The Threads™ represent partial paths through the curriculum. Thus, a student weaves a degree from these Threads. Students are not forced to make Thread decisions very early in their academic careers; however, they may if they want. We define the Threads so they are flexible enough to allow for a variety of technical and creative experiences. Threads are coherent enough that students develop computing skills even if their focus shifts as they go along.

The Devices thread is concerned with embedded computational artifacts that interact with people or the physical world. In this thread, one learns how to create and evaluate devices that operate under physical constraints such as size, power, and bandwidth. Examples include PDAs, cell phones, robots, jet engines, and intelligent appliances.

<table>
<thead>
<tr>
<th>Wellness</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPH 1040 Scientific Foundations of Health</td>
<td>2</td>
</tr>
<tr>
<td>or APPH 10 The Science of Physical Activity</td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core A - Essential Skills</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1552 Integral Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core B - Institutional Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1301 Introduction to Computing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core C - Humanities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Any HUM (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-c)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core D - Science, Math, & Technology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2211 Introductory Physics I</td>
<td>2</td>
</tr>
<tr>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1551 Differential Calculus</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1554 Linear Algebra</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core E - Social Sciences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 The United States to 1877</td>
<td></td>
</tr>
<tr>
<td>HIST 2112 The United States since 1877</td>
<td></td>
</tr>
<tr>
<td>INTA 1200 American Government in Comparative</td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>POL 1101 Government of the United States</td>
<td></td>
</tr>
<tr>
<td>PUBP 3000 American Constitutional Issues</td>
<td></td>
</tr>
<tr>
<td>Any SS (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-e)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core F - Courses Related to Major</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Science</td>
<td>4</td>
</tr>
<tr>
<td>CS 1100 Freshman Leap Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 1331 Introduction to Object Oriented</td>
<td>3</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
</tr>
<tr>
<td>CS 1332 Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>for Applications</td>
<td></td>
</tr>
<tr>
<td>CS 2050 Introduction to Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>for Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2340 Objects and Design</td>
<td>1</td>
</tr>
<tr>
<td>CS 4001 Computing, Society, and Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>or CS 4002 Robots and Society</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Design Options (Capstone)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Design Option</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2110 Computer Organization and Programming</td>
<td>1</td>
</tr>
<tr>
<td>CS 2200 Computer Systems and Networks</td>
<td>1</td>
</tr>
<tr>
<td>CS 3251 Computer Networking</td>
<td>1</td>
</tr>
<tr>
<td>CS 3451 Computer Graphics</td>
<td>1</td>
</tr>
<tr>
<td>ECE 2031 Digital Design Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following for Building Devices: 1

| CS 3651 Prototyping Intelligence | 4 |
| ECE 4180 Embedded Systems Design | |

Select one of the following for Devices in the Real World: 1

CS 3630 Introduction to Perception and Robotics	3
CS 4261 Mobile Applications and Services for Converged Networks	
CS 4605 Mobile and Ubiquitous Computing	1
CS 4476 Introduction to Computer Vision	3

Select one of the following for Algorithm Fundamentals: 1

CS 3240 Languages and Computation	3
CS 3510 Design and Analysis of Algorithms	
CS 3511 Design and Analysis of Algorithms, Honors	

Select two of the following for Media Technologies: 1

CS 4455 Video Game Design and Programming	6
CS 4460 Introduction to Information Visualization	
CS 4464 Computational Journalism	
CS 4475 Computational Photography	
CS 4480 Digital Video Special Effects	
CS 4496 Computer Animation	
CS 4590 Principles and Applications of Computer Audio	

Other Required Courses

MATH 3012 Applied Combinatorics	3
Select one of the following:	
MATH 3215 Introduction to Probability and Statistics	
MATH 3670 Probability and Statistics with Applications	
CEE 3770 Statistics and Applications	
ISYE 3770 Statistics and Applications or ISYE 2 Probability with Applications	
or ISYE 2 and Basic Statistical Methods	

Free Electives

| Free Electives | 13 |

Total Credit Hours 126

Pass-fail only allowed for Free Electives (max 6 credit hours), CS 1100, and CS 1171 (if required).

1 Minimum grade of C required.
2 Two of three labs MUST be a sequence.
Junior Design Options are as follows (students must pick one option and may not change):
- Option 1 - LMC 3432, LMC 3431, CS 3311, CS 3312.
- Option 2 - ECE VIP courses and LMC 3403.
- Option 3 - Satisfy Georgia Tech Research Option

Six credits of the Junior Design option are used as Major Requirements and the overage credits of research/VIP (5 credit hours/2 credit hours) may be used as free electives. Students completing VIP for their junior design requirement will be required to complete at least three semesters of VIP. (VIP 1 + VIP 2 + VIP 3) (for a total of 5 credit hours) + LMC 3403 = 8 hours of VIP credit.

Two credit hours of MATH 1554 may count along with MATH 2550 to give Area F 18 credit hours.

Cooperative Programs
The College of Computing participates in the undergraduate and graduate Cooperative Programs. See links below for further information:
- Undergraduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/center-career-discovery-development)
- Graduate Cooperative Plan (http://catalog.gatech.edu/academics/special-academic-programs/experiential-education/graduate-cooperative-plan)

International Plan
The College of Computing (http://www.cc.gatech.edu) has an approved BS CS International Plan that accommodates the unique requirements of this option discussed in the International Plan section of the catalog (http://www.catalog.gatech.edu/academics/special-academic-programs/international-plan).

However, due to the flexible nature of the Threads curriculum, the International Plan designation may not be available with all of the Thread combinations. Efforts will be made to work with interested students to accommodate their individual circumstances with regard to the International Plan designator for the Bachelor of Science in Computer Science.

Research Option
To complete the Research Option in the College of Computing, students must:
1. Complete at least nine units of undergraduate research
 a. Over at least two, preferably three terms
 b. Research may be for either pay or credit;
2. Write an undergraduate thesis/report of research on their findings;
3. Take
 a. LMC 4701: Undergraduate Research Proposal Writing (taken during the first or second semester of research)
 b. LMC 4702: Undergraduate Research Thesis Writing (taken during the thesis writing semester).

Research Classes
The following classes count toward fulfillment of the Research Option:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2699</td>
<td>Undergraduate Research (Freshman and Sophomore)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4699</td>
<td>Undergraduate Research (Junior and Senior)</td>
<td>1-12</td>
</tr>
<tr>
<td>CS 4980</td>
<td>Research Capstone Project</td>
<td>1-21</td>
</tr>
</tbody>
</table>

To get credit toward completion of the Research Option for research for pay, students must be registered for the appropriate audit-only, research for pay class (CS 2698 or 4698). If work on research for pay begins after the close of registration and the student has not signed up for the appropriate class, unfortunately it is not possible to get credit toward the Research Option for work that term.

A research project will also fulfill the capstone design requirement if the student registers for CS 4980 for one of the research terms. This is typically done the last semester of research, while taking LMC 4702.

Completion of the Research Option is noted on the student’s transcript. For more information, see www.urop.gatech.edu (http://www.urop.gatech.edu).

Contact Us
General Research Option Information (http://www.catalog.gatech.edu/academics/special-academic-programs/undergraduate-research-opportunities-program)