Bachelor of Science in Mechanical Engineering - Design

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

  • Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
  • Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
  • Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
  • Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.
Wellness
APPH 1040Scientific Foundations of Health2
or APPH 1050 The Science of Physical Activity and Health
Core A - Essential Skills
ENGL 1101English Composition I3
ENGL 1102English Composition II3
MATH 1552Integral Calculus 24
Core B - Institutional Options
CS 1371Computing for Engineers3
Core C - Humanities
Any HUM 6
Core D - Science, Math, & Technology
PHYS 2211Introductory Physics I 24
PHYS 2212Introductory Physics II4
MATH 1551Differential Calculus 22
MATH 1553Introduction to Linear Algebra 22
Core E - Social Sciences
Select one of the following:3
The United States to 1877
The United States since 1877
American Government in Comparative Perspective
Government of the United States
American Constitutional Issues
Select one of the following:3
Economic Analysis and Policy Problems
The Global Economy
Principles of Macroeconomics
Principles of Microeconomics
Any SS 6
Core F - Courses Related to Major
CHEM 1310General Chemistry4
ME 1770Introduction to Engineering Graphics and Visualization 3
MATH 2551Multivariable Calculus 24
MATH 2552Differential Equations 24
MSE 2001Principles and Applications of Engineering Materials3
Ethics Requirement 1
Major Requirements
COE 2001Statics 22
ME 2016Computer Applications3
ME 2110Creative Decisions and Design3
ME 2202Dynamics of Rigid Bodies3
ME 3017System Dynamics3
ME 3057Experimental Methodology and Technical Writing3
ME 3322Thermodynamics,Thermodynamics I3
ME 3340Fluid Mechanics,Fluid Mechanics I3
ME 3345Conduction and Radiation Heat Transfer3
COE 3001Mechanics of Deformable Bodies3
ME 3210Design, Materials, and Manufacture3
ME 4056Mechanical Engineering Systems Laboratory3
ME 4182Mechanical Design Engineering3
Other Engineering Requirements
ECE 3710Circuits and Electronics2
ECE 3741Instrumentation and Electronics Lab1
ISYE 3025Essentials of Engineering Economy1
MATH 3670Probability and Statistics with Applications3
Automotive Concentration
ME 3180Mechanical Engr Design I,Machine Design 3
or ME 4315 Energy Systems Analysis and Design
ME 4823Introduction to Automotive Engineering3
Select three of the following:9
Internal Combustion Engines
Hybrid Vehicle Powertrains
Manufacturing Process Analysis
Structural Vibrations
Introduction to Fuel Cell Systems
Fundamentals of Mechatronics
Control of Dynamic Systems
Electrochemical Energy Storage and Conversion
Engineering Acoustics and Noise Control
Undergraduate Research
Special Problems,Special Prob's-Mech Engr
Aerodynamics
Free Electives
Free Electives 3,4,56
Total Credit Hours129

No pass-fail courses allowed.

Student must earn a 2.0 GPA within Major Requirements and the following:

MSE 2001Principles and Applications of Engineering Materials3
ECE 3710Circuits and Electronics2
ECE 3741Instrumentation and Electronics Lab1
ISYE 3025Essentials of Engineering Economy1

If a course is repeated, only the latest grade is included in the calculation of the Major Requirements GPA.

1

Students must complete one Ethics course during their program.

2

Minimum grade of C required.

3

At least 3 credit hours in either the Concentration Electives or Free Electives must be a 3000-level or higher ME course. ME 3141, ME 3700, ME 3720, ME 3743, ME 3744, ME 4699, ME 4741, ME 4742, ME 4753, and ME 4903 are not allowed.

4

Excludes CEE 2040, PHYS 2802, PHYS 2XXX (AP credit) and MGT 2250.

5

Students can use a maximum of 6 credit hours of VIP courses (ECE 2811, ECE 38X1, ECE 48X1) or a maximum of 6 credit hours of undergraduate research and special problems courses (2699, 4699, 4903 from any department) not to exceed 9 credit hours from both course groups towards the degree requirements for the BSME degree.

The undergraduate curriculum in mechanical engineering (ME) is very broad and flexible. The curriculum comprises a ME core of fundamental concepts, plus a design/professional-practice stem, plus 15 credit hours of free electives. The program prepares students to be problem solvers and to contribute to a wide range of industries and businesses, or to go on for further study in graduate school. There is a strong emphasis in the ME program on design, creativity, and hands-on learning. Due to the wide range of career choices open to MEs, the program incorporates courses in electronics, materials science, computer programming, and manufacturing. The large number of free elective hours allows students to pursue minors and certificates throughout the Institute, or to specialize in areas within ME. The flexibility also helps students to pursue a variety of special programs including co-op, internships, study abroad, and undergraduate research.

Program Educational Objectives

The faculty of the Woodruff School strives to continuously improve our undergraduate programs in mechanical engineering. The educational objectives reflect the needs, and have been reviewed by, among others, the Advisory Board of the Woodruff School, the faculty, and the students.

  • Our graduates will be recognized leaders in ME-related fields or other career paths, including industry, academe, government, and non-governmental organizations.
  • Our graduates will be global collaborators, leading and participating in culturally diverse teams, who fearlessly discover and apply new knowledge and engineering practices that have a world-wide impact.
  • Our graduates will be adaptive learners who continue to grow professionally by obtaining professional registration or certification, or by earning post-graduate degrees.
  • Our graduates will be entrepreneurially minded innovators who have a positive economic and social impact on their communities, the nation, and society as a whole.