Introduction to modeling and oscillatory response analysis for discrete continuous mechanical and structural systems.

ME 6443. Variational Methods in Engineering. 3 Credit Hours.
Calculus of variations, Hamilton’s principle and Lagrange’s equations, Sturm-Liouville problems, approximation techniques.

ME 6444. Nonlinear Systems. 3 Credit Hours.
Investigation of nonlinear systems using analytical and numerical techniques.

ME 6449. Acoustic Transducers and Signal Analysis. 3 Credit Hours.
Acoustic instrumentation and methods of signal analysis.

ME 6452. Wave Propagation in Solids. 3 Credit Hours.
Wave motion in solids, wave equations, analytical and numerical solutions, ultrasonic NDE.

ME 6460. Microelectromechanical Devices. 3 Credit Hours.
Introduces fundamental concepts and tools needed for the design, simulation and analysis of MEMS devices. These include electrical, mechanical, radiant, thermal, magnetic and chemical domains.

ME 6601. Introduction to Fluid Mechanics. 3 Credit Hours.
The fundamentals of fluid mechanics. Derivation of the governing equations of motion. An introduction to viscous, inviscid, turbulent, and boundary-layer flows.

ME 6602. Viscous Flow. 3 Credit Hours.
The mechanics of Newtonian viscous fluids. The use of modern analytical techniques to obtain solutions for flows with small and large Reynolds numbers.

ME 6622. Experimental Methods. 3 Credit Hours.
Experimental methods in mechanics. Includes measurement techniques, instrumentation, data acquisition, signal processing, and linear and digital electronics.

ME 6701. Wind Engineering. 3 Credit Hours.
An introductory course on wind energy and its potential; modeling and design of wind turbines; analysis of the economic benefits of wind turbine systems. Credit will not be awarded for both ME 6701 and AE 6701.

ME 6720. Biotransport. 3 Credit Hours.
This graduate level course covers the analysis of fluid flow phenomena in the human body, cardiovasculature, respiratory system and other organ systems. Credit will not be awarded for both ME 6720 and BMED 6720.

ME 6741. Pulp and Paper Manufacture I. 3 Credit Hours.
The fundamentals of pulp and paper technology are presented. Applications to the several unit operations used are explored and augmented by field trips and recent case studies. Crosslisted with CHE 6741, CHBE 6701 and MLDR 6701.

ME 6742. Pulp and Paper Manufacture II. 3 Credit Hours.
Papermaking technology is covered from a multidisciplinary engineering perspective with fundamental and practical considerations being addressed. Students participate in groups to run a pilot papermaking trial at the Henry Foundation in Savannah. Crosslisted with CHE 6742, CHBE 6701 MLDR 6701.

ME 6743. Tissue Mechanics. 3 Credit Hours.
Structure-function relationships and constitutive models for a variety of biological tissues, with an emphasis on understanding the mechanical behaviors of normal and pathological tissues. Credit not give for both ME/BMED 6783 and ME/BMED 6743. Crosslisted with BMED 6743.

ME 6744. Topics in Engineering Practice. 3 Credit Hours.
Topics of current importance offered in collaboration with an approved partner of Georgia Tech’s Distance Learning Program. Crosslisted with ECE 6744.

ME 6746. Rehabilitation Engineering. 3 Credit Hours.
Students will participate in rehabilitation engineering as practiced in the assistive technology industry. Credit not allowed for both ME 6746 and APHP 6746.

ME 6753. Principles of Management for Engineers. 3 Credit Hours.
The course will provide an introduction to selected topics needed to be successful in the technology industries. Cannot count toward major area requirements on M.S. or Ph.D. programs of study. Crosslisted with MGT 6753.

ME 6754. Engineering Data Base Management Systems. 3 Credit Hours.
Modeling and managing engineering information systems, integration of design and manufacturing functions in engineering product development, logical models of engineering product and processes. Crosslisted with CS 6754.

ME 6758. Numerical Methods in Mechanical Engineering. 3 Credit Hours.
Numerical methods for solution of engineering problems; initial, eigenvalue, and boundary-value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with NRE and HP 6758.

ME 6759. Materials in Environmentally Conscious Design and Manufacturing. 3 Credit Hours.
Covers the environmental impact of materials choices and quantitative measure of life-cycle assessment and environmental burden. The Natural Step philosophy will be used as a model for the overall approach. Crosslisted with MSE and PTFE 6759.

ME 6760. Acoustics I and II. 3 Credit Hours.
Fundamental principles governing the generation, propagation, reflection, and transmission of sound waves in fluids. Crosslisted with AE 6760.

ME 6761. Acoustics I and II. 3 Credit Hours.
Radiation and scattering of sound waves in fluids, duct acoustics, dissipation phenomena. Crosslisted with AE 6761.

ME 6762. Acoustics III. 3 Credit Hours.
Mufflers, resonators, acoustic materials, barriers, industrial noise, room acoustics, active noise control. Crosslisted with AE 6762.
ME 6765. Kinetics and Thermodynamics of Gases. 4 Credit Hours.
Thermodynamics of nonreacting and reacting gas mixtures. Introductory quantum theory, statistical thermodynamics, and gas kinetic theory. Crosslisted with AE 6765.

ME 6766. Combustion I. 3 Credit Hours.
Introductory chemical kinetics, deformations and deflagrations, laminar flame propagation in premixed gases, ignition and quenching, laminar diffusion flames, droplet burning, and turbulent reacting flows. Crosslisted with AE 6766.

ME 6767. Combustion II. 3 Credit Hours.
Turbulent combustion, combustion instability and control, solid propellants and explosives, chemical kinetics, pollutant formation and destruction, computational methods for reacting flow. Crosslisted with AE 6767.

ME 6768. Polymer Structure, Physical Properties and Characterization. 3 Credit Hours.
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with CHE, MSE, and PTFE 6768.

ME 6769. Linear Elasticity. 3 Credit Hours.
Governing equations of linear elasticity, plane elasticity, boundary-value problems, airy stress function and complex variable methods, simple three-dimensional solutions. Crosslisted with AE 6769.

ME 6770. Energy and Variational Methods in Elasticity and Plasticity. 3 Credit Hours.
Applications in energy and variational methods in engineering mechanics to elastic, plastic, and dynamical behavior of deformable media. Crosslisted with AE 6770.

ME 6774. Biomaterials: Structure and Function. 3 Credit Hours.
Structure-function relationships of biomaterials and biomaterial characterization will be covered. Materials for medical implants, tissue engineering, biosensing, imaging, and drug delivery will be covered. Crosslisted with BMED, CHE, and MSE 6774.

ME 6776. Integrated Low-cost Microelectronics Systems Packaging. 3 Credit Hours.
Broad overview of system-level, cross-disciplinary microelectronics packaging technologies, including design, test, thermal, reliability, optoelectronics, and RF integration. Comparison of system-on-chip and system-on-package. Crosslisted with ECE and MSE 6776.

ME 6777. Advanced Biomaterials. 3 Credit Hours.
Advanced topics of biomaterials performance and engineering, including biointerfaces, host reactions to materials, and bio-inspired/smart-materials strategies. Crosslisted with BMED, CHE, and MSE 6777.

ME 6779. Thermal Engineering for Packaging of Micro and Nano Systems. 3 Credit Hours.
Passive, active, and hybrid thermal management techniques, and computational modeling of micro systems. Air cooling, single phase and phase change liquid cooling, heat pipes, and thermoelectrics. Crosslisted with ECE 6779.

ME 6782. Cellular Engineering. 3 Credit Hours.
Engineering analysis of cellular systems. Crosslisted with BMED and CHE 6782.

ME 6789. Technology Ventures. 3 Credit Hours.
Team discussion and case studies of issues in biomedical engineering technology transfer including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, ECE, CHE, and MGT 6789.

ME 6792. Computer Integrated Manufacturing Systems Seminar. 1 Credit Hour.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ECE and ISYE 6792.

ME 6793. Systems Pathophysiology. 3 Credit Hours.
Overview of human pathophysiology from a quantitative perspective. Emphasis on systems of interest to bioengineering faculty. Introduction to quantitative models for biological systems. Crosslisted with BMED, CHE, and ECE 6793.

ME 6794. Tissue Engineering. 3 Credit Hours.
Biological, engineering, and medical issues in developing tissue-engineered constructs. Emphasis in the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with BMED and CHE 6794.

ME 6795. Mathematical, Statistical, and Computational Techniques in Materials Science. 3 Credit Hours.
Emphasizes the fundamental physical, analytical, and mathematical techniques commonly encountered in materials engineering including stress and strain, crystallographic and orientation transformations, X-ray, TEM, and solid-state concepts. Crosslisted with MSE and PTFE 6795.

ME 6796. Structure-Property Relationships in Materials. 3 Credit Hours.
Introduction to the multi-scale structure effects on material properties. For MSE students, this course will prepare students for future in-depth courses. For non-MSE students, the course will provide a background in materials and may serve as part of the program of study for a minor in materials. Crosslisted with MSE and PTFE 6796.

ME 6797. Thermodynamics and Kinetics of Microstructural Evolution. 3 Credit Hours.
The reduction of chemical-free energy, strain energy, and interfacial energy controls the kinetics of diffusional transformations. These factors are explored from the point of view of processing and stability of the microstructure during service. Crosslisted with MSE and PTFE 6797.

ME 6799. Legal Issues in Technology Transfer. 3 Credit Hours.
Study and analysis of U.S. law as it applies to the patenting and licensing processes. Crosslisted with CHE, MGT, and BMED 6799.

ME 6XXX. Mech Engr Elective. 1-21 Credit Hours.

ME 7000. Master's Thesis. 1-21 Credit Hours.

ME 7056. GT-STUTTGART. 12 Credit Hours.
Placeholder for GT-STUTTGART students.

ME 7057. GT-SEOUL. 12 Credit Hours.
Placeholder for GT-SEOUL students.

ME 7101. Seminar in Engineering Design. 3 Credit Hours.
Reading from the literature, presentations, and discussions on current theories and methods in engineering design.

ME 7201. Computational Mechanics of Materials. 3 Credit Hours.
Computational treatments of material and geometric nonlinearity, with emphasis on rate-dependent elasto-plasticity and fracture.

ME 7205. Mechanics and Applications of Nanostructured Materials and Devices. 3 Credit Hours. Introduction to mechanics and transport processes of discrete atomistic and molecular systems, fabrication of nanodevices/structures and applications to nanoelectronics, tribology, actuation and sensors.

ME 7226. Interface and Surface Properties. 3 Credit Hours. Physical phenomena associated with surfaces and interfaces. Gas-solid, liquid-solid, and solid-solid interactions associated with physics, chemistry, and engineering.

ME 7227. Rapid Prototyping in Engineering. 3 Credit Hours. Rapid prototyping technologies in engineering design. Physical principles, materials, materials processing. Laboratory demonstrations and project.

ME 7228. Thermomechanical Reliability in Electronic Packaging. 3 Credit Hours. Modeling and validation of thermomechanical behavior of printed wiring board and PWB assembly, microelectronic packaging, packaging materials, manufacturing process modeling, reliability, failure modes.

ME 7301. Transport Phenomena in Multiphase Flow. 3 Credit Hours. Gas-liquid, two-phase flow patterns, basic and empirical models; conservation equations and closure relations; pool and convective boiling; aerosol transport; condensation.

ME 7442. Vibration of Continuous Systems. 3 Credit Hours. Equations of motion and oscillatory response of dynamic systems modeled as continous media.

ME 7751. Computational Fluid Mechanics. 3 Credit Hours. Numerical methods for solving the time-dependent Navier-Stokes equations in complex geometrics, including theory, implementation, and applications. Crosslisted with CEE 7751.

ME 7757. Teaching Practicum. 3 Credit Hours. Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with NRE, HP, and CHBE 7757.

ME 7764. Acoustic Propagation. 3 Credit Hours. Propagation of sound in inhomogeneous fluids; ray acoustics, ocean and atmospheric acoustics, nonlinear acoustics. Crosslisted with AE 7764.

ME 7771. Mechanics of Polymer Solids and Fluids. 3 Credit Hours. Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking, and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with CHE, MSE, and PTFE 7771.

ME 7773. Advanced Fracture Mechanics. 3 Credit Hours. Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, CHE, and MSE 7773.

ME 7774. Fatigue of Materials and Structures. 3 Credit Hours. Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multiaxial loading, and fatigue crack propagation. Crosslisted with AE, CEE, CHE, and MSE 7774.

ME 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures. 3 Credit Hours. Brittle and ductile failure criteria. Failure prediction in composite structures. Free-edge and internal delamination. Anisotropic cracks. Fatigue behavior of composites and comparison with metal fatigue. Crosslisted with AE, CHE, and MSE 7775.

ME 7785. Introduction to Robotics Research. 3 Credit Hours. Familiarizes students with the core areas of robotics; mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research.

ME 7791. Damage and Failure in Composites. 3 Credit Hours. Analysis and failure of fiber-reinforced composite material systems. Mechanisms of toughening, multiple cracking mechanisms. Failure in woven fabric, braided, and special geometry composites. Crosslisted with AE, CEE, CHE, MSE, and PTFE 7791.

ME 7792. Advanced Mechanics of Composites. 3 Credit Hours. Anisotropic elasticity, hypothermal behavior, stress analysis of laminated composites including 3D effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with AE, CHE, CEE, MSE, and PTFE 7792.

ME 7793. Manufacturing of Composites. 3 Credit Hours. Major manufacturing techniques of metal-ceramic and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CEE, CHE, MSE, and PTFE 7793.

ME 8001. Master Seminar I. 1 Credit Hour. Seminars for MSME students. Credit not allowed for both ME 8001 and ECE 8001.

ME 8002. Master Seminar II. 1 Credit Hour. Seminars for MSME students. Credit not allowed for both ME 8002 and ECE 8001.

ME 8010. Seminars in Mechanical Engineering. 1 Credit Hour. Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

ME 8011. Seminars in Mechanical Engineering. 1 Credit Hour. Seminars involving current research projects presented by graduate students, faculty, and invited speakers.
ME 8012. Seminars in Mechanical Engineering. 1 Credit Hour.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

ME 8740. Robotics Internship. 1–21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.

ME 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

ME 8750. Robotics Research Foundation I. 3 Credit Hours.
Multidisciplinary research course supervised by two robotics faculty from different schools participating in the robotics Ph.D. program.

ME 8751. Robotics Research Foundation II. 3 Credit Hours.
Continuation of ME 8751 (Robotics Research Foundation I).

ME 8801. Special Topics in Manufacturing. 1 Credit Hour.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8802. Special Topics in Manufacturing. 2 Credit Hours.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8803. Special Topics in Manufacturing. 3 Credit Hours.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8804. Special Topics in Manufacturing. 4 Credit Hours.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8805. Special Topics in Manufacturing. 5 Credit Hours.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8806. Special Topics in Manufacturing. 6 Credit Hours.
Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8811. Special Topics in Computer-aided Engineering and Design. 1 Credit Hour.
Special topic offerings of current interest in computer-aided engineering not included in regular courses.

ME 8812. Special Topics in Computer-aided Engineering and Design. 2 Credit Hours.
Special topic offerings of current interest in computer-aided engineering not included in regular courses.

ME 8813. Special Topics in Computer-aided Engineering and Design. 3 Credit Hours.
Special topic offerings of current interest in computer-aided engineering not included in regular courses.

ME 8814. Special Topics in Computer-aided Engineering and Design. 4 Credit Hours.
Special topics offerings of current interest in computer-aided engineering not included in regular courses.

ME 8815. Special Topics in Computer-aided Engineering and Design. 5 Credit Hours.
Special topics offerings of current interest in computer-aided engineering not included in regular courses.

ME 8816. Special Topics in Computer-aided Engineering and Design. 6 Credit Hours.
Special topics offerings of current interest in computer-aided engineering not included in regular courses.

ME 8821. Special Topics in Tribology. 1 Credit Hour.
Special topic offerings of current interest in tribology not included in regular courses.

ME 8822. Special Topics in Tribology. 2 Credit Hours.
Special topic offerings of current interest in tribology not included in regular courses.

ME 8823. Special Topics in Tribology. 3 Credit Hours.
Special topics offerings of current interest in tribology not included in regular courses.

ME 8824. Special Topics in Tribology. 4 Credit Hours.
Special topics offerings of current interest in tribology not included in regular courses.

ME 8825. Special Topics in Tribology. 5 Credit Hours.
Special topic offerings of current interest in tribology not included in regular courses.

ME 8826. Special Topics in Tribology. 6 Credit Hours.
Special topic offerings of current interest in tribology not included in regular courses.

ME 8831. Special Topics in Thermal Sciences. 1 Credit Hour.
Special topics offerings of current interest in thermal sciences not included in regular courses.

ME 8832. Special Topics in Thermal Sciences. 2 Credit Hours.
Special topics offerings of current interest in thermal sciences not included in regular courses.

ME 8833. Special Topics in Thermal Sciences. 3 Credit Hours.
Special topic offerings of current interest in thermal sciences not included in regular courses.

ME 8834. Special Topics in Thermal Sciences. 4 Credit Hours.
Special topic offerings of current interest in thermal sciences not included in regular courses.

ME 8835. Special Topics in Thermal Sciences. 5 Credit Hours.
Special topic offerings of current interest in thermal sciences not included in regular courses.

ME 8836. Special Topics in Thermal Sciences. 6 Credit Hours.
Special topics offerings of current interest in thermal sciences not included in regular courses.

ME 8841. Special Topics in Automation and Mechatronics. 1 Credit Hour.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8842. Special Topics in Automation and Mechatronics. 2 Credit Hours.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8843. Special Topics in Automation and Mechatronics. 3 Credit Hours.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8844. Special Topics in Automation and Mechatronics. 4 Credit Hours.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8845. Special Topics in Automation and Mechatronics. 5 Credit Hours.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.
ME 8846. Special Topics in Automation and Mechatronics. 6 Credit Hours.
Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8851. Special Topics in Acoustics and Dynamics. 1 Credit Hour.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8852. Special Topics in Acoustics and Dynamics. 2 Credit Hours.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8853. Special Topics in Acoustics and Dynamics. 3 Credit Hours.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8854. Special Topics in Acoustics and Dynamics. 4 Credit Hours.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8855. Special Topics in Acoustics and Dynamics. 5 Credit Hours.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8856. Special Topics in Acoustics and Dynamics. 6 Credit Hours.
Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8861. Special Topics in Fluid Mechanics. 1 Credit Hour.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8862. Special Topics in Fluid Mechanics. 2 Credit Hours.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8863. Special Topics in Fluid Mechanics. 3 Credit Hours.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8864. Special Topics in Fluid Mechanics. 4 Credit Hours.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8865. Special Topics in Fluid Mechanics. 5 Credit Hours.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8866. Special Topics in Fluid Mechanics. 6 Credit Hours.
Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8871. Special Topics in Bioengineering. 1 Credit Hour.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8872. Special Topics in Bioengineering. 2 Credit Hours.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8873. Special Topics in Bioengineering. 3 Credit Hours.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8874. Special Topics in Bioengineering. 4 Credit Hours.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8875. Special Topics in Bioengineering. 5 Credit Hours.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8876. Special Topics in Bioengineering. 6 Credit Hours.
Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8881. Special Topics in Mechanics of Materials. 1 Credit Hour.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8882. Special Topics in Mechanics of Materials. 2 Credit Hours.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8883. Special Topics in Mechanics of Materials. 3 Credit Hours.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8884. Special Topics in Mechanics of Materials. 4 Credit Hours.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8885. Special Topics in Mechanics of Materials. 5 Credit Hours.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8886. Special Topics in Mechanics of Materials. 6 Credit Hours.
Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8901. Special Problems in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8902. Special Problem in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8903. Special Problems in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8904. Special Problems in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8905. Special Problems in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8906. Special Problems in Manufacturing. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8911. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in computer-aided engineering and design.

ME 8912. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in computer-aided engineering and design.

ME 8913. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in computer-aided engineering and design.

ME 8914. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in computer-aided engineering and design.
ME 8915. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in computer-aided engineering and design.

ME 8916. Special Problems in Computer-aided Engineering and Design. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in computer-aided engineering and design.

ME 8921. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in tribology.

ME 8922. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in tribology.

ME 8923. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in tribology.

ME 8924. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in tribology.

ME 8925. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in tribology.

ME 8926. Special Problems in Tribology. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in tribology.

ME 8931. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8932. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8933. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in thermal sciences.

ME 8934. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8935. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8936. Special Problems in Thermal Sciences. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8941. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8942. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8943. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8944. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8945. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8946. Special Problems in Automation and Mechatronics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8951. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8952. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8953. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8954. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8955. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8956. Special Problems in Acoustics and Dynamics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8961. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8962. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8963. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8964. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8965. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8966. Special Problems in Fluid Mechanics. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.
ME 8971. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8972. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8973. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8974. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8975. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8976. Special Problems in Bioengineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8981. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in the mechanics of materials.

ME 8982. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in mechanics of materials.

ME 8983. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in mechanics of materials.

ME 8984. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in the mechanics of materials.

ME 8985. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in the mechanics of materials.

ME 8986. Special Problems in Mechanics of Materials. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in the mechanics of materials.

ME 8987. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding graduate teaching assistantships.

ME 8988. Research Assistantship. 1-9 Credit Hours.
For graduate students holding graduate research assistantships.

ME 9000. Doctoral Thesis. 1-21 Credit Hours.

Management (MGT)

MGT 1XXX. Management Elective. 1-21 Credit Hours.

MGT 2106. Legal, Social, Ethical Aspects of Business. 3 Credit Hours.
Development and function of the law, court organization, procedure, and substantive law in contracts, business organizations, and agencies. Also exposes social responsibility and ethics in business.

MGT 2210. Information Systems and Digital Transformation. 3 Credit Hours.
How information and information systems support business operations, decision-making, and differentiation, and transform organizations and industries. Hands-on experience with current tools for working with data.

MGT 2250. Management Statistics. 3 Credit Hours.
This is the introduction to basic statistics for management students.

MGT 2255. Quantitative Analysis for Business. 3 Credit Hours.
This course focuses on the problem-solving and decision-making processes that use quantitative management science concepts and techniques. Credit will not be awarded for both MGT 2255 and MGT 2251.

MGT 2598. Management Internship. 1-12 Credit Hours.
Recognition for a paid, full or part time, employment experience that is relevant to a student's management education.

MGT 2599. Internship and Independent Study. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MGT 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MGT 2803. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in any other course.

MGT 2910. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 2911. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 2912. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 2XXX. Management Elective. 1-21 Credit Hours.

MGT 3000. Accounting for Decision Making. 3 Credit Hours.
A foundation course in measuring and reporting the financial performance and status of the firm as well as basic concepts in cost and managerial accounting. No credit allowed for MGT majors. No credit allowed for MGT 3000 and ACCT 2101. Credit not allowed for MGT 3000 and ACCT 2102.

MGT 3062. Financial Management. 3 Credit Hours.
An introduction to finance. Topics include: time value of money, capital budgeting, risk and return, capital structure, dividend policy, and working capital management. No credit allowed for MGT 3062 and MGT 3078.

MGT 3075. Security Valuation. 3 Credit Hours.
The valuation of securities using fundamental and technical analysis. Topics include: DCF valuation, price multiples, free cash flow, and the construction of quantitative trading models.

MGT 3076. Investments. 3 Credit Hours.
Introduction to the securities markets and a study of the theory and practice of security analysis and portfolio management as applied to stocks and bonds. Credit not allowed for MGT 3076 and MGT 3078.
MGT 3078. Finance and Investments. 3 Credit Hours.
An introduction to finance and to the securities markets. Topics include: time value of money, risk and return, capital budgeting, security analysis and portfolio management of stocks, bonds, and derivatives. No credit allowed for MGT majors. Credit not allowed for MGT 3078 and MGT 3062. Credit not allowed for MGT 3078 and MGT 3076.

MGT 3079. Management of Financial Institutions. 3 Credit Hours.
Introduction to the various risks faced by financial institutions and a detailed analysis of the tools used to manage these risks.

MGT 3082. Fundamentals of Real Estate Development. 3 Credit Hours.
An overview of the real estate development process from concept through design, feasibility, financing, construction, marketing, management and ultimate sale or long term financing.

MGT 3084. Derivative Securities. 3 Credit Hours.
An introduction to options, futures, and swaps is provided. Concepts of arbitrage, index trading, and portfolio insurance are discussed.

MGT 3101. Organizational Behavior. 3 Credit Hours.
Introduction to how the behavior of individuals, groups, and organizations affects organizational effectiveness. Credit not allowed for both MGT 3101 and 3150.

MGT 3102. Managing Human Resources within a Regulatory Environment. 3 Credit Hours.
Analysis of various frameworks for understanding the social regulatory environments of human resources management and how they influence management decision making.

MGT 3103. Leadership in a Changing Environment. 3 Credit Hours.
The course focuses on the leadership challenges posed by recent changes in the business environment, and on the skills needed to adapt to those changes.

MGT 3118. Cross-cultural Management. 3 Credit Hours.
This course develops students' global awareness to better understand and cope with the issues and challenges that managers face when working across international boundaries.

MGT 3150. Principles of Management. 3 Credit Hours.
Course explores functions of management; planning, organizing, staffing, leading, and controlling. Lectures, case studies, and business exercises are used to reinforce principles that are taught. Credit not allowed for both MGT 3150 and 3101.

MGT 3300. Marketing Management I. 3 Credit Hours.
The course presents and develops the primary marketing variables that are used in designing an overall marketing program. A systems approach is taken with the variables managed to optimize overall results.

MGT 3310. Marketing Research: Qualitative Aspects. 3 Credit Hours.
This course covers the fundamentals of the qualitative aspects of marketing research. The course has an applied orientation with application to contemporary issues in marketing.

MGT 3312. Pricing Strategy and Analytics. 3 Credit Hours.
The course introduces the conceptual underpinnings of the price setting process and discusses ways to leverage modern marketing analytic tools/methods to improve pricing decisions.

MGT 3325. Product Planning. 3 Credit Hours.
Overviews issues inherent in product development and product management. These include product strategy, idea generation, market development, product positioning, test marketing, launch, and brand management.

MGT 3501. Operations Management. 3 Credit Hours.
This course focuses on the issues and techniques relevant to the management of the operations function within an organization, emphasizing its strategic significance.

MGT 3510. Management of Technology. 3 Credit Hours.
Focus on managing the design, assessment, and implementation-change strategy of a firm's manufacturing and information-based technological capabilities to improve competitive performance.

MGT 3599. Career Development Workshop. 1 Credit Hour.
This workshop style class focuses on skills and strategies for identifying a career path and conducting a successful job search in the field of management.

MGT 3605. Principles of Commerical Law. 3 Credit Hours.
Course offers an in-depth examination of contracts, negotiable instruments and creditor/debtor issues, all essential for making informed decisions in commercial and financial business environments.

MGT 3606. International Business Law. 3 Credit Hours.
International Business Law focuses on the legal environment of international trade and private commercial transactions.

MGT 3607. Business Ethics. 3 Credit Hours.
This course introduces students to ethical aspects of the business decision-making process, including: theoretical underpinnings of ethics, stakeholders, and decision-making strategies.

MGT 3608. Technology Law and Ethics. 3 Credit Hours.
This class will examine some of the ethical, legal, and social issues associated with computers, information systems, and public and private networks including the Internet.

MGT 3609. Legal Aspects of Real Estate. 3 Credit Hours.
Legal Aspects of Real Estate introduces students to legal considerations in real estate, including ownership, sale transactions, leasing, title insurance, financing, zoning and environmental laws.

MGT 3614. Law for Entrepreneurs. 3 Credit Hours.
This course will focus on legal issues which entrepreneurs face while growing a start-up business from infancy to a publicly held company.

MGT 3616. Corporate Governance. 3 Credit Hours.
This course focuses on the U.S. corporate governance model examining the governance and management of business organizations, including board of director and officer responsibility.

MGT 3659. Foundations of Strategy. 3 Credit Hours.
This course covers the basic concepts and frameworks of strategy analysis and strategy formulation. Credit will not be awarded for both MGT 3659 and MGT 4195.

MGT 3660. International Business. 3 Credit Hours.
Examines the position of the U.S. in world markets, various types of international business transactions, and the relationship of business to global economic, political-legal and cultural forces.

MGT 3661. Advanced Concepts in International Business. 3 Credit Hours.
Covers significant aspects of international business with a particular focus on the challenges associated with transnational corporations.

MGT 3662. Management in the Healthcare Sector. 3 Credit Hours.
An exploration of the healthcare sector in its most comprehensive sense, analyzing the healthcare "system" and resulting management issues.

MGT 3663. Technology Strategy. 3 Credit Hours.
Provides understanding of economic and strategic factors that guide firms' strategic decisions regarding the generation, commercialization, protection, and adoption of the technological innovations.
MGT 3664. Corporate Strategy. 3 Credit Hours.
Provides frameworks and case studies to understand how companies create value across different businesses.

MGT 3742. Spreadsheet Modeling for Business Decision Support. 3 Credit Hours.
Using advanced spreadsheet capabilities, macros, and add-ons to create decision support systems for business applications. Not an introductory course.

MGT 3743. Analysis of Emerging Technologies. 3 Credit Hours.
Analysis of emerging technologies and their impacts for firm practice, market practice, policy, and society. Credit not allowed for both MGT 3743 and ME 3743 or CS 3743.

MGT 3744. Managing Product, Service & Technology Development. 3 Credit Hours.
Analysis of the managerial challenges of the product development process.

MGT 3745. Business Programming. 3 Credit Hours.
An introduction to the basic concepts and skills of software programming and their applications to solving business problems.

MGT 3770. Business Decisions for Sustainability and Shared Value. 3 Credit Hours.
The WEF Global Risks Report and UN SDGs are used as frameworks to explore the role of basic human needs in shaping long-term business value.

MGT 3XXX. Management Elective. 1-21 Credit Hours.

MGT 4010. Business Taxation. 3 Credit Hours.
Comprehensive survey of federal taxation of business. A focus on tax planning and decision making will extend to the study of the tax code and regulations.

MGT 4015. Advanced Managerial Accounting. 3 Credit Hours.
The course will examine current issues in managerial accounting.

MGT 4026. Financial Reporting and Analysis I. 3 Credit Hours.
Intermediate-level treatment of revenue recognition, inventories, contracts, interest capitalization, property and equipment, intangibles, long-term liabilities, and shareholder’s equity. Significant emphasis on financial analysis.

MGT 4027. Financial Reporting and Analysis II. 3 Credit Hours.
Advanced topics including tax reporting, leases, pensions, foreign currency transactions, hedging, statement translation, and business combinations and consolidations. Significant emphasis in financial analysis.

MGT 4028. Financial Analysis and Reporting of Technology Firms. 3 Credit Hours.
An in-depth look at reporting standards for and the financial characteristics of technology firms, with an emphasis on the financial analysis of such firms.

MGT 4030. International Accounting. 3 Credit Hours.
An overview of accounting issues arising from the increased internationalization of business. Topics include comparative financial reporting among countries and accounting treatments of international transactions.

MGT 4041. Auditing and Financial Control Systems. 3 Credit Hours.
This course covers professional issues surrounding auditing and financial control systems. Topics include management fraud, legal liability, audit evidence, etc.

MGT 4043. Advanced Financial Reporting. 3 Credit Hours.
Financial reporting and accounting for: mergers and acquisitions; consolidated financial statements; international transactions and hedges of exchange-rate fluctuations; partnerships; and governmental and not-for-profit organizations. Credit not allowed for both MGT 4043 and MGT 6043.

MGT 4045. Seminar in Advanced Accounting. 3 Credit Hours.
An intensive treatment of a selection of contemporary accounting topics. Topical coverage may span subject matter ranging across the fields of auditing, systems, managerial and tax accounting.

MGT 4047. Ethics & Accounting. 3 Credit Hours.
The course is designed to expose students to issues surrounding accountants' professional ethics. Credit not allowed for both MGT 4047 and MGT 6047.

MGT 4050. Business Analytics. 3 Credit Hours.
This course teaches the process of transforming data into business insights. It covers the methodologies, algorithms, issues, and challenges related to analyzing business data.

MGT 4051. Decision Support and Expert Systems. 3 Credit Hours.
This course discusses the basic features of decision support systems and expert systems. It covers the development tools and business applications.

MGT 4052. Systems Analysis and Design. 3 Credit Hours.
An introductory course on the development life cycle of business information systems. It covers analysis and design tools and methodology. Credit not allowed for both MGT 4052 and CS 4052.

MGT 4053. Business Data Communications. 3 Credit Hours.
Introductory data communication concepts. Data communication applications in organizations. Overview of data communication products and services available from a technology consumer perspective.

MGT 4055. International Issues in Information Technology Management. 3 Credit Hours.
An overview of international issues in the Information Technology Management (ITM) area. Topics include: offshore software development, transborder data flow restrictions, and global connectivity issues.

MGT 4056. Electronic Commerce. 3 Credit Hours.
This course examines the business and technical issues related to electronic commerce applications, such as the Internet, WWW, EDI, and electronic linkages between trading partners.

MGT 4057. Business Process Analysis and Design. 3 Credit Hours.
Business processes are the mechanisms by which work is organized and performed. This course covers the analysis of business processes and efficient redesign through technology. Credit will not be awarded for both CS 4057 and MGT 4057.

MGT 4058. Database Management Systems. 3 Credit Hours.
An introductory course on databases providing hands-on experience with a DBMS. Topics include data modeling, relational database design, and SQL.

MGT 4066. Corporate Restructuring. 3 Credit Hours.
This course examines the finance, economics, law, and business strategies that underlie major corporate restructuring transactions. Topics include valuation, acquisitions, divestitures, and high-leveraged transactions.

MGT 4067. Financial Markets: Trading and Structure. 3 Credit Hours.
The course focuses on liquidity, market structure and trading. Attention is given to the efficiency of trading systems and the role of intermediaries on market structure issues.
MGT 4068. Fixed Income. 3 Credit Hours.
This course covers the important securities that trade in the fixed income market and the valuation models that are used to price them.

MGT 4070. International Finance. 3 Credit Hours.
Financial management in an international setting. Topics include: foreign exchange markets, exchange risk management, international portfolio investment, and foreign direct investment.

MGT 4071. Multinational Financial Management. 3 Credit Hours.
This course emphasizes decision making for the multimedia firm amidst exchange rate fluctuations, differing tax structures across countries, and political risk via lectures, case-discussion and analysis, and project-based learning.

MGT 4072. Entrepreneurial Finance. 3 Credit Hours.
This course has been developed to expand the student's understanding and knowledge of the financial aspects of starting, funding, operating, and/or exiting an entrepreneurial venture. Credit not allowed for both MGT 4072 and MGT 6086.

MGT 4102. Management Consulting. 3 Credit Hours.
This course explores being a Management Consultant, and will introduce students to consulting frameworks and methods; simulate consulting activities and situations using cases.

MGT 4116. The Role of Gender, Race and Ethnicity in Organizational Behavior. 3 Credit Hours.
This course will examine how managers and employees become more effective leaders by understanding the role gender, race and ethnicity plays in the life of the organization. Credit not allowed for both MGT 4116 and MGT 6116.

MGT 4117. Global Workforce Management. 3 Credit Hours.
This course examines how an organization deploys and manages a global workforce while considering cultural and economic differences across the world.

MGT 4119. Leading Teams in Organizations. 3 Credit Hours.
This course prepares students to be an effective leaders and managers of teams by giving students frameworks to implement and diagnose effective team processes.

MGT 4181. Business Forecasting. 3 Credit Hours.
The course covers statistical tools to forecast using the past behavior of data. Topics include moving average and autoregressive models, trends, cycles and volatility.

MGT 4190. Strategic Quality Management and Competitiveness. 3 Credit Hours.
This course examines the philosophy and techniques of strategic quality management (e.g. cycle time mgmt., learning organizations, quality control) as means to promote individual productivity and improve organizational competitiveness.

MGT 4191. The Entrepreneurship Forum. 3 Credit Hours.
This course provides an understanding of the entrepreneurial process, explores the role of the entrepreneur, and identifies the critical issues in starting ventures and working in entrepreneurial organizations.

MGT 4192. Impact Speaker Series Forum. 3 Credit Hours.
With the a speaker series as an integral component, the class explores the competencies and aspects of making an impact. Through speakers, articles and case studies it presents examples for review and insights.

MGT 4193. Servant Leadership, Values & Systems. 3 Credit Hours.
An exploration of the nature and integration of individual and organizational values, systemic thinking, and the concept of servant leadership. Learning occurs through case studies, simulations, readings, personal reflection and team activities.

MGT 4194. Social Enterprise and Entrepreneurship. 3 Credit Hours.
Social Entrepreneurship applies innovative solutions to the world's pressing social problems by having students utilize leadership and managerial skills to address major challenges.

MGT 4196. Strategy Consulting Practicum. 3 Credit Hours.
Provides experiential learning in strategy processes of analysis, design, and execution. Emphasis on issues currently confronted by major corporations.

MGT 4220. Integrative Management Experience. 3 Credit Hours.
Provides understanding of strategy implementation and the integration of different functional areas of the firm using lectures, cases, and a Capstone simulation. Credit will not be awarded for both MGT 4220 and MGT 4195.

MGT 4303. Personal Selling and Sales Management. 3 Credit Hours.
Students will obtain an understanding of the management of the sales function. The importance of the marketing-sales interface will be stressed.

MGT 4304. Strategic Brand Management. 3 Credit Hours.
This course teaches undergraduate students about the importance of brands, and makes them knowledgeable about, and able to apply instruments to create, monitor, and manage brands.

MGT 4305. Business-to-Business Marketing. 3 Credit Hours.
This course studies the marketing of products and services for resale, for use in producing other goods and services, and for the operations of an enterprise.

MGT 4307. Strategic Marketing. 3 Credit Hours.
Students will obtain an understanding of strategic marketing development and alternatives. Analysis and implementation through functional marketing strategies will be stressed.

MGT 4308. Advertising & Promotion: Integrated Marketing Communications. 3 Credit Hours.
This course is designed to focus on the primary marketing of communication through advertising and promotion implemented with an integrated approach. Strategic and tactical dimensions are covered for both traditional media such as broadcast, print, out-of-home and direct, as well as new media including the internet, mobile, and other trends in the industry.

MGT 4309. Services Marketing. 3 Credit Hours.
Explores how many of the traditional marketing models can be adapted to the marketing of services, as well as introducing entirely new concepts and frameworks specifically applicable to services and services marketing.

MGT 4311. Digital Marketing. 3 Credit Hours.
This course explores the various components of the digital channel including social, mobile, and search engine marketing to understand how to implement an effective digital marketing strategy.

MGT 4331. Consumer Behavior. 3 Credit Hours.
An applied course that provides a basic understanding of the behavioral science concepts to explain the behavior of consumers in the marketplace.
MGT 4332. Database and CRM Strategy. 3 Credit Hours.
Provides an understanding of analytic techniques and computer models in analyzing customer-centric data and developing customer relationship (CRM) strategy.

MGT 4335. International Marketing. 3 Credit Hours.
Students will obtain an understanding of marketing across national borders and cultures. The differences and similarities throughout the marketing functions are explored.

MGT 4341. Management of Healthcare Operations. 3 Credit Hours.
Explore the roles of operations management practices and health information technologies in addressing the challenges in the healthcare enterprise and harnessing opportunities for transforming it.

MGT 4345. Marketing Practicum. 3 Credit Hours.
This project based course provides practical experience addressing strategic marketing opportunities and helps develop high value skills for critically analyzing problems and providing tractable solutions.

MGT 4352. Operations Planning and Control. 3 Credit Hours.
The management of material flows within an enterprise will be covered by tracking the evolution of operational planning and execution systems through the enterprise resource planning (ERP) framework.

MGT 4353. Operations Strategy. 3 Credit Hours.
This course provides knowledge about developing, implementing and evaluating operations strategy. It stresses the relationships between the operations and other functions of the organization.

MGT 4360. Global Operations and Logistics. 3 Credit Hours.
This course is designed to present issues critical to the globalization of operations, and addresses strategic and tactical issues pertaining to an organization's global operations and supply chain activities.

MGT 4365. Quality Control and Improvement. 3 Credit Hours.
This course focuses on statistical process control, acceptance sampling, robust design, and other general methodologies for quality improvement.

MGT 4366. Service Operations Management. 3 Credit Hours.
This course analyzes operational performance for the service and for service-support functions of manufacturers. Industries include information services, health care, parking, transportation, distribution, and retail.

MGT 4367. Revenue Analytics. 3 Credit Hours.
This course examines how an organization deploys and manages model and data driven pricing techniques to maximize revenues.

MGT 4369. Sustainable Business Consulting Practicum. 3 Credit Hours.
Learn consulting skills and apply these to a sustainability issue for a client organization. Instructors and coaches offer expertise in corporate sustainability and management consulting.

MGT 4401. Supply Chain Modeling. 3 Credit Hours.
The objective of this course is to provide students with tools and models for matching supply and demand in the most cost effective way.

MGT 4450. Project Management. 3 Credit Hours.
Concepts, techniques, and tools from the project management body of knowledge covering initiating, planning, controlling, executing, and closing projects. Includes agile techniques and certification preparation. Credit will not be awarded for both MGT 4450 and MGT 6450.

MGT 4598. Management Internship. 1-12 Credit Hours.
Recognition for a paid, full or part time, employment experience that is relevant to a student's management education.

MGT 4599. Internship and Independent Study. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member in association with an unpaid internship.

MGT 4610. Law, Management, and Economics. 3 Credit Hours.
Interrelationships among law, economics, and management. Focuses on the legal and economic aspects of management decisions.

MGT 4611. Integrative Management Analysis. 3 Credit Hours.
Integrates the functional areas of management, economics, and the external environment in which businesses operate. The course is designed to broaden the student's perspective on management.

MGT 4670. Entrepreneurship. 3 Credit Hours.
Provides students with an understanding of the process of establishing a technology-based venture. Students learn how to evaluate market opportunities, conduct feasibility studies, create venture teams, and write business plans.

MGT 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MGT 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MGT 4725. Information Security Strategies and Policy. 3 Credit Hours.
Information security vulnerabilities and risks, legal, cost, privacy, and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends. Credit will not be awarded for both MGT 4725 and MGT 6725 or CS 6725 or CS 4725.

MGT 4726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics, law, and business realms. Credit will not be awarded for both MGT 4726 and CS 4726 or CS 6726 or MGT 6726.

MGT 4741. Integrative Management Development-Project Preparation. 3 Credit Hours.
Individual and group-based experiential learning activities to develop integrated human system management skills that prepare students for more successful capstone collaboration and learning. Credit not allowed for both MGT 4741 and CS 4741 or ME 4741.

MGT 4742. Integrated Technology and Management Capstone Project. 4 Credit Hours.
Project-based course where students in the Technology and Management Program will work in inter-disciplinary teams on projects provided by corporate affiliates. Credit not allowed for both MGT 4742 and CS 4742 or ME 4742.

MGT 4803. Special Topics in Industrial Management. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in any other course.

MGT 4811. Special Topics in Management. 1 Credit Hour.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4812. Special Topics in Management. 2 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4813. Special Topics in Management. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.
MGT 4814. Special Topics in Management. 4 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4815. Special Topics in Management. 5 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4823. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4833. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of management not extensively treated in any other course.

MGT 4910. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 4911. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 4912. Special Problems. 1-3 Credit Hours.
Independent study conducted for one student under the guidance of a faculty member.

MGT 4XXX. Management Elective. 1-21 Credit Hours.

MGT 6000. Financial and Managerial Accounting I. 3 Credit Hours.
A foundation course in measuring and reporting the financial performance and status of the firm, as well as basic concepts in cost and managerial accounting.

MGT 6010. Individual Taxation: Analysis and Planning. 3 Credit Hours.
Comprehensive survey of federal taxation of business. A focus on tax planning and decision making will extend the study of the tax code regulations.

MGT 6015. Managerial Accounting II. 3 Credit Hours.
The course covers cost estimation, standard costs, variable costing, relevant costs, transfer pricing, performance evaluation, cost of quality, and activity-based costing for service.

MGT 6020. Accounting Theory & the Analysis and Interpretation of Financial Statements. 3 Credit Hours.

MGT 6022. Financial Reporting and Analysis II. 3 Credit Hours.
Advanced topics including tax reporting, leases, and pensions.

MGT 6028. Advanced Topics in Financial Reporting and Analysis for Technical Firms. 3 Credit Hours.
An in-depth look at reporting standards for, and the financial characteristics of technology firms, with an emphasis on the financial analysis of such firms.

MGT 6030. International Accounting. 3 Credit Hours.
An overview of accounting issues arising from the increased internationalization of business. Topics include comparative financial reporting among countries and accounting treatments of international transactions.

MGT 6042. Auditing and Financial Control Systems. 3 Credit Hours.
This course covers professional issues surrounding auditing and financial control systems. Topics include management fraud, legal liability, audit evidence, etc.

MGT 6043. Advanced Financial Reporting. 3 Credit Hours.
Financial reporting for mergers and acquisitions; consolidated financial statements; international transactions and hedges of exchange-rate fluctuations; partnerships; and governmental and not-for-profit financial reporting. Credit not allowed for both MGT 4043 and MGT 6043.

MGT 6045. Seminar in Advanced Accounting Topics. 3 Credit Hours.
An intensive treatment of a selection of contemporary accounting topics. Topical coverage may span subject matter ranging across the fields of auditing, systems, managerial, and tax accounting.

MGT 6047. Ethics and Accounting. 3 Credit Hours.
The course is designed to expose students to issues surrounding accountants' professional ethics. Credit not allowed for both MGT 6047 and MGT 4047.

MGT 6051. Database Development and Applications. 3 Credit Hours.
The role of databases in the modern enterprise. Design and development of database systems. Applications in accounting marketing, operations, and human resource systems.

MGT 6053. Business Data Communications. 3 Credit Hours.
Introductory data communication concepts. Data communication applications in organizations. Overview of data communications products and services available from a technology consumer perspective.

MGT 6055. Electronic Commerce-Conducting Business on the Internet. 3 Credit Hours.
This course examines the business and technical issues related to electronic commerce applications, such as the Internet, WWW, EDI, and electronic linkages between trading partners.

MGT 6057. Business Process Analysis and Design. 3 Credit Hours.
Business processes are the mechanisms by which work is organized and performed. This course covers the analysis of business processes and efficient redesign through technology.

MGT 6058. Information Technology Practicum. 3 Credit Hours.
Student teams will work on information technology management projects at participating organizations. They will identify key IT management issues and develop solutions.

MGT 6059. Emerging Technologies. 3 Credit Hours.

MGT 6060. Financial Management. 3 Credit Hours.
An introduction to finance. Topics include time value of money, capital budgeting, risk and return, capital structure dividend policy, and working capital management.

MGT 6066. Mergers and Acquisitions. 3 Credit Hours.
This course seeks to give students an understanding of issues in corporate restructuring. Topics include valuation, mergers, acquisitions, spin-offs, financial distress, corporate governance, and high leveraged transactions.

MGT 6067. Financial Aspects of Commercial Real Estate. 3 Credit Hours.
The course will examine commercial real estate assets from two perspectives: the unique nature of the financing and ownership structures and their role as an asset class in investment portfolios.

MGT 6070. International Finance. 3 Credit Hours.
Financial management in an international setting. Topics include: foreign exchange markets, exchange risk management, international portfolio investment, and foreign direct investments.

MGT 6071. Multinational Financial Management. 3 Credit Hours.
This course emphasizes decision making for the multinational firm amidst exchange rate fluctuations, differing tax structures across countries, and political risk via case discussion and analysis.
MGT 6078. Basic Finance and Investments. 3 Credit Hours.
An introduction to finance, including the fundamental concepts of financial accounting, corporate finance and portfolio optimization. This course emphasizes basic concepts related to both equities and fixed income securities. Credit not allowed for MGT 6078 and MGT 6080.

MGT 6080. Investments. 3 Credit Hours.
Introduction to securities markets and study of theory and practice of security analysis and portfolio management concepts as applied to equities and fixed-income securities. Credit not allowed for MGT 6078 and MGT 6080.

MGT 6081. Derivative Securities. 3 Credit Hours.
An introduction to options, futures, and swaps is provided. Concepts of arbitrage, index trading, and portfolio insurance are discussed.

MGT 6082. Fundamentals of Real Estate Development. 3 Credit Hours.
An overview of the real estate development process from concept through design, feasibility, financing, construction, marketing, management and ultimate sale or long term financing.

MGT 6083. Real Estate Practicum. 3 Credit Hours.
Designed for graduate students with an interest in real estate. It consists of a one semester case study for a specific company or competitive program.

MGT 6086. Entrepreneurial Finance and Private Equity. 3 Credit Hours.
This course teaches future managers and entrepreneurs the financial perspective of value creation. Issues related to venture capital and private equity industry are emphasized. Credit not allowed for both MGT 6086 and MGT 4072.

MGT 6090. Commercial Bank Management. 3 Credit Hours.
Introduction to the various risks faced by financial institutions and a detailed analysis of the tools used to manage these risks.

MGT 6100. Leadership and Organizational Behavior. 3 Credit Hours.
The focus of this course is on behavioral issues in the management of individual, team, and organizations' performance.

MGT 6101. Contemporary Issues in Human Resource Management. 3 Credit Hours.
An examination of the tools and procedures used by organizations to attract, select, and retain employees within the context of the legal and regulatory environment.

MGT 6106. Group Processes in Organizations. 3 Credit Hours.
The focus of the course is on understanding the use, management, and performance of teams and teamwork in organizational settings.

MGT 6107. Leadership and Organizational Change. 3 Credit Hours.
An examination of theories and practices for designing and implementing major organizational change and the role played by leadership, power, and influence in change process.

MGT 6110. Bargaining and Negotiation. 3 Credit Hours.
This course covers the theory and process of negotiation and conflict resolution as it is practiced in different settings.

MGT 6111. Innovation and Entrepreneurial Behavior. 3 Credit Hours.
An examination of organizational policies, practices, and cultures that foster innovative and entrepreneurial behavior even in the context of large organizations.

MGT 6113. ProBono Non-Profit Consulting Projects. 3 Credit Hours.
Teams work on a project developed in consultation with a not for profit organization, and present results to organizations and boards.

MGT 6114. Leadership Development. 3 Credit Hours.
Preparation for becoming leaders of organizations, to exercise leadership, and to embark on paths of personal leadership development through readings, lectures, speakers, and leadership groups.

MGT 6116. The Role of Gender, Race and Ethnicity in Organizational Behavior. 3 Credit Hours.
This course will examine how managers and employees become more effective leaders by understanding the role gender, race and ethnicity plays in the life of the organization.

MGT 6118. Cross-Cultural Management. 3 Credit Hours.
This course develops students’ global awareness to better understand and cope with the issues and challenges that managers face when working across international boundaries.

MGT 6119. Leading Teams in Organizations. 3 Credit Hours.
This course prepares students to be an effective leader and manager of teams by giving students frameworks to implement and diagnose effective team processes.

MGT 6123. Information Technology Management. 2 Credit Hours.
A study in understanding and managing information technology, strategic uses of IT, and electronic commerce.

MGT 6124. Legal Environment of Business. 2 Credit Hours.
This course involves an examination of laws, rules, and standards of regulation and conduct, guidelines, and systems of conflict resolution relating to business operations and administration.

MGT 6125. Strategic Management. 2 Credit Hours.
Designed to provide a view of business organizations, with the focus on the total enterprise - the industry and competitive environment in which the organization operates.

MGT 6126. Integrative Management Experience (IME). 1 Credit Hour.
IME is a team-based and project-based course that requires students to draw on all core skills areas for successful completion.

MGT 6127. Business Communications. 1 Credit Hour.
Designed to improve verbal and written communication skills and the use of effective visuals for presentation through the understanding and application of a wide range of techniques.

MGT 6128. Business Ethics. 1 Credit Hour.
A participative class consisting of lectures by the instructor, case analysis, discussion of contemporary ethical business issues and presentations by speakers.

MGT 6130. Managerial Economics. 1.5 Credit Hour.
This course is designed to provide students with an understanding of basic economic concepts and an ability to apply these concepts to business decision-making and public policy analysis.

MGT 6134. Managerial Economics II. 1.5 Credit Hour.
A continuation of MGT 6130. Microeconomics to include game theory, information economics, oligopoly and auction and bargaining models.

MGT 6135. Macroeconomics for Managers. 3 Credit Hours.
This course is designed to provide future managers with an understanding of macroeconomics as well as how macroeconomic shocks can effect business operations.

MGT 6165. Venture Creation. 3 Credit Hours.
Focuses on creating a new business venture. Requires completing a business plan, which describes and analyzes a proposed venture.
MGT 6176. Managing the Growing Firm. 3 Credit Hours.
This course examines the challenges associated with the successful management of growth. Models and theories of firm growth will be reviewed.

MGT 6185. International Business Environments. 3 Credit Hours.
This graduate course explores international environmental factors impacting firms' globalizing operations. Factors covered range from economic, political, and legal, to socio-cultural and technology forces.

MGT 6190. Current Thinking in Strategy. 3 Credit Hours.
This course builds on the core strategic management course (MGT6125) and strives to provide an in-depth and reflective coverage of current and emerging topics in strategic management.

MGT 6197. Global Strategic Management. 3 Credit Hours.
This course provides a forum for the in-depth examination of the managerial and organizational demands associated with effectively competing in global industries.

MGT 6198. Corporate Entrepreneurship for Global Competitiveness. 3 Credit Hours.
This course examines how strategic pioneering actions and innovation are used by organizations to renew themselves, their markets, and their industries.

MGT 6203. Data Analytics in Business. 3 Credit Hours.
Teaches the scientific process of transforming data into insights for making better business decisions. It covers the methodologies, algorithms, and challenges related to analyzing business data.

MGT 6300. Marketing Management I. 3 Credit Hours.
This course focuses on the activities of managers who make the everyday decisions that guide the marketing of goods and services. Students take the principles that they learn and apply them directly to solving relevant case problems.

MGT 6302. Consumer Behavior. 3 Credit Hours.
This course exposes students to behavior science concepts and approaches in understanding, and predicting the behavior of consumers.

MGT 6303. Sales and Promotion Management. 3 Credit Hours.
Students will obtain an understanding of the management of the sales function. The importance of the marketing-sales interface will be stressed.

MGT 6304. Customer Relationship Management. 3 Credit Hours.
Provides an understanding of analytic techniques and computer models in analyzing customer-centric data and developing customer relationship management (CRM) strategy.

MGT 6306. Business-to-Business Marketing. 3 Credit Hours.
This course studies the marketing of products or services for resale, for use in producing other goods and service operations of an enterprise.

MGT 6307. Integrated Marketing Communications. 3 Credit Hours.
An exploration of frameworks, processes, and tools used by organizations to develop and sustain effective marketing communications, with an emphasis on emerging communication channels.

MGT 6308. Strategic Brand Management. 3 Credit Hours.
This course teaches students about the importance of brands, and makes them knowledgeable about and able to apply instruments to create, monitor and manage brands.

MGT 6310. Marketing Research and Analysis. 3 Credit Hours.
A state-of-the-art course focusing on the qualitative aspects of marketing research. The course has a strong managerial orientation emphasizing applications in several areas including international marketing research.

MGT 6311. Digital Marketing. 3 Credit Hours.
An applied overview of digital marketing tools and strategy, emphasizing the diverse ways that contemporary marketers use digital channels to achieve strategic business objectives.

MGT 6315. Marketing Analysis. 3 Credit Hours.
This course seeks to impart an understanding of the various applied multivariate techniques available for analyzing and interpreting marketing data.

MGT 6320. Building Implementable Market Response Models. 3 Credit Hours.
Knowing that a company can take actions that affect its own sales market response models can be used to aid in planning and forecasting. The models are estimated by regression techniques.

MGT 6325. Product Planning. 3 Credit Hours.
Examines issues inherent in product development and product management. These include product strategy, idea generation market development, product positioning, and test marketing, and launched brand management.

MGT 6326. Collaborative Product Development. 3 Credit Hours.
Examines issues inherent in product development and product management. These include product strategy, idea generation, market development, product positioning, test marketing, and launched brand management.

MGT 6335. International Marketing. 3 Credit Hours.
Students will obtain an understanding of marketing across national borders and cultures. The differences and similarities throughout marketing functions are explored.

MGT 6345. Marketing Practicum. 3 Credit Hours.
The course is designed to help MBA students gain hands-on experience in solving marketing problems faced by companies by working on projects under faculty supervision.

MGT 6350. Production and Operations Management I. 3 Credit Hours.
This course focuses on the issues and techniques relevant to the management of the organization within and recognizing its strategic significance.

MGT 6351. Operations Planning and Control. 3 Credit Hours.
The management of material flows within an enterprise will be covered by tracking the evolution of operational planning and execution systems through the enterprise resource planning (ERP) framework.

MGT 6352. International Practicum. 3 Credit Hours.
A semester long project-based course that includes travel to a foreign country during the semester break.

MGT 6353. Operations Strategy. 3 Credit Hours.
This course provides knowledge about developing, implementing, and evaluating operations strategy. It stresses the relationships between the operations and other functions of the organization.

MGT 6357. Service Operations Management. 3 Credit Hours.
This course analyzes operational performance for the service sector and service support functions of manufacturers. Industries include information services, health care, banking, transportation, distribution, and retail.

MGT 6359. Business Strategies For Sustainability. 3 Credit Hours.
Introduces business strategies such as eco-efficiency, product stewardship, green marketing and sustainable development. Cases, speakers reflect current issues such as electronics waste and global warming.
MGT 6360. Global Operations and Logistics. 3 Credit Hours.
This course is designed to present issues critical to the globalization of operations, and addresses strategic and tactical issues pertaining to an organization's global operations and supply chain activities.

MGT 6369. Sustainable Business Practicum. 3 Credit Hours.
Students work on real-world consulting projects focused on sustainability related challenges for companies, non-profits, and/or government organizations.

MGT 6400. Pricing Analytics and Revenue Management. 3 Credit Hours.
Focus in on increasing profit by measuring price responses and controlling capacity. Topics include forecasting, price optimization, and revenue management. Credit not allowed for both MGT 6400 and MGT 6362.

MGT 6401. Supply Chain Modeling. 3 Credit Hours.
Focus on development and implementation of successful Supply Chain Strategies. Topics include: supply chain design, supply chain coordination, capacity management, retailing, and supplier management. Credit not allowed for both MGT 6401 and MGT 6362.

MGT 6450. Project Management. 3 Credit Hours.
Provides exposure to the concepts, frameworks and techniques for managing projects, with real world examples from Information Technology and other types of projects.

MGT 6451. Business Intelligence and Analytics. 3 Credit Hours.
Provides exposure to the concepts, frameworks and techniques for business intelligence and analytics, with real world examples from the business intelligence & analytics industry.

MGT 6500. Analytical Tools for Decisions. 1.5 Credit Hour.
Introduction to the most commonly use statistical and optimization-based analytical tools for decision support based on the data available.

MGT 6501. Operations Management. 1.5 Credit Hour.
This course focuses on the strategic design and management of operations processes and policies to match supply with demand in an economically sustainable manner. Credit will not be awarded for both MGT 6501 and MGT 6350.

MGT 6502. Leading People and Organizations. 1.5 Credit Hour.
This course focuses on how to lead individuals and teams within organizations. This course will develop a systematic understanding of behavior within formal organizational settings. Credit will not be awarded for both MGT 6502 and MGT 6100.

MGT 6503. Managing Information Resources. 1.5 Credit Hour.
Focuses on the information technology infrastructure in an organization, the information technology industry, and the tools to manage the information resources in an organization. Credit will not be awarded for both MGT 6503 and MGT 6123.

MGT 6504. Principles of Finance. 1.5 Credit Hour.
Basic principles of finance including time value of money, risk and return relationship, capital budgeting. Credit will not be awarded for both MGT 6504 and MGT 6060.

MGT 6505. Marketing Management. 1.5 Credit Hour.
This course discusses the core elements of the marketing and the major types of marketing decisions faced by organizations. Develop the relevant skills for critically analyzing marketing actions. Credit will not be awarded for both MGT 6505 and MGT 6300.

MGT 6506. Managerial Economics. 1.5 Credit Hour.
Microeconomics is about scarcity and how individuals make choices in the face of scarcity. Topics include suppy/demand, markets and price system, risk/uncertainty, market limitations. Credit will not be awarded for both MGT 6506 and MGT 6130.

MGT 6507. Business Communications. 1.5 Credit Hour.
The purpose of this course is to provide future leaders and managers with the communication skills that enable them to sell themselves and their ideas. Credit will not be awarded for both MGT 6507 and MGT 6127.

MGT 6508. Strategic Management. 3 Credit Hours.
Strategic management builds on and integrates other functional core courses to understand how firms gain and sustain a competitive advantage. Credit will not be awarded for both MGT 6508 and MGT 6125 or MGT 6508 and MGT 6126.

MGT 6509. Legal and Ethical Considerations in Business. 1.5 Credit Hour.
Constitutional law; dispute resolution; torts; contracts; theories of ethical analysis; and the role of stakeholders. Credit will not be awarded for both MGT 6509 and MGT 6124 or MGT 6509 and MGT 6126.

MGT 6510. Leadership Development Workshop. 1.5 Credit Hour.
This course focuses on how to lead individuals and teams within organizations and will develop a systematic understanding of behavior within formal organizational settings.

MGT 6510P. Leadership Development Preparation. null Credit Hours.
This course focuses on how to lead individuals and teams within organizations and will develop a systematic understanding of behavior within formal organizational settings.

MGT 6511. Constitutional Law. 3 Credit Hours.
Focus in on increasing profit by measuring price responses and controlling capacity. Topics include forecasting, price optimization, and revenue management. Credit not allowed for both MGT 6500 and MGT 6362.

MGT 6512. Business Communications. 3 Credit Hours.
Credit not allowed for both MGT 6512 and MGT 6362.

MGT 6513. Technology Strategy. 3 Credit Hours.
Provides understanding of economic and strategic factors that guide firms' strategic decisions regarding the generation, commercialization, protection, and adoption of technological innovations.

MGT 6514. Law for Entrepreneurs. 3 Credit Hours.
This course will focus on legal issues which entrepreneurs face while growing a start-up business from infancy to becoming a publicly held company. Students will not receive credit for both MGT 6514 and MGT 3614.

MGT 6563. Technology Strategy. 3 Credit Hours.
Provides understanding of economic and strategic factors that guide firms' strategic decisions regarding the generation, commercialization, protection, and adoption of technological innovations.

MGT 6564. Managing Innovation. 3 Credit Hours.
This course focuses on how firms (both new and old) can create and capture value from product, process, and service innovations.

MGT 6565. Strategy Execution. 3 Credit Hours.
This course, focusing on strategy execution, answers this question: After performing strategy analysis and strategy formulation, how do you succeed in achieving strategic results?.

MGT 6567. Strategic Entrepreneurship. 3 Credit Hours.
Strategic perspective on the entrepreneurial process, competition and strategic interactions between startups and incumbents, cooperation and open innovation strategies.

MGT 6725. Information Security Strategies and Policies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy, and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends. Credit will not be awarded for both MGT 6725 and MGT 4725 or CS 4725 or CS 6725.
MGT 6726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics, law, and business realms. Credit will not be awarded for both MGT 6726 and CS 4726 or CS 6726 or MGT 4726.

MGT 6748. Applied Analytics Practicum. 6 Credit Hours.
Practical analytics project applying ideas from the classroom to a significant project of interest to a business, government agency, or other organization.

MGT 6753. Principles of Management for Engineers. 3 Credit Hours.
The course will provide an introduction to selected topics needed to be successful in the technology industries. Crosslisted with ME 6753.

MGT 6769. Fixed Income Securities. 3 Credit Hours.
Description, institutional features, and mathematical modeling of fixed-income securities. Use of both deterministic and stochastic models. Crosslisted with ISYE 6769 and MATH 6769.

MGT 6772. MOT II: Managing Resources of the Technological Firm. 3 Credit Hours.
This course explores the competitive advantage manufacturing and service firms derive from effective management of their technology, workforce, materials, and information resources. Crosslisted with ISYE 6772.

MGT 6780. Knowledge Management. 3 Credit Hours.
The purpose of this course is to enable students to think conceptually about the modern organization as a knowledge-based, information-processing organization. Crosslisted with PUBP 6780.

MGT 6785. The Practice of Quantitative and Computational Finance. 3 Credit Hours.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance. Crosslisted with ISYE and MATH 6785.

MGT 6789. Technology Ventures. 3 Credit Hours.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials and strategic planning. Crosslisted with BMED, ECE, CHE, and ME 6789.

MGT 6793. Advanced Topics in Quantitative and Computational Finance. 3 Credit Hours.
Advanced foundational material and analysis techniques in quantitative and computational finance.

MGT 6799. Legal Issues in Technology Transfer. 3 Credit Hours.
Study and analysis of U.S. law as it applies to the patenting and licensing processes. Crosslisted with BMED, CHE, ECE, and ME 6799.

MGT 6813. Economic Analysis for Managers. 3 Credit Hours.
Economic reasoning and principles useful in understanding and solving managerial and public policy questions. Practice in analyzing major domestic and international economic events is included.

MGT 6830. Fundamentals of Innovation I. 3 Credit Hours.
First of a two-course sequence on various approaches needed to understand the innovation process, including patterns of technological change and intellectual property protection.

MGT 6831. Fundamentals of Innovation II. 3 Credit Hours.
Second of two-course sequence on various approaches needed to understand the innovation process, including competitive market analysis and valuing new technology.

MGT 6832. Fundamentals of Technology Commericalization. 3 Credit Hours.
Follow-up to year-long course on Fundamentals of Innovation, emphasizing business planning and understanding the business, technology, and legal aspects of Venture Lab technologies.

MGT 6901. Consulting. 3 Credit Hours.
Students work in teams for client firms in a consulting capacity. The client firms are preselected, but the problem definition is derived from client-team negotiations.

MGT 6XXX. Management Elective. 1-21 Credit Hours.

MGT 7000. Master's Thesis. 1-21 Credit Hours.

MGT 7060. Theory of Finance. 3 Credit Hours.
This Ph.D. course is an introduction to theoretical financial economics. This course focuses on individuals' consumption and investment decisions under uncertainty and their implications on the valuation of securities.

MGT 7061. Empirical Finance. 3 Credit Hours.
This Ph.D. course is a survey of selected current empirical research topics in finance and related econometric issues.

MGT 7062. Corporate Restructuring. 3 Credit Hours.
This PhD course is an analysis of empirical research in corporate finance with a focus on issues related to corporate restructuring.

MGT 7063. International Finance. 3 Credit Hours.
This Ph.D. course is an introduction to the foundations of modern international finance. Topics include: international portfolio diversification, design of country funds, tests of asset pricing, and international corporate finance.

MGT 7064. Microeconomics Theory for Management. 3 Credit Hours.
This course focuses on behavior of individual economic agents and how they interact to form markets. Topics include organizations, efficiency, and equilibria with incomplete information.

MGT 7101. Human Resources Management. 3 Credit Hours.
A Ph.D. course that covers an analysis of advanced practice, research, and theory in human resource management. Topics will vary by instructor and student interest.

MGT 7102. Organization Behavior Research Methods. 3 Credit Hours.
This Ph.D. course is an overview and analysis of research methodologies used in conducting scientific research of organizational behavior.

MGT 7105. Individual Behavior in Organizations. 3 Credit Hours.
This Ph.D. course is designed to investigate organizational behavior research topics at the individual level of analysis.

MGT 7106. Group Dynamics. 3 Credit Hours.
This course provides a fundamental understanding of group processes in organizations by analyzing and critiquing classic and contemporary theories and research on groups.

MGT 7107. Organizational Theory. 3 Credit Hours.
This Ph.D. course provides a review of contemporary organizational theories, and empirical studies of them to provide a framework to understand organizational structures, environments, and goals.

MGT 7305. Marketing Management and Strategy. 3 Credit Hours.
This Ph.D. course provides a survey of research and theory in the marketing management and strategy literature.

MGT 7306. Buyer Behavior. 3 Credit Hours.
Doctoral course in consumer behavior. Provides an introduction to the major theories in consumer behavior and discusses current research and methodology on theory development.
MGT 7308. Theory Construction in the Social Sciences. 3 Credit Hours.
Provides an understanding of key elements of a theory, and how influential theories are developed; a small part surveys topics in philosophy of science. Credit not allowed for both MGT 7308 and MGT 7307.

MGT 7320. Marketing Science. 3 Credit Hours.
This doctoral course addresses the literature on the state-of-the-art research on quantitative approaches to marketing problems.

MGT 7350. Operations Strategy I. 3 Credit Hours.
This Ph.D. seminar will discuss research papers dealing with strategic issues in operations management.

MGT 7352. Operations Planning and Control I. 3 Credit Hours.
This doctoral seminar will discuss research papers dealing with tactical and operational (planning and control) issues in operations management.

MGT 7353. Operations Planning and Control II. 3 Credit Hours.
This doctoral seminar is a continuation of MGT 7352 and will discuss advanced papers dealing with tactical and operational (planning and control) issues in operations management.

MGT 7354. Research Methods in Operations Management. 3 Credit Hours.
This doctoral seminar will discuss papers dealing with research methods in operations management.

MGT 7400. PhD Strategic Management Research I. 3 Credit Hours.
Ph.D.-level research seminar in strategic management.

MGT 7501. Managerial Econometric Modeling. 3 Credit Hours.
The linear regression model in managerial research: topics include ordinary and generalized least squares, panel data, instrumental variables, discrete choice and censored data.

MGT 8803. Special Topics in Management. 3 Credit Hours.
Topics of current interest in the field of management.

MGT 8811. Special Topics. 1 Credit Hour.
Topics of current interest.

MGT 8812. Special Topics. 2 Credit Hours.
Topics of current interest.

MGT 8813. Special Topics. 3 Credit Hours.
Topics of current interest.

MGT 8823. Special Topics in Mgt. 3 Credit Hours.
Topics of current interest in the field of management.

MGT 8853. Research Topics in Marketing. 3 Credit Hours.
Coverage of special research topics of current interest in marketing.

MGT 8873. Special Topics in Organizational Behavior. 3 Credit Hours.
Special research topics of interest in organizational behavior.

MGT 9000. Doctoral Thesis. 1-21 Credit Hours.

Modern Languages (ML)

ML 1803. Special Topics. 3 Credit Hours.
Topics of current interest in Modern Languages, including Korean and Arabic.

ML 1804. Special Topics. 4 Credit Hours.
Topics of current interest in Modern Languages, including Korean and Arabic.

ML 1813. Special Topics. 3 Credit Hours.
Topics of current interest in modern languages.

ML 1814. Special Topics. 4 Credit Hours.
Topics of current interest in modern languages.

ML 1815. Special Topics. 5 Credit Hours.
Topics of current interest in modern languages.

ML 1823. Special Topics. 3 Credit Hours.
Topics of current interest in modern languages.

ML 1824. Special Topics. 4 Credit Hours.
Topics of current interest in modern languages.

ML 1833. Special Topics. 3 Credit Hours.
Topics of current interest in modern languages.

ML 1834. Special Topics. 4 Credit Hours.
Topics of current interest in modern languages.

ML 2500. Think Globally, Act Locally: An Introduction to Cross-Cultural Studies. 3 Credit Hours.
This course introduces students to literature and film from around the globe and teaches comparative literary and cultural studies analysis.

ML 2811. Special Topics. 1 Credit Hour.
Special Topics in Modern Languages.

ML 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Modern Languages.

ML 3811. Special Topics. 1 Credit Hour.
Special Topics in Modern Languages.

ML 3812. Special Topics. 2 Credit Hours.
Topics of current interest in Modern Languages.

ML 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Modern Languages.

ML 4811. Special Topics. 1 Credit Hour.
Special Topics.

ML 4812. Special Topics. 2 Credit Hours.
Special Topics.

ML 4813. Special Topics. 3 Credit Hours.
Topics of current interest in Modern Languages.

ML 8801. Special Topics. 1 Credit Hour.

ML 8802. Special Topics. 2 Credit Hours.
Special Topics in Modern Languages.

ML 8803. Special Topics. 3 Credit Hours.
Special Topics in Modern languages.

Manufacturing Leadership (MLDR)

MLDR 6701. Foundational Topics in the Manufacturing of Forest Bioproducts. 3 Credit Hours.
The course provides comprehensive foundational knowledge of the industry enabling the student to understand the role of diverse manufacturing operations and to strategically plan improvements. Cross-listed with CHBE 6701, CHBE 6741, ME 6741, CHEM 6741, MSE 6741, CHBE 6742, ME 6742, CHEM 6742, and MSE 6742.
Management of Technology (MOT)

MOT 6102. Economic Analysis for Managers. 2 Credit Hours.
Studies the economic concepts that describe and explain the environment within which firms operate.

MOT 6103. Financial and Managerial Accounting. 2 Credit Hours.
Covers the basic concepts that underlie the use of accounting information. Includes balance sheet, income statement, alternative costing systems.

MOT 6104. Financial Management in an Environment of Technological Change. 2 Credit Hours.
Course focuses on financial concepts and how they are used to maximize the value of the firm and choose among alternative courses of action.

MOT 6105. Analytical Tools for Decision Support. 2 Credit Hours.
This course focuses on statistics and mathematical modeling of use to decision makers in technology environments with significant uncertainty.

MOT 6106. Processes of Technological Innovation. 2 Credit Hours.
This course addresses the processes involved in technological innovation, focusing on models, sources, flows, and the protection of innovation.

MOT 6107. Technology Strategies in Information Systems. 2 Credit Hours.
This course examines information systems and their impact in manufacturing and service operations.

MOT 6109. Managing People in a Technical Environment. 2 Credit Hours.
This course focuses on the management and leadership of people and human resource systems in modern organizations.

MOT 6110. Technology and Transformational Work Processes. 2 Credit Hours.
This course focuses on how work processes within organizations can be designed and managed to optimize output effectiveness.

MOT 6111. Organizational Transformation Methods. 2 Credit Hours.
This course introduces methods to adapt, evolve, or create change in the way organizations structure themselves to increase effectiveness in responding to competitive demands.

MOT 6112. Marketing in a Technical Environment. 2 Credit Hours.
This course focuses on the marketing function, its relationship to other functions within the firm, and its strategic significance to high-tech organizations.

MOT 6114. Seminar in the Management of Technology. 2 Credit Hours.
This seminar features senior executives from organizations that develop or use technology discussing current practices, policies, and issues.

MOT 6115. Forecasting and Analysis of Emerging Technologies. 2 Credit Hours.
This course examines key emerging technologies, their development patterns, and the associated impact on industries, industrial competitiveness, and society.

MOT 6116. Strategy in Management of Technology. 2 Credit Hours.
This course examines and discusses how technology-based firms develop and implement business, functional, and technology strategies.

MOT 6122. Management of Technology Project III. 2 Credit Hours.
Participants complete their MOT project research, submit a written report, and present their results to their organization.

MOT 6124. Business and Leadership Skills. 3 Credit Hours.
Participant’s technological, business, and leadership skills (communications, teamwork, conflict resolution, diversity) are enhanced.

MOT 6125. Creating Technology Ventures. 3 Credit Hours.
This course covers the issues associated with the earliest stages of new technology venture formation.

MOT 6126. International Issues in the Management of Technology. 4 Credit Hours.
Global business issues and strategies are explored through an international study tour.

MOT 6127. Building Technology Ventures. 2 Credit Hours.
The focus of this course is on learning how to manage rapid growth in a technology venture.

MOT 6128. Venture Financing. 2 Credit Hours.
In this course students learn various methods for raising capital to fund new ventures.

MOT 6129. International Business and Finance. 2 Credit Hours.
The purpose of this course is to develop students’ understanding of global business and finance.

MOT 6130. Management of Technology Project I. 3 Credit Hours.
Participant’s develop and present a proposal for a technology-based team venture project.

MOT 6131. Management of Technology Project II. 3 Credit Hours.
Participant’s execute their MOT venture project, including marketing and financial analyses.

MOT 6132. Management of Technology Project I. 2 Credit Hours.
First in a sequence of three courses where students execute their new venture project. During this segment, they focus on concept definition and team formation.

MOT 6133. Ethical Decision Making. 1 Credit Hour.
This course focuses on understanding and applying ethical decision making practices in business.

MOT 6134. Management of Technology Project II. 2 Credit Hours.
Second in a sequence of three courses where students execute their new venture project. During this segment, they focus on marketing and financial analyses of their new technology venture.

Medical Physics (MP)

MP 4750. Diagnostic Imaging Physics. 3 Credit Hours.
Physics and image formation methods for conventional X-ray CT, nuclear medicine, and magnetic resonance and ultrasound imaging.

MP 4XXX. Medical Physics Elective. 1-21 Credit Hours.

MP 6011. Seminar in Medical Physics I. 1 Credit Hour.
Weekly 1-hour seminar on topics related to medical physics.
MP 6012. Seminar in Medical Physics II. 1 Credit Hour.
Weekly 1-hour seminar on topics related to medical physics.

MP 6101. Nuclear Medicine Physics. 3 Credit Hours.
Radioisotope production, radiopharmacy, planar gamma cameras, SPECT systems, PET systems, medical internal radiation dose (MIRD) method, nuclear medicine facilities and regulations.

MP 6201. Radiation Therapy Physics. 3 Credit Hours.
Clinical radiation oncology, phantom systems, radiation machines, photon beams, electron beams, brachytherapy, dose modeling and treatment planning.

MP 6203. Radiation Therapy Treatment Planning Laboratory. 1 Credit Hour.
Radiation therapy treatment planning course covering conventional radiation therapy treatment planning, monitor unit calculations, and advanced radiation treatment planning techniques.

MP 6204. Radiation Therapy Physics. 4 Credit Hours.
Measurement and calculation of absorbed dose, dose distributions, treatment planning, photon teletherapy, electron teletherapy, brachytherapy, clinical linear accelerators, quality assurance.

MP 6300. Radiological Anatomy. 1 Credit Hour.
A survey of the most clinically relevant anatomy as visualized by modern diagnostic imaging; plan radiographs, CT, MRI, and PET are emphasized.

MP 6401. Medical Health Physics. 3 Credit Hours.

MP 6402. Radiation Dosimetry. 2 Credit Hours.
Dosimetry of ionizing radiation: photons, neutrons, and charged particles; cavity theory; concept of exposure and absorbed dose; ion chambers and other types of integration dosimeters.

MP 6403. Applications of the Monte Carlo Method in Medical Physics. 3 Credit Hours.
Basic principles of the Monte Carlo method, Monte Carlo transport of photon and electron, various applications of the Monte Carlo method in medical physics.

MP 6405. Radiation Protection and Dosimetry. 3 Credit Hours.
Radiation dosimetry quantities, calculational and experimental methods for assessing the absorbed dose, effective dose assessment, committed effective dose assessment, radiation shielding methods.

MP 6407. Radiation Biology and Oncology. 3 Credit Hours.
Radiation lesions and repair, mechanisms of cell death, cell cycle effect, radiation sensitizers and protectors, tumor radiobiology, relative sensitivities of human tissues, and radiation carcinogenesis.

MP 6756. Radiation Physics. 3 Credit Hours.
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity and isotopes, cross sections, electromagnetic radiation, neutrons, and charged particle interaction with matter. Crosslisted with NRE 6756 and HP 6756.

MP 6757. Radiation Detection. 3 Credit Hours.
Introduction to the theory and application of radiation detectors, measurement methods, signal processing, and data analysis. Crosslisted with HP 6757 and NRE 6757.

MP 6759. Radiation Shielding Principles and Analysis. 3 Credit Hours.
Principles of Radiation Shielding; Design of Shields; Computational Methods for Analysis of Shielding; Emphasis on Monte Carlo Simulation as a Shielding Tool.
MP 8906. Special Problems. 1-21 Credit Hours.
Individual studies and/or experimental investigation of problems of current interest in medical physics.

MP 9000. Doctoral Thesis. 1-21 Credit Hours.

Materials Science & Engr (MSE)

MSE 1111. Introduction to Materials Science and Engineering. 1 Credit Hour.
A general introduction to the field of Materials Science and Engineering and the MSE curriculum at Georgia Tech.

MSE 1750. Introduction to Bioengineering. 3 Credit Hours.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ECE, and ME 1750.

MSE 1801. Special Topics. 1 Credit Hour.
Topics of current interest not covered in other courses.

MSE 1802. Special Topics. 2 Credit Hours.
Topics of current interest not covered in other courses.

MSE 1803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.

MSE 1XXX. Mate Sci Engr Elective. 1-21 Credit Hours.

The structure-property-processing-performance relationships of engineering materials are described. Materials selection is treated as a part of engineering design.

MSE 2021. Materials Characterization. 4 Credit Hours.
The fundamentals of basic microstructural and compositional materials characterization techniques are presented with an emphasis on tools using electromagnetic radiation and electrons as stimuli.

MSE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MSE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MSE 2801. Special Topics. 1 Credit Hour.
Topics of current interest not covered in other courses.

MSE 2802. Special Topics. 2 Credit Hours.
Topics of current interest not covered in other courses.

MSE 2803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.

MSE 2XXX. Mate Sci Engr Elective. 1-21 Credit Hours.

MSE 3001. Chemical Thermodynamics of Materials. 3 Credit Hours.
Principles and applications of thermodynamics to materials science and engineering. Phase equilibria and the concepts necessary to interpret phase diagrams.

MSE 3002. Structural Transformations in Metallic, Ceramic, and Polymeric Systems. 3 Credit Hours.
Principles that govern the important structural transformations that occur in engineering materials.

MSE 3005. Mechanical Behavior of Materials. 3 Credit Hours.
The correlation of mechanical properties with atomic bonding, microstructure, and micromechanics, for applications relevant to materials selection and design, mechanical forming, and failure of materials.

MSE 3012. Thermal and Transport Properties of Materials. 3 Credit Hours.
The thermophysical and transport properties of solids and fluids, i.e. heat capacity, expansion, viscosity, conduction, convection, and radiation are discussed, along with thermal analysis instrumentation.

MSE 3015. Electrical, Optical and Magnetic Properties. 3 Credit Hours.
Introduction to quantum mechanics and the band theory of solids to describe semiconducting, superconducting, dielectric, optical, and magnetic properties of nano- and micro-structured materials.

MSE 3021. Materials Laboratory I. 2 Credit Hours.
Characterization of engineering properties of materials through hands-on experiments. Instruction on basic laboratory skills, safety, statistical analysis of data, use of laboratory notebooks and technical report writing.

MSE 3025. Statistics and Numerical Methods in Materials Science and Engineering. 3 Credit Hours.
Concepts of computational modeling and statistics, with examples based on materials science and engineering applications.

MSE 3210. Transport Phenomena. 3 Credit Hours.
An introduction to transport emphasizing applications to materials. Credit not allowed for both MSE 3210 and PTFE 3210.

MSE 3220. Operations and Management Methods. 3 Credit Hours.
Principles and applications of production and operations management to the manufacturing enterprise, including process flow analysis, production planning and scheduling, optimization, quality management and facilities planning. Restricted to MSE majors. Credit not allowed for both MSE 3220 and PTFE 3220.

MSE 3225. Rheology. 3 Credit Hours.
Introduction to non-Newtonian fluid mechanics and rheology.

MSE 3230. Polymer and Fiber Processing. 3 Credit Hours.
Discussion of the principles of fiber formation from polymers including rheology, mechanics, energetics, phase transition, and polymer structure. High-performing fiber processing, and plastics processing. Credit not allowed for both MSE 3230 and PTFE 3230.

MSE 3300. Materials Science & Engineering of Sports. 3 Credit Hours.
The structure-property-performance relationships of engineered materials are described as it relates to past, present, and future use in sports.

MSE 3720. Introduction to Polymer/Fiber Enterprise. 3 Credit Hours.
Approaches the manufacture of engineered fibrous structures from a manager’s viewpoint and gives a working knowledge and understanding of various processes used in producing polymers/fibers/fiber products. Restricted to non-MSE majors. Credit not allowed for both MSE 3720 and PTFE 3720.

MSE 3801. Special Topics. 1 Credit Hour.
Topics of current interest not covered in other courses.

MSE 3802. Special Topics. 2 Credit Hours.
Topics of current interest not covered in other courses.

MSE 3803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in other courses.
MSE 3XXX. Mate Sci Engr Elective. 1-21 Credit Hours.

MSE 4002. Ceramic Materials: Properties, Processing, Applications. 3 Credit Hours.
Properties, processing, and applications of the industrially and technically important ceramic materials. Traditional and oxide ceramics in addition to glass and nonoxide ceramics.

MSE 4004. Materials in Electronic Applications. 3 Credit Hours.
Basics of photolithography, screen printing, and tape casting. Requirements for fuel cells, magnetic nanocomposites, flat-panel displays, gas sensors, piezoelectric actuators, photonic crystals, etc.

MSE 4006. Processing and Applications of Engineering Alloys. 3 Credit Hours.
Solidification, deformation, and powder processing of metals and alloy; microstructural design at nano- and meso-length scales; and structure-property correlations.

MSE 4010. Environmental Degradation. 3 Credit Hours.
Theory of environmental degradation of metals, ceramics, polymers, and biomaterials. Emphasis on the scientific principles of corrosion and physical degradation.

MSE 4022. Materials Laboratory II. 2 Credit Hours.
Processing, structure, properties relationships are explored through a series of hands-on experiments. Instruction on basic laboratory skills, safety, statistical analysis of data, use of laboratory notebooks and technical report writing.

MSE 4025. Fiber Product Manufacturing. 3 Credit Hours.
The manufacture of fiber products and their process-structure-property relationships are detailed, covering fibers, yarns, fabrics, nonwovens, carpets, composites, and related materials.

MSE 4026. Testing and Evaluation of Polymer and Fiber Products. 3 Credit Hours.
Properties influencing the end use performance of fiber and polymer products including that of plastic materials will be tested using standard ASTM, AATC and federal test methods. Standard statistical tools will be used to analyze and interpret the test data.

MSE 4100. Chemical Applications to Fiber Materials. 2 Credit Hours.
The chemical, thermal, and mechanical processes used in the preparation, coloration, printing and finishing of polymeric fiber materials are explored. Credit not allowed for both MSE 4100 and PTFE 4100.

MSE 4122. Fiber Chemistry Lab. 1 Credit Hour.
Laboratory course in preparation, coloration and finishing of fiber materials. Credit not allowed for both MSE 4122 and PTFE 4122.

MSE 4140. Polymer Physics. 3 Credit Hours.
Physical chemistry of polymer solutions, polymer miscibility, adsorptions, sorptions, plasticization, molecular weights, molecular weight distributions. Study of polymer surfaces. Credit not allowed for both MSE 4140 and PTFE 4140.

MSE 4230. IndustrialCtrls In MFG. 3 Credit Hours.
Introduction to industrial controls in manufacturing, process modeling, control of continuous-variable processes, digital control, discrete control, and control of manufacturing systems.

MSE 4315. Nondestructive Evaluation. 3 Credit Hours.
Principles and theory of industrial nondestructive evaluation methods are covered. Emphasis is on testing the soundness and reliability of primary and secondary engineering structures.

MSE 4320. Electronic Packaging and Design. 3 Credit Hours.
Electronic packaging design, covering properties of materials, fabrication and assembly processes, thermal-mechanical considerations, practical concerns regarding interconnection and processing issues, and reliability assessment.

MSE 4325. Thin Film Materials Science. 3 Credit Hours.
Introduction to principal vapor deposition processes and vacuum technology. The fundamentals of the formation, characterization, and properties of inorganic nano- to micro-scale thin films.

MSE 4330. Fundamentals of Nanomaterials and Nanostructures. 3 Credit Hours.
Introduction to nanotechnology. Description of various nanomaterials, their applications and synthesis methods.

MSE 4335. Soft Nano and Bio Materials. 3 Credit Hours.
Introduction soft nanomaterials and nanostructures that have been discovered and synthesized for prospective applications in nanotechnology.

MSE 4410. Capstone Engineering Design I. 3 Credit Hours.
A capstone engineering design course covering the principles of concurrent product/process design and development. Team-based projects will explore product/process design and development. Credit not allowed for both MSE 4410 and PTFE 4110.

MSE 4420. Capstone Engineering Design II. 3 Credit Hours.
A team problem-solving approach is used to work on a project developed in cooperation with industry. Weekly communications, both oral and written, are required. Credit not allowed for both MSE 4420 and PTFE 4210.

MSE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MSE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MSE 4740. Biologically Inspired Design. 3 Credit Hours.
We examine evolutionary adaptation as a source for engineering design inspiration, utilizing principles of scaling, adaptability, and robust multifunctionality that characterize biological systems. Credit not allowed for both MSE 4740 and (BIOL 4740 or PTFE 4740 or ISYE 4740 or ME 4740).

MSE 4751. Introduction to Biomaterials. 3 Credit Hours.
Introduction to different classes of biomaterials (polymers, metals, ceramics) and physiological responses to biomaterial implantation. Topics include material properties, host response, and biomaterial characterization techniques. Crosslisted with BMED 4751.

MSE 4754. Electronics Packaging Assembly, Reliability, Thermal Management, and Test. 3 Credit Hours.
The course provides hands-on instruction in electronics packaging, including assembly, reliability, thermal management, and test of next-generation microsystems. Crosslisted with ECE and ME 4754.

MSE 4755. Electronic Packaging Substrate Fabrication. 3 Credit Hours.
This course provides students with hands-on instruction in basic SOP concepts and techniques, including interconnect design, substrate material selection and properties, photodielectric deposition, via formation and photolithography, copper metallization, and finally, substrate testing. Laboratory instructions are augmented by an interactive multimedia educational presentation that makes the course work material remotely accessible via the internet.
MSE 4759. Electrochemical Energy Storage and Conversion. 3 Credit Hours.
An elective class for senior-level students interested in electrochemical storage and conversion, including the fundamentals of electrochemistry and practical battery and fuel cell systems. Cross-listed with ChBE and ME 4759.

MSE 4761. Industrial Controls and Manufacturing. 3 Credit Hours.
Students are introduced to industrial controls and the fundamentals of manufacturing with hands-on experience based on lab projects using industry software and hardware for communications and control. Credit not allowed for both MSE 4761 and ME 4761.

MSE 4766. Fabrication and Properties of Nanoscale Devices. 3 Credit Hours.
Fundamental properties at the nanoscale for photonics and sensors. Nanoscale fabrication methods including thin films, ion beam, lithography, electroplating, and example case studies in NEMS/MEMS and photonics. Credit not allowed for both MSE 4766 and ME 4766.

MSE 4775. Polymer Science and Engineering I: Formation and Properties. 3 Credit Hours.
An introduction to the chemistry, structure, and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHE, CHEM, ME, and PTFE 4775.

MSE 4776. Polymer Science and Engineering II: Analysis, Processing and Laboratory. 3 Credit Hours.
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHE, CHEM, ME, and TFE 4776.

MSE 4790. Materials Selection and Design. 3 Credit Hours.
Principles of selecting materials and processes for engineering applications. Methodologies for designing new materials and conceiving hybrid solutions. Credit not allowed for both MSE 4790 and ME 4213 (or ME 4790).

MSE 4791. Mechanical Behavior of Composites. 3 Credit Hours.
Introduction to properties and structures of common matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, CHE, ME, and TFE 4791.

MSE 4793. Composite Materials and Processing. 3 Credit Hours.
Basic principles of selecting component materials and manufacturing composites are presented. Polymeric, metallic, and ceramic systems are considered. Crosslisted with AE, CEE, CHE, ME, and PTFE 4793.

MSE 4794. Composite Materials and Manufacturing. 4 Credit Hours.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CEE, CHE, ME, and PTFE 4794.

MSE 4795. Fundamental Elements of Nuclear Reactor Materials. 3 Credit Hours.
Introduction to fundamentals of nuclear reactor materials. Topics covered are basics of radiation damage, defect creation and evolution, microstructure-property correlations in cladding and fuel of nuclear materials.

MSE 4801. Special Topics. 1 Credit Hour.
MSE 4802. Special Topics. 2 Credit Hours.
MSE 4803. Special Topics. 3 Credit Hours.
MSE 4901. Special Problems. 1-21 Credit Hours.
MSE 4902. Special Problems. 1-21 Credit Hours.
MSE 4XXX. Mate Sci Engr Elective. 1-21 Credit Hours.
MSE 6001. Written and Visual Communications. 2 Credit Hours.
Writing and editing engineering documents; designing and explaining visuals; creating electronic presentations. May not be used for duplicate credit with MSE 6754.

MSE 6010. Fundamentals of Functional Materials. 3 Credit Hours.
This course focuses on the effects of defects on physical properties; charge/mass transport; semiconductors, heterojunctions, electrical and magnetic polarization, interaction processes between various physical properties; electrical characterization techniques.

MSE 6105. Diffraction Studies. 3 Credit Hours.
Principles and theory of crystallography and diffraction analysis of materials are covered, emphasizing X-ray diffraction, including electron diffraction and diffraction-based imaging. Reciprocal lattice concepts are emphasized.

MSE 6110. Transmission Electron Microscopy. 3 Credit Hours.
Introduction to the kinematical electron scattering theory, optics in TEM, diffraction contrast imaging of defects, dynamical electron diffraction effects; and chemical microanalysis using EDS.

MSE 6120. Quantitative Characterization of Microstructures. 3 Credit Hours.
Application of statistically unbiased methods for estimating geometrical attributes of microstructures and nonplanar fracture surfaces from plane sections and projections, digital image analysis, and computer simulations of microstructures.

MSE 6130. Surface Analysis. 3 Credit Hours.
Introduction to vacuum science and technology; structure of solid surfaces; electron and ion energy analyzers, electron spectroscopies (e.g., AES and XPS); ion-based techniques (e.g., SIMS and RBS); depth profiling; ion channeling.

MSE 6210. Defects. 3 Credit Hours.
Emphasis on the origin and character of point, line, and surface defects in crystalline materials and their influence on mechanical, chemical, magnetic, optical, and electronic properties.

MSE 6310. Thermodynamics and Kinetics of Transformations. 3 Credit Hours.
Classical thermodynamics and phase equilibria with applications to chemical reactions, control of phase transformations via reduction of chemical-free energy, strain energy, and interfacial energy.

MSE 6401. Thermodynamics of Materials. 3 Credit Hours.
To examine the principles of thermodynamics as applied to equilibria associated with solutions, mixtures, chemical reactions, and interfaces in materials.

MSE 6402. Crystallography, Structure and Defects. 3 Credit Hours.
Provides students with a fundamental understanding of crystal structures, symmetry, origin, character, defects in crystalline materials, and the influence of these defects on different properties.

MSE 6403. Kinetics of Phase Transformations. 3 Credit Hours.
To introduce the fundamentals of thermodynamics and mathematics to the kinetics of diffusional and non-diffusional phase transformation in engineering materials.
MSE 6404. Scattering Theory. 3 Credit Hours.
A general introduction to the scattering/diffraction of electromagnetic radiation from solids. The kinematical formalism is developed emphasizing x-ray scattering as a characterization tool.

MSE 6405. Advanced Nanomaterials. 3 Credit Hours.
Topics include the synthesis and growth processes controlling quantum dot formation, nanowires, and three-dimensional self-assembled nanostructures. Additional characterization techniques and emerging applications are presented.

MSE 6406. Corrosion of Materials. 4 Credit Hours.
To introduce students to the basic kinetic mechanisms associated with the interactions of materials with liquids and gases.

MSE 6407. Biological Properties. 3 Credit Hours.
Addresses structure-property relationship of cellular components.

MSE 6411. Thermodynamics of Materials. 3 Credit Hours.
This course introduces structural features of materials, including point/space groups, representative crystal structures, quasi-crystals, amorphous and rubbery state, liquid crystals, colloids, solutions, and effect of symmetry on properties.

MSE 6412. Structure of Materials. 3 Credit Hours.
This course introduces structural features of materials, including point/space groups, representative crystal structures, quasi-crystals, amorphous and rubbery state, liquid crystals, colloids, solutions, and effect of symmetry on properties.

MSE 6500. Thermodynamics of Materials. 2 Credit Hours.
To examine the principles of thermodynamics as applied to equilibria associated with solutions, mixtures, chemical reactions, and interfaces in materials.

MSE 6501. Phase Equilibria. 1 Credit Hour.
The object of this course is to review the concepts of phase equilibria in ceramic and metallic systems and develop the methodology to calculate phase diagrams in these systems.

MSE 6502. Thermo Analysis. 1 Credit Hour.
To examine the principles of thermodynamics as applied to equilibria associated with mixtures and solutions.

MSE 6510. Polymers for Electronic and Photonic Applications I. 3 Credit Hours.
Review of fundamentals and principles of polymers used in electronics and photonics; relationships between the advances of semiconductor technology and the importance of polymers and their applications.

MSE 6600. Advanced Polymer Processing. 3 Credit Hours.
Common polymer processing techniques and recent advancement; Modeling of polymer processing focusing on how to build a sound model; Computer aided engineering for polymer processing.

MSE 6601. Carbon Nanotubes, Graphene, and Nanocomposites. 3 Credit Hours.

MSE 6602. Tensor Analysis and Mathematical Techniques for Materials. 3 Credit Hours.
Introduction to tensor analysis and mathematical techniques for solving problems encountered in materials physics, processing and characterization, particularly involving polymeric fluids and solids.

MSE 6603. Natural Polymers. 3 Credit Hours.
The structures and properties of natural products are presented. Production of cellulose and proteins in discussed. Credit not allowed for both MSE 6603 and PTE 6301.

MSE 6610. Biomaterials. 2 Credit Hours.
The course will emphasize the interaction between the human body environment and synthetic materials. Materials for both medical implants and dental restoration and appliances will be covered.

MSE 6620. Advanced Corrosion. 3 Credit Hours.
The emphasis will be on electrochemical corrosion and dry oxidation of metals and alloys. In the laboratory, the student will be introduced to the methodology of corrosion testing.

MSE 6730. Materials Science of Cellular Components. 3 Credit Hours.
Addresses structure-property relationship of cellular components. Credit not allowed for both MSE 6730 and BMED 6730.

MSE 6750. Preparation & Reactions of Polymers. 3 Credit Hours.
A detailed treatment of the reactions involved in the synthesis of both human-made and natural polymers, including preparation and degradative reactions of polymer systems.

MSE 6751. Physical Chemistry of Polymer Solutions. 3 Credit Hours.
Study of polymer solutions, polymer miscibility, adsorption, sorptions, plasticization, molecular weights, molecular weight distribution, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHEM, CHE, and PTE 6751.

MSE 6752. Polymer Characterization. 4 Credit Hours.
This course introduces the student to surface, near-surface and structural methods of polymer characterization. Specialized techniques critical to physical structure are emphasized. Crosslisted with CHEM, CHE, and PTE 6752.

MSE 6754. Engineering Communication. 3 Credit Hours.
Writing and editing engineering documents; designing and explaining visuals; creating and delivering electronic presentations. Crosslisted with CEE 6754.

MSE 6755. Theoretical Chemistry of Polymers. 3 Credit Hours.
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc. are discussed. Crosslisted with CHEM and PTE 6755.

MSE 6759. Materials in Environmentally Conscious Design and Manufacturing. 3 Credit Hours.
Covers the environmental impact of materials choices and quantitative measure of life-cycle assessment and environmental burden. The Natural Step philosophy will be used as a model for the overall approach. Crosslisted with ME and PTE 6759.

MSE 6768. Polymer Structure, Physical Properties, and Characterization. 3 Credit Hours.
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with TFE, CHE, and ME 6768.

MSE 6774. Biomaterials: Structure and Function. 3 Credit Hours.
Structure-function relationships of biomaterials and biomaterial characterization will be covered. Materials for medical implants, tissue engineering, biosensing, imaging, and drug delivery will be covered. Crosslisted with BMED, CHE, and ME 6774.
MSE 6776. Integrated Low-cost Microelectronics Systems Packaging. 3 Credit Hours.
Broad overview of system-level, cross-disciplinary microelectronics packaging technologies, including design, test, thermal, reliability, optoelectronics, and RF integration. Comparison of system-to-chip and system-to-package. Crosslisted with ECE and ME 6776.

MSE 6777. Advanced Biomaterials. 3 Credit Hours.
Advanced topics of biomaterials performance and engineering, including biointerfaces, host reactions to materials, and bio-inspired/smart-materials strategies. Crosslisted with BMED, CHE, and ME 6777.

MSE 6795. Mathematical, Statistical, and Computational Techniques in Materials Science. 3 Credit Hours.
Fundamental physical, analytical, and mathematical techniques encountered in materials engineering including stress and strain, crystallographic and orientation transformations, X-ray, TEM, and solid-state concepts are emphasized. Crosslisted with ME and PTFE 6795.

MSE 6796. Structure-Property Relationships in Materials. 3 Credit Hours.
Introduction to the multi-scale structure effects on material properties. Course will prepare students for future in-depth courses. Crosslisted with PTFE and ME 6796.

MSE 6797. Thermodynamics and Kinetics of Microstructural Evolution. 3 Credit Hours.
The reduction of chemical-free, strain, and interfacial energies control of the kinetics of diffusional transformations. These factors are explored from the viewpoint of processing and stability of microstructure during service. Crosslisted with PTFE and ME 6797.

MSE 6XXX. Mate Sci Engr Elective. 1-21 Credit Hours.

MSE 7000. Master’s Thesis. 1-21 Credit Hours.

MSE 7010. Electronic Ceramics. 3 Credit Hours.
Defects chemistry, electrochemical and electrophysical behavior of metallic/semiconducting ceramics, dielectrics, and ferrites; device applications of various electronic ceramics.

MSE 7110. Advanced Transmission Electron Microscopy. 3 Credit Hours.
Introduction to theory, techniques, and applications of high-resolution transmission electron microscopy (HRTEM) in materials research.

MSE 7140. Impedance and Dielectric Spectroscopy. 3 Credit Hours.
The basic theory of how current, voltage, and phase angle measurements over a wide frequency range (typically mHz-MHz) can provide information about microstructural features at all length scales.

MSE 7210. Dislocation and Deformation Mechanics. 3 Credit Hours.
Emphasis on interactions of dislocations with other defects, dislocation dynamics, and their correlation with mechanical properties under different rates of loading.

MSE 7420. Solidification Processing. 3 Credit Hours.
Fundamentals of thermodynamics, kinetics, mass transport, and physical materials are applied to the development of microstructure during solidification.

MSE 7510. Polymers for Electronic and Photonic Applications II. 3 Credit Hours.
Review of fundamentals and principles of polymers used in electronics and photonics. The relationship between the recent advances of semiconductor technology and the importance of polymers will be discussed.

MSE 7757. Teaching Practicum. 3 Credit Hours.
Students will learn about what it takes to be a faculty through sills needed for “delivery of lecture” via the practice of teaching.

MSE 7771. Mechanics of Polymer Solids and Fluids. 3 Credit Hours.
Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with CHE, ME and PTFE 7771.

MSE 7772. Fundamentals of Fracture Mechanics. 3 Credit Hours.
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CEE, CHE, and ME 7772.

MSE 7773. Advanced Fracture Mechanics. 3 Credit Hours.
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, CHE, and ME 7773.

MSE 7774. Fatigue of Materials and Structures. 3 Credit Hours.
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multiaxial loading, and fatigue crack propagation. Crosslisted with AE, CEE, CHE, and ME 7774.

MSE 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures. 3 Credit Hours.

MSE 7779. Damage, Failure and Durability of Composite Material. 3 Credit Hours.

MSE 7792. Advanced Mechanics of Composites. 3 Credit Hours.
Anisotropic elasticity, hygrothermal behavior, stress analysis of laminated composites including 3-D effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with AE, CHE, CEE, ME, and PTFE 7792.

MSE 7793. Manufacturing of Composites. 3 Credit Hours.
Major manufacturing techniques for metal, ceramic, and polymer composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CHE, CEE, ME, and PTFE 7793.

MSE 8001. Seminar. 1 Credit Hour.
The latest advances in research and development will be presented by the enrolled students from articles in recent issues of recognized periodicals.

MSE 8200. Advanced Presentation Skills. 1 Credit Hour.
Designing and explaining visuals; creating and delivering scientific electronic presentations; learning to speak and present to a variety of audiences.

MSE 8801. Special Topics. 1 Credit Hour.
Special topic offerings of current interest not included in regular courses.

MSE 8802. Special Topics. 2 Credit Hours.
Special topic offering of current interest not included in regular courses.

MSE 8803. Special Topics. 3 Credit Hours.
Special topic offering of current interest not included in regular courses.

MSE 8813. Special Topics. 3 Credit Hours.
Special Topics in MSE.
Military Science & Leadership (MSL)

MSL 1001. Leadership and Personal Development. 3 Credit Hours.
Introduces cadets to the personal challenges and competencies that are critical for effective leadership. Cadets learn how the personal development of life skills such as critical thinking, goal setting, time management, physical fitness, and stress management relate to leadership, officerhood, and the Army profession. The focus is on developing basic knowledge and comprehension of Army leadership dimensions while gaining a big picture understanding of the ROTC program, its purpose in the Army, and its advantages for the student.

MSL 1002. Introduction to Tactical Leadership. 3 Credit Hours.
Overviews leadership fundamentals such as setting direction, problem-solving, listening, presenting briefs, providing feedback, and using elective writing skills. Cadets explore dimensions of leadership values, attributes, skills and actions in the context of practical, hands-on, and interactive exercises. Continued emphasis is placed on recruitment and retention of cadets. Cadre role models and the building of stronger relationships among the cadets through common exercise and practical interaction are critical aspects of this course.

MSL 1XXX. Military Sci Elective. 1-21 Credit Hours.

MSL 2001. Innovative Team Leadership. 3 Credit Hours.
Explores the dimensions of creative and innovative tactical leadership strategies and styles by examining team dynamics and two historical leadership theories that form the basis of the Army leadership framework (trait and behavioral theories). Cadets practice aspects of personal motivation and team building in the context of planning, executing, and assessing team exercises and participating in leadership labs. Focus is on continued development of the knowledge of leadership values and attributes through an understanding of Army rank, structure, duties and basic aspects of land navigation and squad tactics. Case studies provide tangible context for learning the Soldier’s Creed and Warrior Ethos as they apply in the contemporary operating environment (COE).

MSL 2002. Foundations of Tactical Leadership. 3 Credit Hours.
Examines the challenges of leading tactical teams in the complex contemporary operating environment (COE). The course highlights dimensions of terrain analysis, patrolling, and operation orders. Further study of the theoretical basis of the Army leadership framework explores the dynamics of adaptive leadership in the context of military operations. Cadets develop greater self-awareness as they assess their own leadership styles and practice communication and team-building skills. COE case studies give insight into the importance and practice of teamwork and tactics in real-world scenarios.

MSL 2XXX. Military Sci Elective. 1-21 Credit Hours.

MSL 3001. Adaptive Tactical Leadership. 4 Credit Hours.
Challenges cadets to study, practice, and evaluate adaptive leadership skills as they are presented with challenging scenarios related to squad tactical operations. Cadets receive systematic and specific feedback on their leadership attributes and actions. Based on such feedback, as well as their own self-evaluations, cadets continue to develop their leadership and critical thinking abilities. The focus is developing cadets’ tactical leadership abilities to enable them to succeed at ROTC's summer Leadership Development and Assessment Course (LDAC).

MSL 3002. Leadership in Changing Environments. 4 Credit Hours.
Uses increasingly intense situational leadership challenges to build cadet awareness and skills in leading tactical operations up to platoon level. Cadets review aspects of combat, stability, and support operations. They also conduct military briefings and develop proficiency in garrison operation orders. The focus is on exploring, evaluating, and developing skills in decision-making, persuading, and motivating team members in the contemporary operating environment (COE). Cadets are evaluated on what they know, and do as leaders as they prepare to attend the ROTC summer Leadership Development Assessment Course (LDAC).

MSL 3XXX. Military Sci Elective. 1-21 Credit Hours.

MSL 4001. Developing Adaptive Leaders. 4 Credit Hours.
Develops cadet proficiency in planning, executing, and assessing complex operations, functioning as a member of a staff, and providing performance feedback to subordinates. Cadets assess risk, make ethical decisions, and lead fellow ROTC cadets. Lessons on military justice and personnel processes prepare cadets to make the transition to Army officers. MSIV cadets analyze, evaluate, and instruct cadets at lower levels. Both their classroom and battalion leadership experiences are designed to prepare cadets for their first unit of assignment. They identify responsibilities of key staff, coordinate staff roles, and use situational opportunities to teach, train, and develop subordinates.

MSL 4002. Leadership in a Complex World. 4 Credit Hours.
Explores the dynamics of leading in the complex situations of current military operations in the contemporary operating environment (COE). Cadets examine differences in customs and courtesies, military law, principles of war, and rules of engagement in the face of international terrorism. They also explore aspects of interacting with non-government organizations, civilians on the battlefield, and host national support. The course places significant emphasis on preparing cadets for their first unit of assignment. It uses case studies, scenarios, and “What now Lieutenant?” exercises to prepare cadets to face the complex ethical and practical demands of leading as commissioned officers in the United States Army.

MSL 4801. Special Topics. 1 Credit Hour.
Topics and research will pursue areas of military science not extensively treated in other Military Science courses.
MUSI 4802. Special Topics. 2 Credit Hours.
Topics and research will pursue areas of military science not extensively treated in other Military Science courses.

MUSI 4803. Special Topics. 1-3 Credit Hours.
Topics and research will pursue areas of military science not extensively treated in other Military Science courses.

MUSI 4804. Special Topics. 4 Credit Hours.
Topics and research will pursue areas of military science not extensively treated in other Military Science courses.

MUSI 4805. Special Topics. 5 Credit Hours.
Topics and research will pursue areas of military science not extensively treated in other Military Science courses.

MUSI 4901. Special Problems. 1-21 Credit Hours.
Permits independent study with a faculty member. Topics and research will pursue areas of military science not extensively treated in any other Military Science class.

MUSI 4XXX. Military Sci Elective. 1-21 Credit Hours.

Music (MUSI)

MUSI 2010. Fundamentals of Musicianship I. 3 Credit Hours.
First semester of integrated sequence in music theory, aural training, music technology, and music literature.

MUSI 2011. Fundamentals of Musicianship II. 3 Credit Hours.
Second semester of integrated sequence in music theory, aural training, music technology, and music literature.

MUSI 2012. Fundamentals of Musicianship III. 3 Credit Hours.
The third semester of integrated sequence in music theory, aural training, music technology, and music literature; focused on advanced theory, history, and technology topics.

MUSI 2013. Fundamentals of Musicianship IV. 3 Credit Hours.
The fourth semester of integrated sequence in music theory, aural training, music technology, and music literature; focused on comprehensive and innovative music discussions.

MUSI 2015. Laptop Orchestra. 3 Credit Hours.
Analysis, rehearsal, creation, and performance of music for laptop orchestra.

MUSI 2525. Introduction Audio Technology I. 3 Credit Hours.
Critical understanding of, and hands-on experience with the fundamentals of analog audio technology. Topics include signals and systems, electro-acoustics, sound effects, synthesis and music protocols.

MUSI 2526. Introduction to Audio Technology II. 3 Credit Hours.
Critical understanding of, and hands-on experience with the fundamentals of digital audio technology. Topics include sampling, quantization, digital effects, music information retrieval and audio coding.

MUSI 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MUSI 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MUSI 2700. Introduction to Music Theory. 3 Credit Hours.
Introduction to music theory including basic notation, scales, key signatures, trials, roman numeral analysis, and voice leading in four-part harmony.

MUSI 3018. Marching Band. 2 Credit Hours.
This course will prepare various traditional and contemporary music for scheduled performances throughout the semester in support various athletic events and School of Music concerts.

MUSI 3019. Pep Band. 1 Credit Hour.
This course will prepare a variety of traditional and contemporary music for scheduled performances throughout the semester in support of various athletic events and School of Music concerts.

MUSI 3121. Concert Band. 1 Credit Hour.
An advanced instrumental ensemble performing traditional and contemporary wind literature. Offered to all students with woodwind, brass, or percussion experience. Audition required.

MUSI 3131. Symphonic Band. 1 Credit Hour.
An advanced instrumental ensemble performing traditional and contemporary wind literature. Offered to all students with woodwind, brass, or percussion experience. Audition required.

MUSI 3231. Chamber Choir. 1 Credit Hour.
An auditioned mixed ensemble focused upon the rehearsal, study and performance of choral music. Repertoire varies from various style eras and genres.

MUSI 3241. Chorale. 1 Credit Hour.
A non-auditioned mixed ensemble focused upon the rehearsal, study and performance of choral music. Repertoire varies from various style eras and genres.

MUSI 3251. Glee Club. 1 Credit Hour.
A non-auditioned male ensemble focused upon the rehearsal, study and performance of choral music. Repertoire varies from various style eras and genres.

MUSI 3261. Treble Choir. 1 Credit Hour.
A non-auditioned TREBLE ensemble focused upon the rehearsal, study and performance of choral music. Repertoire varies from various style eras and genres.

MUSI 3311. Jazz Ensemble. 1 Credit Hour.
Jazz Ensemble explores music from the 1920’s to the present, focusing on ensemble playing and improvisation.

MUSI 3321. Jazz Combo. 1 Credit Hour.
Jazz Combos explore small group jazz focusing on ensemble playing and improvisation.

MUSI 3411. Chamber Ensemble. 1 Credit Hour.
An advanced ensemble performing traditional and contemporary chamber ensemble literature. Audition and permit required.

MUSI 3450. Survey of Music Technology. 3 Credit Hours.
A detailed survey of historic and contemporary electronic music systems and their applications in the creation, production, and reproduction of music.

MUSI 3500. Introduction of Synthesized Computer Music. 2 Credit Hours.
Introduction of synthesized computer music familiarizes the student with basic sequencing and music engraving using fundamentals of music theory and composition.

MUSI 3511. Percussion Ensemble. 1 Credit Hour.
An advanced instrumental ensemble performing traditional and contemporary percussion literature. Offered to all students with percussion experience. Audition required.
MUSI 3531. New Music Ensemble. 1 Credit Hour.
An advanced instrumental chamber ensemble that performs new and contemporary literature often using technology. Offered to all students with advanced performing experience. Audition required.

MUSI 3541. Electronic Percussion Ensemble. 1 Credit Hour.
An advanced instrumental ensemble performing percussion literature using student designed and built instruments, interfaces and software, as well as commercially available controllers. Offered to all students with percussion experience. Audition required.

MUSI 3551. Rock and Pop Ensemble. 1 Credit Hour.
A contemporary popular music ensemble performing historical and current popular music. Offered to all students with advanced performing experience. Audition required.

MUSI 3611. Symphony Orchestra. 1 Credit Hour.
An advanced instrumental ensemble performing traditional and contemporary literature. Offered to all students with string, woodwind, brass, or percussion experience. Audition required.

MUSI 3621. European Composers and Their Music. 3 Credit Hours.
The history of western music from the Renaissance to the modern era.

MUSI 3630. The History of Jazz, the Roots and Evolution of an American Musical Art Form. 3 Credit Hours.
The history of the American musical art form, Jazz, from its roots within African American work songs through fusion and new directions in jazz.

MUSI 3710. Individual Applied Instruction. 1 Credit Hour.
Private instruction for vocal, wind, and percussion students admitted into the Minor of Music program.

MUSI 3720. Individual Applied Instruction. 1 Credit Hour.
Private instruction for vocal, wind, and percussion students admitted into the Minor of Music program.

MUSI 3730. Individual Applied Instruction. 1 Credit Hour.
Private instruction for vocal, wind, and percussion students admitted into the Minor of Music program.

MUSI 3740. Individual Applied Instruction. 1 Credit Hour.
Private instruction for vocal, wind, and percussion students admitted into the Minor of Music program.

MUSI 3750. Individual Applied Instruction. 1 Credit Hour.
Private instruction for vocal, wind, and percussion students admitted into the Minor of Music program.

MUSI 3770. Project Studio: Technology. 4 Credit Hours.
Thematic project in music technology driven by a foundational research question.

MUSI 3771. Project Studio: Analysis. 4 Credit Hours.
Thematic project connecting music theory, musicology, performance practice and musicianship through intensive study of a single musical genre or composer.

MUSI 3801. Special Topics. 1 Credit Hour.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 3802. Special Topics. 2 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 3803. Special Topics. 3 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4202. Chorale--Mixed Singing Group. 1 Credit Hour.
Prerequisite: Choral music experience recommended. A large ensemble focused on rehearsal and performance of high-quality music of all genres.

MUSI 4401. Chamber Ensemble. 1 Credit Hour.
Small instrumental ensembles of various types selected by the director to perform literature for the specific ensemble.

MUSI 4402. Chamber Ensemble. 1 Credit Hour.
Small instrumental ensembles of various types selected by the director to perform literature for the specific ensemble.

MUSI 4403. Chamber Ensemble. 1 Credit Hour.
Small instrumental ensembles of various types selected by the director to perform literature for the specific ensemble.

MUSI 4450. Integrating Music Into Multimedia. 3 Credit Hours.
Techniques for effectively utilizing music and audio in the context of digital multimedia.

MUSI 4455. Streaming Media. 3 Credit Hours.
To familiarize students with tools and techniques for the creation, production, distribution, and aesthetic analysis of audio, video, and live events for Internet and Internet2 dissemination.

MUSI 4456. Music Technology History and Repertoire. 3 Credit Hours.
Overview of the history, aesthetics, and technology of electronic and computer music over the past century through selected readings, musical analysis, and individual research projects. Credit will not be awarded for both MUSI 4456 and MUSI 6003.

MUSI 4457. Computational Music and Audio Analysis. 3 Credit Hours.
The course will survey fundamental techniques in the fast-growing area of Music Information Retrieval (MIR). Credit will not be awarded for both MUSI 4457 and MUSI 6201.

MUSI 4458. Computer Music Composition. 3 Credit Hours.
Realization of individual composition projects in music technology and consideration of related theory, aesthetics, and repertoire. Credit will not be awarded for both MUSI 4458 and MUSI 6304.

MUSI 4459. Digital Signal Processing for Music. 3 Credit Hours.
This course will cover elements of digital audio signal processing, such as spectra, digital filters, Fourier analysis and their application to music synthesis and analysis. Credit will not be awarded for both MUSI 4459 and MUSI 6202.

MUSI 4522. Electronic Percussion Studio/Ensemble. 3 Credit Hours.
Applied design construction and programming for performance.

MUSI 4524. Sustainability in Music Technology. 3 Credit Hours.
Overview of the impacts and approaches to sustainability in music technology.

MUSI 4525. Music Information Retrieval. 3 Credit Hours.
An investigation of principles and practice of audio and music design, in both contemporary digital and traditional analog systems.

MUSI 4530. Music Recording and Mixing. 3 Credit Hours.
Overview of concepts, techniques, hardware, and software used in audio production, as well as aesthetic concerns and considerations.

MUSI 4560. Music and Sound Design. 3 Credit Hours.
An investigation of principles and practice of audio and music design, in both contemporary digital and traditional analog systems.

MUSI 4570. Music Interface Design. 3 Credit Hours.
Theory and practice of designing and prototyping new forms of music interfaces, including percussion, haptic, and augmented traditional constructs.

MUSI 4577. Music Perception and Cognition. 3 Credit Hours.
The course will examine how humans process musical sound, covering the basics of the human auditory system and the experience of musical sound. Credit will not be awarded for both MUSI 4577 and MUSI 6001.
MUSI 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MUSI 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

MUSI 4705. Music Technology Capstone I. 4 Credit Hours.
Students will implement their broad theoretical and practical knowledge and understanding of music technology in a hands-on project, culminating in public presentation.

MUSI 4706. Music Technology Capstone II. 4 Credit Hours.
Students will implement their broad theoretical and practical knowledge and understanding of music technology in a hands on project, culminating in a public and industry presentation.

MUSI 4801. Special Topics. 1 Credit Hour.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4802. Special Topics. 2 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4803. Special Topics. 3 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4813. Special Topics. 3 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4823. Special Topics. 3 Credit Hours.
Special ad hoc courses or projects included in regular course offerings.

MUSI 4833. Special Topics. 3 Credit Hours.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4843. Special Topics. 3 Credit Hours.
Special Topics in MUSI.

MUSI 6001. Music Perception and Cognition. 3 Credit Hours.
This course examines how humans process musical sound, including topics such as the auditory system, psychacoustics, music cognition, and psychology.

MUSI 6002. Computer Supported Interactive Music. 3 Credit Hours.
Theoretical and practical issues in computer supported interactive music. The course involves readings, class discussions, student presentations, and the design of a final project.

MUSI 6003. Music Technology History and Repertoire. 3 Credit Hours.
Overview of the history, aesthetics, and technology of electronic and computer music over the past century through selected readings, musical analysis, and individual research projects.

MUSI 6004. Technology Ensemble. 3 Credit Hours.
Practice and performance of original and repertoire works in live audio settings using commercial and propriety technology.

MUSI 6005. Music Ensemble for Graduate Students. 1 Credit Hour.
The graduate level of any music ensemble.

MUSI 6103. Music Recording and Mixing. 3 Credit Hours.
Overview of concepts, techniques, hardware, and software used in audio production as well as aesthetic concerns and considerations.

MUSI 6104. Integrating Music into Multimedia. 3 Credit Hours.
To familiarize students with the tools and techniques for effectively utilizing music and audio in the context of digital multimedia and the internet.

MUSI 6105. Digital Media Production and Mastering. 3 Credit Hours.
Tools and techniques for effectively mastering, optimizing, finalizing, and producing digital media for multimedia and the Internet.

MUSI 6106. Audio Software Engineering. 3 Credit Hours.
Introduction to software engineering for audio-related software projects, covering the main aspects of music software production with a focus on music processing, audio plugin interfaces, and real-time systems.

MUSI 6201. Computational Music and Audio Analysis. 3 Credit Hours.
This class addresses theory and techniques of Music Information Retrieval (MIR). Topics include computational analysis of audio signals, symbolic representations, and pattern recognition techniques. Credit will not be awarded for both MUSI 6201 and MUSI 4457.

MUSI 6202. Digital Signal Processing for Music Analysis and Synthesis. 3 Credit Hours.
Research in music, as well as music production and composition increasingly relies on sophisticated digital signal processing techniques. This course will review fundamental elements of digital audio signal processing, such as sinusoids, spectra, digital filters, and Fourier analysis and their application to the fundamental music analysis problems of modeling and synthesis. The course will focus particularly on the algorithmic implementation sound transformation and synthesis techniques through intensive programming assignments in Matlab and Csound.

MUSI 6203. Project Studio in Music Technology. 3 Credit Hours.
Discussion, design and development of computer music applications and performance controllers.

MUSI 6301. Music Interface Design. 3 Credit Hours.
Theory and practice of designing and prototyping new forms of music interfaces including percussion, haptic, and augmented traditional constructs.

MUSI 6302. The Musical Mind. 3 Credit Hours.
This course teaches the science of music, nature of music, perception of music, analysis of musical talent, development of musical skills, and approaches to musical esthetics.

MUSI 6303. Network Music. 3 Credit Hours.
Exploration of distributed music systems over local-area networks and Internet, including discussion of existing technologies, works, literature, and hands-on experimentation with tools and techniques.

MUSI 6304. Computer Music Composition. 3 Credit Hours.
Realization of individual composition projects in music technology and consideration of related theory, aesthetics, and repertoire. Credit will not be awarded for both MUSI 6304 and MUSI 4458.

MUSI 7000. Master's Thesis. 1-21 Credit Hours.
Advisor guided thesis writing.

MUSI 7100. Music Technology Research Laboratory. 1-21 Credit Hours.
Advisor guided research and creative work in music technology. Investigation of novel technological and artistic concepts. Design and develop new hardware, software, and musical artifacts.

MUSI 7998. Preparation for Qualifying Paper. 1-21 Credit Hours.
Preparation of qualifying paper for Ph.D. in Music Technology.

MUSI 7999. Preparation for Qualifying Examination. 1-21 Credit Hours.
Preparation for qualifying examinations for Ph.D. in Music Technology.
MUSI 8001. Research Methods. 3 Credit Hours.
Theoretical and practical issues in music technology research including
design patterns, data sets, quantitative and qualitative evaluation
standards, proper citation, and print and oral presentation.

MUSI 8002. Apprentice Teaching. 3 Credit Hours.
Pedagogical approaches to music technology, focusing on hands-on
teaching experience.

MUSI 8801. Special Topics. 1 Credit Hour.
Topics of current interest.

MUSI 8802. Special Topics. 2 Credit Hours.
Topics of current interest.

MUSI 8803. Special Topics. 3 Credit Hours.
Topics of current interest.

MUSI 8804. Special Topics. 4 Credit Hours.
Topics of current interest.

MUSI 8805. Special Topics. 5 Credit Hours.
Topics of current interest.

MUSI 8901. Special Problems. 1-21 Credit Hours.
Individualized study with an advisor.

MUSI 8902. Special Problems. 1-21 Credit Hours.
Individualized study with an advisor.

MUSI 8903. Special Problems. 1-21 Credit Hours.
Individualized study with an advisor.

MUSI 8907. Teaching Assistantship. 1-21 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

MUSI 8908. Research Assistantship. 1-21 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

MUSI 9000. Doctoral Thesis. 1-21 Credit Hours.

Neuroscience (NEUR)

NEUR 1XXX. Neuroscience Elective. 1 Credit Hour.

NEUR 2001. Principles in Neuroscience. 4 Credit Hours.
Students will learn fundamental principles and methods in neuroscience
from problem-based study of the neural substrates of animal behavior.

NEUR 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

NEUR 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

NEUR 2901. Special Problems. 1-21 Credit Hours.
Special Problems.

NEUR 2XXX. Neuroscience Elective. 1-21 Credit Hours.

NEUR 3001. Cell and Molecular Neuroscience. 3 Credit Hours.
An overview of principles and techniques in cell and molecular
neuroscience: neuron excitability, synaptic transmission, learning and
memory to basic mechanisms of neurological diseases.

NEUR 3002. Neuroscience of Behavior. 3 Credit Hours.
This course examines the biological basis of psychology. Behavioral
Neuroscience is an interdisciplinary science that aims to investigate the
interaction between brain and behavior.

NEUR 3010. Methods in Neuroscience. 3 Credit Hours.
The course is focused on understanding how information about brain
and nervous system function can be determined from a wide range of
experimental and data analysis techniques.

NEUR 3XXX. Neuroscience Elective. 1-21 Credit Hours.

NEUR 4001. Neuroscience Research Project. 4 Credit Hours.
Focused on multidisciplinary perspectives in neuroscience, this course
requires that students utilize and apply the skills and knowledge
developed over the course of their major.

NEUR 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

NEUR 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

NEUR 4801. Special Topics. 1 Credit Hour.
Topics of current interest not included in the regular course offerings.

NEUR 4802. Special Topics. 2 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4803. Special Topics. 3 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4804. Special Topics. 4 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4805. Special Topics. 5 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4806. Special Topics. 6 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4814. Special Topics. 4 Credit Hours.
Topics of current interest not included in the regular course offerings.

NEUR 4901. Special Problems. 1-21 Credit Hours.
Special Problems.

NEUR 4XXX. Neuroscience Elective. 1 Credit Hour.

NEUR 6XXX. Neuroscience Elective. 1 Credit Hour.

Nuclear & Radiological Engr (NRE)

NRE 2110. Introduction to Nuclear and Radiological Engineering. 2 Credit Hours.
Introduction to nuclear and radiological engineering; nuclear energy
production and radiation technologies and their role of importance to
society, their environmental impact.

NRE 2120. Elements of Nuclear and Radiological Engineering. 3 Credit Hours.
Introduction to nuclear and radiological engineering concepts and
applications.

NRE 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.

NRE 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty
member.
NRE 3026. Experimental Nuclear Reactor Physics. 3 Credit Hours.
Introduction to experimental nuclear reactor physics techniques including criticality, flux mapping, buckling measurements, subcritical assembly measurements, diffusion length measurement, neutron spectral measurements, and fuel activation methods.

NRE 3112. Nuclear Radiation Detection. 3 Credit Hours.
An introduction to the principles and characteristics of basic detectors for nuclear radiation and the pulse processing electronics associated with them.

NRE 3208. Nuclear Reactor Phys I. 3 Credit Hours.
Intermediate treatment of reactor physics and associated advanced mathematics topics.

NRE 3212. Fundamentals of Nuclear and Radiological Engineering. 3 Credit Hours.
Intermediate treatment of nuclear and radiological engineering, with emphasis on reactor physics and engineering, radiation protection, and radiation shielding.

NRE 3301. Radiation Physics. 3 Credit Hours.
Characteristics of atomic and nuclear radiations, transition probabilities, radioactive decay, classical and quantum-mechanical derivations of cross sections, interactions of photon, neutron, and charged particles with matter.

NRE 3316. Radiation Protection Engineering. 3 Credit Hours.
Covers radiation dosimetry, biological effects of radiation, radiation-protection criteria and exposure limits, external radiation protection, internal radiation protection, and sources of human exposure.

NRE 3XXX. Nuclear &Rad Eng Elective. 1-21 Credit Hours.

NRE 4026. Radiation Physics Laboratory. 2 Credit Hours.
Measurements of reactor parameters, such as approach to criticality, flux mapping, buckling, and diffusion length using subcritical assemblies. Neutron spectral measurements, shield transmission measurements, and other radiation field measurements.

NRE 4208. Nuclear Reactor Physics II. 4 Credit Hours.
Advanced treatment of reactor physics and associated advanced mathematics topics. Students may not receive credit for both NRE 4208 and NRE 4202.

NRE 4210. Nuclear Reactor Theory. 3 Credit Hours.
Students will learn physical nuclear reactor concepts, nuclear data and computational methodology required to understand the design process of nuclear fission reactors.

NRE 4214. Reactor Engineering. 3 Credit Hours.
Nuclear heat generation; fuel elements' thermal analysis; single and two-phase flow and heat transfer in reactor systems; core thermal design and treatment of uncertainties.

NRE 4232. Nuclear and Radiological Engineering Design. 4 Credit Hours.
Introduction to the methodologies of nuclear and radiological design. An open-ended design project that integrates all relevant engineering aspects is to be completed in this course.

NRE 4234. Nuclear Criticality Safety Engineering. 3 Credit Hours.
This course covers the theoretical concepts, the computational techniques, and the principal methods of criticality safety.

NRE 4266. Light Water Reactor Technology. 3 Credit Hours.
A systematic survey of the technology of both pressurized and boiling water reactors with emphasis on the nuclear stream supply system and its associated safety and control systems.

NRE 4328. Radiation Sources and Applications. 3 Credit Hours.
Radiation Sources. Radioisotope production. Application of radiation and radioisotope technology in industry and medicine.

NRE 4350. Design Methods & Tools. 3 Credit Hours.
Introduction to selected methods and nuclear engineering analytic tools (computer codes) with tutorials.

NRE 4351. Design of Nuclear and Radiological Systems. 3 Credit Hours.
NRE Capstone Design course - an open-minded design project, performed by students organized in design teams, that integrates all relevant nuclear and radiological engineering aspects.

NRE 4404. Radiological Assessment and Waste Management. 3 Credit Hours.

NRE 4407. Introduction to Radiobiology and Oncology. 3 Credit Hours.
This course will provide the student with a basic knowledge of radiation biology as it pertains to oncology and radiotherapy.

NRE 4430. Nuclear Regulatory Requirements. 2 Credit Hours.
This course introduces regulatory organizations and delineates their jurisdictions. It covers the fundamentals of regulations, the impacts on occupational workers, the public, and the environment.

NRE 4610. Introduction to Plasma Physics and Fusion Engineering. 3 Credit Hours.
A first course in plasma physics and magnetic confinement fusion: basic plasma physics, magnetic confinement concepts, fusion engineering, and a review of the current status of fusion research.

NRE 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

NRE 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

NRE 4750. Diagnostic Imaging Physics. 3 Credit Hours.
Physics and image formation methods for conventional X-ray CT, nuclear medicine, and magnetic resonance and ultrasound imaging.

NRE 4770. Nuclear Chemical Engineering. 3 Credit Hours.
This course surveys the chemical engineering aspects of nuclear power. Topics include nuclear reactions, fuel cycles, solvent extraction of metals, the properties of actinides and other irradiated fuel materials, fuel reprocessing, and radioactive waste management. Crosslisted with CHE 4770.

NRE 4795. Fundamental Elements of Nuclear Reactor Materials. 3 Credit Hours.
Introduction to fundamentals of nuclear reactor materials. Topics covered are basics of radiation damage, defect creation and evolution, microstructure-property correlations in cladding and fuel of nuclear materials. null.

NRE 4801. Special Topics. 1 Credit Hour.
Special topic offerings of current interest not included in regular courses.

NRE 4802. Special Topics. 2 Credit Hours.
Special topic offerings of current interest not included in regular courses.

NRE 4803. Special Topics. 3 Credit Hours.
Special topic offerings of current interest not included in regular courses.
NRE 4804. Special Topics. 4 Credit Hours.
Special topics offerings of current interest not included in regular courses.

NRE 4805. Special Topics. 5 Credit Hours.
Special topic offerings of current interest not included in regular courses.

NRE 4901. Special Problems. 1-21 Credit Hours.

NRE 4902. Special Problems. 1-21 Credit Hours.

NRE 4903. Special Problems. 1-21 Credit Hours.

NRE 4XXX. Nuclear & Rad Eng Elective. 1-21 Credit Hours.

NRE 6101. Transport Fundamentals. 3 Credit Hours.
Neutral and charged particle transport. Fluid mass, energy, and momentum transport. Models used in nuclear radiation transport; fluid hydromechanics, radiative and plasma transport.

NRE 6102. Plasma Physics. 3 Credit Hours.

NRE 6103. Computational Methods of Radiation Transport. 3 Credit Hours.
Deterministic and stochastic computational methods for solving transport equations of neutral particles.

NRE 6201. Reactor Physics. 3 Credit Hours.
Fundamentals of reactor physics for nuclear analysis of neutron chain reactors and for developing tools required for design of those reactors.

NRE 6301. Reactor Engineering. 3 Credit Hours.

NRE 6401. Advanced Nuclear Engineering Design. 3 Credit Hours.
Synthesis of principles of nuclear engineering in the design of nuclear reactors and other facilities.

NRE 6434. Nuclear Criticality Safety Engineering. 3 Credit Hours.
Concepts, computational techniques, and the principal methods of criticality safety such as accident experience, standards, experiments, computer and hand calculations, limits and regulations. Application to overall facility operation.

NRE 6501. Nuclear Fuel Cycle. 3 Credit Hours.

NRE 6502. Nuclear Materials. 3 Credit Hours.
Materials science and engineering of metallic and ceramic fuels; cladding, structural, and control materials including radiation effects.

NRE 6755. Radiological Assessment and Waste Management. 3 Credit Hours.
Critical analyses of sources and human exposures, mathematical models for movement through the biosphere, environmental transport, and exposure for nuclear facilities and waste disposal processing. Crosslisted with HP 6755.

NRE 6756. Radiation Physics. 3 Credit Hours.
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity and isotopes, cross sections, electromagnetic radiation, neutrons, and charged particle interaction with matter. Crosslisted with HP 6756.

NRE 6757. Radiation Detection. 3 Credit Hours.
Introduction to the theory and application of radiation detectors, measurement methods, signal processing, and data analysis. Crosslisted with HP 6757.

NRE 6758. Numerical Methods in Mechanical Engineering. 3 Credit Hours.
Numerical methods for solution of engineering problems; initial, eigenvalue, and boundary-value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with ME and HP 6758.

NRE 6759. Radiation Shielding Principles and Analysis. 3 Credit Hours.
Principles of Radiation Shielding; Design of Shields; Computational Methods for Analysis of Shielding; Emphasis on Monte Carlo Simulation as a Shielding Tool.

NRE 6XXX. Nuclear & Rad Eng Elective. 1-21 Credit Hours.

NRE 7000. Master's Thesis. 1-21 Credit Hours.

NRE 7103. Advanced Plasma Physics. 3 Credit Hours.
Classical and collective transport phenomena, plasma instabilities, plasma-materials interactions, and plasma edge physics. Emphasis on magnetic fusion, plasma processing, and other plasma applications research.

NRE 7203. Advanced Reactor Physics. 3 Credit Hours.
Advanced topics in reactor physics and transport theory.

NRE 7757. Teaching Practicum. 3 Credit Hours.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with HP, ME, and CHBE 7757.

NRE 8011. Seminars in Nuclear Engineering. 1 Credit Hour.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

NRE 8012. Seminars in Nuclear Engineering. 1 Credit Hour.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

NRE 8801. Special Topics in Nuclear Engineering. 1 Credit Hour.
Special topic offerings of current interest in nuclear engineering not included in regular courses.

NRE 8802. Special Topics in Nuclear Engineering. 2 Credit Hours.
Special topic offerings of current interest in nuclear engineering not included in regular courses.

NRE 8803. Special Topics in Nuclear Engineering. 3 Credit Hours.
Special topic offerings of current interest in nuclear engineering not included in regular courses.

NRE 8804. Special Topics in Nuclear Engineering. 4 Credit Hours.
Special topic offerings of current interest in nuclear engineering not included in regular courses.

NRE 8805. Special Topics in Nuclear Engineering. 5 Credit Hours.
Special topics offerings of current interest in nuclear engineering not included in regular courses.

NRE 8806. Special Topics in Nuclear Engineering. 6 Credit Hours.
Special topics offerings of current interest in nuclear engineering not included in regular courses.

NRE 8901. Special Problems in Nuclear Engineering. 1-21 Credit Hours.
Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.
NRE 8902. Special Problems in Nuclear Engineering. 1-21 Credit Hours. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8903. Special Problems in Nuclear Engineering. 1-21 Credit Hours. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8904. Special Problems in Nuclear Engineering. 1-21 Credit Hours. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8905. Special Problems in Nuclear Engineering. 1-21 Credit Hours. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8906. Special Problems in Nuclear Engineering. 1-21 Credit Hours. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8997. Teaching Assistantship. 1-9 Credit Hours. For graduate students holding graduate teaching assistantships.

NRE 8998. Research Assistantship. 1-9 Credit Hours. For graduate students holding graduate research assistantships.

NRE 9000. Doctoral Thesis. 1-21 Credit Hours.

Naval Science (NS)

NS 1000. Naval Science Leadership Lab. 1 Credit Hour. Leadership Laboratory is an engaging and interactive professional development course required every semester for Navy and Marine option Midshipmen in the NROTC program.

NS 1321. Introduction to Naval Sciences. 3 Credit Hours. This course is an introduction and orientation class designed to give students a broad overview of the roles of the United States Navy and Marine Corps. This course also provides an introduction to the structure, terminology, customs, and uniforms of the Navy and Marine Corps.

NS 1323. Naval Maritime History. 3 Credit Hours. This course surveys U.S. Naval history from its European origin to the present with emphasis on major developments and the geopolitical forces shaping these developments. The course also covers present day concerns in seapower and maritime affairs, including the economic and political issues of maritime commerce, the law of the sea, and the rise and decline of the Soviet Navy.

NS 2321. Naval Leadership and Management. 3 Credit Hours. Survey of managerial functions, communication, and major theories of leadership and motivation applied to the Navy organization. Culminates with focus on Naval core values.

NS 2323. Navigation. 3 Credit Hours. This course develops and broadens the student’s understanding of basic piloting and the laws of vessel operations by applying the fundamentals of navigation at sea.

NS 3323. Evolution of Warfare. 3 Credit Hours. A historical exploration of warfare practiced by great nations. Selected campaigns are studied with emphasis on leadership, evolution of tactics, weaponry, and principles of war.

NS 3324. Marine Weapons and Tactics. 3 Credit Hours. This course is a preparatory course required by all Marines and Marine Options their junior year prior to Officer Candidates School. General military subjects, land navigation, history, tactics drill, leadership, and physical fitness will be taught and tested.

NS 3325. Naval Weapons Systems. 3 Credit Hours. This course develops and broadens the student’s understanding of basic engineering concepts and principles as applied to naval weapon systems.

NS 3326. Naval Engineering Systems. 3 Credit Hours. This course develops and broadens the student’s understanding of basic engineering concepts and principles as applied to naval engineering plants.

NS 4320. Naval Operations and Seamanship. 3 Credit Hours. This course builds on the fundamentals presented in its prerequisites and further prepares soon-to-be-commissioned officers to step aboard their new ship/submarine and stand watch.

NS 4322. Naval Leadership and Ethics. 3 Credit Hours. Study of Naval values and ethics to include core values, Navy regulations, and military law. Duties and responsibilities of a junior naval officer.

NS 4333. Fundamentals of Maneuver Warfare. 3 Credit Hours. Broad aspects of warfare and their interactions with maneuver warfare doctrine. Focus on the United States Marine Corps as the premier maneuver warfare fighting institution.

Persian (PERS)

PERS 1001. Elementary Persian I. 4 Credit Hours. Students acquire reading and writing skills and the ability to communicate in basic situations. Taught in Persian.

PERS 1002. Elementary Persian II. 4 Credit Hours. Students acquire reading and writing skills and the ability to communicate in basic situations. Continuation of PERS 1001. Taught in Persian.

PERS 1801. Special Topics. 1 Credit Hour. Special Topics - Persian.

PERS 1814. Special Topics. 4 Credit Hours. Topics of current interest in Persian Languages.

PERS 1824. Special Topics. 4 Credit Hours. Topics of current interest in Persian Languages.

PERS 2002. Intermediate Persian II. 3 Credit Hours. Continued development of grammatical concepts, vocabulary, and conversational abilities at intermediate level. Readings, audio and video material on the culture of Iran. Taught in Persian.

PERS 2813. Special Topics. 3 Credit Hours. Topics of current interest in Persian Languages.

PERS 2823. Special Topics. 3 Credit Hours. Topics of current interest in Persian Languages.

PERS 3811. Special Topics. 1 Credit Hour. Topics of current interest in Persian.

PERS 3812. Special Topics. 2 Credit Hours. Topics of current interest in Persian.

PERS 3813. Special Topics. 3 Credit Hours. Topics of current interest in Persian Languages.

PERS 4813. Special Topics. 3 Credit Hours. Topics of current interest in Persian Languages.
PERS 8803. Special Topics. 3 Credit Hours.
Special Topics - Persian.

Philosophy (PHIL)

PHIL 1XXX. Philosophy, Sci & Tech Elec. 1-21 Credit Hours.

PHIL 2010. Introduction to Philosophical Analysis. 3 Credit Hours.
An introduction to the nature of philosophy through the critical analysis of selected works, such as Descartes, Hobbes, and Locke. The relationship of philosophy to science, religion, and culture will be emphasized. Credit not allowed for both PHIL 2010 and PST 2020 or PHIL 2025 and PST 2068.

PHIL 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHIL 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHIL 2XXX. Philosophy, Sci & Tech Elec. 1-21 Credit Hours.

PHIL 3050. Political Philosophy. 3 Credit Hours.
An exploration of the main currents in political philosophy from antiquity to the present, seeking resources for analyzing contemporary debates about policy and political process. Credit not allowed for both PST 3050 and PHIL 3050.

PHIL 3102. Ancient Philosophy. 3 Credit Hours.
Development of philosophy in the classical works of Ancient Greek philosophy. Credit not allowed for both PHIL 3102 and PST 3102.

PHIL 3103. Modern Philosophy. 3 Credit Hours.
A study of the development of philosophy from the views of Bacon and Descartes to the beginning of the 20th century. Traces the philosophic response to modern science in the rational and empirical traditions. Credit not allowed for both PHIL 3103 and PST 3103.

PHIL 3105. Ethical Theories. 3 Credit Hours.
Surveys traditional ethical theories of value, obligation, and rights and applies these theories to contemporary social problems such as abortion, euthanasia, poverty, and distributional equity, and environmental problems. Credit not allowed for both PHIL 3105 and PST 3105.

PHIL 3109. Engineering Ethics. 3 Credit Hours.
Ethical reasoning in the context of professional work in science and technology. Prepares future technical professionals to approach decision with a coherent ethical framework. Credit not allowed for both PHIL 3109 and PST 3109.

PHIL 3110. Logic and Critical Thinking. 3 Credit Hours.
Symbolic logic and applications of logic in critical reading and thinking by exploring modern systems of symbolic logic and their implications for science. Emphasizes skills in critical thinking and writing based on the principles of logic. Credit not allowed for both PST 3113 and PHIL 3113.

PHIL 3111. Philosophy of Science. 3 Credit Hours.
Examination of the nature and processes of scientific inquiry, including the status of scientific knowledge, identification of pseudoscientific claims, and the role of values in generating and using scientific knowledge. Credit not allowed for both PHIL 3115 and PST 3115.

PHIL 3113. Philosophy of Science, 3 Credit Hours.
Exploration of the boundaries between science, religion, and social values, examining science and technology in a broader social context. Examines claims that science is isolated from social problems and values. Credit not allowed for both PHIL 3127 and PST 3127.

PHIL 3127. Science, Technology, and Human Values. 3 Credit Hours.
The course considers philosophical accounts of how technologies can and should shape our understandings of politics, ethics, and daily life.

PHIL 3135. Philosophy of Technology. 3 Credit Hours.
A survey of major issues in contemporary biomedical ethics, using well-constructed arguments to understand basic controversies in medicine, research, end-of-life care, and other topics.

PHIL 3140. Philosophy of Food. 3 Credit Hours.
An introduction to the nature of philosophy through the critical analysis of selected works, such as Descartes, Hobbes, and Locke. The relationship of philosophy to science, religion, and culture will be emphasized. Credit not allowed for both PHIL 2010 and PST 2020 or PHIL 2025 and PST 2068.

PHIL 3150. Special Topics - Persian. 3 Credit Hours.

PHIL 3160. Environmental Ethics. 3 Credit Hours.
Comparative analysis of frameworks for interpreting science and technology, discussed in light of case studies. Selected frameworks include philosophical, historical, cognitive, and sociological. Credit not allowed for both PHIL 4174 and PST 4176.

PHIL 4110. Theories of Knowledge. 3 Credit Hours.
Critical examination of perception, verification, apriori and aposteriori knowledge, meaning and criteria of truth, and cognitive significance of scientific and philosophical propositions. Evolution of epistemology. Credit not allowed for both PHIL 4110 and PST 4110.

PHIL 4174. Perspectives in Science and Technology. 3 Credit Hours.
Comparative analysis of frameworks for interpreting science and technology, discussed in light of case studies. Selected frameworks include philosophical, historical, cognitive, and sociological. Credit not allowed for both PHIL 4174 and PST 4176.

PHIL 4176. Environmental Ethics. 3 Credit Hours.
Combinational and normative foundations of environmental attitudes and values. Impacts of traditional and modern beliefs that shape human attitudes toward nature on creating a more compatible relationship between humans and their environment. Credit not allowed for both PHIL 4176 and PST 4176.

PHIL 4198. Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHIL 4199. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHIL 4752. Philosophical Issues in Computation. 3 Credit Hours.
Introduction to metaphysical and epistemological issues in foundations, methods, and implications of computing. Issues include: minds, brains, and machines; representation and language; simulating nature. Credit not allowed for both PHIL 4752 and PST 4752. Crosslisted with CS 4752.

PHIL 4790. Semi-Cognitive Science. 3 Credit Hours.
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Credit not allowed for both PHIL 4790 and PST 4790 (or CS 4790, PSYC 4790, ISYE 4790).
PHYS 4803. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

PHIL 4811. Special Topics. 1 Credit Hour.
Topics of interest not covered in the regular course offerings.

PHIL 4812. Special Topics. 2 Credit Hours.
Topics of interest not covered in the regular course offerings.

PHIL 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

PHIL 4814. Special Topics. 4 Credit Hours.
Topics of interest not covered in the regular course offerings.

PHIL 4815. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular courses offerings.

PHIL 4901. Special Problems. 1-21 Credit Hours.

PHIL 4902. Special Problems. 1-21 Credit Hours.

PHIL 4903. Special Problems. 1-21 Credit Hours.

PHIL 4XXX. Philosophy, Sci&Tech Elec. 1-21 Credit Hours.

PHIL 6000. Responsible Conduct of Research (RCR). 1 Credit Hour.
An introduction to the concepts guiding the responsible conduct of research. Students will learn about the ethical norms and guidelines within different fields of research.

PHIL 6010. Biotechnology and Research Ethics. 2 Credit Hours.
This course focuses on ethical issues in biotechnological fields. The course is designed to satisfy Georgia Tech RCR policy’s requirements for "in-person" training.

PHIL 6710. Ethics of Biotechnology and Bioengineering Research. 3 Credit Hours.
This course examines the ethics of biotechnological research, including issues in the realm of research ethics, bioethics, and healthcare robotics.

Physics (PHYS)

PHYS 1000. Physics Orientation. 1 Credit Hour.
Guest lectures will describe career opportunities in physics; the role physicists play in education, government, and industrial laboratories; and programs available to physics majors.

PHYS 11X1. Transfer Non-Calc Phys I. 1-21 Credit Hours.

PHYS 11X2. Transfer Non-Calc PhysII. 1-21 Credit Hours.

PHYS 1XXX. Physics Elective. 1-21 Credit Hours.

PHYS 2001. Physics of Space and Time. 2 Credit Hours.
The development of physics concepts and doctrines from early times to the near future, with social and philosophical correlates.

PHYS 2021. Introduction to Astronomy I. 3 Credit Hours.
This course covers Ancient and Renaissance astronomy, gravity, sky phenomena, telescopes, and the solar system.

PHYS 2022. Introduction to Astronomy II. 3 Credit Hours.
This course covers optics, telescopes, stellar characteristics and evolution, galaxies, the universe, and the big bang. Physics topics include mechanics, optics, atomic physics, nuclear physics, and relativity.

PHYS 2030. Physics Of Music. 2 Credit Hours.
An introduction to the physical principles underlying the production, transmission, and detection of musical sounds.

PHYS 2211. Introductory Physics I. 4 Credit Hours.
A calculus-based course with a laboratory covering classical mechanics, applications of classical mechanics, oscillations, and waves.

PHYS 2212. Introductory Physics II. 4 Credit Hours.
A calculus-based course with laboratory covering electromagnetism, applications of electromagnetism, light, and modern physics.

PHYS 2213. Introduction to Modern Physics. 3 Credit Hours.
A survey of twentieth century physics. Developments of several branches of physics up to their present frontiers, including historical and philosophical perspectives.

PHYS 2231. Honors Physics I. 5 Credit Hours.
Parallels introductory Physics I (PHYS 2211). Some topics treated in more depth or more extensively. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 2232. Honors Physics II. 5 Credit Hours.
Parallels introductory Physics II (PHYS 2212). Some topics treated in more depth or more extensively. No modern physics content. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 25X1. Transfer Physics I. 4 Credit Hours.

PHYS 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 2750. Physics of the Weather. 3 Credit Hours.
An introductory treatment applying basic physical laws to understanding weather phenomena. Crosslisted with EAS 2750.

PHYS 2801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2808. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2809. Special Topics. 5 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2900. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2901. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2902. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2903. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2904. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2905. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2906. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2907. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2908. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2909. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2910. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.

PHYS 2911. Special Problems. 1-21 Credit Hours.
Courses in special topics of current interest in physics are offered from time to time.
PHYS 3043. Principles of Quantum Mechanics. 3 Credit Hours.
A first introduction to wave mechanics, with emphasis on practical calculations. The rules of quantum mechanics will be illustrated by many working examples.

PHYS 3122. Electrostatics and Magnetostatics. 3 Credit Hours.
First of two courses on the physics of electromagnetism. Topics include Coulomb's Law, Ampere's Law, scalar and vector potentials, Laplace's equation and electric and magnetic fields in matter.

PHYS 3123. Electrodynamics. 3 Credit Hours.
Second of two courses on the physics of electromagnetism. Topics include time-dependent phenomena including Faraday's Law, the Maxwell equations, electromagnetic radiation, and electromagnetic waves.

PHYS 3141. Thermodynamics. 3 Credit Hours.
Introduction to the basic concepts of thermodynamics. Thermodynamic laws will be developed with an emphasis on the macroscopic point of view. Applications of the basic principles will be considered briefly.

PHYS 3143. Quantum Mechanics I. 3 Credit Hours.
First of two courses that develop the principles of quantum mechanics. Topics include the state vector concept, Heisenberg and Schrodinger pictures, uncertainty relations, and exact solvable models in one dimension.

PHYS 3151. Mathematical Physics. 3 Credit Hours.
A review of the mathematical techniques required for the description of physical systems encountered in mechanics, electromagnetism, thermal physics, and quantum mechanics.

PHYS 3201. Classical Mechanics I. 3 Credit Hours.
Dynamics of particles including oscillations and planetary motion, rotation of rigid bodies, and collisions.

PHYS 3202. Classical Mechanics II. 3 Credit Hours.
A continuation of PHYS 3201. Topics include Lagrangians and Hamiltonian techniques, and many body mechanics.

PHYS 3211. Electronics I. 5 Credit Hours.
A first course in both theoretical and applied electronics that is based on a thorough grounding in circuit as well as device physics.

PHYS 3223. Geometrical Optics and Lens Design. 3 Credit Hours.
Principles of geometrical optics using ray tracing techniques. Stops, pupils, aberrations, and photometry. Design and analysis of lenses using current lens design software.

PHYS 3224. Geometrical Optics Laboratory. 2 Credit Hours.
Measurement of parameters of optical surfaces, lenses, and systems using a variety of techniques.

PHYS 3225. Modern Optics. 3 Credit Hours.
Principles of wave propagation, coherence, polarization, diffraction, and Fourier Optics; laser theory including the interaction of light with matter.

PHYS 3226. Advanced Optical Physics Laboratory. 2 Credit Hours.
Measurement of parameters of optical surfaces, lenses, and systems using a variety of modern optics techniques.

PHYS 3232. Optics I. 3 Credit Hours.
Optics principles, including waves, reflection, refraction, absorption, scattering, group velocity, lasers, polarization geometrical optics, the Fourier transform, coherence, interference, and diffraction.

PHYS 3265. Introduction to Acoustics. 3 Credit Hours.
A course in classical acoustics and applied electroacoustics taught through the palliative of a study of sound reinforcement and reproduction systems.

PHYS 3266. Computational Physics. 4 Credit Hours.
Computer solutions of realistic physics problems such as projectiles in resistive media, electromagnetic sources and fields, atomic scattering, and band pass filters.

PHYS 3801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3900. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3901. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3902. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3903. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3904. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3XXX. Physics ELeCtive. 1-21 Credit Hours.

PHYS 4124. Statistical Mechanics. 3 Credit Hours.
The statistical basis of thermodynamics is developed. Topics include entropy and the second law, partition functions and free energy, systems of variable particle number, and quantum statistics.

PHYS 4143. Quantum Mechanics II. 3 Credit Hours.
Second of two courses that develop the principles of quantum mechanics. Topics include angular momentum, hydrogen atom, variation methods, perturbation theory, matter-radiation interactions, identical particles.

PHYS 4147. Relativity. 3 Credit Hours.
The course provides an introduction to the special and general theories of relativity that govern gravitational physics including experimental tests, astrophysical applications, black holes and gravitational waves.

PHYS 4206. Electronics II. 5 Credit Hours.
A course in electronic instrumentation with an emphasis on signal processing, both analog and digital, and computer interfacing.

PHYS 4220. Optical Design. 3 Credit Hours.
Principles of optical and optomechanical design including tolerancing, specification, and thermal compensation of systems.

PHYS 4222. Solid-state Devices. 3 Credit Hours.
Course provides an understanding of contemporary research on solid state devices. Topics include band structure, p-n junctions, transistors, superlattices, lasers and detectors, charge coupled devices, and others.

PHYS 4247. Cosmology. 3 Credit Hours.
Modern cosmology of the universe, with the emphasis on the origin and evolution of galaxies and clusters of galaxies, inflation, the cosmic microwave background, dark matter and dark energy.
PHYS 4251. Biophysics. 3 Credit Hours.
Physical principles applied to molecular and cellular biology. Topics include chemiosmosis, self-assembly, protein biosynthesis, and the mechanisms of muscle and nerve function.

PHYS 4261. Atomic Physics. 3 Credit Hours.
Course provides an introduction to the fundamentals of atomic physics, the structure of atoms, and their interaction with static and radiation fields.

PHYS 4262. Solid-state Physics. 3 Credit Hours.
A first course in the physics of crystalline solids. Core topics include crystal lattices, diffraction, bonding, elastic properties, band theory, as well as others.

PHYS 4263. Nuclei, Particles, and Fields. 3 Credit Hours.
An introduction to nuclear and subnuclear systems. Topics include nuclear models, radioactive decay, nuclear reactions, quarks, accelerators, reactors, and stellar nucleosynthesis.

PHYS 4267. Nonlinear Dynamics and Chaos. 3 Credit Hours.
A modern introduction to nonlinear phenomena. Topics include driven oscillators, entrainment, bifurcation, fractals, and control of chaos. Examples are drawn from physical systems.

PHYS 4321. Advanced Laboratory I. 3 Credit Hours.
Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 4322. Advanced Laboratory II. 3 Credit Hours.
A continuation of PHYS 4321. Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 4347. Fundamentals of Astrophysics. 3 Credit Hours.
Theoretical investigation of astrophysical objects and processes, with an emphasis on the interstellar medium, extragalactic astrophysics, gas dynamics, and radiative transfer, and radiation processes.

PHYS 4421. Introduction to Continuum Physics. 3 Credit Hours.
A modern introduction to continuum physics. Topics include elastic theory, dislocations and waves, fluid mechanics and dynamics, and instabilities in fluids.

PHYS 4601. Senior Seminar I. 1 Credit Hour.
Representative research programs in the School are described by advanced graduate students, post-doctoral fellows and faculty members.

PHYS 4602. Senior Seminar II. 1 Credit Hour.
Representative research programs in the school are described by advanced graduate students, post-doctoral fellows, and faculty members.

PHYS 4655. Introductory Diffraction Studies. 4 Credit Hours.
Introductory theory and practice of x-ray and neutron diffraction techniques, including single crystals and powders. Laboratory work is strongly correlated with principles developed in the lectures.

PHYS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 4751. Laser Theory and Applications. 3 Credit Hours.
Provides an introduction to the theory and applications of laser principles and related instrumentation. Emphasis is on the fundamental principles underlying laser action. Crosslisted with ECE 4751.

PHYS 4782. Quantum Information and Quantum Computing. 3 Credit Hours.
Introduction to quantum computing and quantum information theory, formalism of quantum mechanics, quantum gates, algorithms, measurements, coding, and information. Physical realizations and experiments. Crosslisted with MATH 4782.

PHYS 4801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4813. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4823. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4833. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4854. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4900. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4901. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4902. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4903. Special Problems. 2 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4904. Special Problems. 4 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4XXX. Physics Elective. 1-21 Credit Hours.

PHYS 6011. Nuclear and Particle Physics. 3 Credit Hours.
Quantum mechanics of nuclear and subnuclear systems. Topics include shell, collective and pairing models; multi-quark systems; group theoretical and dynamic algebra techniques.

PHYS 6101. Classical Mechanics I. 3 Credit Hours.
Newtonian mechanics, Hamilton's variational principle, Lagrangian and Hamiltonian mechanics, central forces, rigid body motion, and small oscillations.

PHYS 6102. Classical Mechanics II. 3 Credit Hours.
Canonical transformations, Hamilton-Jacobi theory, canonical perturbation theory, and an introduction to the Lagrangian formulations for continuous systems and fields.

PHYS 6103. Electromagnetism I. 3 Credit Hours.
PHYS 6104. Electromagnetism II. 3 Credit Hours.
Theory of generation of electromagnetic waves, their propagation,
scattering, and diffraction. Covariant formulation of electrodynamics and
application to radiation from charged particles.

PHYS 6105. Quantum Mechanics I. 3 Credit Hours.
an axiomatic development of quantum mechanics. Topics include linear
vector spaces, linear operators, infinitesimal transformations, function
space, representation and transformation groups.

PHYS 6106. Quantum Mechanics II. 3 Credit Hours.
Applications of quantum mechanics. Topics include systems with spin
and angular momentum, atomic structure, time-dependent phenomena,
scattering, and various methods of modeling and approximations.

PHYS 6107. Statistical Mechanics I. 3 Credit Hours.
Equilibrium statistical mechanics for closed and open systems.
Probability distribution for classical and quantum systems. Partition
functions and associated thermodynamical potentials.

PHYS 6110. Survey of Physics. 5 Credit Hours.
This course provides a review of basic theories in classical and quantum
physics through the solution of problems. It provides an excellent
presentation for students planning to take the doctoral qualifying exam.
This course cannot be used for credit toward a graduate degree in
physics.

PHYS 6124. Mathematical Methods of Physics I. 3 Credit Hours.
First of two courses on mathematical methods used in classical
mechanics, electromagnetism, quantum mechanics, and statistical physics. Topics include complex analysis, vectors and matrices, and
Sturm-Liouville theory.

PHYS 6125. Mathematical Methods of Physics II. 3 Credit Hours.
Second of two courses on mathematical methods. Topics include partial
differential equations, random processes, and group theory.

PHYS 6201. Applied Quantum Mechanics. 3 Credit Hours.
Basic postulates of quantum mechanics, one-dimensional energy
eigenvalue problems. Potential wells, tunneling phenomena.

PHYS 6202. Applied Electromagnetism. 3 Credit Hours.
A course centered on the solution of practical problems encountered
in the transmission and reception of electromagnetic signals via
transmission lines, waveguides, and radiation.

PHYS 6203. Solid State Physics. 3 Credit Hours.
a first course in the physics of crystalline solids. Core topics include
crystal lattices, diffraction, bonding, elastic properties, band theory, as
well as others.

PHYS 6204. Electronics I. 4 Credit Hours.
a first course in both theoretical and applied electronics that is based on
a thorough grounding in circuit as well as device physics.

PHYS 6206. Electronics II. 4 Credit Hours.
a course in electronic instrumentation with an emphasis on signal
processing, both analog and digital, and computer interfacing.

PHYS 6210. Condensed Matter Physics I. 3 Credit Hours.
Introduction to condensed matter physics. Crystal structure, electronic
and thermal properties, response to external electric and magnetic fields.

PHYS 6211. Condensed Matter Physics II. 3 Credit Hours.
Collective and many-electron properties in condensed matter systems.
Topics include second quantization, magnetism, phase transitions, and
superconductivity.

PHYS 6250. Biophysics. 3 Credit Hours.
Introduction to physical concepts connect to the workings of biological
systems at a molecular level. Topics include polymer theory of proteins,
diffusion, and bioelectricity.

PHYS 6260. Computational Physics. 3 Credit Hours.
Applications of numerical methods and computer programming to
condensed matter; astrophysical hydrodynamics, gravitational physics,
black holes and cosmology.

PHYS 6265. Atomic Physics I. 3 Credit Hours.
This course provides a detailed description of atomic structures and
interactions. It contains applications of advanced quantum mechanics to
problems in modern atomic physics.

PHYS 6267. Atomic Physics II. 3 Credit Hours.
This course will provide detailed descriptions of non-relativistic atomic/
molecular scattering/reaction processes.

PHYS 6268. Nonlinear Dynamics and Chaos. 3 Credit Hours.
A modern introduction to nonlinear phenomena. Topics include driven
oscillators, entrainment, bifurcation, fractals, and control of chaos.
Examples are drawn from physical systems.

PHYS 6300. Graduate Laboratory. 3 Credit Hours.
Experiments are conducted that demonstrate basic principles from
various fields of physics. An emphasis is placed on contemporary
concepts in modern physics.

PHYS 6567. Ultrafast Optics. 3 Credit Hours.
A modern introduction to ultrafast optical phenomena. Topics include the
generation, amplification, measurement, nonlinear optics, propagation,
focusing, shaping and applications of ultrashort laser pulses.

PHYS 6711. Optoelectronics: Materials, Processes, Devices. 3 Credit
Hours.
Optoelectronic materials, physical processes, and devices. Includes
compound semiconductor materials, excitation, recombination, gain,
and modulation processes, and devices such as emitters, detectors, and
modulators. Crosslisted with ECE 6771.

PHYS 6787. Quantitative Electrophysiology. 3 Credit Hours.
A quantitative presentation of electrophysiological systems in biomedical
organisms, emphasizing the electrical properties and modeling of neural
and cardiac cells and systems. Crosslisted with BMED and ECE 6787.

PHYS 6771. Physics Elective. 1-21 Credit Hours.

PHYS 7000. Master's Thesis. 1-21 Credit Hours.

PHYS 7123. Statistical Mechanics II. 3 Credit Hours.
Principles of nonequilibrium statistical mechanics, both classical and
quantal. Emphasis is on the dynamics of fluctuations, their measurement,
and their relationship to transport properties.

PHYS 7125. Introduction to Relativity. 3 Credit Hours.
The theory of gravity, describing how matter curves spacetime and
spacetime guides matter, with its experimental and theoretical
applications.

PHYS 7127. Cosmology & Galaxies. 3 Credit Hours.
Overview of the relevant physics that govern cosmological processes,
and galaxy formation and evolution. Topics include inflation, gravitational
collapse, large-scale clustering, and galaxy mergers.

PHYS 7129. High-Energy Astrophysics. 3 Credit Hours.
Introduction to high-energy astrophysical processes and environments,
including basic radiation mechanisms (e.g., bremsstrahlung and
Comptonization), accretion onto compact objects, and clusters of
galaxies.
PHYS 7141. Many-Particle Quantum Mechanics. 3 Credit Hours.
Quantum mechanics of interacting Fermi and Bose particles. Topics include second quantization, diagrammatic perturbation theory, variational methods, and path integrals.

PHYS 7143. Group Theory and Quantum Mechanics. 3 Credit Hours.
Foundations of group representation theory with applications in atomic, molecular, nuclear, and solid state physics.

PHYS 7147. Quantum Field Theory. 3 Credit Hours.
Introduction to quantum field theory, with an emphasis in quantum electrodynamics. Second quantization, Dirac equation, Feynman diagrams, quantum electrodynamics, electro-weak interactions.

PHYS 7150. Quantum Logics. 3 Credit Hours.
The revision of classical logic and set theory to accommodate the phenomena of quantum interference, with experimental and theoretical consequences.

PHYS 7221. Statistical Optics. 3 Credit Hours.
Phenomena in optics where randomness is dominant. Topics include random variables and processes, partial coherence, polarization, photo statistics, and imaging in random media.

PHYS 7222. Quantum Optics I. 3 Credit Hours.
Basic course on the interaction of light with matter, based on quantum theory. Applications to the laser and to the study of coherence properties of light.

PHYS 7223. Quantum Optics II. 3 Credit Hours.
Advanced treatment of the interaction of light with matter using modern methods of open quantum systems. Applications to current research.

PHYS 7224. Nonlinear Hamiltonian Dynamics and Chaos. 3 Credit Hours.
A course on nonlinear dissipative dynamical systems, with an emphasis in aspects relevant to physicists. Topics include bifurcation theory, attractors, renormalization group techniques, and pattern formation.

PHYS 7268. Spatio-Temporal Dynamics and Pattern Formation. 3 Credit Hours.
A theoretical description of dynamics and pattern formation in physical, chemical and biological systems driven out of equilibrium. Topics include linear and weakly nonlinear analysis of patterns, bifurcation theory and amplitude equations.

PHYS 7741. Robotics Professional Preparation. 1 Credit Hour.

PHYS 7742. Robotics Professional Preparation 2. 1 Credit Hour.

PHYS 7743. Robotics Professional Preparation 3. 1 Credit Hour.

PHYS 8001. Seminar. 1 Credit Hour.
Representative research programs in the School are described by advanced graduate students, post-doctoral fellows, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8002. Graduate Student Seminar. 2 Credit Hours.
Representative research programs in the School are described by advanced graduate students, post-doctoral fellows, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8740. Robotics Internship. 1-21 Credit Hours.
Graduate Internship at a partner company, GTRI or a GT Robotics lab.

PHYS 8741. Robotics Capstone Project. 3 Credit Hours.
Teams or individuals apply the knowledge and skills acquired throughout the MS program to a faculty supervised robotics project.

PHYS 8801. Special Topics. 1 Credit Hour.

PHYS 8802. Special Topics. 2 Credit Hours.

PHYS 8803. Special Topics. 3 Credit Hours.

PHYS 8804. Special Topics. 4 Credit Hours.

PHYS 8805. Special Topics. 5 Credit Hours.

PHYS 8813. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 8814. Special Topics. 4 Credit Hours.
Special Topics for Physics (lecture + supervised lab).

PHYS 8823. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 8833. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 8890. Special Problems. 1-21 Credit Hours.

PHYS 8991. Master's Practicum. 1-21 Credit Hours.

PHYS 8992. Master's Practicum. 1-21 Credit Hours.

PHYS 8993. Master's Practicum. 1-21 Credit Hours.

PHYS 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate teaching assistantship.

PHYS 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate research assistantship.

PHYS 9000. Doctoral Thesis. 1-21 Credit Hours.

Political Science (POL)

POL 1101. Government of the United States. 3 Credit Hours.
The purposes, structure, and functions of national and state governments, focusing on participation, institutions, and the policy process. Foundations of law, civil rights and civil liberties, role of the media, parties and elections, and policy processes. Credit not allowed for both POL 1101 and INTA 1200.

POL 2101. State and Local Government. 3 Credit Hours.
Politics and government processes at the state and local levels.

Psychology (PSYC)

PSYC 1101. General Psychology. 3 Credit Hours.
A survey of methods, findings, and theories of the science of mind and behavior.
PSYC 1XXX. Psychology Elective. 1-21 Credit Hours.
PSYC 2005. Exploring Multicultural Identities. 3 Credit Hours.
This course explores multicultural identities and key multicultural competencies needed to succeed in a global and international society.

PSYC 2015. Research Methods. 4 Credit Hours.
Introduction to methods used in conducting research on human behavior. Experimental research emphasized, but course covers other methods and some statistics.

PSYC 2020. Psychological Statistics. 4 Credit Hours.
Introduction to probability and statistics as applied to psychological data. Tests for means, variances, correlation, ANOVA, and regression. Credit not allowed for both PSYC 2020 and PSYC 6022.

PSYC 2103. Human Development Over the Life Span. 3 Credit Hours.
Theories and issues in human development including cognitive, social, and emotional development. The course is organized topically rather than chronologically.

PSYC 2130. Introduction to Educational Psychology. 3 Credit Hours.
Introduction to Educational Psychology applies the basic principles of child and adolescent development to the study of teaching and learning.

PSYC 2210. Social Psychology. 3 Credit Hours.
Consideration of the behavior of individuals in social contexts, including interpersonal and group settings.

PSYC 2220. Industrial/Organizational Psychology. 3 Credit Hours.
An introduction to industrial/organizational psychology providing an overview of behavior in the workplace and psychology applied in industrial and organizational settings.

PSYC 2230. Abnormal Psychology. 3 Credit Hours.
This course surveys the spectrum of psychiatric disorders (symptoms, epidemiology, etiology, and treatment) and provides a perspective on adaptive functioning and psychological resilience.

PSYC 2240. Personality Theory. 3 Credit Hours.
Introduction to major approaches to personality theory.

PSYC 2250. Cross-Cultural Psychology. 3 Credit Hours.
This course provides students with an opportunity to learn about the similarities and differences in human behavior across cultures.

PSYC 2270. Introduction to Engineering Psychology. 3 Credit Hours.
Engineering psychology presented as an integral component in the design and evaluation of human-machine systems. Applied problems and general methodological questions are examined.

PSYC 2280. Psychology of Creativity and Art. 3 Credit Hours.
Evolutionary theories of art production and consumption; the psychology of aesthetics; psychological correlates of creative and artistic behavior.

PSYC 2400. Psychology and Contemporary Issues in Society. 3 Credit Hours.
Contributions of psychology to an appreciation of selected contemporary issues.

PSYC 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of the faculty member.

PSYC 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PSYC 2760. Human Language Processing. 3 Credit Hours.
Theories and research in psycholinguistics: how people comprehend and speak human languages. Includes speech perception, word recognition, parsing, sentence interpretation, word production, and sentence generation. Crosslisted with LING 2760.

PSYC 2801. Special Topics. 1 Credit Hour.
Special topics of current interest.

PSYC 2802. Special Topics. 2 Credit Hours.
Special topics of current interest.

PSYC 2803. Special Topics. 3 Credit Hours.
Special topics of current interest.

PSYC 2901. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

PSYC 2902. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

PSYC 2903. Special Problems. 1-21 Credit Hours.
Special problems of current interest.

PSYC 2XXX. Psychology Elective. 1-21 Credit Hours.

PSYC 3011. Cognitive Psychology. 4 Credit Hours.
Exploration of the central aspects of human cognition including pattern recognition, attention, memory, language, categorization, problem solving, and decision making; phenomena and methods are stressed. Credit not allowed for both PSYC 3011 and PSYC 3012.

PSYC 3012. Introduction to Cognitive Psychology. 3 Credit Hours.
Examines the foundations of Cognitive Psychology including methods, analysis techniques and psychological theories involved in perception, attention, memory, problem solving, decision making, and language. Credit not allowed for both PSYC 3012 and PSYC 3011.

PSYC 3020. Biopsychology. 3 Credit Hours.
Neurophysiological, endocrinological, and biochemical bases of sensory and motor functioning, motivation, learning, memory, and behavior dysfunction.

PSYC 3031. Experimental Analysis of Behavior. 4 Credit Hours.
History, theory, and methods of behavior analysis. Topics include shaping, stimulus-stimulus and response-consequence contingencies, stimulus control, and choice.

PSYC 3040. Sensation and Perception. 3 Credit Hours.
An examination of how sensations and perceptions are processed by humans. Topics covered will include vision, hearing, the skin senses, taste, smell, and the vestibular senses.

PSYC 3041. Human Sensation and Perception. 4 Credit Hours.
An examination of human sensory systems and perceptual processes. For Psychology majors only.

PSYC 3750. Human Computer Interface Design and Evaluation. 3 Credit Hours.
Human computer interface is considered in terms of user-system compatibility. Concepts in human factors and interface design are covered in relation to capabilities of both humans and computers. Crosslisted with CS 3750.

PSYC 3790. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and ISYE 3790.
PSYC 3XXX. Psychology Elective. 1-21 Credit Hours.

PSYC 4010. Human Abilities. 3 Credit Hours.
Introduction to differential psychology providing an overview of differences in humans. Topics such as abilities, temperament, and group differences (e.g., gender) are addressed.

PSYC 4011. Cognitive Psychology. 4 Credit Hours.
Exploration of the central aspects of human cognition including pattern recognition, attention, memory, language, categorization, problem solving, and decision making; phenomena and methods are stressed. Credit will not be awarded for both PSYC 4011 and PSYC 3011.

PSYC 4020. Biopsychology. 3 Credit Hours.
Neurophysiological, endocrinological, and biochemical bases of sensory and motor functioning, motivation, learning, memory, and behavior dysfunction. Credit will not be awarded for both PSYC 4020 and PSYC 3020.

PSYC 4025. Learning and Memory. 3 Credit Hours.
Research and applications concerning acquisition of new behavior and knowledge, including accounts based on classical and instrumental conditioning and information-processing models of memory and learning.

PSYC 4031. Applied Experimental Psychology. 4 Credit Hours.
Consideration of the applications of methods and data of experimental psychology. Understanding of human capabilities and limitations is applied to design of technology and environments.

PSYC 4041. Human Sensation and Perception. 4 Credit Hours.
An examination of human sensory systems and perceptual processes. Credit will not be awarded for both PSYC 4041 and PSYC 3041.

PSYC 4050. History and Systems. 3 Credit Hours.
A survey of the history, methods, and content of modern psychological theory, research, and application. Schools of psychology (e.g., structuralism, functionalism, behaviorism, gestalt psychology) and central theories of psychology will be reviewed in their historical and philosophical context.

PSYC 4090. Cognitive Neuroscience. 3 Credit Hours.
Examination of the neural basis of cognitive function. Basic anatomy and methods are covered. Primary focus is on contemporary problems in the neurocognitive study of perception, memory, language, and attention, as well as disorders in these domains.

PSYC 4100. Behavioral Pharmacology. 3 Credit Hours.
An analysis of drug-behavior interactions with emphasis on basic pharmacology, role of contingencies in drug effects, mechanisms of drug dependency, drugs as stimuli, and basic neuropharmacology.

PSYC 4200. Advanced Topics in Cognitive Psychology. 3 Credit Hours.
An advanced survey in various topics in cognitive psychology. Topics will vary over time.

PSYC 4260. Psychology of Aging. 3 Credit Hours.
Survey of research concerned with the nature and causes of adult age differences in behavior.

PSYC 4270. Psychological Testing. 3 Credit Hours.
Fundamentals of psychological test construction (reliability and validity) and applications of intelligence, personality, and interest assessment. Topics will include theoretical, practical, ethical, and legal issues.

PSYC 4600. Senior Thesis I. 3 Credit Hours.
The first of a two course sequence in which selected students conduct original work under the direction of a faculty member. The student will produce a proposal for research that will be undertaken during the second course (PSYC 4601).

PSYC 4601. Senior Thesis II. 4 Credit Hours.
The second of a two course sequence in which selected students conduct original work under the direction of a faculty member.

PSYC 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PSYC 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PSYC 4770. Psychology and Environmental Design. 3 Credit Hours.

PSYC 4790. Seminar in Cognitive Science. 3 Credit Hours.
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and ISYE 4790.

PSYC 4791. Integrative Project in Cognitive Science. 3 Credit Hours.
An integrative course in cognitive science focusing on the integration and use of concepts and skills from cognitive science. A different integrative project or set of projects will be taken on each semester; students will contribute on the basis of their background and skills. Crosslisted with CS, ISYE, and PST 4791.

PSYC 4792. Design Project in Cognitive Science. 3 Credit Hours.
Individual project with a cognitive science faculty member, designed as a supplement to the student's senior design project or thesis in their major area. Crosslisted with CS, ISYE, and PST 4792.

PSYC 4803. Special Topics. 3 Credit Hours.
Special topics or courses of an experimental nature.

PSYC 4813. Special Topics. 3 Credit Hours.
Special topics or courses of an experimental nature.

PSYC 4823. Special Topics. 3 Credit Hours.
Special topics or courses of an experimental nature.

PSYC 4833. Special Topics. 3 Credit Hours.
Special topics or courses of an experimental nature.

PSYC 4900. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4901. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4902. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4903. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4904. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4905. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4906. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.
PSYC 4906. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4907. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4908. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4909. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4910. Special Problems. 1-21 Credit Hours.
Students engage in individual and group projects under the direction of a faculty member.

PSYC 4XXX. Psychology Elective. 1-21 Credit Hours.

PSYC 6000. Responsible Conduct of Research (RCR). 1 Credit Hour.
Topics include research misconduct, data management, use of animal and human subjects, conflicts of interest and commitment, authorship, publication, peer review, and collaboration and mentoring.

PSYC 6011. Cognitive Psychology. 3 Credit Hours.
Survey course on human cognition including pattern recognition, attention, memory, categorization, problem solving, consciousness, decision making, intention, and the relation between mind and brain.

PSYC 6012. Social Psychology. 3 Credit Hours.
Fundamental theory and research in social behavior including social perception/cognition, attitude formation and change, social influences, and group processes.

PSYC 6013. Biopsychology. 3 Credit Hours.
Neurophysiological, endocrinological, and biochemical bases of sensory and motor functioning, motivation, learning, memory, and behavior dysfunction.

PSYC 6014. Sensation and Perception. 3 Credit Hours.
This course examines how sensations and perceptions of the outside world are processed by humans, including physiological, psychophysical, ecological, and computational perspectives.

PSYC 6015. Developmental Psychology. 3 Credit Hours.
Overview of concepts, assumptions, methods, theories, and research in human development across the life span including cognitive, emotional, and social behavior.

PSYC 6016. Experimental Analysis of Behavior. 3 Credit Hours.
Conceptual, methodological, and theoretical issues in the experimental analysis of behavior with special emphasis on classical and operant conditioning as foundations for complex behavior.

PSYC 6017. Human Abilities. 3 Credit Hours.
Theory, methods, and applications of research on human abilities, including intelligence, aptitude, achievement, learning, aptitude treatment interactions, information processing correlates, and measurement issues.

PSYC 6018. Principles of Research Design. 3 Credit Hours.
Introduction to basic principles and practices of empirical research in psychology. Covers both experimental and correlational methods and designs.

PSYC 6019. Statistical Analysis of Psychological Data I. 5 Credit Hours.
Introductory treatment of descriptive and inferential statistics as applied to psychological research.

PSYC 6020. Statistical Analysis of Psychological Data II. 5 Credit Hours.
Introductory treatment of inferential statistics, especially the general linear model, as applied to psychological research.

PSYC 6021. Personality Theories. 3 Credit Hours.
Survey of personality theories, research, and methods of assessment.

PSYC 6022. Psychological Statistics for HCI. 4 Credit Hours.
Introduction to statistical methods as applied to psychological data within the HCI domain. Credit not allowed for both PSYC 6022 and PSYC 2020.

PSYC 6023. Psychological Research Methods for HCI. 4 Credit Hours.
Introduction to psychological research methods within the HCI domain. Credit not allowed for both PSYC 6023 and PSYC 2020.

PSYC 6031. Engineering Psychology: Analysis Techniques. 2 Credit Hours.
This course covers the basic analysis techniques used to investigate human-machine systems and human performance.

PSYC 6032. Engineering Psychology: Environmental Stressors and Performance. 1 Credit Hour.
This course covers environmental stressors and their influence on human performance. Emphasis will be placed on noise, lighting, micro-gravity and atmospheric conditions.

PSYC 6033. Engineering PsyC: Cognitive Ergonomics. 1 Credit Hour.
This course applies the research findings from cognitive psychology to the design of products and systems that involve people.

PSYC 6034. Engineering PsyC: Displays. 1 Credit Hour.
This course covers the basic human factors principles involved in display formatting.

PSYC 6035. Engineering PsyC: Controls and Workspace. 1 Credit Hour.
This course covers the basic human factors principles involved in controls and workspace layout.

PSYC 6040. Current Topics in Cognition and Brain Sciences. 1 Credit Hour.
This course presents current research topics in cognition and brain science.

PSYC 6041. Current Topics in Cognitive Aging. 1 Credit Hour.
This course presents current research topics in cognitive aging.

PSYC 6042. Neuroimaging: From Image to Inference. 3 Credit Hours.
This course details the potential and limits of fMRI and critically evaluates the inferences that can be drawn from fMRI studies.

PSYC 6043. Engineering Psychology Research Seminar. 1 Credit Hour.
This course presents current research topics in engineering psychology.

PSYC 6060. Psychology of Aging. 3 Credit Hours.
A survey covering psychological aspects of aging, mind, and behavior (perception, cognition, emotion, mental health) and topics relevant to adulthood (e.g. caregiving and retirement).

PSYC 6090. Cognitive Neuroscience. 3 Credit Hours.
Examines the foundations of Cognitive Neuroscience, including the biological mechanisms underlying cognition, the dominant theories, and the experimental techniques.

PSYC 6270. Psychological Testing. 3 Credit Hours.
Fundamentals of psychological testing. Topics include test construction and application issues.

PSYC 6750. Human-Computer Interface. 3 Credit Hours.
Describes the characteristics of interaction between humans and computers and demonstrates techniques for the evaluation of user-centered systems. Crosslisted with CS 6750.
PSYC 6753. Human-Computer Interaction—Professional Preparation and Practice. 1 Credit Hour.
Preparation for a professional career in HCI. Speakers. Atlanta-area lab visits. Career trajectories. Project presentations. Technical, resume and interviewing skills. Atlanta-area HCI resources. Credit not allowed for both PSYC 6753 and CS 6753 or LCC 6753.

PSYC 6755. Human-Computer Interaction Foundations. 3 Credit Hours.
Describes the theory and practice of designing effective and efficient interactions between people and technology.

PSYC 6795. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS and ISYE 6795.

PSYC 6998. HCI Master's Project. 1-9 Credit Hours.
Final project for students completing a Human-Computer Interaction master's degree. Repeatable for multi-semester projects.

PSYC 6XXX. Psychology Elective. 1-21 Credit Hours.

PSYC 7000. Master's Thesis. 1-21 Credit Hours.

PSYC 7020. Survey of Cognitive Aging. 3 Credit Hours.
Introduction to theory and research on adult cognitive development, including intelligence, attention, memory, and problem solving.

PSYC 7101. Engineering Psychology I: Methods. 3 Credit Hours.
Basic methods used to study human-machine systems including both system analysis and human performance evaluation techniques. These methods will be applied to specific systems.

PSYC 7102. Engineering Psychology II: Displays, Controls, and Workspace. 3 Credit Hours.
Basic principles of human factors for the design, evaluation, and use of displays, controls, and workspace layouts including new technologies and associated human factors problems.

PSYC 7103. Engineering Psychology III: Environmental Stressors and Human Performance. 3 Credit Hours.
Environmental stressors and their influences on human performance, physiological function, and emotional responses including work/rest cycles, jetlag, noise, vibration, glare, weightlessness, etc.

PSYC 7104. Psychomotor and Cognitive Skill Learning and Performance. 3 Credit Hours.
Human capabilities and limitations for learning and performing psychomotor and cognitive skills are studied.

PSYC 7105. First-year Research Project I. 3 Credit Hours.
First year graduate students will initiate a research project.

PSYC 7106. First-year Research Project II. 3 Credit Hours.
First year graduate students will complete a research project.

PSYC 7201. Industrial/Organizational Psychology. 3 Credit Hours.
This course introduces an overview of issues relevant to behavior in the workplace and psychology applied in industrial and organizational settings.

PSYC 7202. Employee Selection. 3 Credit Hours.
The course provides a conceptual framework for personnel selection guided by scientific principles, research, and theory as well as by professional, legal, and technical guidelines.

PSYC 7203. Motivation and Job Attitudes. 3 Credit Hours.
Examines theory and pragmatics in description, prediction, and measurement of work-related behavior and associated evaluations. Includes theoretical and methodological problems in field and laboratory contexts.

PSYC 7204. Training and Development. 3 Credit Hours.
This course will focus on theory, principles, techniques, and practices relevant to training and developing human resources. Research and professional literature will be examined.

PSYC 7301. Introduction to Multivariate Statistics. 3 Credit Hours.
Foundations for multivariate analysis including properties of linear composite variables, multiple regression, multiple and partial correlation, MANOVA, factor analysis, multiple discriminant analysis, canonical correlation, etc.

PSYC 7302. Structural Equation Modeling. 3 Credit Hours.
Methods of causal modeling to study causal relations including issues of causality, establishing causality, fundamentals of linear structural equation modeling with latent variables, fitting models.

PSYC 7303. Psychometric Theory. 3 Credit Hours.
Preparation of students in statistical theory and techniques relevant to becoming professionally involved in construction, analysis, and evaluation of psychology and personnel tests.

PSYC 7700. Professional Problems. 2 Credit Hours.
Discussion of issues faced by professional psychologists in the areas of teaching, research, and professional practice. Ethical issues in all of these areas are emphasized.

PSYC 7701. Teaching Practicum. 2 Credit Hours.
Supervised college teaching including techniques, course and curriculum design, evaluation. Students will prepare and present lectures with direct observations and video taping for discussion.

PSYC 7790. Cognitive Modeling. 4 Credit Hours.
A hands-on course covering a range of cognitive modeling methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with CS and ISYE 7790.

PSYC 7999. Preparation for Doctoral Qualifying Exam. 1-21 Credit Hours.

PSYC 8000. Seminar in Experimental Psychology. 3 Credit Hours.
Critical examination of current problems in a selected area of general experimental psychology. Areas to be discussed may vary each time course is offered.

PSYC 8010. Seminar in Cognitive Psychology. 3 Credit Hours.
Critical examination of current problems in a selected area of cognitive psychology. Areas to be discussed may vary each time course is offered.

PSYC 8020. Seminar in Cognitive Aging. 3 Credit Hours.
Critical examination of current problems in a selected area of cognitive aging. Areas to be discussed may vary each time course is offered.

PSYC 8030. Seminar in Comparative Psychology. 3 Credit Hours.
Critical examination of current problems in a selected area of comparative psychology. Areas to be discussed may vary each time course is offered.

PSYC 8040. Seminar in Engineering Psychology. 3 Credit Hours.
Critical examination of current problems in a selected area of engineering psychology. Areas to be discussed may vary each time course is offered.
PSYC 8050. Seminar in Industrial/Organizational Psychology. 3 Credit Hours.
Critical examination of current problems in a selected area of industrial/
organizational psychology. Areas to be discussed may vary each time
course is offered.

PSYC 8060. Seminar in Quantitative Psychology. 3 Credit Hours.
Presentation and discussion of quantitative approaches to psychology.
Topics will vary, but might include neural networks, measurement theory,
behavioral ecology, modeling, system dynamics, etc.

PSYC 8070. Seminar in Cognitive Neuroscience. 3 Credit Hours.
Critical examination of current problems in selected areas of cognitive
neuroscience. Areas to be discussed vary each time.

PSYC 8080. Seminar in Cognition and Brain Science. 3 Credit Hours.
Critical examination of current problems in selected areas of cognition
and brain sciences. Areas to be discussed may vary each time.

PSYC 8795. Colloquium in Cognitive Science. 1 Credit Hour.
Reading of research papers by leading cognitive scientists, attendance at
their colloquia, and meeting with them to discuss research. Crosslisted
with CS and ISYE 8795.

PSYC 8802. Topics in CogNeuro. 2 Credit Hours.
Covers current issues and recent advances in cognitive neuroscience.

PSYC 8803. Special Topics in Applied Statistics. 3 Credit Hours.
Covers current issues and recent advances in the application of
statistical methods to research in psychology. Instructors select the
specific focus for a given term.

PSYC 8804. Special Topics in Cognitive Aging. 3 Credit Hours.
Covers current issues and recent advances in cognitive aging.

PSYC 8805. Special Topics in Cognitive Neuroscience. 3 Credit Hours.
Covers current issues and recent advances in cognitive neuroscience.

PSYC 8806. Special Topics in Cognitive Psychology. 3 Credit Hours.
Covers current issues and recent advances in cognitive psychology.

PSYC 8807. Special Topics in Engineering Psychology. 3 Credit Hours.
Covers current issues and recent advances in Engineering Psychology.

PSYC 8811. Special Topics. 1 Credit Hour.
Special topics that cover current issues and recent advances in
Psychology.

PSYC 8812. Special Topics. 2 Credit Hours.
Special topics that cover current issues and recent advances in
Psychology.

PSYC 8890. Special Topics in Cognitive Science. 3 Credit Hours.

PSYC 8900. Special Problems in Experimental Psychology. 1-21 Credit
Hours.
Students conduct research under direction of a faculty member on
problems in the general area of experimental psychology.

PSYC 8901. Special Problems in Engineering Psychology. 1-21 Credit
Hours.
Students conduct research under the direction of a faculty member on
problems in the general area of engineering psychology.

PSYC 8902. Special Problems in Industrial/Organizational Psychology.
1-21 Credit Hours.
Students conduct research under the direction of a faculty member
on problems investigating some psychological aspect of industrial/
organizational problems.

PSYC 8903. Special Problems in Human-Computer Interaction. 1-21
Credit Hours.
Students conduct research under the direction of a faculty member on
problems in the general area of human-computer interaction.

PSYC 8904. Special Problems in Cognitive Aging. 1-21 Credit Hours.
Students conduct research under the direction of a faculty member on
problems in cognitive aging.

PSYC 8905. Special Problems in Cognitive Neuroscience. 1-21 Credit
Hours.
Students conduct research under the direction of a faculty member on
problems in cognitive neuroscience.

PSYC 8906. Special Problems in Cognitive Psychology. 1-21 Credit
Hours.
Students conduct research under the direction of a faculty member on
problems in cognitive psychology.

PSYC 8907. Special Problems in Cognition & Brain Science. 1-21 Credit
Hours.
Students conduct research under the direction of a faculty member on
problems in cognition and brain sciences.

PSYC 8908. Special Problems in Quantitative Psychology. 1-21 Credit
Hours.
Students conduct research under the direction of a faculty member on
problems in quantitative psychology.

PSYC 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a teaching assistantship.

PSYC 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a research assistantship.

PSYC 9000. Doctoral Thesis. 1-21 Credit Hours.

Polymer, Textile and Fiber Eng (PTFE)

PTFE 9000. Doctoral Thesis. 1-21 Credit Hours.

Public Policy/Joint GSU PhD (PUBJ)

PUBJ 8000. Joint Doctoral Program with Georgia State university. 1-21
Credit Hours.
Placeholder course for students in the joint Doctoral program in Public
Policy with Georgia State University as their home institution. Used to
maintain Georgia Tech student status.
Public Policy (PUBP)

PUBP 1142. Teams and Collaboration. 3 Credit Hours.
Exposes students to essential theories and concepts for analyzing, understanding, and managing teams in the context of complex interdependent public problems. Credit not awarded for both PUBP 1142 and PUBP 2142.

PUBP 1XXX. Public Policy Elective. 1-21 Credit Hours.

PUBP 2010. Political Processes. 3 Credit Hours.
Introduction to political models and theories of policy making. Agenda-setting, stakeholder involvement, policy adoption, policy design and implementation, evaluation, and advocacy.

PUBP 2012. Foundations of Public Policy. 3 Credit Hours.
An in-depth exploration of American public policy, with emphasis on the dynamics of policymaking in policy areas such as health care, research, energy and environment, income maintenance, and economic development.

PUBP 2030. Organizations and Policy. 3 Credit Hours.
An exploration of the roles and activities of bureaucracies in the implementation of policies and programs, with emphasis on practical issues of public management. Credit not awarded for both PUBP 2030 and PUBP 3010.

PUBP 2142. Teams and Collaboration in Context. 3 Credit Hours.
Exposes students to essential theories and concepts for analyzing, understanding, and managing teams in the context of complex interdependent public problems. Credit not awarded for both PUBP 2142 and PUBP 1142.

PUBP 2651. Public Policy Internship. 1-3 Credit Hours.
Course projects related to professional internships. Topics, credit, and requirements to be arranged by student, instructor, and sponsor. Maybe taken only once.

PUBP 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PUBP 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PUBP 2803. Special Topics. 3 Credit Hours.
Courses on special topics of current interest in Public Policy.

PUBP 2XXX. Public Policy Elective. 1-21 Credit Hours.

PUBP 3000. American Constitutional Issues. 3 Credit Hours.
Examines the American social and political system through the prism of Constitutional issues decided by the U.S. Supreme Court.

PUBP 3016. Judicial Process. 3 Credit Hours.
The functions, structures, and procedures of state and federal court systems, including selection and appointment of judges, judicial activism, influences on court decisions, and enforcement of court decisions.

PUBP 3020. Applied Political Economy. 3 Credit Hours.
Roles of markets and government in allocating resources. Rational choice approaches to understanding policy. Institutional design. Growth and sustainability.

PUBP 3030. Policy Analysis. 3 Credit Hours.
The science and craft of professional problem-solving, analysis, and advice. Economic and political approaches and techniques for analysis of costs, benefits, and risks.

PUBP 3042. Data Science for Public Policy. 3 Credit Hours.
Introduces fundamentals of data science, tools, and quantitative methodologies and ethical implications for public and social applications. Topics for policy applications vary by semester.

PUBP 3120. Statistical Analysis for Public Policy. 3 Credit Hours.
Introduction to probability, descriptive statistics, inferential statistics and analysis, and spreadsheets. Emphasis application of basic statistical concepts to public policy and administration problems. Credit not allowed for both PUBP 3120 and PUBP 4113.

PUBP 3130. Research Methods and Problem Solving. 3 Credit Hours.
Conceptual and methodological issues in policy studies, including causality, explanation, models, threats to research, data collection, and assessment of applicability to policy issues. Design of research. Credit not allowed for both PUBP 3130 and PUBP 3110.

PUBP 3141. Leading Social Organizations. 3 Credit Hours.
This course is designed to give the student a sound understanding of how to lead and manage change in social organizations.

PUBP 3201. Introduction to Social Policy. 3 Credit Hours.
A survey of public policies directed toward social problems in America and their evolution and reform. Development of role of government in addressing issues related to poverty and social welfare.

PUBP 3214. African American Politics. 3 Credit Hours.
An exploration of the organizations, strategies, and issues that have defined African American political life in the post-civil rights era in the United States.

PUBP 3230. STEM Education Policy. 3 Credit Hours.
A seminar exploring the role of public policy in shaping the conduct of STEM (science, technology, engineering, and mathematics) education in the United States.

PUBP 3244. Stem Cell Science, Policy, and Ethics. 3 Credit Hours.
Examination of current state of scientific knowledge regarding stem cells and historical development, relevant ethical issues, and policy considerations.

PUBP 3315. Environmental Policy and Politics. 3 Credit Hours.
Overview of the major institutions, organizations, official and unofficial actors in environmental policy and politics, and what influences their environmental decisions and actions. Credit not allowed for both PUBP 3315 and PUBP 4314.
PUBP 3220. Climate Policy. 3 Credit Hours.
Examines relevant scientific theory and evidence, political history, policy options, alternative policy analysis frameworks, and the influence of science and scientific uncertainty on climate policy.

PUBP 3350. Energy Policy. 3 Credit Hours.
Examines policies impacting the production and utilization of energy in the U.S. and abroad. Addresses resource constraints, physical principles, and policy analysis tools and concepts.

PUBP 3502. Information and Communications Technology Policy. 3 Credit Hours.
Examination of the convergence of information technology, communications and telecommunications, policymaking within the executive/regulatory branches, special interest group role, and key domestic and international issues. Credit not allowed for both PUBP 3502 and PUBP 4512.

PUBP 3510. Politics and Policy. 3 Credit Hours.
Application of political science and other social science concepts and theories to current issues. Investigates several current topics in detail.

PUBP 3520. Globalization and Public Policy. 3 Credit Hours.
This course will serve as an introduction to the fundamental concepts, theories, conflicts, and issues of globalization and its effects on public policy.

PUBP 3600. Sustainability, Technology, and Policy. 3 Credit Hours.
Ethical, scientific, technological, economic, and political dimensions of sustainable human practices, applying multidisciplinary perspectives to challenges facing public and private-sector approaches to sustainability.

PUBP 3610. Pre-Law Seminar. 3 Credit Hours.
Examination of the legal profession and areas of legal specialization (e.g., contract, property, intellectual property, international). Emphasizes skills and values that are essential to success in law school and competent lawyering.

PUBP 3XXX. Public Policy Elective. 1-21 Credit Hours.

PUBP 4010. Policy Task Force I. 3 Credit Hours.
Capstone project in which teams of students formulate, analyze, and recommend policy options.

PUBP 4020. Policy Task Force II. 3 Credit Hours.
Capstone project in which teams of students formulate, analyze, and recommend policy options.

PUBP 4111. Internet and Public Policy. 3 Credit Hours.
Analyzes policy implications of Internet architecture (Internet protocols, domain name system, packet switching, peer-to-peer) and surveys policy issues about content, privacy, intellectual property, and governance.

PUBP 4120. Survey Research Methods. 3 Credit Hours.
Methods for producing and reporting valid surveys, including composition of questions, design and implementation of survey strategies, and analysis and communication of results.

PUBP 4130. Policy Analysis and Program Evaluation. 3 Credit Hours.
Analytical methods for rational planning and policy analysis, emphasizing "learning by doing" as students examine alternative types of policy analysis, establish evaluation criteria, and evaluate policy implementation.

PUBP 4140. Foundations of Leadership. 3 Credit Hours.
This course offers a comprehensive review of contemporary issues and perspectives on leadership, including multi-disciplinary and systems-oriented approaches as well as classic theory, moving to the examination of evolving contemporary beliefs.

PUBP 4200. Social Policy Issues. 3 Credit Hours.
A review of conceptual and analytical perspectives in social policy and coverage of major areas of persistent social problems, including health care, welfare reform, housing, education, reproductive issues, and gerontology.

PUBP 4211. Urban Policy. 3 Credit Hours.
Urban policy and urban economic development examined historically, nationally, and locally. Approaches to urban development and redevelopment.

PUBP 4212. Women and Public Policy. 3 Credit Hours.
The status of women in American society as a function of rights and opportunities conferred upon women by governmental actions and as influenced by forces of social change.

PUBP 4214. Gender, Science, Technology, and Public Policy. 3 Credit Hours.
The course focuses on the connections between gender, science, and technology, and issues of public policy.

PUBP 4226. Business and Government. 3 Credit Hours.
How government regulates business and markets, and how business exercises power and influence on government in areas such as antitrust, financial markets, safety and health, and environmental quality.

PUBP 4260. Economic Development Policy and Planning. 3 Credit Hours.
Introduction to the context, theory, processes, and practice of regional and local economic development policy and planning in the U.S. and internationally.

PUBP 4338. Environmental Impact Assessment. 3 Credit Hours.
Examines policy, planning, and methodological issues in the environmental impact assessment of engineering systems. Emphasizes regulatory aspects of environmental analysis and key analytical techniques, and the incorporation of environmental considerations into engineering design processes.

PUBP 4410. Science, Technology, and Public Policy. 3 Credit Hours.
Examination of relationships between science, technology, and government, and their mutual influence on public and private decisions.

PUBP 4414. Technology, Innovation, and Policy. 3 Credit Hours.
Theories and concepts of technological innovation and diffusion, economic development, and the role of public and private institutions in technological development at the firm, industry, regional, national, and international levels.

PUBP 4416. Critical Issues in Science and Technology. 3 Credit Hours.
Exploration of technology and technological society, going beyond utility and functionality to consider justice, meaningfulness, and self-realization. Perspectives include political economy, aesthetics, and social change.

PUBP 4440. Science, Technology, and Regulation. 3 Credit Hours.
Examines historical, legal, economic, and political rationales for regulation. Survey of administrative law and processes, risk analysis/management, expertise and public, and current topical issues. Credit not allowed for both PUBP 4440 and PUBP 6440.

PUBP 4501. Info Policy & Management. 3 Credit Hours.
Examination of the information dimensions of public and private organizations in response to the multiple types of uncertainty they face in their strategic pursuits. Credit not allowed for both PUBP 4501 and PUBP 6501.
PUBP 4514. Mass Communication Policy. 3 Credit Hours.
Examines mass media influences, activities, characteristics, and behavior with respect to the political process and government. Structure of media markets, characteristics of news and advertising, and impacts of changing technologies on political processes.

PUBP 4530. Introduction to Geographic Information Systems. 3 Credit Hours.
Overview of GIS concepts, methods, and terminology, Introduction to PC-based GIS software. Applications to marketing, natural resource management, and public information systems. Students use case studies to design and implement actual projects.

PUBP 4532. Advanced GIS Topics: Spatial Analysis, GIS Programming, and Map Internet Server. 3 Credit Hours.
Introduction to raster-based GIS software, Avenue script language, and map internet server. Applications to marketing, natural resource management, and public information systems.

PUBP 4600. Senior Seminar/Thesis. 3 Credit Hours.
A capstone course usually taken in the student's last term before graduation, the senior seminar and thesis involves writing an original paper entailing policy analysis relevant to a public or nonprofit agency.

PUBP 4609. Legal Practice. 3 Credit Hours.
This course develops skills in reading and comprehension of legal materials, analysis of legal writing, and document drafting in selected areas of law.

PUBP 4620. Environmental Law. 3 Credit Hours.
Investigation of the principal environmental laws and regulations. The class will also consider philosophical and ethical underpinnings of environmental law.

PUBP 4640. Technology Law, Policy, and Management. 3 Credit Hours.
An in-depth analysis of patent law and survey of other forms of intellectual property protection, including trademark, copyright, and trade secrets.

PUBP 4650. Internet Law. 3 Credit Hours.
Covers issues including copyright (including music/video file sharing), privacy, freedom of speech (including defamation and obscenity), jurisdiction, regulation, and crimes as applied to the Internet.

PUBP 4651. Public Policy Internship. 1-6 Credit Hours.
Course projects related to professional internships. Topics, credit, and requirements to be arranged by student, instructor, and sponsor.

PUBP 4652. OLA Legal Internship. 1-3 Credit Hours.
Supervised professional internship with the Georgia Tech Office of Legal Affairs.

PUBP 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PUBP 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PUBP 4725. Information Security Policies and Strategies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy, and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends.

PUBP 4726. Privacy, Technology, Policy and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics and law business realms. Credit will not be awarded for more than one of PUBP 4726, MGT 4726, MGT 6726, CS 4726 OR CS 6726.

PUBP 4756. Technology Forecasting and Assessment. 3 Credit Hours.
Develops skills in methods for technology monitoring, forecasting, and assessment; draws on examples in various emerging technologies. Collection and analysis of quantitative and qualitative data on emerging technologies and their implications. Crosslisted with ISYE 4756.

PUBP 4803. Special Topics. 3 Credit Hours.

PUBP 4811. Special Topics. 1 Credit Hour.
Topics of interest not covered in the regular course offerings.

PUBP 4812. Special Topics. 2 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4814. Special Topics. 4 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4815. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4823. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular offerings.

PUBP 4833. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular offerings.

PUBP 4843. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular offerings.

PUBP 4845. Special Topics. 5 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4847. Special Topics. 7 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4848. Special Topics. 8 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4850. Special Topics. 10 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4851. Special Topics. 12 Credit Hours.
Topics of interest not covered in the regular course offerings.

PUBP 4901. Special Problems. 1-21 Credit Hours.

PUBP 4902. Special Problems. 1-21 Credit Hours.

PUBP 4903. Special Problems. 1-21 Credit Hours.

PUBP 4951. Georgia Internship Program. 3 Credit Hours.
Work-study program assigning students to a project in state or local government. Students prepare research papers analyzing their work experiences relative to theory from the social science or policy studies. Spring semester only.

PUBP 4952. Legislative Internship Program. 3 Credit Hours.
Students work fulltime for the Georgia General Assembly for elected officials or committees. Students prepare research papers analyzing their work experiences relative to theory from the social science or policy studies. Spring semester only.

PUBP 4XXX. Public Policy Elective. 1-21 Credit Hours.

PUBP 6001. Introduction to Public Policy. 1 Credit Hour.
An introduction to the field of public policy, including an overview of the scope of the field and examples of public policy analysis.

PUBP 6010. Ethics and the Policy Profession. 3 Credit Hours.
Examination of the role of ethics and epistemology in public decision making including the effects of values of professionals on public policies and private sector organizations.

PUBP 6012. Fundamentals of Policy Processes. 3 Credit Hours.
The political and governmental context of policy is presented, from agenda setting to evaluation. Examine constitutional and federal contexts of policy, the role of various input mechanisms in shaping policy decisions, the processes by which government institutions make decisions (and the interactions among these institutions), and approaches for understanding and anticipating policy decision making.
PUBP 6014. Organization Theory. 3 Credit Hours.
A broad overview of the theoretical issues pertaining to the management of organizations. The course explores both "macro" (i.e. external relations, strategies, and structures) organizational issues. While this is a survey course, we will be concentrating much of our attention on current challenges to bureaucracy as a form of organization. In particular, we will be using theories to examine trends toward re-engineering corporations or re-inventing government agencies. Satisfies policy implementation, management, and organization theory requirement.

PUBP 6017. Public Management. 3 Credit Hours.
Using case studies and a field exercise, students will examine how public policies are executed and managed. Underlying the course is the assumption that public management, is the management of political authority and that strategic thinking can make for effective public management. Satisfies policy implementation, management and organization theory requirement.

PUBP 6018. Policy Implementation and Administration. 3 Credit Hours.
This course gives special attention to institutional processes in efforts to coordinate policy implementation at the federal level and within the intergovernmental context; the analysis of implementation and enforcement of policy by regulatory agencies with the support of state governments and private sector agents; challenges to implementation by policy type; and the analysis of policy tools and administrative discretion in implementation. Satisfies policy implementation, management, and organization theory requirement.

PUBP 6111. Internet and Public Policy. 3 Credit Hours.
Analyzes policy implications of Internet architecture (Internet protocols, domain name system, packet switching, peer-to-peer) and surveys policy issues about content, privacy, intellectual property, and governance.

PUBP 6112. Research Design in Policy Science. 3 Credit Hours.
The objectives for this course include: (1) providing a broad overview of research methods and research criteria; (2) giving students the opportunity to conduct data-based research and analysis; (3) providing more specialized knowledge of one set of research techniques (e.g. survey research, case studies, experimentation - varies by term); (4) providing experience in presenting and defending research.

PUBP 6114. Applied Policy Methods and Data Analysis. 3 Credit Hours.
This course will focus on how to design, carry out, present, and interpret quantitative analyses, of policy problems. Topics include probability, inferential statistics, regression analysis, general linear models, nonparametric analyses and graphical analysis, as time permits. Classes will focus on (1) the course project, (2) discussions of assigned readings and problems, and (3) data analysis using spreadsheets and a standard statistical package. Note: Students without preparation in basic statistical concepts and computer methods will be required to take appropriate courses at the 4000 level prior to admission.

PUBP 6116. Microeconomic Analysis in Public Policymaking. 3 Credit Hours.
Microeconomic theory is studied with applications to public problems. Students will be introduced to price-generating processes in an economy, demand and supply theory, market equilibrium, welfare economics, categories of market failure, and the public sector's role.

PUBP 6118. Public Finance Policy. 3 Credit Hours.
Examines the theory, practice and policy implementations of federal, state, and local government budgeting and finance. Topics include government spending decisions with a focus on aggregate demand and supply, fiscal policy, budgeting practice, introduction to cost/benefit analysis.

PUBP 6120. Cost Benefit Analysis for Policy. 3 Credit Hours.
This course introduces Cost-Benefit Analysis theory and methods. Governments and other regulators can use Cost-Benefit analysis to increase the efficiency of public policy.

PUBP 6201. Public Policy Analysis. 3 Credit Hours.
This course provides a capstone experience for public policy students. The course addresses real-world policy issues and various approaches to analyzing them. The course relies heavily on cases and exercises.

PUBP 6218. Quantitative Models in Public Policy. 3 Credit Hours.
This course lays a foundation for model building, and through the introduction of a variety of software packages will provide some hands-on experience with elementary model building. Decision models will be emphasized. Some familiarity with data analysis, probability, and statistical models is assumed. The goal of the course is to equip students with basic model building tools, familiarize them with common problems in modeling, and improve their ability to create and evaluate simple models of policy problems.

PUBP 6221. Policy and Program Evaluation. 3 Credit Hours.
Approaches to evaluation policies and programs are presented using examples and case studies to contrast evaluation methods as well as the organizational and political context for evaluation.

PUBP 6226. Business and Government. 3 Credit Hours.
Examines government regulation of business operations and the economy from a broad perspective.

PUBP 6300. Earth Systems. 3 Credit Hours.
Describes the scientific principles and interactions that make up the Earth's environmental system. The course examines the interaction of natural and human influences that shape the development and operation of the Earth system and how public and private decision-making impacts this system.

PUBP 6310. Environmental Issues. 3 Credit Hours.
Provides an overview of basic concepts and methods of environmental policy analysis and implementation through a case study approach. Cases will range from local to global environmental policy issues. The goal of the course will be to expose students to the broad range of social and physical problems referred to as "environmental" problems, and to orient the student for future work in the field.

PUBP 6312. Economics of Environmental Policy. 3 Credit Hours.
This course addresses key concepts in environmental economics, including externalities, efficiency, social welfare and environmental quality as a public good. Addresses environmental problems (i.e. water resources, air quality, urbanization) and vehicles of collective environmental action.

PUBP 6314. Policy Tools for Environmental Management. 3 Credit Hours.
Explores the various regulatory, managerial, and legal mechanisms available to policy analysts and decision makers for protecting environmental quality.

PUBP 6326. Environmental Values and Policy Goals. 3 Credit Hours.
Examines the goals and objectives of environmentalists, with special attention to the literature of environmental ethics.

PUBP 6327. Sustainability and Environmental Policy. 3 Credit Hours.
This course explores the theory and practice of sustainable development, surveying areas of consensus and controversy in emerging thought on sustainability. Credit not allowed for both PUBP 6327 and PUBP 6320.
PUBP 6330. Environmental Law. 3 Credit Hours.
Prepares students for careers in environmental law and policy analysis. Students are able to understand environmental laws, regulations, and policies. Students are also able to present the legal and institutional framework for environmental law and the role of private and public sectors in environmental policy analysis.

PUBP 6350. Energy Policy & Markets. 3 Credit Hours.
Examines policy and economic factors shaping the energy sector and the role of energy in the economy. Students are able to develop their understanding of the energy sector and its role in the economy. Students are also able to develop skills in policy analysis and economic modeling.

PUBP 6352. Utility Regulation and Policy. 3 Credit Hours.
Explores the regulation of energy and water systems, focusing on the role of state and federal rules and regulations. Students are able to understand the role of regulation in the energy sector and its implications for consumers and energy companies.

PUBP 6354. Climate Policy. 3 Credit Hours.
Examines the history and development of climate policy, focusing on the role of science and technology in climate change. Students are able to understand the scientific and technological aspects of climate change and their implications for policy making.

PUBP 6401. Science, Technology, and Public Policy. 3 Credit Hours.
Examines the relationships between science, technology, and policy, focusing on the role of science and technology in shaping public policy. Students are able to understand the role of science and technology in shaping public policy.

PUBP 6402. Research Policy and Management. 3 Credit Hours.
Examines challenges in research policy and management. Students are able to understand the role of policy in research management.

PUBP 6403. Scientific Careers and Workplaces. 3 Credit Hours.
Focuses on key social and organizational dimensions of scientific careers and workplace sectors (academia, industry, and government). Students are able to understand the role of science and technology in shaping the workplace.

PUBP 6414. Technological Innovation and Government Policy. 3 Credit Hours.
Examines the role of technological innovation in government policy. Students are able to understand the role of technology in shaping government policy.

PUBP 6415. Technology, Regions, and Policy. 3 Credit Hours.
Explores concepts, issues, and policies related to regional development, economic development, and technology policy. Students are able to understand the role of technology in shaping regional development.

PUBP 6417. Critical Perspectives on Science and Technology. 3 Credit Hours.
This course seeks to stimulate students' critical thinking about science and technology and their relationships to markets, politics, and society. Students are able to understand the role of science and technology in shaping society.

PUBP 6421. Development of Large-scale Socio-technical Systems. 3 Credit Hours.
Examines the development of large-scale sociotechnical systems. Students are able to understand the role of technology in shaping large-scale systems.

PUBP 6440. Science, Technology, and Regulation. 3 Credit Hours.
Examines the role of science and technology in shaping public policy and regulation. Students are able to understand the role of science and technology in shaping public policy.

PUBP 6501. Information Policy and Management. 3 Credit Hours.
Examines the role of information technology in shaping public policy. Students are able to understand the role of technology in shaping public policy.

PUBP 6502. Information and Communications Technology Policy. 3 Credit Hours.
Explores the role of information technology in shaping public policy. Students are able to understand the role of technology in shaping public policy.

PUBP 6514. Mass Communications Policy. 3 Credit Hours.
Explores the role of mass communications in shaping public policy. Students are able to understand the role of media in shaping public policy.

PUBP 6521. Globalization & Policy. 3 Credit Hours.
Explores the role of globalization in shaping public policy. Students are able to understand the role of globalization in shaping public policy.

PUBP 6530. Environmental Law. 3 Credit Hours.
Explores the role of environmental law in shaping public policy. Students are able to understand the role of environmental law in shaping public policy.

PUBP 6600. Foundations of Local Economic Development Planning and Policy. 3 Credit Hours.
Explores the role of economic development in shaping local policy. Students are able to understand the role of economic development in shaping local policy.

PUBP 6602. Economic Development Analysis and Practice. 3 Credit Hours.
Explores the role of economic development analysis in shaping policy. Students are able to understand the role of economic development analysis in shaping policy.

PUBP 6604. Methods of Urban Policy Analysis and Planning. 3 Credit Hours.
Explores the role of urban policy analysis in shaping policy. Students are able to understand the role of urban policy analysis in shaping policy.

PUBP 6606. Urban Development Policy. 3 Credit Hours.
Explores the role of urban development in shaping policy. Students are able to understand the role of urban development in shaping policy.

PUBP 6701. Energy Technology Policy. 3 Credit Hours.
Explores the role of energy technology in shaping policy. Students are able to understand the role of energy technology in shaping policy.

PUBP 6810. Energy Technology Policy. 3 Credit Hours.
Explores the role of energy technology in shaping policy. Students are able to understand the role of energy technology in shaping policy.
PUBP 6725. Information Security Policies and Strategies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends.

PUBP 6726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics, law, and business realms. Credit will not be awarded for more than one of PUB 6726, MGT 6726 or CS 6726.

PUBP 6727. Cyber Security Practicum. 5 Credit Hours.
Capstone independent study project placing each student in a commercial, academic or government setting where he or she identifies a major cyber security problem, and explores and evaluates a solution that addresses it with realistic assumptions about the organizational context. The chosen problem must be approved by course instructor. Cross-listed with ECE and CS 6727.

PUBP 6740. Innovation, the State and Industrial Development in International Perspective. 3 Credit Hours.
Research seminar exploring the role of the state in industrial development, innovation and business-government relations. Special attention given to science and technology policies and their influence in different international and industrial contexts. Crosslisted with INTA 6740.

PUBP 6741. Geography of Innovation. 3 Credit Hours.
Examination of the growing discussion on the knowledge economy, learning regions, innovation capacity, and place management and what those strategies mean for regional economies.

PUBP 6743. Science, Technology & Society Core Seminar. 3 Credit Hours.
This survey course covers key works in Science, Technology & Society, and guest lectures introduce students to faculty doing STS-related research across the Ivan Allen College. Credit not allowed for both PUBP 6743 and HTS 6743 or LCC 6743.

PUBP 6748. Social Justice, Critical Theory, and Philosophy of Design. 3 Credit Hours.
Focuses on social justice from a Science, Technology, and Society (STS) point of view that is informed by critical theory and philosophy of design. Credit not allowed for both PUBP 6748 and LCC 6748.

PUBP 6749. Feminist Theory and Science and Technology Studies. 3 Credit Hours.
This course is an advanced science, technology and society (STS) seminar in feminist theory. Credit not allowed for both PUBP 6749 and LCC 6749.

PUBP 6753. Comparative Science and Technology Policy. 3 Credit Hours.
Examination of the social, political, and cultural contexts of science and technology, and how they affect the research, development, and regulatory policies of nations. Crosslisted with INTA 6753.

PUBP 6760. Negotiation and Conflict Management. 3 Credit Hours.
Practical and theoretical instruction on techniques of negotiation and consensus building using training exercises and case studies. Emphasizes environmental, policy, planning, and development disputes. Crosslisted with CP 6760.

PUBP 6777. Analysis of Emerging Technologies. 3 Credit Hours.
This course develops skills in the use of selected methods for technology monitoring, forecasting, and assessment. Also examines current status and prospects in selected emerging technology domains. Crosslisted with ISYE 6777.

PUBP 6801. Research Paper. 3 Credit Hours.
Either a professional policy research paper or a team research project including a co-authored policy research monograph prepared for a government or public affairs client.

PUBP 6XXX. Public Policy Elective. 1-21 Credit Hours.

PUBP 7000. Master's Thesis. 1-21 Credit Hours.

PUBP 8101. Workshop on Policy Research I. 1 Credit Hour.
Course provides an overview of research and professional socialization. It presents topics partially satisfying GT RCR policy for in-person training. Student will brainstorm dissertation topics.

PUBP 8102. Workshop on Policy Research II. 1 Credit Hour.
Course provides an overview of public policy research and professional socialization. It completes the sequence of topics satisfying GT RCR policy for in-person training.

PUBP 8200. Advanced Research Methods I. 3 Credit Hours.
The course will cover advanced policy analysis and modeling methods, including regression models, and other topics as time permits.

PUBP 8205. Advanced Research Methods II. 3 Credit Hours.
Building on Advanced Research Methods I, the course will cover advanced policy analysis and modeling methods, for example, panel data and nonparametric regression. Other policy research methods may be explored as time permits.

PUBP 8211. Microeconomic Theory and Applications. 3 Credit Hours.
Extensions of microeconomic theory-consumer theory, firm theory, and markets-to situations involving many periods and uncertainty. Introduces students to general equilibrium, externality, and welfare economics.

PUBP 8500. Research Seminar in Public Policy. 3 Credit Hours.
Exploration of the purpose of and approaches used in public policy research. Requires development of original empirical research.

PUBP 8510. Logic of Policy Inquiry. 3 Credit Hours.
This course presents the conceptual foundations of models of policy inquiry. Topics include the scientific, rational-actor, and ethical models. The ethical values underlying cost benefit analysis, pareto-optimal models, and market models are also examined.

PUBP 8520. Scope and Theory of Public Policy. 3 Credit Hours.
Overview of core literature of public policy including theories of public policy, the history of public policy studies, the institutional structure of policy analysis, the profession of policy research, and the intellectual bases of public policy studies.

PUBP 8530. Advanced Science and Technology Policy. 3 Credit Hours.
Overview of core literature of technology and science policy, theories of innovation, intellectual foundations of technology and science policy.

PUBP 8540. Advanced Environmental Policy. 3 Credit Hours.
Overview of core literature of environmental policy, theories of environmental policy, intellectual foundations of environmental policy.

PUBP 8550. Advanced Urban and Regional Economic Development Policy. 3 Credit Hours.
Overview of core literature of economic development policy, theories of economic development in urban and regional settings, intellectual foundations of economic development policy.

PUBP 8590. Dissertation Colloquium. 3 Credit Hours.
Seminar focusing on dissertation research preparation, culminates in public colloquium in which students present preliminary dissertation proposal.
PUBP 8751. Big Data and Public Policy. 3 Credit Hours.
Introduces fundamentals of big data and quantitative methods for public policy and social science applications. Topics for applications vary by semester.

PUBP 8801. Special Topics. 1 Credit Hour.
PUBP 8802. Special Topics. 2 Credit Hours.
PUBP 8803. Special Topics. 3 Credit Hours.
PUBP 8811. Special Topics. 1 Credit Hour.
PUBP 8812. Special Topics. 2 Credit Hours.
PUBP 8813. Special Topics. 3 Credit Hours.
PUBP 8821. Special Topics. 1 Credit Hour.
PUBP 8822. Special Topics. 2 Credit Hours.
PUBP 8823. Special Topics. 3 Credit Hours.
PUBP 8831. Special Topics. 1 Credit Hour.
PUBP 8832. Special Topics. 2 Credit Hours.
PUBP 8833. Special Topics. 3 Credit Hours.
PUBP 8900. Special Problems. 1-21 Credit Hours.
PUBP 8910. Special Problems. 1-21 Credit Hours.
PUBP 8920. Special Problems. 1-21 Credit Hours.
PUBP 8930. Special Problems. 1-21 Credit Hours.
PUBP 8940. Special Problems. 1-21 Credit Hours.
PUBP 8950. Special Problems. 1-21 Credit Hours.
PUBP 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a teaching assistantship.
PUBP 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a research assistantship.
PUBP 8999. Preparation for the Doctoral Qualifying Examination. 1-21 Credit Hours.
PUBP 9000. Doctoral Thesis. 1-21 Credit Hours.

Russian (RUSS)

RUSS 1001. Elementary Russian I. 4 Credit Hours.
An introduction to Russian language and culture. First half of a survey of basic Russian grammar and the development of the four language skills of listening, speaking, reading, and writing. The course includes an orientation to aspects of everyday life in Russia. Humanities credit awarded upon successful completion of RUSS 1002 or RUSS 2001.

RUSS 1002. Elementary Russian II. 4 Credit Hours.
Second half of an introduction to Russian language and culture. Second half of a survey of basic Russian grammar and the development of the four basic language skills of listening, speaking, reading, and writing. The course includes an orientation to aspects of everyday life in Russia. Credit not allowed for both RUSS 1002 and RUSS 1692.

RUSS 10X1. Trans Elementary Russian I. 3 Credit Hours.

RUSS 10X2. Trans Elementary Russian II. 3 Credit Hours.

RUSS 1250. Vampires and Memory of Stalinism in Post-Soviet Russia. 3 Credit Hours.

RUSS 1692. Intensive Elementary Russian II. 3 Credit Hours.
Continues introduction to fundamental Russian grammar and development of four modalities — speaking, reading, listening, and writing — in intensive immersion environment in Russia. Credit not allowed for both RUSS 1692 and RUSS 1002.

RUSS 1811. Special Topics. 1 Credit Hour.
Topics of current interest in Russian.

RUSS 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Russian.

RUSS 1814. Special Topics. 4 Credit Hours.
Topics of current interest in Russian.

RUSS 1821. Special Topics. 1 Credit Hour.
Topics of current interest in Russian.

RUSS 1XXX. Russian Elective. 1-21 Credit Hours.

RUSS 2001. History and Culture of Russia I. 3 Credit Hours.
A review and extension of basic grammar with intensive vocabulary- building and focus on development of idiom on the basis of conversation, reading, and writing activities. Includes reading and discussion of stories and magazine articles of general cultural interest with follow-up composition assignments. Credit not allowed for both RUSS 2001 and RUSS 2691.

RUSS 2002. History and Culture of Russia II. 3 Credit Hours.
A review and extension of basic grammar with intensive vocabulary- building and focus on development of idiom on the basics of conversation, reading, and writing activities. Includes reading and discussion of stories and magazine articles of general cultural interest with follow-up composition assignments. Credit not allowed for both RUSS 2002 and RUSS 2692.

RUSS 2691. Intensive Intermediate Russian I. 3 Credit Hours.
Review and extension of basic grammar, intensive vocabulary- building, and development of idiom on the basis of conversation, reading, and writing activities (in Russia). Credit not allowed for both RUSS 2691 and RUSS 2001.

RUSS 2692. Intensive Intermediate Russian II. 3 Credit Hours.
Review and extension of basic grammar, intensive vocabulary- building, and development of idiom on the basis of conversation, reading, and writing activities (in Russia). Credit not allowed for both RUSS 2692 and RUSS 2002.

RUSS 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

RUSS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

RUSS 2811. Special Topics. 1 Credit Hour.
Topics of current interest in Russian.

RUSS 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Russian.

RUSS 2821. Special Topics. 1 Credit Hour.
Topics of current interest in Russian.

RUSS 2XXX. Russian Elective. 1-21 Credit Hours.

RUSS 3001. Advanced Russian I. 3 Credit Hours.
First half of advanced courses in Russian conversation and composition. Discussion of controversial issues with the goal of self expression in coherent paragraphs. Advanced grammar topics.
RUSS 3002. Advanced Russian II. 3 Credit Hours.
Second half of advanced courses in Russian conversation and composition. Discussion of controversial issues with the goal of self expression in coherent paragraphs. Advanced grammar topics.

RUSS 3005. Russian for Heritage Speakers. 3 Credit Hours.
Russian-language communication skills for heritage speakers. Focus on grammar and orthography, stylistics of adult/professional communication. Reading, discussion and writing on contemporary topics. Taught in Russian. Credit will not be awarded for both RUSS 3005 and RUSS 3001.

RUSS 3222. The Russian Twentieth Century in Literature and Film. 3 Credit Hours.
Russian twentieth-century literature and film. Discussion of historical and cultural context, aesthetics, structure and meaning. Reading and discussion in English.

RUSS 3242. Urban Mythologies in Russian Literature. 3 Credit Hours.
Students analyze iconic texts that have been shaped by both Russian and non-Russian urban environments across generations. Conducted in English.

RUSS 3350. Russian and American Mass Cultures. 3 Credit Hours.
Trends, genres and youth movements existing in contemporary American and Russian mass culture area compared to distinguish important cultural differences and similarities. Conducted in English.

RUSS 3691. Intensive Advanced Russian. 3 Credit Hours.
Intensive development of aural/oral communication skills, capitalizing on a rich linguistic environment. Review and expansion of grammar, practiced in context. Focus on description, narration and comparison.

RUSS 3692. Advanced Reading and Composition for Business, Science and Technology. 3 Credit Hours.
Advanced reading and writing skills. Study of syntax enables more sophisticated paragraph structure. Readings include newspaper texts on current affairs, business, science and technology.

RUSS 3695. Contemporary Russia. 3 Credit Hours.
General introduction to political, cultural, social, and historical background of Russian domestic and foreign politics. Lectures in English. Discussion section and research project in Russian.

RUSS 3698. Russia Yesterday and Today. 1 Credit Hour.
Lecture and discussion of a range of problems confronting Russian society today and the depth of their connection to Russia’s historical heritage. Taught in English.

RUSS 3803. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the Russian language not extensively treated in other courses in the department.

RUSS 3811. Special Topics. 1 Credit Hour.
RUSS 3812. Special Topics. 2 Credit Hours.
Topics of current interest in Russian.

RUSS 3813. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the Russian language not extensively treated in other courses in the department.

RUSS 3823. Special Topics. 3 Credit Hours.
Permits a group of students and a professor to pursue areas of the Russian language not extensively treated in other courses in the department.

RUSS 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Russian.

RUSS 3XXX. Russian Elective. 1-21 Credit Hours.

RUSS 4300. Imperial Imagination Through Literature and Film. 3 Credit Hours.
This course examines how Russian, Soviet, and post-Soviet culture constructed the representations of the parts of the former Russian/Soviet empire. Taught in Russian.

RUSS 4320. Nineteenth-Century Russian Writers. 3 Credit Hours.
Trends and paradigms in Russian literature from Pushkin to Chekhov. Conducted in Russian.

RUSS 4335. Technology, Society, and Culture in the Soviet Union and Russia. 3 Credit Hours.
Problems of sustainability, ecology, medicine, industrial development, and technological progress as manifested in Soviet and Russian society and reflected in culture. Conducted in Russian.

RUSS 4340. Invention of Business Discourse in Russia (1990-). 3 Credit Hours.

RUSS 4360. Russian Culture through the Prism of Song. 3 Credit Hours.
Russian songs as object of study and focal points for broader exploration of key issues in Russian and Soviet culture and history. Conducted in Russian.

RUSS 4500. Russian Intercultural Capstone Seminar. 3 Credit Hours.
Russia and the West: cultural models and political fault lines. Historical debates that continue to divide and engage Russians. Conducted in Russian.

RUSS 4692. Intensive Advanced Russian II. 3 Credit Hours.
Russian LBAT summer program. Reading and discussion of contemporary Russian and global issues. Advanced grammar and syntax. Stylistics of written discourses. Taught in Russian.

RUSS 4693. Intensive Advanced Russian III. 3 Credit Hours.
Russian LBAT summer program. Reading and discussion of contemporary Russian and global issues. Advanced grammar and syntax. Stylistics of written discourses. Taught in Russian.

RUSS 4695. Russian Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in Russian in relation on the practical goals/objectives of the entity.

RUSS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

RUSS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

RUSS 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

RUSS 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Russian.

RUSS 4833. Special Topics. 3 Credit Hours.
Topics of current interest in Russian.

RUSS 4901. Special Problems in Russian. 1-21 Credit Hours.
Provides the special instruction required under special programs.
RUSS 4902. Special Problems in Russian. 1-21 Credit Hours.
Provides the special instruction required under special programs.

RUSS 4XXX. Russian Elective. 1-21 Credit Hours.

RUSS 6360. Russian Culture through Songs. 3 Credit Hours.
Russian songs as object of study and focal points for broader exploration of key issues in Russian and Soviet culture and history. Conducted in Russian.

RUSS 6500. Intercultural Seminar. 3 Credit Hours.
Russia and the West: cultural models and political fault lines. Historical debates that continue to divide and engage Russians. Conducted in Russian.

RUSS 6510. Applied Language Practicum. 3 Credit Hours.
Students will serve as researchers, student aides and apprentice instructors for any 3/4000-level undergraduate course approved by their adviser and the course.

RUSS 6511. Applied Language Practicum Abroad. 3 Credit Hours.
Students serve as researchers and apprentice instructors in the LBAT or other faculty-led overseas language immersion program of the School of Modern Languages.

RUSS 6695. Russian Internship Abroad. 3 Credit Hours.
Students complete internships abroad in a Russian-speaking region. Conducted in Russian. Online course.

RUSS 6696. Russian Internship Abroad. 6 Credit Hours.
Students complete internships abroad in a Russian-speaking region. Conducted in Russian. Online course.

RUSS 7000. Master's Thesis. 1-6 Credit Hours.
Optional thesis course.

RUSS 8803. Special Topics. 3 Credit Hours.
Topics of current interest not covered in the regular course offerings.

Science (SCI)

SCI 1XXX. Science Elective. 1-21 Credit Hours.

SCI 2XXX. Science Elective. 1-21 Credit Hours.

Serve Learn Sustain (SLS)

SLS 2803. Special Topics. 3 Credit Hours.
Special Topics for Serve-Learn-Sustain.

SLS 3110. Technology and Sustainable Community Development. 3 Credit Hours.
This course will explore the role of technology in the development of sustainable communities, locally and internationally.

SLS 3120. Foundations of Sustainable Systems. 3 Credit Hours.
This course teaches decision-making where a systems focus on the environmental and social dimensions of a design, project, innovation or business model are explicitly considered.

SLS 3803. Special Topics. 3 Credit Hours.
Special Topics for Serve-Learn-Sustain.

Sociology (SOC)

SOC 1101. Introduction to Sociology. 3 Credit Hours.
A study of basic social relations, including social structure and functions, analysis of social processes, the foundations of personality, and analysis of social organization.

Spanish (SPAN)

SPAN 1001. Elementary Spanish I. 3 Credit Hours.
An introduction to the Spanish language and the cultures of the Spanish-speaking world. Beginning of a survey of basic Spanish grammar and the development of the four language skills of listening, speaking, reading and writing. Some aspects of everyday life in the Spanish-speaking world will also be introduced. Conducted in Spanish. No native speakers allowed. Credit not allowed for both Span 1001 and 1101.

SPAN 1002. Elementary Spanish II. 3 Credit Hours.
The second part of an introduction to the Spanish language and cultures of the Spanish-speaking world. Completion of the survey of basic Spanish grammar and the development of the four language skills of listening, speaking, reading, and writing. Aspects of everyday life in the Spanish-speaking world will also be introduced. Conducted in Spanish. No native speakers allowed. Credit not allowed for both SPAN 1002 and SPAN 1102.

SPAN 1813. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 1XXX. Spanish Elective. 1-21 Credit Hours.

SPAN 2001. Intermediate Spanish I. 3 Credit Hours.
Review of basic grammatical concepts: conversational, reading, and writing activities; cultural aspects of the Hispanic world. Conducted in Spanish. No native speakers allowed.

SPAN 2002. Intermediate Spanish II. 3 Credit Hours.
Review of basic grammatical concepts; conversational, reading, and writing activities; cultural aspects of the Hispanic world. Conducted in Spanish. No native speakers allowed.

SPAN 2690. Intermid Span Abroad. 3 Credit Hours.
Intensive intermediate Spanish conducted abroad with focus on issues and perspectives of the target region.

SPAN 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

SPAN 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

SPAN 2813. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 2XXX. Spanish Elective. 1-21 Credit Hours.

SPAN 3040. A Practical Application of Spanish Grammar. 3 Credit Hours.
A review of important structures of Spanish, presented in communicative contexts vital to the academic careers of students. Taught in Spanish.

SPAN 3050. Introduction to Reading Hispanic Literature. 3 Credit Hours.
This course bridges language study and the study of literature by helping students read, understand, and interpret literature as a system of communication in Spanish.

SPAN 3061. Spanish for Business I: Fundamentals. 3 Credit Hours.
Introduction to business language in the Hispanic world. Development of linguistic abilities to this end, with emphasis on those cultural factors that lead to commercial success. Conducted in Spanish.

SPAN 3064. Medical Spanish. 3 Credit Hours.
This course facilitates acquisition of a broad vocabulary and awareness of cultural customs and trends pertaining to the healthcare field. Taught in Spanish. Prerequisites: SPAN 2002 or any SPAN 3000-level course.
SPAN 3070. Latin American Music. 3 Credit Hours.
Students study the musical traditions of the Anfes, Mexico and the Caribbean, focusing on the rhythms, instruments, artists, style and tendencies present. Taught in Spanish.

SPAN 3101. Spanish Conversation I. 3 Credit Hours.
Development of communicative ability and cross-cultural awareness through discussion of contemporary issues in the Hispanic world. No native speakers allowed.

SPAN 3111. Composition: Analysis and Development I. 3 Credit Hours.
Writings from the Hispanic world used as a springboard for analysis and enrichment of self-expression and development of precision in written communication. Incorporates grammar review. No native speakers allowed.

SPAN 3122. Cultural History of Spain II: Nineteenth and Twentieth Century Spain. 3 Credit Hours.
History of Spanish culture from 1800 to the present. Conducted in Spanish.

SPAN 3130. Spanish for Heritage Speakers. 3 Credit Hours.
Course designed for heritage speakers with little or no formal instruction in Spanish who want to expand their linguistic skills in a content-based framework.

SPAN 3151. Conversation Practicum. 3 Credit Hours.
This course combines current event discussion with ongoing conversation practice. Students participate in in-class discussions plus weekly language exchanges with native Spaniards. Taught in Spanish.

SPAN 3200. Globalization in Latin America. 3 Credit Hours.
Case-studies examination of globalization in Latin America regarding politics and industry, migration, culture and communication, and health and the environment. Taught in Spanish.

SPAN 3211. Spain Today. 3 Credit Hours.
This course introduces students to current issues in the culture and history of contemporary Spain. Articles, videos, and news clips are used as springboard for discussion.

SPAN 3235. Latin America Today. 3 Credit Hours.
Selected journalistic and literary writings used as a springboard for discussion of social, economic, and political issues of contemporary Latin America. Conducted in Spanish.

SPAN 3241. The Individual and the Family in Hispanic Literature. 3 Credit Hours.
Analysis and discussion of the portrayal of the individual and the family in selected readings from Hispanic literature. Conducted in Spanish.

SPAN 3242. Society in Hispanic Literature. 3 Credit Hours.
Study of Hispanic society and political thought in selected literary works. Conducted in Spanish.

SPAN 3246. Identity in Hispanic American Literature. 3 Credit Hours.
This course examines the construction of personal, cultural, national, political, and regional identity in Hispanic American literature over the past two centuries. Taught in Spanish.

SPAN 3290. Satire & Media in the Americas. 3 Credit Hours.
This course explores how new types of satire challenge traditional media and impacts political communication in today's democratic societies in the Americas. Taught in Spanish.

SPAN 3300. Science Fiction in Latin America. 3 Credit Hours.
This course is a survey of Latin America science-fiction. Taught in Spanish.

SPAN 3500. Science Fiction in Latin America. 3 Credit Hours.
Historical and social context of contemporary issues of cultural, economic and environmental sustainability in the Andean region. Taught in Spanish.

SPAN 3590. Issues of Sustainable Development in the Andean Region. 3 Credit Hours.
Using literature, film and art, this course examines cultural patrimony in Peru and its impact on society, economy, environment and threats to its preservation. Conducted in Spanish.

SPAN 3592. Culture and Commerce in the Andes. 3 Credit Hours.
Examines the 'business of nature' in the extractive economies of the Andes and culture clashes of Western and indigenous perspectives of development. Taught in Spanish.

SPAN 3690. Commerce and Sustainable Communities. 3 Credit Hours.
Study of the connectedness and community impact of contemporary issues of economic, sociocultural, and environmental sustainability in Mexico. Conducted in Spanish. Part of the Spanish intensive summer LBAT program. Admission by application only.

SPAN 3691. Business Communication and Correspondence in the Hispanic. 3 Credit Hours.
Refinement of accuracy/flexibility in oral/written expression. Focus on appropriate use of strategies, business negotiation protocols, lexical precision in business transactions. Incorporates grammar review. Part of the Spanish intensive summer language program. Admission by application only.

SPAN 3692. Business and Culture in the Hispanic World. 3 Credit Hours.
Study of cultural issues, tendencies, and traditional patterns of behavior in Spanish-speaking people as they relate to business practices. Value systems and formal manifestations. Regional variations, including the U.S. Hispanic culture. Part of the Spanish intensive summer language program. Admission by application only.

SPAN 3693. Hispanic Science and Technology. 3 Credit Hours.
Study of business organizations and use of technology in the Spanish-speaking world. Specialized vocabularies of business, economics, statistics, and computer science. Geographical and anthropological background. Part of the Spanish intensive summer language program. Admission by application only.

SPAN 3694. Business and Culture in the Hispanic World: Seminar Abroad. 3 Credit Hours.
Field study of technology, economic trends, business firms, financial institutions, and cultural protocols in the Spanish-speaking area. Part of the Spanish intensive summer language program. Admission by application only.

SPAN 3697. Spanish for Health Care Professionals. 3 Credit Hours.
Culture-specific conceptions of health, medical vocabulary, professional-patient protocols, professional-professional protocols, symptoms, treatments. Part of the Spanish summer program in Cadiz.

SPAN 3698. Health Care Industry in Spain. 3 Credit Hours.
Study of culture-specific values in health systems in Spain/Europe. Visits to local sites. Part of the Spanish intensive summer program in Cadiz.

SPAN 3813. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 3821. Special Topics. 1 Credit Hour.
Topics of current interest in Spanish.

SPAN 3822. Special Topics. 2 Credit Hours.
Topics of current interest in Spanish.
SPAN 3823. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 3833. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 3XXX. Spanish Elective. 1-21 Credit Hours.

SPAN 4061. Spanish for Science and Technology I: Fundamentals. 3 Credit Hours.

SPAN 4062. Spanish for Science and Technology II: Applications. 3 Credit Hours.
Advanced analysis of scientific and technological discourse in Spanish. Focus on reading strategies and oral discussion of topics such as use and transfer of technology and the acculturation issues that follow. Further development of comprehension, production, and translation strategies, with emphasis on professional communications and on writing feature descriptions, summaries, and abstracts. Conducted in Spanish.

SPAN 4065. Spanish Linguistics. 3 Credit Hours.
This course is designed to develop the students’ understanding of the linguistic structure of the Spanish language. The topics covered in this course include: phonetics, phonology, morphology, syntax, language change, and language variation.

SPAN 4101. Advanced Communication Workshop. 3 Credit Hours.
Advancement of oral and written proficiency using a workshop and project-development format to focus on communicative precision, style and register. Includes some treatment of grammar. No native speakers allowed.

SPAN 4150. Learning in the Hispanic Community. 3 Credit Hours.
This course combines classroom discussion with Hispanic community service projects to allow students to study Hispanic cultures and practice Spanish with native speakers. Conducted in Spanish.

SPAN 4156. Spanish Service-Learning Abroad I. 3 Credit Hours.
Students complete service projects in a Spanish-speaking country abroad and attend weekly class meetings that combine student presentations and documentaries with a guest-speaker series.

SPAN 4157. Spanish Service-Learning Abroad II. 3 Credit Hours.
Students complete service projects in a Spanish-speaking country abroad and gain an in-country immersion opportunity that hone oral and aural skills and increases cultural competence through real-life interactions with the host community abroad.

SPAN 4158. Social, Cultural, and Linguistic Diversity in Spain. 3 Credit Hours.
This course examines the social, cultural, and linguistic dimensions of sustainability and the concepts of diversity and equity in the Spanish context. Taught in Spanish.

SPAN 4160. U.S. Spanish: Language and Cultures. 3 Credit Hours.
Linguistic groups, changes, bilingualism, customs, traditions of US Hispanics. Course project on current migration, legal, financial, educational, health, media or political issues/advances.

SPAN 4165. Bilingualism in the Spanish Speaking World. 3 Credit Hours.
This course introduces students to bilingualism at both individual and societal levels within the Hispanic communities in the US, Spain, and Latin America.

SPAN 4170. Spanish Applied Linguistics. 3 Credit Hours.
Advanced linguistic analysis of the Spanish language, particularly as it contrasts with English.

SPAN 4220. Nation and Narration in Latin America. 3 Credit Hours.
This course examines the connection between nation and narration in Latin American literature and film and explores the narrative construction of national identities. Taught in Spanish.

SPAN 4237. Food, Power, and Sustainability in Latin America. 3 Credit Hours.
Food as gateway to region-by-region study of issues of sustainable development in Latin America. Taught in Spanish.

SPAN 4244. Visual Culture and Social Agenda in Latin America. 3 Credit Hours.
Historical and cultural analysis of the role of art, visual image and iconography as social commentator and public platform in Latin America. Taught in Spanish.

SPAN 4251. Hispanic Community Internship. 3 Credit Hours.
Students complete internships with agencies, organizations, and businesses serving Atlanta Hispanics, using their Spanish language skills in a professional work environment. Conducted in Spanish.

SPAN 4255. Hispanic Drama Workshop. 3 Credit Hours.
Literary and theatrical aspects of Hispanic drama are explored through class discussion and performance of a collection of contemporary one-act plays.

SPAN 4270. Span Sociolinguistics. 3 Credit Hours.
This course explores the relationships between the Spanish language and the Hispanic cultures and societies of the world. Taught in Spanish.

SPAN 4350. Ibero-American Cities. 3 Credit Hours.
This course examines the representation and development of cities in the Hispanic World. Students develop three urban projects based on their study. Taught in Spanish.

SPAN 4360. Covering Arts & Latin(o) American Culture in the U.S.. 3 Credit Hours.
This course explores contemporary media reporting on the LatinX culture in the US and Latin America. Taught in Spanish and English.

SPAN 4401. Globalization and Migration. 3 Credit Hours.
Print and filmic texts serve as gateway to context-specific issues of migration in the Spanish-speaking world from both sender- and receiver-country perspectives. Taught in Spanish.

SPAN 4405. Latin American Documentaries. 3 Credit Hours.
This course explores the documentary traditions of Chile, Argentina and Cuba to learn about the history of Latin American societies. Taught in Spanish.

SPAN 4410. Media and Power in Latin America. 3 Credit Hours.
This course explores the tensions between media and power in relation to the struggle for freedom of expression in Latin American countries. Taught in Spanish.

SPAN 4454. Latin America through Film. 3 Credit Hours.
Contemporary Latin American film serves as gateway to in-depth discussion of social, political, economic and cross-cultural perspectives. Conducted in Spanish.

SPAN 4460. Hispanic Digital Cultures. 3 Credit Hours.
Students explore recent developments in New Media and Digital Culture within the context of Latin American and Spanish cultures and societies. Taught in Spanish.
SPAN 4500. Advanced Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in the Hispanic world. Intended for students who have had some study abroad experience in a Spanish-speaking country. Taught in Spanish.

SPAN 4690. Intercultural Dialogue. 3 Credit Hours.
Explores cultural identity in Latin America through live interviews, print, and film. Topics will vary. Taught in Spanish as part of the LBAT study abroad program.

SPAN 4693. Sustainability in Spain. 3 Credit Hours.
This course examines issues of economic and environmental sustainability as well as the relationship between the economy and the environment during the Spain LBAT Program.

SPAN 4695. Spanish Internship. 1-3 Credit Hours.
Professional experience with a business/organization in which students enhance their language skills and cultural knowledge in Spanish in relation to the practical goals/objectives of the entity.

SPAN 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

SPAN 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

SPAN 4813. Special Topics. 3 Credit Hours.
Topics of interest not covered in the regular course offerings.

SPAN 4823. Special Topics. 3 Credit Hours.
Topics of current interest in Spanish.

SPAN 4833. Special Topics. 3 Credit Hours.

SPAN 4901. Special Problems in Spanish. 1-21 Credit Hours.
Provides the special instruction required under special programs.

SPAN 4902. Special Problems in Spanish. 1-21 Credit Hours.
Provides the special instruction required under special programs.

SPAN 4XXX. Spanish Elective. 1-21 Credit Hours.

SPAN 6101. Advanced Communication Workshop. 3 Credit Hours.
Advancement of oral and written proficiency using workshop and project-development formats to focus on communicative precision, style, register and grammar. Taught in Spanish.

SPAN 6170. Applied Linguistics. 3 Credit Hours.
This course introduces students to theoretical and practical aspects of Spanish as a foreign language and fundamental concepts in second language acquisition and teaching.

SPAN 6236. Media, Markets and Advertising in the Hispanic World. 3 Credit Hours.
This course uses print, broadcast and web-based media to explore the social structures and cultural values reflected in product consumption, marketing and advertising in Latin America. Conducted in Spanish.

SPAN 6237. Food, Power and Sustainability. 3 Credit Hours.
Food as gateway to region-by-region study of issues of sustainable development in Latin America. Taught in Spanish.

SPAN 6244. Visual Culture and Social Agenda in Latin America. 3 Credit Hours.
Historical and cultural analysis of the role of art, visual image and iconography as social commentator and public platform in Latin America. Taught in Spanish.

SPAN 6251. Hispanic Community Internship. 3 Credit Hours.
Students complete internships with agencies, organizations, and businesses serving Atlanta Hispanics, using their Spanish language skills in a professional work environment. Conducted in Spanish.

SPAN 6270. Span Sociolinguistics. 3 Credit Hours.

SPAN 6360. Covering Arts and Latin(o) American Culture in the U.S.. 3 Credit Hours.
This course explores contemporary media reporting on the LatinX culture in the US and Latin America. Taught in Spanish and English.

SPAN 6401. Globalization and Migration. 3 Credit Hours.
Print and filmic texts serve as gateway to context-specific issues of migration in the Spanish-speaking world from both sender- and receiver-country perspectives. Taught in Spanish.

SPAN 6405. Latin American Documentaries. 3 Credit Hours.
This course explores the documentary traditions of Chile, Argentina and Cuba to learn about the history of Latin American societies. Taught in Spanish.

SPAN 6410. Media and Power in Latin America. 3 Credit Hours.
This course explores the tension between media and power in relation to the struggle for freedom of expression in Latin American countries. Taught in Spanish.

SPAN 6454. Latin America through Film. 3 Credit Hours.
Contemporary Latin American film serves as gateway to in-depth discussion of social, political, economic and cross-cultural perspectives. Conducted in Spanish.

SPAN 6460. Hispanic Digital Cultures. 3 Credit Hours.
Students explore recent developments in new Media and Digital Culture within the context of Latin American and Spanish cultures and societies. Taught in Spanish.

SPAN 6500. Intercultural Seminar. 3 Credit Hours.
Integrates cross-cultural research and reflection into discussion of current issues in the Spanish-speaking world. Taught in Spanish.

SPAN 6501. Theory and Foundations Seminar. 3 Credit Hours.
This course seeks to increase theoretical knowledge and practical applications in key areas of culture, literature/media, and linguistics studies. Taught in Spanish.

SPAN 6503. Professional Portfolio Development. 3 Credit Hours.
Preparation of a professional portfolio connecting experiences and coursework in the MS program towards career preparation. Conducted in Spanish.

SPAN 6510. Applied Language Practicum Abroad. 3 Credit Hours.
Students will serve as researchers, student aides and apprentice instructors for any 3/4000-level undergraduate course approved by their adviser.

SPAN 6511. Applied Language Practicum Abroad. 3 Credit Hours.
Students serve as researchers and apprentice instructors in LBAT or other faculty-led overseas language immersion program of the School of Modern Languages.

SPAN 6690. Intercultural Dialogue. 3 Credit Hours.
Explores cultural identity in Latin America through live interviews, print, and film. Topics vary. Taught in Spanish as part of LBAT study abroad program.

SPAN 6693. Studies in Sustainable Development. 3 Credit Hours.
This course examines issues of economic and environmental sustainability as well as the relationship between the economy and the environment. Taught in Spanish.
SPAN 6695. Spanish Internship Abroad. 3 Credit Hours.
Students complete internships abroad in a Spanish-speaking country. Conducted in Spanish. Online course.

SPAN 6696. Internship Abroad Spanish B. 6 Credit Hours.
Students complete internships abroad in a Spanish-speaking country. Conducted in Spanish. Online course. 6 credits.

SPAN 7000. Master's Thesis. 1-6 Credit Hours.
Master's Thesis.

SPAN 8803. Special Topics. 3 Credit Hours.
Special topics in Spanish Language and Literature.

Social Science Elective (SS)

SS 1XXX. Social Science Elective. 1-21 Credit Hours.
SS 2XXX. Social Science Elective. 1-21 Credit Hours.
SS 3XXX. Social Science Elective. 1-21 Credit Hours.
SS 4XXX. Social Science Elective. 1-21 Credit Hours.

Cross Enrollment (UCGA)

UCGA 1001. Cross Enroll-Agnes Scott. 1-21 Credit Hours.
UCGA 1002. Cross Enroll-Atlanta College of Art. 1-21 Credit Hours.
UCGA 1003. Cross Enroll-AU Clark. 1-21 Credit Hours.
UCGA 1004. Cross Enroll-AU Morehouse. 1-21 Credit Hours.
UCGA 1005. Cross Enroll-AU Morris Brown. 1-21 Credit Hours.
UCGA 1006. Cross Enroll-AU Spelman. 1-21 Credit Hours.
UCGA 1007. Cross Enroll-Clayton College and State University. 1-21 Credit Hours.
UCGA 1008. Cross Enroll-Columbia Theological Seminary. 1-21 Credit Hours.
UCGA 1009. Cross Enroll-Emory University. 1-21 Credit Hours.
UCGA 1010. Cross Enroll-Georgia State University. 1-21 Credit Hours.
UCGA 1011. Cross Enroll-Kennesaw College. 1-21 Credit Hours.
UCGA 1012. Cross Enroll-Mercer University. 1-21 Credit Hours.
UCGA 1013. Cross Enroll-Oglethorpe. 1-21 Credit Hours.
UCGA 1014. Cross Enroll-Southern Polytechnic State University. 1-21 Credit Hours.
UCGA 1015. Cross Enroll-University of Georgia. 1-21 Credit Hours.
UCGA 1017. Cross Enroll -West Georgia. 1-21 Credit Hours.
UCGA 1018. Cross Enroll - Brenau. 1-21 Credit Hours.
UCGA 1019. Cross Enroll- Savannah College of Art. 1-21 Credit Hours.
CROSS ENROLL-SAVANNAH COLLEGE OF ART.
UCGA 1021. Cross Enroll-Georgia Gwinnett College. 1-21 Credit Hours.
CROSS-ENROLL-GEORGIA GWINNETT COLLEGE.
UCGA 2110. Cross Enroll-Georgia State University. 1-21 Credit Hours.
UCGA 2210. Cross Enroll-Ga State University. 1-21 Credit Hours.
UCGA 2310. Cross Enroll-Kennesaw College. 1-21 Credit Hours.
UCGA 3001. Cross Enroll-Agnes Scott. 1-21 Credit Hours.
UCGA 3002. Cross Enroll-Atlanta College of Art. 1-21 Credit Hours.
UCGA 3003. Cross Enroll-AU Clark. 1-21 Credit Hours.
UCGA 3004. Cross Enroll-AU Morehouse. 1-21 Credit Hours.
UCGA 3005. Cross Enroll-AU Morris Brown. 1-21 Credit Hours.
UCGA 3006. Cross Enroll-AU Spelman. 1-21 Credit Hours.
UCGA 3007. Cross Enroll-Clayton College. 1-21 Credit Hours.
UCGA 3008. Cross Enroll-Columbia Theological Seminary. 1-21 Credit Hours.
UCGA 3009. Cross Enroll-Emory University. 1-21 Credit Hours.
UCGA 3010. Cross Enroll-Georgia State University. 1-21 Credit Hours.
UCGA 3011. Cross Enroll-Kennesaw College. 1-21 Credit Hours.
UCGA 3012. Cross Enroll-Mercer University. 1-21 Credit Hours.
UCGA 3013. Cross Enroll-Oglethorpe. 1-21 Credit Hours.
UCGA 3014. Cross Enroll-Southern Polytechnic State University. 1-21 Credit Hours.
UCGA 3015. Cross Enroll-University of Georgia. 1-21 Credit Hours.
UCGA 3017. Cross Enroll - West Georgia. 1-21 Credit Hours.
UCGA 3018. Cross Enroll-Brenau. 1-21 Credit Hours.
UCGA 3019. Cross Enroll-Savannah College of Art. 1-21 Credit Hours.
UCGA 3210. Cross Enroll-Georgia State University. 1-21 Credit Hours.
UCGA 3301. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 3302. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 3303. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 3304. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 3305. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 3306. Cross Enroll-Ga State BS/JD. 1-21 Credit Hours.
UCGA 4310. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4410. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4510. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4610. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4710. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4810. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 4910. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 6001. Cross Enroll-Agnes Scott. 1-21 Credit Hours.

UCGA 6002. Cross Enroll-Atlanta College of Art. 1-21 Credit Hours.

UCGA 6003. Cross Enroll-AU Clark. 1-21 Credit Hours.

UCGA 6004. Cross Enroll-AU Morehouse. 1-21 Credit Hours.

UCGA 6005. Cross Enroll-AU Morris Brown. 1-21 Credit Hours.

UCGA 6006. Cross Enroll-AU Spelman. 1-21 Credit Hours.

UCGA 6007. Cross Enroll-Clayton College. 1-21 Credit Hours.

UCGA 6008. Cross Enroll-Columbia Theological Seminary. 1-21 Credit Hours.

UCGA 6009. Cross Enroll-Emory University. 1-21 Credit Hours.

UCGA 6010. Cross Enroll-Georgia State University. 1-21 Credit Hours.

UCGA 6011. Cross Enroll-Kennesaw College. 1-21 Credit Hours.

UCGA 6012. Cross Enroll-Mercer University. 1-21 Credit Hours.

UCGA 6013. Cross Enroll-Oglethorpe. 1-21 Credit Hours.

UCGA 6014. Cross Enroll-Southern Polytechnic State University. 1-21 Credit Hours.

UCGA 6015. Cross Enroll-University of Georgia. 1-21 Credit Hours.

UCGA 6016. Cross Enroll-Paper Institute. 1-21 Credit Hours.

UCGA 6017. Cross Enroll - West Georgia. 1-21 Credit Hours.

UCGA 6018. Cross Enroll - Brenau. 1-21 Credit Hours.

UCGA 6019. Cross Enroll-Savannah College of Art. 1-21 Credit Hours.

UCGA 6021. CROSS-ENROLL-GEORGIA GWINNETT COLLEGE. 1-21 Credit Hours.

CROSS-ENROLL-GEORGIA GWINNETT COLLEGE.
STUDENT SERVICES

Programs & Services

- Academic Advising (http://www.advising.gatech.edu)
- Academic Resources (http://www.undergradstudies.gatech.edu)
- Career Services (http://www.career.gatech.edu)
- Counseling (http://www.counseling.gatech.edu)
- Dean of Students (http://www.deanofstudents.gatech.edu)
- Dining Services (http://www.gatechdining.com)
- Diversity Programs (http://www.diversityprograms.gatech.edu)
- Fellowships (http://fellowships.gatech.edu)
- Freshman Experience Program (http://www.housing.gatech.edu/freshmanexperience)
- Health Services (http://www.health.gatech.edu)
- International Student Services (http://www.oie.gatech.edu)
- LGBTQIA Resource Center (http://lgbtqia.gatech.edu)
- Office of Minority Educational Development (http://omed.gatech.edu)
- Orientation (new students) (https://transitionprograms.gatech.edu/content/faset-orientation)
- Tutoring & Workshops (http://www.success.gatech.edu/?id=6)
- Women's Resource Center (http://www.womenscenter.gatech.edu)
- Veteran's Resource Center (http://veterans.gatech.edu)

Student Life

- Leadership & Civic Engagement (http://engage.gatech.edu)
- Greek Affairs (http://greek.gatech.edu)
- Student Government (http://www.sga.gatech.edu)
- DramaTech (http://dramatech.org)

Departments

- Admissions (undergraduate) (http://www.admission.gatech.edu)
- Admissions (graduate) (http://www.grad.gatech.edu)
- Alumni Association (http://gtalumni.org)
- Athletic Association (http://www.ramblinwreck.com)
- Bursar's Office (http://www.bursar.gatech.edu)
- Office of the Vice President for Student Life and Dean of Students (http://studentlife.gatech.edu)
- Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu)
- Financial Aid (http://www.finaid.gatech.edu)
- Housing (http://www.housing.gatech.edu)
- Parking and Transportation (http://www.parking.gatech.edu)
- Police (campus) (http://www.police.gatech.edu)
- Registrar's Office (http://www.registrar.gatech.edu)

Facilities

- Campus Recreation Center (http://www.crc.gatech.edu)
- Information Technology (http://www.oit.gatech.edu)
- Library & Information Center (http://www.gatech.edu/libraries)
- Interdisciplinary Research Centers (http://www.gtri.gatech.edu)
- Ferst Center (http://www.ferstcenter.gatech.edu)
- Student Center (http://www.studentcenter.gatech.edu/Pages/Home.aspx)
ARCHIVED CATALOGS

- 2017-18 Catalog (http://catalog.gatech.edu/archived-catalogs/2017-2018)
- 2016-17 Catalog (http://catalog.gatech.edu/archived-catalogs/2016-2017)
- 2011-12 Catalog (http://registrar.gatech.edu/files/catalog-2011-12.pdf)
- 2010-11 Catalog (http://registrar.gatech.edu/files/catalog-2010-11.pdf)
- 2009-10 Catalog (http://registrar.gatech.edu/files/catalog-2009-10.pdf)
- 2008-09 Catalog (http://registrar.gatech.edu/files/catalog-2008-09.pdf)
- 2007-08 Catalog (http://registrar.gatech.edu/files/catalog-2007-08.pdf)
INDEX

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Advising</td>
<td>115</td>
</tr>
<tr>
<td>Academic Advising</td>
<td>118</td>
</tr>
<tr>
<td>Academic Average</td>
<td>142</td>
</tr>
<tr>
<td>Academic Common Market</td>
<td>82</td>
</tr>
<tr>
<td>Academic Honor Code</td>
<td>136</td>
</tr>
<tr>
<td>Academic Resources</td>
<td>73</td>
</tr>
<tr>
<td>Academics</td>
<td>73</td>
</tr>
<tr>
<td>Accounting (ACCT)</td>
<td>615</td>
</tr>
<tr>
<td>Accreditation</td>
<td>13</td>
</tr>
<tr>
<td>Admissions</td>
<td>113</td>
</tr>
<tr>
<td>Admissions Information</td>
<td>113</td>
</tr>
<tr>
<td>Advanced Levels (A-Levels)</td>
<td>102</td>
</tr>
<tr>
<td>Advanced Placement Exams</td>
<td>102</td>
</tr>
<tr>
<td>Advanced Standing</td>
<td>103</td>
</tr>
<tr>
<td>Advanced Technology Development Center (ATDC)</td>
<td>79</td>
</tr>
<tr>
<td>Aerospace Engineering (AE)</td>
<td>615</td>
</tr>
<tr>
<td>Air Force Aerospace Studies (AS)</td>
<td>636</td>
</tr>
<tr>
<td>Air Force ROTC Cross Registration</td>
<td>54</td>
</tr>
<tr>
<td>Air Force ROTC Program Overview</td>
<td>54</td>
</tr>
<tr>
<td>Air Force ROTC Scholarship Program</td>
<td>55</td>
</tr>
<tr>
<td>Alcohol and Drug Policy</td>
<td>136</td>
</tr>
<tr>
<td>Applied Physiology (APPH)</td>
<td>622</td>
</tr>
<tr>
<td>Applied Systems Engineering (ASE)</td>
<td>637</td>
</tr>
<tr>
<td>Arabic (ARBC)</td>
<td>625</td>
</tr>
<tr>
<td>Architecture (ARCH)</td>
<td>626</td>
</tr>
<tr>
<td>Archived Catalogs</td>
<td>831</td>
</tr>
<tr>
<td>Army ROTC - Additional Training Offered</td>
<td>56</td>
</tr>
<tr>
<td>Army ROTC - Program Overview</td>
<td>57</td>
</tr>
<tr>
<td>Army ROTC - Scholarship Programs</td>
<td>58</td>
</tr>
<tr>
<td>Army ROTC - Student Advisory Services</td>
<td>58</td>
</tr>
<tr>
<td>Assistance</td>
<td>120</td>
</tr>
<tr>
<td>Assistantships</td>
<td>120</td>
</tr>
<tr>
<td>Auditing</td>
<td>142</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Business Administration - Strategy and Innovation</td>
<td>175</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Analytics and Data Science</td>
<td>352</td>
</tr>
<tr>
<td>Bachelor of Science in Aerospace Engineering</td>
<td>177</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages & Intercultural Studies</td>
<td>179</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - Chinese</td>
<td>179</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - French</td>
<td>181</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - German</td>
<td>183</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - Japanese</td>
<td>185</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - Korean</td>
<td>187</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - Russian</td>
<td>189</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Languages and Intercultural Studies - Spanish</td>
<td>191</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Mathematics - General</td>
<td>193</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Physics</td>
<td>196</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Physics - Business Option</td>
<td>194</td>
</tr>
<tr>
<td>Bachelor of Science in Applied Physics - General</td>
<td>195</td>
</tr>
<tr>
<td>Bachelor of Science in Architecture</td>
<td>197</td>
</tr>
<tr>
<td>Bachelor of Science in Biochemistry</td>
<td>208</td>
</tr>
<tr>
<td>Bachelor of Science in Biochemistry - Business Option</td>
<td>203</td>
</tr>
<tr>
<td>Bachelor of Science in Biochemistry - General</td>
<td>205</td>
</tr>
<tr>
<td>Bachelor of Science in Biochemistry - Pre-Health Option</td>
<td>206</td>
</tr>
<tr>
<td>Bachelor of Science in Biology</td>
<td>212</td>
</tr>
<tr>
<td>Bachelor of Science in Biology - Business Option</td>
<td>208</td>
</tr>
<tr>
<td>Bachelor of Science in Biology - General</td>
<td>210</td>
</tr>
<tr>
<td>Bachelor of Science in Biomedical Engineering</td>
<td>212</td>
</tr>
<tr>
<td>Bachelor of Science in Building Construction</td>
<td>214</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration</td>
<td>225</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Accounting</td>
<td>214</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Finance</td>
<td>216</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - General Management</td>
<td>217</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Information Technology Management</td>
<td>219</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Leadership and Organizational Change</td>
<td>175</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Leadership and Organizational Change</td>
<td>221</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Marketing</td>
<td>222</td>
</tr>
<tr>
<td>Bachelor of Science in Business Administration - Operations and Supply Chain Management</td>
<td>224</td>
</tr>
<tr>
<td>Bachelor of Science in Chemical and Biomedical Engineering</td>
<td>229</td>
</tr>
<tr>
<td>Bachelor of Science in Chemical and Biomedical Engineering - Biotechnology Option</td>
<td>226</td>
</tr>
<tr>
<td>Bachelor of Science in Chemical and Biomedical Engineering - Standard Option</td>
<td>227</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry</td>
<td>240</td>
</tr>
<tr>
<td>Degree Program</td>
<td>Code</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Biochemistry Option</td>
<td>229</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Business Option</td>
<td>231</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - General</td>
<td>232</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Materials Option</td>
<td>234</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Polymer Option</td>
<td>235</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Polymers and Materials Option</td>
<td>237</td>
</tr>
<tr>
<td>Bachelor of Science in Chemistry - Pre-Health Option</td>
<td>238</td>
</tr>
<tr>
<td>Bachelor of Science in Civil Engineering</td>
<td>241</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media</td>
<td>259</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Intelligence-Film & Media Studies</td>
<td>243</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Intelligence-Games</td>
<td>245</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Intelligence-Interaction Design</td>
<td>247</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Media-Film & Media Studies</td>
<td>249</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Media-Games</td>
<td>251</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - Media-Interaction Design</td>
<td>253</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - People-Film & Media Studies</td>
<td>255</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - People-Games</td>
<td>257</td>
</tr>
<tr>
<td>Bachelor of Science in Computational Media - People-Interaction Design</td>
<td>259</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Engineering</td>
<td>260</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science</td>
<td>323</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & Information Internetworks</td>
<td>262</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & Intelligence</td>
<td>265</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & Media</td>
<td>267</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & People</td>
<td>269</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & Systems and Architecture</td>
<td>271</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Devices & Theory</td>
<td>273</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Information Internetworks & Intelligence</td>
<td>275</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Information Internetworks & Media</td>
<td>277</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Information Internetworks & People</td>
<td>279</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Information Internetworks & Systems and Architecture</td>
<td>282</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Intelligence & Media</td>
<td>284</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Intelligence & People</td>
<td>286</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Intelligence & Systems and Architecture</td>
<td>288</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Media & People</td>
<td>290</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Media & Systems and Architecture</td>
<td>293</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Devices</td>
<td>295</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Intelligence</td>
<td>297</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling - Simulation & People</td>
<td>299</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Systems and Architecture</td>
<td>301</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling - Simulation & Theory</td>
<td>304</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling and Simulation & Media</td>
<td>306</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Modeling-Simulation & Information Internetworks</td>
<td>308</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: People & Systems and Architecture</td>
<td>310</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Theory & Information Internetworks</td>
<td>312</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Theory & Intelligence</td>
<td>314</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Theory & Media</td>
<td>316</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Theory & People</td>
<td>318</td>
</tr>
<tr>
<td>Bachelor of Science in Computer Science - Thread: Theory & Systems and Architecture</td>
<td>321</td>
</tr>
<tr>
<td>Bachelor of Science in Discrete Mathematics</td>
<td>325</td>
</tr>
<tr>
<td>Bachelor of Science in Discrete Mathematics - Business Option</td>
<td>325</td>
</tr>
<tr>
<td>Bachelor of Science in Discrete Mathematics - General</td>
<td>325</td>
</tr>
<tr>
<td>Bachelor of Science in Earth and Atmospheric Sciences</td>
<td>328</td>
</tr>
<tr>
<td>Bachelor of Science in Earth and Atmospheric Sciences - Business Option</td>
<td>325</td>
</tr>
<tr>
<td>Bachelor of Science in Earth and Atmospheric Sciences - General</td>
<td>327</td>
</tr>
<tr>
<td>Bachelor of Science in Economics</td>
<td>330</td>
</tr>
<tr>
<td>Bachelor of Science in Economics and International Affairs</td>
<td>328</td>
</tr>
<tr>
<td>Bachelor of Science in Electrical Engineering</td>
<td>331</td>
</tr>
<tr>
<td>Bachelor of Science in Environmental Engineering</td>
<td>333</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages</td>
<td>347</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - Chinese</td>
<td>336</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - French</td>
<td>338</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - German</td>
<td>339</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - Japanese</td>
<td>341</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - Korean</td>
<td>342</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - Russian</td>
<td>344</td>
</tr>
<tr>
<td>Bachelor of Science in Global Economics and Modern Languages - Spanish</td>
<td>345</td>
</tr>
<tr>
<td>Bachelor of Science in History, Technology, and Society</td>
<td>347</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Design</td>
<td>350</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering</td>
<td>371</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Quality and Statistics</td>
<td>355</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Advanced Studies in Operations Research and Statistics</td>
<td>358</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Economic and Financial Systems</td>
<td>361</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - General</td>
<td>363</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Operations Research</td>
<td>366</td>
</tr>
<tr>
<td>Bachelor of Science in Industrial Engineering - Supply Chain Engineering</td>
<td>369</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs</td>
<td>388</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language</td>
<td>387</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - Chinese</td>
<td>372</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - French</td>
<td>375</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - German</td>
<td>377</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - Japanese</td>
<td>379</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - Korean</td>
<td>381</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - Russian</td>
<td>383</td>
</tr>
<tr>
<td>Bachelor of Science in International Affairs and Modern Language - Spanish</td>
<td>385</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication</td>
<td>426</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Design</td>
<td>390</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Science, Technology, and Culture</td>
<td>392</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Communication & Social Justice</td>
<td>395</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Design & Science, Technology, Culture</td>
<td>397</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Design & Social Justice</td>
<td>399</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Communication</td>
<td>402</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Design</td>
<td>404</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Media</td>
<td>407</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Science, Technology, and Culture</td>
<td>409</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Literature & Social Justice</td>
<td>411</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Media & Communication</td>
<td>414</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Media & Design</td>
<td>416</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Media & Science, Technology and Culture</td>
<td>418</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Social Justice and Science, Technology, and Culture</td>
<td>421</td>
</tr>
<tr>
<td>Bachelor of Science in Literature, Media, and Communication - Thread: Social Justice and Science, Technology, and Culture</td>
<td>423</td>
</tr>
<tr>
<td>Bachelor of Science in Materials Science and Engineering</td>
<td>434</td>
</tr>
<tr>
<td>Bachelor of Science in Materials Science and Engineering - Biomaterials</td>
<td>426</td>
</tr>
<tr>
<td>Bachelor of Science in Materials Science and Engineering - Polymer and Fiber Materials</td>
<td>429</td>
</tr>
<tr>
<td>Bachelor of Science in Materials Science and Engineering - Structural and Functional Materials</td>
<td>431</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics</td>
<td>441</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - Applied Mathematics</td>
<td>435</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - Business Option</td>
<td>436</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - Discrete Mathematics</td>
<td>437</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - General</td>
<td>438</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - Probability and Statistics</td>
<td>439</td>
</tr>
<tr>
<td>Bachelor of Science in Mathematics - Pure Mathematics</td>
<td>440</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering</td>
<td>464</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Automation and Robotic Systems</td>
<td>442</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Automotive</td>
<td>444</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Design</td>
<td>446</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - General</td>
<td>448</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Manufacturing</td>
<td>450</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Mechanics of Materials</td>
<td>452</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Micro- and Nanoengineering</td>
<td>455</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Nuclear and Radiological Engineering</td>
<td>457</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Nuclear Engineering</td>
<td>459</td>
</tr>
<tr>
<td>Bachelor of Science in Mechanical Engineering - Thermal, Fluid, & Energy Systems</td>
<td>461</td>
</tr>
<tr>
<td>Bachelor of Science in Music Technology</td>
<td>470</td>
</tr>
<tr>
<td>Bachelor of Science in Music Technology - Electrical and Computer Engineering: Signal Processing</td>
<td>465</td>
</tr>
<tr>
<td>Bachelor of Science in Music Technology - General</td>
<td>466</td>
</tr>
</tbody>
</table>
Doctor of Philosophy with a Major in Biomedical Engineering 491
Doctor of Philosophy with a Major in Building Construction 491
Doctor of Philosophy with a Major in Chemical Engineering 492
Doctor of Philosophy with a Major in Chemistry 492
Doctor of Philosophy with a Major in City and Regional Planning 493
Doctor of Philosophy with a Major in Civil Engineering 493
Doctor of Philosophy with a Major in Computational Science and Engineering .. 493
Doctor of Philosophy with a Major in Computer Science 494
Doctor of Philosophy with a Major in Digital Media 494
Doctor of Philosophy with a Major in Earth and Atmospheric Sciences .. 495
Doctor of Philosophy with a Major in Economics 495
Doctor of Philosophy with a Major in Electrical and Computer Engineering .. 496
Doctor of Philosophy with a Major in Engineering Science and Mechanics .. 496
Doctor of Philosophy with a Major in Environmental Engineering 496
Doctor of Philosophy with a Major in History and Sociology of Technology and Science ... 496
Doctor of Philosophy with a Major in Human-Centered Computing 497
Doctor of Philosophy with a Major in Industrial Engineering 498
Doctor of Philosophy with a Major in Industrial Engineering - System Informatics & Control Track .. 497
Doctor of Philosophy with a Major in International Affairs, Science and Technology .. 497
Doctor of Philosophy with a Major in Machine Learning 499
Doctor of Philosophy with a Major in Management 500
Doctor of Philosophy with a Major in Materials Science and Engineering .. 503
Doctor of Philosophy with a Major in Mathematics 503
Doctor of Philosophy with a Major in Mechanical Engineering 503
Doctor of Philosophy with a Major in Music Technology 504
Doctor of Philosophy with a Major in Nuclear Engineering 505
Doctor of Philosophy with a Major in Nuclear Engineering - Medical Physics Option .. 504
Doctor of Philosophy with a Major in Nuclear Engineering - Nuclear Enterprise Management Option 504
Doctor of Philosophy with a Major in Ocean Science and Engineering ... 505
Doctor of Philosophy with a Major in Operations Research 506
Doctor of Philosophy with a Major in Paper Science and Engineering 506
Doctor of Philosophy with a Major in Physics 506
Doctor of Philosophy with a Major in Psychology 506
Doctor of Philosophy with a Major in Public Policy 508
Doctor of Philosophy with a Major in Public Policy (Joint Degree with Georgia State University) .. 507
Doctor of Philosophy with a Major in Quantitative BioSciences 509
Doctor of Philosophy with a Major in Robotics 509
Doctoral Degree Programs .. 172
Dual Degree MCRP/JD in Planning Law (Cooperative Program with Georgia State University) .. 509
Dual Degree MCRP/Master of Science in Public Policy 509
Dual Degree MCRP/MSCE ... 510
Dual Degree Program .. 90
Dual MS Program in ECE Georgia Tech & Korea Advanced Institute of Science and Technology 510
Dual MS Program in ECE GT Lorraine and European Partner Universities 510
Dual MS Program in ECE with the Politecnico di Torino (Italy) 510

E

Earth and Atmospheric Sciences (EAS) .. 696
Economics (ECON) ... 714
Elect & Comp Engr-Professional (ECEP) .. 714
Electrical & Computer Engr (ECE) .. 701
English as a Second Language ... 79
English (ENGL) .. 719
Ethics .. 101
Experiential Education ... 83

F

Family Educational Rights and Privacy Act (FERPA) and Applicant Records .. 140
FASET Orientation (new student orientation) .. 116
Fees .. 129
Fellowships .. 120
Final Examinations .. 142
Financial .. 120
First-Year .. 115
Foreign Studies (FS) .. 721
Free Elective (FREE) .. 719
French Baccalaureat .. 104
French (FREN) .. 719

G

Georgia Tech (GT) .. 724
Georgia Tech Lorraine (GTL) .. 725
Georgia Tech Research Corporation .. 80
Georgia Tech Research Institute .. 80
Georgia Tech-Lorraine .. 44
German (GRMN) .. 722
German Language Exams (DSD) .. 104
Global Perspectives .. 101
Index

J
Japanese (JAPN) .. 750
Joint CNRS Research Laboratory 80
Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politecnico Di Milano 516
Joint Doctor of Philosophy with a Major in Electrical and Computer Engineering with the Politechnico di Torino (Italy) 516
Joint Enrollment Program for High School Students 84

K
Korean (KOR) .. 752

L
Latin (LATN) ... 753
Learning Support (LS) .. 759
Learning Support Policies .. 84
Linguistics (LING) .. 753
Literature, Media & Comm (LMC) .. 753
Living Learning Communities .. 85
Logistics Innovation Centers ... 80

M
M.Arch/MCRP Dual Degree .. 516
M.D./Ph.D. Program ... 516
Management (MGT) .. 778
Management of Technology (MOT) .. 789
Manufacturing Leadership (MLDR) .. 788
Master of Architecture (M.Arch.) .. 516
Master of Biomedical Innovation and Development 517
Master of Business Administration - Global Business 517
Master of Business Administration in Management of Technology 519
Master of Business Administration (MBA) 518
Master of City and Regional Planning 520
Master of Industrial Design (MID) .. 521
Master of Real Estate Development .. 522
Master of Science in Architecture - Health & Design 202
Master of Science in Aerospace Engineering 522
Master of Science in Analytics ... 523
Master of Science in Applied Languages and Intercultural Studies 524
Master of Science in Applied Languages and Intercultural Studies - Spanish .. 524
Master of Science in Architecture .. 525
Master of Science in Architecture - Advanced Production 199
Master of Science in Architecture - Building Information Systems 200
Master of Science in Architecture - Design Computation 201
Master of Science in Architecture - High Performance Building ... 203
Master of Science in Bioengineering ... 525
Master of Science in Bioinformatics ... 526
Master of Science in Biology .. 526
Master of Science in Biomedical Engineering 526
Master of Science in Building Construction and Facility Management 527
Master of Science in Chemical Engineering 528
Master of Science in Chemistry ... 528
Master of Science in Civil Engineering 529
Master of Science in Computational Science and Engineering 529
Master of Science in Computer Science 530
Master of Science in Cybersecurity .. 534
Master of Science in Digital Media .. 535
Master of Science in Earth and Atmospheric Sciences 536
Master of Science in Economics ... 536
Master of Science in Electrical and Computer Engineering 537
Master of Science in Engineering Science and Mechanics 537
Master of Science in Environmental Engineering 538
Master of Science in Geographic Information Science and Technology 538
Master of Science in Global Media and Cultures 539
Master of Science in Health Systems .. 539
Master of Science in History and Sociology of Technology and Science 540
Master of Science in Human-Computer Interaction 541
Master of Science in Industrial Engineering 544
Master of Science in International Affairs 545
Master of Science in International Logistics 545
Master of Science in Materials Science and Engineering 546
Master of Science in Mathematics .. 546
Master of Science in Mechanical Engineering 547
Master of Science in Medical Physics 548
Master of Science in Music Technology 548
Master of Science in Nuclear Engineering 549
Master of Science in Operations Research 549
Master of Science in Paper Science and Engineering 550
Master of Science in Physics ... 550
Master of Science in Psychology .. 550
Master of Science in Public Policy .. 550
Master of Science in Quantitative and Computational Finance 552
Master of Science in Statistics ... 552
Master of Science in Supply Chain Engineering 553
Master of Science in Urban Design (MSUD) 553
Master of Science (Undesignated) ... 552
Master of Science with a Major in Management 554
Minor in Sustainable Energy and Environmental Management	555
Master of Sustainable Energy and Environmental Management	555
Master's Degree Programs	171
Materials Science & Engr (MSE)	791
Mathematics (MATH)	759
Mechanical Engineering (ME)	767
Medical Physics (MP)	789
Military Science & Leadership (MSL)	796
Minor in Aerospace Engineering	555
Minor in Architectural History	555
Minor in Architecture	556
Minor in Biochemistry	557
Minor in Biomedical Engineering	557
Minor in Biotechnology	557
Minor in Chemistry	559
Minor in Chinese	559
Minor in Computational Data Analysis	560
Minor in Computing and Business	560
Minor in Computing and Devices	561
Minor in Computing and Intelligence	562
Minor in Computing and Media	562
Minor in Computing and People	563
Minor in Computing and Systems Architecture	563
Minor in Computer and Theory	564
Minor in Computing Information Internetworks	565
Minor in Earth and Atmospheric Sciences	565
Minor in East Asian Studies	567
Minor in Economics	569
Minor in Energy Systems	569
Minor in Engineering and Business	578
Minor in European Studies	578
Minor in Film and Media Studies	581
Minor in French	582
Minor in German	582
Minor in Global Development	583
Minor in Health and Medical Sciences	583
Minor in Health, Medicine, and Society	584
Minor in History	585
Minor in Industrial Design	585
Minor in International Affairs	586
Minor in International Business, Language, and Culture	586
Minor in Japanese	590
Minor in Korean	590
Minor in Law, Science, and Technology	590
Minor in Leadership Studies	591
Minor in Linguistics	593
Minor in Materials Science and Engineering	593
Minor in Mathematics	594
Minor in Middle Eastern and North African Studies	594
Minor in Multidisciplinary Design/Arts History	595
Minor in Music (General)	595
Minor in Music Technology	596
Minor in Naval Science	597
Minor in Nuclear Radiological Engineering	598
Minor in Performance Studies	598
Minor in Philosophy	599
Minor in Physics	599
Minor in Physiology	599
Minor in Political Science	600
Minor in Psychology	601
Minor in Public Policy	601
Minor in Robotics	602
Minor in Russian	603
Minor in Russian Studies	603
Minor in Science Fiction Studies	603
Minor in Science, Technology, and Society	604
Minor in Scientific and Engineering Computing	605
Minor in Social Justice	606
Minor in Sociology	607
Minor in Spanish	608
Minor in Sports, Society, and Technology	608
Minor in Sustainable Cities	609
Minor in Technical Communication	610
Minor in Technology and Business	610
Minor in Women, Science, and Technology	610
Modern Languages (ML)	788
Multidisciplinary Activities and Programs	32
Multidisciplinary Programs	44
Music (MUSI)	797
Naval Science (NS)	803
Neuroscience (NEUR)	800
New Sequence of Math Core Courses	107
NROTC - College Program Students	58
Index

NROTC - Program Overview ... 59
NROTC - Scholarship Students .. 59
NROTC - Two-Year Scholarship Program ... 59
Nuclear & Radiological Engr (NRE) ... 800

O
Oak Ridge Associated Universities ... 81
Office of the President ... 13
Orientation - New Students .. 113
Out-of-State Tuition Waivers ... 121
Out-of-State Tuition Waivers ... 125
Out-of-State Tuition Waivers ... 132
Outside Sponsorships ... 122
Outside Sponsorships ... 126

P
Paid and Unpaid Internships ... 83
Pass/Fail Grading .. 145
Payment .. 130
Persian (PERS) ... 803
Philosophy (PHIL) .. 804
Physics (PHYS) .. 805
Policies ... 136
Policy on Competitive Admission (Transfer Applicants) 115
Political Science (POL) ... 809
Polymer, Textile and Fiber Eng (PTFE) .. 814
Preprofessional Programs .. 85
President's Scholarship Program ... 85
President's Scholarship Program ... 127
Professional Education .. 78
Professional Education Degree Programs .. 79
Professional Education Short Programs ... 79
Professional Master’s in Applied Systems Engineering 612
Professional Master’s in Manufacturing Leadership 612
Professional Master’s in Occupational Safety and Health 613
Professional Master’s in Sustainable Electrical Energy 613
Professional Practive (DOPP) ... 696
Programs ... 169
Progress Reports ... 146
Psychology (PSYC) .. 809
Public Policy (PUBP) .. 815
Public Policy/Joint GSU PhD (PUBJ) ... 814

R
Reactivation of Application .. 113
Readmission .. 117
Readmission Immunization Requirements ... 118
Refunds .. 131
Regents’ Engineering Transfer Program ... 90
Regents’ Testing Program .. 105
Regents’ Testing Program .. 116
Regents’ Testing Program .. 118
Required Computer Ownership ... 147
Required Student Computer Ownership ... 116
Requirements for the Doctoral Degree .. 75
Requirements for the Master’s Degree .. 77
Research Centers .. 16
Research Support Facilities ... 79
ROTC ... 85
ROTC Credit .. 105
Rules and Regulations .. 150
Russian (RUSS) ... 821

S
SAT II Subject Tests .. 105
Scheller College of Business ... 71
School of Architecture ... 21
School of Biological Sciences ... 45
School of Building Construction ... 23
School of Chemical and Biomolecular Engineering 33
School of Chemistry and Biochemistry .. 49
School of City and Regional Planning ... 24
School of Civil and Environmental Engineering 35
School of Computational Science and Engineering 17
School of Computer Science ... 18
School of Earth and Atmospheric Sciences 49
School of Economics ... 59
School of Electrical and Computer Engineering 36
School of History and Sociology ... 60
School of Industrial Design ... 26
School of Interactive Computing ... 19
School of Literature, Media, and Communication 62
School of Materials Science and Engineering 38
School of Mathematics .. 51
School of Modern Languages ... 64
School of Music ... 27
School of Music Humanities Credit Information 27
<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>School of Physics</td>
</tr>
<tr>
<td>50</td>
<td>School of Psychology</td>
</tr>
<tr>
<td>65</td>
<td>School of Public Policy</td>
</tr>
<tr>
<td>82</td>
<td>Science (SCI)</td>
</tr>
<tr>
<td>82</td>
<td>Serve Learn Sustain (SLS)</td>
</tr>
<tr>
<td>81</td>
<td>Skidaway Institute of Oceanography</td>
</tr>
<tr>
<td>82</td>
<td>Social Science Elective (SS)</td>
</tr>
<tr>
<td>82</td>
<td>Sociology (SOC)</td>
</tr>
<tr>
<td>116</td>
<td>Sophomore Programs</td>
</tr>
<tr>
<td>82</td>
<td>Spanish (SPAN)</td>
</tr>
<tr>
<td>81</td>
<td>Special Academic Programs</td>
</tr>
<tr>
<td>147</td>
<td>Student Absence from Class Due to Illness or Personal Emergencies</td>
</tr>
<tr>
<td>131</td>
<td>Student Financial Agreement</td>
</tr>
<tr>
<td>830</td>
<td>Student Services</td>
</tr>
<tr>
<td>86</td>
<td>Summer Language Programs</td>
</tr>
<tr>
<td>86</td>
<td>T</td>
</tr>
<tr>
<td>86</td>
<td>The International Plan</td>
</tr>
<tr>
<td>70</td>
<td>The Sam Nunn School of International Affairs</td>
</tr>
<tr>
<td>113</td>
<td>TOEFL for Int'l Students</td>
</tr>
<tr>
<td>115</td>
<td>Transfer</td>
</tr>
<tr>
<td>105</td>
<td>Transfer Courses with 'X' Numbers</td>
</tr>
<tr>
<td>106</td>
<td>Transfer Credit</td>
</tr>
<tr>
<td>116</td>
<td>Transfer Credit</td>
</tr>
<tr>
<td>118</td>
<td>Transfer of Credit</td>
</tr>
<tr>
<td>89</td>
<td>Transfer Programs</td>
</tr>
<tr>
<td>40</td>
<td>Transfer Programs in the College of Engineering</td>
</tr>
<tr>
<td>132</td>
<td>Tuition</td>
</tr>
<tr>
<td>134</td>
<td>Tuition Classification</td>
</tr>
<tr>
<td>114</td>
<td>Types of Standing</td>
</tr>
<tr>
<td>102</td>
<td>U</td>
</tr>
<tr>
<td>91</td>
<td>U.S. Perspectives</td>
</tr>
<tr>
<td>114</td>
<td>Undergraduate Academics</td>
</tr>
<tr>
<td>114</td>
<td>Undergraduate Admissions</td>
</tr>
<tr>
<td>139</td>
<td>Undergraduate Certificate Guidelines</td>
</tr>
<tr>
<td>124</td>
<td>Undergraduate Financial Assistance</td>
</tr>
<tr>
<td>107</td>
<td>Undergraduate Minors</td>
</tr>
<tr>
<td>90</td>
<td>Undergraduate Research Opportunities Program</td>
</tr>
<tr>
<td>107</td>
<td>Undergraduate Students Taking Graduate Courses</td>
</tr>
<tr>
<td>30</td>
<td>Undergraduate Study in Aerospace Engineering</td>
</tr>
<tr>
<td>22</td>
<td>Undergraduate Study in Architecture</td>
</tr>
<tr>
<td>46</td>
<td>Undergraduate Study in Biological Sciences</td>
</tr>
<tr>
<td>41</td>
<td>Undergraduate Study in Biomedical Engineering</td>
</tr>
<tr>
<td>24</td>
<td>Undergraduate Study in Building Construction</td>
</tr>
<tr>
<td>72</td>
<td>Undergraduate Study in Business</td>
</tr>
<tr>
<td>34</td>
<td>Undergraduate Study in Chemical and Biomolecular Engineering</td>
</tr>
<tr>
<td>49</td>
<td>Undergraduate Study in Chemistry and Biochemistry</td>
</tr>
<tr>
<td>26</td>
<td>Undergraduate Study in City and Regional Planning</td>
</tr>
<tr>
<td>36</td>
<td>Undergraduate Study in Civil and Environmental Engineering</td>
</tr>
<tr>
<td>51</td>
<td>Undergraduate Study in Earth and Atmospheric Sciences</td>
</tr>
<tr>
<td>60</td>
<td>Undergraduate Study in Economics</td>
</tr>
<tr>
<td>38</td>
<td>Undergraduate Study in Electrical and Computer Engineering</td>
</tr>
<tr>
<td>61</td>
<td>Undergraduate Study in History and Sociology</td>
</tr>
<tr>
<td>31</td>
<td>Undergraduate Study in Industrial & Systems Engineering</td>
</tr>
<tr>
<td>27</td>
<td>Undergraduate Study in Industrial Design</td>
</tr>
<tr>
<td>20</td>
<td>Undergraduate Study in Interactive Computing</td>
</tr>
<tr>
<td>71</td>
<td>Undergraduate Study in International Affairs</td>
</tr>
<tr>
<td>63</td>
<td>Undergraduate Study in Literature, Media, and Communication</td>
</tr>
<tr>
<td>40</td>
<td>Undergraduate Study in Materials Science and Engineering</td>
</tr>
<tr>
<td>51</td>
<td>Undergraduate Study in Mathematics</td>
</tr>
<tr>
<td>44</td>
<td>Undergraduate Study in Mechanical Engineering</td>
</tr>
<tr>
<td>64</td>
<td>Undergraduate Study in Modern Languages</td>
</tr>
<tr>
<td>27</td>
<td>Undergraduate Study in Music Technology</td>
</tr>
<tr>
<td>52</td>
<td>Undergraduate Study in Physics</td>
</tr>
<tr>
<td>53</td>
<td>Undergraduate Study in Psychology</td>
</tr>
<tr>
<td>69</td>
<td>Undergraduate Study in Public Policy</td>
</tr>
<tr>
<td>107</td>
<td>Undergraduate-Level Courses</td>
</tr>
<tr>
<td>13</td>
<td>University System of Georgia (USG) Member Institutions</td>
</tr>
<tr>
<td>152</td>
<td>V</td>
</tr>
<tr>
<td>81</td>
<td>V. Grades / Average</td>
</tr>
<tr>
<td>127</td>
<td>VentureLab</td>
</tr>
<tr>
<td>135</td>
<td>Verification of Participation</td>
</tr>
<tr>
<td>123</td>
<td>Veterans Services</td>
</tr>
<tr>
<td>154</td>
<td>VI. Scholastic Regulations</td>
</tr>
<tr>
<td>156</td>
<td>VII. Deficiencies</td>
</tr>
<tr>
<td>156</td>
<td>VIII. Withdrawal/Readmission</td>
</tr>
<tr>
<td>28</td>
<td>Vocal and Instrumental Ensembles</td>
</tr>
<tr>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>102</td>
<td>Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University</td>
</tr>
<tr>
<td>102</td>
<td>Wellness</td>
</tr>
<tr>
<td>41</td>
<td>Woodruff School of Mechanical Engineering</td>
</tr>
</tbody>
</table>